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Abstract 
In this thesis a Model of Trust based on Bayesian Networks is introduced. The model 
determines the trustworthiness of a new or hitherto unknown entity by utilizing information 
exchanged with cooperative authorities.  
Results from different trust models using individual evaluation techniques to assess the 
trustworthiness of an entity can only be utilized using specific conversion methods or not at 
all. However, utilizing results from other authorities is always needed if an authority cannot 
evaluate an entity on its own. This would be the case, for instance, if no previous interactions 
with an entity have taken place and hence no experience is available for an evaluation of an 
entity's trustworthiness. 
This trust model addresses this problem and introduces a method to enable information 
exchange with cooperative authorities to assess a new or unknown entity, even if they use 
different evaluation techniques. 

The method is based on the exchange of trust relations. This means, rather than using absolute 
values reflecting the degree of confidence in an entity, this model makes use of a relative 
notion of trust. An entity is hereby seen as being equally or more trustworthy than another 
entity. 

The trust relations are modelled using the structure and inference algorithms of Bayesian 
Networks. By finally evaluating them, a new or unknown entity's trustworthiness is assessed. 
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Abbreviations 

BG Backward Graph 

BN Bayesian Network 

CPT Conditional Probability Table 

FG Forward Graph 

ntw not trustworthy 

tw trustworthy 
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1 Introduction 
In this thesis a Model of Trust based on Bayesian Networks is introduced. The model 
determines the trustworthiness of an entity by utilizing information exchanged by cooperating 
authorities.  

In open distributed computer systems trust is an issue which is demanding more attention than 
ever. Especially with the expansion of the internet and the ease of setting up temporal ad-hoc 
networks, it is critical to know which entities in a network are trustworthy and which entities 
are less or not trustworthy.  

To evaluate the degree of confidence in an entity a lot of research has been done in recent 
years and many different trust models have been developed. Every model introduces its own 
method for judging an entity according to its capability for certain tasks or even to assess its 
trustworthiness in general.  

With the increasing variety of trust evaluation methods comes also a greater variety of 
different evaluation techniques. In consequence, the value reflecting the degree of confidence 
in a certain entity might vary from trust model to trust model. Some of them use probabilities 
between 0.0 and 1.0 to express the belief in an entity. Others use integer numbers or just 
separate with categorizations such as "very untrustworthy", "untrustworthy", "trustworthy", 
and "very trustworthy."  
In situations where an assessment for a certain entity from other authorities is needed, it is 
difficult to utilize results from different trust evaluation methods. Either specific formulas for 
conversion are needed or it is not possible at all.  

The goal of this work is to provide a trust model to address this problem. It enables authorities 
to utilize recommendations from cooperative authorities even if they use different trust 
evaluation techniques.  
The approach of this work is using relative trust relations. Rather than handling absolute 
values reflecting an absolute belief in an entity, this work models trust as a relative notion. It 
reflects the belief in an entity relative to other entities. In particular, an entity is stated to be 
equally or more trustworthy relative to one or more other entities.  
The trust relations are modelled with the use of Bayesian Networks, a widely used knowledge 
based system. The structure, a directed acyclic graph, and all initial values are developed 
within this work. The functionality of Bayesian Networks, which are basically the interference 
algorithms, provides the method to compute the trustworthiness of a given entity.  
The remainder of this work is organized as follows. In chapter 2 the motivation of this thesis is 
described on an introductory example. Chapter 3 deals with related work. Chapter 4 and 5 
define the modelled system in greater detail and specify the goal and approach of this work. 
Chapter 6 introduces the relation graph this model is build on, followed by Chapter 7, 8 and 9 
which describe step by step the approach of this work. Chapter 10 is reserved to exemplify the 
models application. Chapter 11 gives a critical review about the work and shows what future 
work might be possible to extend the model. Finally, chapter 12 concludes this work. 
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2 Motivation 
The motivation will be explained in the following chapter using a simple example for a person 
Carol.  
Carol might believe some people with regards to what they say about security engineering 
more than other people she knows. One of her friends could be an expert in that subject and 
she would believe this person (referred to as F) on what he says about security engineering. 
However, there might be another security expert (G) she might believe even more than her 
friend, F.  

To illustrate this example, let's represent the set of people Carol knows within a circle as 
shown in Figure 1. Further, let's represent her confidence in F and G as a relation graph. In this 
case, it is F → G, meaning that Carol trusts G about Security Engineering at least as much as 
F. The graph is also shown in Figure 1. 

 

 
 

Figure 1: Considered the people Carol knows, she trusts person G at least as much as person F. 

 
Assume furthermore at a security conference will be a speaker (referred to as S) whom Carol 
does not know yet. She is going to attend the security conference and wonders whether she 
should listen to the speech of S. Besides the topic, it is of interest for her how trustworthy the 
speaker and so his content might be. Since S is unknown to Carol it is not possible for her to 
evaluate how trustworthy the speaker is, nor is it possible to insert S in her relation graph (see 
Figure 2). 
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Figure 2: Person S is unknown to Carol. Hence it is not possible to insert S in her relation graph. 

 

A colleague of Carol (referred to as A) knows the speaker and she could ask him how 
trustworthy what he thinks is S. But since the notion of trust is subjective, if her colleague tells 
Carol that S is 'trustworthy', it still remains unclear what 'trustworthy' means to her colleague 
compared to what it means to Carol herself. 

Nevertheless, Carol's colleague might be able to build his own relation graph with the people 
he knows. Suppose he introduces Carol to his own view of specialists in security engineering. 
He also knows Carol's friend F and brings additionally one more expert (X) in the field of 
security into play. Assume the colleague's opinion on the expertise of these people is (in the 
ascending order of trust) X, F, S. The relationship graph is shown in Figure 3. 
 

 
 

Figure 3: A's confidence in X, F, and S. 

 
If Carol decides to take her colleague's list of security experts into account, then she might 
want to extend her own relation graph with the relations of her colleague's graph and "merge" 
somehow her own with her colleague's graphs.  
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In consequence, this step should make it possible to evaluate the trustworthiness of S 
compared to other people in the relation graph because their representative vertices will then 
be connected in the same graph. 

 

 
Figure 4: To insert speaker S in her relation graph, Carol asks A for recommendation and  

merges the two relation graphs. 

 

At this point, Carol can already state S is more trustworthy than F and X since there is a direct 
and transitive connection between them. But, the question for Carol, illustrated in Figure 4, 
remains which of the two experts G or S she should trust more. It cannot be resolved at this 
stage since there is no direct or transitive relation between the two. The thesis will address this 
question later in this paper and develop a method to transfer such a relation graph into a graph 
of total order. This will provide then an assessment of how trustworthy speaker S is compared 
to all persons in the relation graph. 
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3 Related Work 
This chapter represents work related to the model presented in this thesis. The first section 
covers the general aspects of trust, which plays a major role in this work. It lists the main 
points how other authors and researchers interpret the notion of trust. 

The second section presents different trust and reputation models. It provides a general idea 
about recent developed models and gives the reader a more global picture about the context 
within which the model in this work is placed. 
The third and final section in this chapter gives an account of related work on Bayesian 
Networks. It lists papers which provide a description for understanding Bayesian Networks 
and also papers which were used for this work.  

3.1 Trust 
In open distributed computer systems, trust receives more and more attention. Trust is often 
defined as a trusting party's belief in characteristics like reliability, honesty and competence of 
a trusted party [Wang, 2003], sometimes as subjective or even elusive notion [Abdul-Rahman, 
2000]. Summarized, trust is seen as a degree of confidence that a specific entity acts or 
behaves in an explicit context in a certain way. 
Several researchers characterize or use trust as context specific element [Yahalom, 1993], 
[Abdul-Rahman, 2000] or state that trust should always be based on knowledge or prior 
experiences [Jøsang, 1996]. 

In [Shi, 2004] and [McKnight, 1996] the authors expand this characterization and differentiate 
between three different types of trust: Situational Trust, General Trust and Basic Trust1. The 
first type is the trust in another entity derived from all past experiences within a particular 
context or subject. The second and third types denote a context independent notion of trust and 
refer therefore to a broader view of belief in the expected behaviour of other agents. 
In this work will focus mainly on the first type, the notion of trust based on experience and 
within a particular subject or context.  

3.2 Trust and Reputation Models 
A number of researchers deal with trust and reputation models. These models are usually built 
to help make decisions or to support the evaluation process of assessing the trustworthiness of 
different entities in distributed systems. In [Shi, 2004] a trust model is introduced for helping 
users and machines in decision-making based on prior experiences. In their model the possible 
outcome of the execution of an action is calculated with the aid of probability distribution. 

                                                

 
1 McKnight et al. [McKnight, 1996] use different terms to introduce these types of trust. In particular: 
Interpersonal Trust, Impersonal Trust and Dispositional Trust.  
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Abdul-Rahman and Hailes propose in [Abdul-Rahman, 2000] a Trust Model which assists 
agents to identify trustworthy agents. The trust evaluation in their model relies on prior 
experience with a certain agent within a specific context as well as on reputational information 
gathered in form of recommendations from other agents. In their model, the degree of trust in 
other agents is subjectively categorised into a set of Trust Degrees: "Very Trustworthy", 
"Trustworthy", "Untrustworthy" and "Very Untrustworthy." The proposed trust model deals 
also with the trustworthiness of recommender agents and introduces the notion of "semantic 
distance." It indicates the deviation between the agent's current opinion in another agent's 
trustworthiness and the recommender's proposal. The more the recommendation differs the 
less it influences the agent's opinion. 
A model for trust decision and reputation management in multi-agent networks is suggested 
by Yu and Singh [Yu, 2002]. Their approach is based on the 'Dempster-Shafer Theory' which 
handles the notion of belief in a way that a 'lack of belief does not [necessarily] imply 
disbelief' [Yu, 2002]. They introduced the term total belief which describes the level of belief 
in another agent. It is calculated by combining the local belief (which refers to an agent's 
belief in another agent from direct interactions) and recommendations from other agents. By 
introducing TrustNet, Yu and Singh provide agents with the ability to combine and evaluate 
testimonies (recommendations) from several other agents. 
In general, the evaluation process (whether an agent or entity is trustworthy) is done by 
analysing prior experiences and/or utilizing recommendations from others. It is important to 
consider the trustworthiness of the recommender entities as well as handling conflicting 
recommendations [Shi, 2004]. Also the aspect that trust has dynamic and non-monotonic 
characteristics ('additional information at a later time may increase or decrease [the] degree of 
trust in another [entity]' [Abdul-Rahman, 2000]) should be considered. 

3.3 Bayesian Networks 
Bayesian Networks are used in a variety of fields such as diagnosis [Heckerman, 1992], 
language understanding [Charniak, 1989], risk prediction and others. A good overview with 
references is given by Heckerman [Heckerman, 1995] in his paper.  

Charniak [Charniak, 1991] introduces Bayesian Networks in a very basic manner. He 
demonstrates that Bayesian Networks can be explained without juggling with too many 
formulae. It is very helpful if the reader wants to get just enough knowledge about Bayesian 
Networks to be able to estimate whether they might be useful for his or her own work. 

A more advanced introduction into Bayesian Networks is given by Morawski in his paper 
[Morawski, 1989]. He mainly focuses on the explanation of the evaluation method for 
Bayesian Networks introduced by Judea Pearl [Pearl, 1988].  
Bayesian Networks play a major part in this work to finally evaluate the trustworthiness of an 
entity. Besides the basic structure of Bayesian Networks and their common interference 
algorithms, for example the Message Passing Algorithm (for tree-based structures) introduced 
by Pearl [Pearl, 1988] or the clustering algorithm by Lauritzen & Spiegelhalter [Lauritzen, 
1990] for any type of directed acyclic graphs, this work makes use of the extended version of 
the noisy OR-gate model. 
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The original noisy OR-gate model was introduced in [Pearl, 1988] and it is widely used in 
Bayesian Networks. It deals with specifying the initialization values for the 'Conditional 
Probability Tables' (CPTs) in a Bayesian Network. Usually these values are determined by 
either analysing huge data sets with sample data or by eliciting an expert in a particular 
domain. The noisy OR-gate model introduced by Pearl offers an alternative to compute the 
conditional probabilities needed for the networks CPTs if only limited information is 
available.  

Henrion built on Pearl's developed noisy OR-gate model and extended it by introducing in 
[Henrion, 1989] the leaky noisy OR-gate. Bayesian Networks model in an abstract way the 
relation between causes and their effects. The original noisy OR takes only the actually 
present causes into account, implying that if no cause is present no effect will occur. Henrion 
extended this by introducing a leak probability. It models the fact that an effect occurs for a 
certain probability even if no cause is present. 
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4 Model Abstraction and Generalization  
In this work, trust is seen as the belief in another person's or system's trustworthiness in being 
better or more reliable than others according to a specific subject (e.g. providing better quality 
in carrying out certain instructions or offering higher reliability in executing transactions). 

In general and abstract terms, the system consists of several elements which will be defined in 
the following paragraphs.  

A trust relationship always involves two parties [Jøsang, 1996], the trusting party and the 
trusted party. First, the definition for the trusted party in the system which is called entity is 
given. The definition for the trusting party which is called trust authority will be introduced 
later in this section. 

Definition 1. Entity: An entity is a distinct object such that  
(a) one or more trusting parties have a certain degree of confidence in its abilities, 

capabilities, or reliabilities according to a specific subject, and  
(b) if E = {e1, e2, …} is a set of entities then ∀ ei, ej : ei = ej implies i = j. 

In [Yahalom, 1993] the authors state that there are several tasks (trust classes) where an entity 
can be trusted in and 'it might be very reasonable to trust an [entity] with respect to some tasks 
and not necessarily with respect to others.' In other words, the direct confidence in a certain 
entity should be related to a specific subject or context. This aspect will be defined in the 
following definition.  

Definition 2. Context: A context is the subject which the trusting party's confidence in an 
entity is related to. Let C = {c1, c2, …} be a set of contexts such that ∀ ci, cj : ci = cj implies  
i = j. 

So far an entity as trusted party and the context where the belief of a trusting party is relying 
on are defined. To draw a parallel between the example which is given in section 2 and the 
definitions above, the people in the example are the distinct entities, and the subject of 
Security Engineering is the context.  

The next step is to define the link between two entities. It stands for the trusting party's 
(subjective) degree of confidence in those entities and expresses its belief which of those 
entities is more trustworthy compared to each other. When it was claimed in the example in 
section 2 that person D is more trustworthy than person F (on context C), the relation was 
informally denoted with an arrow (F → D). Formally described, this relation is as follows. 
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Definition 3. Trust Relation: The trust relation between two entities expresses the trusting 
authority's degree of confidence in these entities and indicates the authority's belief which of 
these entities is more trustworthy. It is denoted by e1

A
c≤ e2, meaning e2 is no less trustworthy 

than e1, whereby 

(a) e1, e2 ∈ E with e1 ≠ e2, 
(b) c ∈ C, and 
(c) A being the trusting authority2. 

In later trust evaluations, the notion of distance between two entities will be introduced. It 
represents how trustworthy one entity is with respect to another. The value range is  
[0.0, 1.0] ∈ R. If, for example, the distance between two entities is 0.0 the two entities are 
equally trustworthy. The greater the distance gets the more trustworthy is one entity relative to 
the other. The definition for the notion of distance is given in the next paragraph. Its 
calculation is mainly application dependent and will be discussed later in this work. 

Definition 4. Distance: Let e1, e2 ∈ E and let e1
A
c≤ e2. The distance between the two entities 

represents the relative distance between the degree of confidence in e1 and the degree of 
confidence in e2 such that 

(a) its range is [0.0, 1.0] ∈ R. 

This paper uses relation graphs representing the relations between entities. The following 
definition describes the structure of such graphs. 

Definition 5. Context-based Relation Graph: Let D = (E, R, c) be a directed acyclic graph 
with 

(a) E = { e1, e2, …} being the set of vertices representing the entities, 
(b) R = {r1, r2, …} being the set of edges representing the trust relations  

R ⊆ {E × E | (em, en) ≡ em
A
c≤ en with m ≠ n}, 

(c) d(ri) being the distance between two entities, and 
(d) c ∈ C.  

Along with entities, trust relations and context-based relation graphs, the last element in the 
system is the trusting party called trust authority. Every authority develops and maintains its 
own relation graphs. By setting corresponding trust relations in a graph, an authority can 
express its degree of confidence not only between two entities but among all entities in the 
graph - always with respect to the context the graph is related to. 

                                                

 
2 see Definition 6 
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Definition 6. Trust Authority: A trust authority is the trusting party maintaining one or more 
relation graphs such that  

(a) D = {g1, g2, …} is the set of graphs the authority maintains,  
(b) ∀ gi, gj : gi.c = gj.c implies i = j, and 
(c) c ∈ C. 

The graphs considered in this paper are directed acyclic graphs in contrary to directed cyclic 
graphs. The reason is as follows: Assume a cyclic graph D with a set of vertices  
V(D) = {A, B, C}, a set of edges E(D) = {(A, B), (B, C), (C, A)} and assigned distances to 
every relation (see Figure 5). From a mathematical point of view the graph definition is fine. 
However, the trust relation would be seen in the following manner:  

 

 
 

Figure 5: A Cyclic graph where A would be less trustworthy than B,  
B less than C,  and C less than A.   

 

There are edges from A to B and from B to C. Consequently the authority trusts B at least as 
much as A and it trusts C at least as much as B. Thus, it can also be stated: A is equally or less 
trustworthy than C. Still, there is a further edge from C to A representing C is equally or less 
trustworthy than A. This statement is obviously in contrary to the previous statement3 which 
illustrates the complication with cyclic parts in the relation graphs. In consequence acyclic 
graphs are used to represent relation graphs. 

                                                

 
3 Except for the case that A, B and C are equally trustworthy. 

A
  

B 

C 

d(r1) 
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5 Goals and Approach  
In the last chapter the definitions which specify the framework of this thesis are introduced. In 
this chapter this framework will be used to specify the goals of this work and outline its 
approach. 

The degree of trust in an entity is usually determined by analysing past experience with the 
entity. In a case were no previous interactions with an entity took place, this information is 
missing. In such a case most of the trust and reputation models introduce a method to interact 
with other authorities to exchange of information about the trustworthiness of the entity. 

The problem the paper addresses is that this information exchange between authorities is only 
possible when the other authority uses the same or similar trust evaluation methods to 
determine the trustworthiness of the entity. This is because the value reflecting the degree of 
trust varies from trust model to trust model. 

There exist many different possibilities to evaluate the degree of trust of an entity. They range 
from the use of very basic methods (e.g. calculating the ratio between the number of positive 
and the number of total interactions) to the use of highly sophisticated trust evaluation 
techniques. Some of them express the belief in an entity as probabilities. Others use integer 
numbers and yet others which distinguish between categorizations from "very untrustworthy" 
to "very trustworthy" as seen in the related work section. 
In fact, to utilize evaluation results from other authorities using different evaluation 
techniques, either specific formulas for conversion are needed or it is not possible at all. 
The goal of this work is to provide a trust model to assess the trustworthiness of a new or 
unknown entity. Hereby the model enables authorities to utilize recommendations from 
cooperating authorities independent of the trust model used by them.  

The approach of this work is using relative trust relations. Rather than handling absolute 
values reflecting an absolute belief in an entity, this work models trust as a relative notion. It 
reflects the confidence in an entity relative to other entities. In particular, an entity is stated to 
be equally or more trustworthy relative to one or more other entities. All trust relations 
combined form a context-based relation graph, represented by a directed acyclic graph. The 
trustworthiness of an entity will then be determined by its integration in this relation graph.  

The entire approach of this model is separated in three main parts.  
The first part is the definition of an algorithm for utilizing trust relations from other 
authorities. This step is to integrate the new or unknown entities into the context-based 
relation graph of an authority. 

The second part is to develop the structure and initialization values of the Bayesian network. 
This includes also the determination of the 'Conditional Probability Tables' which defines the 
probabilities used to evaluate a Bayesian Network.  
The third part is to transfer the current partial ordered relation graph into a complete ordered 
graph by using the Bayesian network's structure developed in part 2. This finally provides the 
means to define completely the order of trust among all entities of a relation graph. Thus the 
trustworthiness of an entity to be assessed can be classified according to its position in the 
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total order. The total order is a hierarchical relation graph and the higher an entity's position in 
the graph, the more trustworthy is the entity in comparison to all other entities in the graph. 
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6 The Authorities' Relation Graph 
In this chapter the authority's relation graph will be introduced. It is the main element in this 
work. The next section shows in detail how an authority's relation graph is built and on which 
values it is based. Further it explains aspects which are needed for the trust evaluation process 
(such as the notion of distance). 

6.1 How the Initial Graph is built 
This section describes how an authority builds an initial Context-based relation graph. It is 
assumed that every authority manages its own set of known entities. When an authority builds 
its initial relation graph, only these entities are taken into consideration. No recommendations 
from other authorities are considered at that point.  
The starting point is that an authority has a set of known entities which have already been 
evaluated, meaning the degrees of trust in these entities are available. These degrees of trust 
should be expressed by a real number. It can be determined by using different trust models 
provided by other researchers or by using the very basic method of calculating the ratio 
between previously successful interactions (with that entity) divided by the total number of 
interactions. This gives the authority the freedom to choose an appropriate method for its own 
needs.  

The authority might also have a set of entities which are new or unknown and therefore shall 
be evaluated.  

The initial relation graph, which is a hierarchical ordered graph, is built using only the entities 
of the first set. Figure 6 illustrates this. 

 

 
 

Figure 6: The known entities are used to build the initial relation graph. 

 

The nodes of the graph represent the entities, the edges represent the relations. The set of 
nodes is given by the above-mentioned set of known entities. The relations are determined by 
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the following algorithm. It basically sorts the entities according to their trustworthiness and 
inserts the relations to form a hierarchical ordered graph.  
 

 
 

Algorithm 1: Builds the initial relation graph 

 

6.2 Notion of Distance 
In this section the notion of distance is introduced. It qualifies every single relation previously 
inserted in the relation graph and is needed for the later trust evaluation. 
Basically, the distance between two entities represents how much one entity is more 
trustworthy than another. The range of the distance's value is defined as [0.0, 1.0] ∈ R. A 
minimal distance in a relation between two entities would consequently mean one entity is 
minimally more trustworthy than the other. In fact, if the distance is zero, the two entities 
would be equally trustworthy. The greater the distance gets, the more trustworthy is one entity 
relative to the other.  
Relative is actually the key word in the last sentence. The distance is determined individually 
for every relation rather than in an absolute way. Its calculation uses the degrees of trust the 
authorities computed for every known entity. In other words, if the authority assigns, for 
instance, real values to express the degree of trust in an entity, these real values are used to 
calculate the relative distance.  

The following formula can then be used to calculate the relative distance between two entities. 
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In the formula, |em| and |en| are the values expressing the degree of trust an authority has in an 
entity.  
At this point, two assumptions about the input values (|em|, |en|) are made.  

1. If |em| = |en| for n ≠ m, the entities em and en are considered equally trustworthy. 

ALGORITHM 1: BUILDINITIALRELATIONGRAPH(E) 
Input: E = {e1, e2, …, en} (set of evaluated entities) 
Output: G = (E, R) (directed graph) 
1 sort(E, asc) Ø Sorts E in ascending order according to value of ei 
2 for i from 1..(n-1) do 
3  R{} ← edge(ei, ei+1) 
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2. The values are normalized that they scale linear to an entity's degree of trust. This 
means, for instance, if a value doubles, it reflects a double amount of trust in that 
entity. 

To illustrate the distance calculation, assume an authority A manages a set of two entities. Be 
S = {e1, e2} the set. Furthermore, assume A determines the belief in its entities using the ratio 
between an entity's successful transactions and total transactions. If, for instance, the ratio for 
entity e1 = 3/10 and for entity e2 = 9/10, the distance between the two entities would be 
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The following algorithm calculates the distances for every given relation within a relation 
graph provided as input. Since generally the distance calculation itself is application 
dependent, the algorithm calls the function CalcDistance with two input values. In the above 
described situation, however, this function would simply return the value calculated by the 
formula (6.1) depicted previously. 
 

 
 

Algorithm 2: Create Distances 
 
A full initialized relation graph is the basis for the further approach of utilizing relation graphs 
from other authorities. The next chapters will go into the details of integrating 
recommendations from other authorities by merging two or more graphs. This is the first of 
three steps to evaluate the total order of a set of entities according to their trustworthiness. 

ALGORITHM 2: CALCULATEDISTANCES(G) 
Input: G = (E, R) (Context-based relation graph) 
Output: Gout = (E, R) (weighted Context-based relation graph) 

1 for each edge r ∈ R do 
2   d(r) ← CalcDistance(|r.e1|, |r.e2|) 
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7 Merging Graphs 
Merging two or more graphs is one way an authority can integrate new and previously 
unknown entities into its relation graph. Relations between two entities which could 
previously not be resolved can be determined by uniting the authority's graph with that of 
another authority containing the relation of interest.  
The following sections show how two relation graphs are merged. They also present 
techniques to handle cycles and assess them according to their advantage. The final section 
rounds the merging process off by addressing multiple merge processes. 

7.1 Merging Process 
The unification of two graphs itself is simple and straight forward. To express it in 
mathematical terms, two definitions are necessary: Let G1 = (E1, R1) be a directed graph where 

},,,{ 211 peeeE K=  represents its finite set of vertices and }),,{(1 Kmn eeR = represents its 
finite set of edges. Let G2 = (E2, R2) be a second graph of the same type as G1. Formally 
expressed is the united graph G1/2 = (E, R) the result of 212/1 )( EEGE ∪=  and 

212/1 )( RRGR ∪= . Hence, the merge of two graphs (G1/2 = G1 ∪ G2) is done by means of the 
unification of the sets of nodes and the sets of edges respectively. It unifies all (distinct) edges 
and nodes of two given graphs.  

To draw an example, assume a directed graph D1 is represented by its vertices 
},,{)( 1 CBADE =  and edges }),(),,{()( 1 CABADR = . A second directed graph D2 is 

represented by },,{)( 2 DCBDE =  and }),(),,{()( 2 DCCBDR =  respectively (see Figure 7).  

 

 
 

Figure 7: Two separate, independent graphs D1 and D2. 
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According to the procedure described above, the result of the merge of the given two graphs is 
as follows. The vertices of the new graph D1/2 = (E, R) are =∪= )()()( 212/1 DEDEDE  

},,,{ DCBA ; the edges are )},(),,(),,(),,{()()()( 212/1 DCCBCABADRDRDR =∪= . The 
resulting graph is displayed in Figure 8. 
 

 
 

Figure 8: The result of the merging of the directed graphs D1 and D2. 

 

The distances assigned to all relations are considered as follows. In general the distance value 
assigned to a relation is inserted into the unified graph combined with the edge representing 
the relation.   
Consider again D1 and D2 as defined above. D1 has two relations and their specified distances4 
are d1(A, B) = d1(A, C) = 0.3. D2 has also two relations and their corresponding distances are 
d2(B, C) = d2(C, D) = 0.5. The representing unified graph is shown in Figure 9 (a). 

When two relation graphs are unified it is possible that both graphs contain the same relation 
but different distances assigned to it. In such a case the final distance in the unified graph is 
the average distance of both source relations. 

Consider D2b as identical to D2 except that it has an additional relation (A, C) ∈ R(D2b) with an 
assigned distance of d2b(A, C) = 0.5. The final distance of the relation (A, C) ∈ D1/2b is then 
d1/2b(A, C) = avg(d1(A, C), d2b(A, C)) = avg(0.3, 0.5) = 0.4. The corresponding graph is shown 
in Figure 9 (b). 

 

                                                

 
4 Distances are denoted as dx(rm). The index x denotes the relation graph's Dx index. If, for example, the distance's 
assigned relation rm ∈ D1, the distance would be denoted as d1(rm). 

A 

B C D1 ∪ D2 
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Figure 9: (a) Unified relation graph with assigned distances;  
(b) Unified relation graph with the graph D1 and the modified graph D2b as sources. 

 

The corresponding algorithm for merging two directed graphs is described with Algorithm 3. 
It basically makes use of the first input graph as starting point and integrates all missing nodes 
and edges from the second input graph. The distances are handled accordingly.  
 

 
 

Algorithm 3: Merge Graphs 
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ALGORITHM 3: MERGEGRAPHS(G1, G2) 
Input: G1 = (E1 , R1), G2 = (E2 , R2) (two directed graphs) 
Output: G3 = G1 ∪ G2 
1 G3 ← Copy(G1) Ø Make a copy of G1 and save it as G3 
2 for each vertex e ∈ E2 
3  do if e ∉ E3  
4   then E3[ ] ← e  Ø add vertex e to the list of vertices E3 
5 for each edge rm ∈ R2 
6  do if rm ∉ R3 
7   then R3[ ] ← rm Ø add edge rn to the list of edges R3 
8    rn.d ← d(rm) Ø save the distance of edge rm 
9   else   rn.d ← avg(d(rm),d(rn)) Ø with rm ∈ R2 and rn ∈ R3 
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7.2 Handling Cycles 
As previously stated, this paper uses directed acyclic graphs representing the trust relations 
between several entities instead of using cyclic graphs. This is because in presented notion of 
trust, the relations are transitive5 and therefore exclude cyclic relations. However, when 
merging two graphs using the procedure outlined above, cycles may appear in resultant 
graphs.  

In the next paragraph a method is presented on how to deal with cyclic parts in graphs, 
followed by other considered alternatives. To illustrate the methods let G = (E, R) be a 
directed sample graph with E(G) = {a, b, c, d, e, f, g, h} and R(G) = {(a, b), (a, f), (b, c), (c, a),  
(c, d), (c, g), (d, e), (f, c), (f, e), (h, a), (h, c)}. The graph is shown in Figure 10. 

 

 
 

Figure 10: Graph G = (E, R) with two cycles ({a, b, c, a} and {a, f, c, a})  
forming a strongly connected component. 

 

7.2.1 Collapsing cyclic parts  
To deal with cycles actually means to transfer a cyclic graph into an acyclic graph, thus to 
dissolve the cyclic parts by modifying or replacing them properly. In the sample graph G the 
strong component6 {a, b, c, f} is the cyclic part of the graph which therefore has to be dealt 
with.  

                                                
 
5 If e1

A
c≤ e2 and e2

A
c≤ e3 is given, transitivity implies e1

A
c≤ e3.  

6 A strongly connected component [short: strong component] of a directed graph G is a maximal subgraph of G 
such that for every two distinct vertices in the subgraph, each vertex is reachable from the other. A graph can 
contain one or more strong components. 

c 

b 

a 

f 

e 
d g 

h 



Master Thesis A Method for Assessing the Trustworthiness of an Entity 
 

 
© August 2005 by Mathias Kohler  - 20 - 

It is indeterminable which entity within a cycle is most trustworthy, since every one of them 
could be (as shown in section 4). Therefore, these entities are going to be treated as being 
equally trustworthy. This is done by collapsing cyclic parts to one node, hereby putting all the 
entities within a cycle in the same level of trustworthiness. In terms of graph theory, this 
modification is a transformation of a cyclic directed graph into an acyclic directed graph by 
building the strongly connected component graph (SCCG).  
To illustrate an example let G = (E, R) be the original cyclic graph (Figure 10). To get the 
acyclic graph, the strong component {a, b, c, f} is collapsed to one node 'abcf'. The resultant 
SCCG is G' = (E', R') with E'(G') = {abcf, d, e, g, h} and R'(G') = {(abcf, d), (abcf, e),  
(abcf, g), (d, e), (h, abcf)} (shown in Figure 11).  
 

 
 

Figure 11: Strongly connected component graph of G' = (E', R') 

 

If nodes outside of a strong component have multiple links to nodes inside a strong 
component, the links are combined to one combined edge pointing to the collapsed node. An 
example is node h in the sample graph G. This node has the edges (h, a) and (h, c). Since the 
nodes a and c are collapsed in G', h is linked to the collapsed node by the single connection (h, 
abcf).  
The distances when collapsing a graph are handled as follows. In a strong component the 
distances are reduced to zero. This corresponds to the assumption that all entities within a 
strong component are equally trustworthy. The distance for the combined edge is determined 
by averaging the distances from the connections to the former single nodes. 
The algorithm for determining the strongly connected components in a given directed cyclic 
graph G is presented, for example, in [Cormen, 2001, p. 554] or [Manber, 1989, p. 231]. The 
following algorithm makes use of it and generates a directed acyclic graph which is used for 
further processing. 

abcf 
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Algorithm 4: Generate Strongly Connected Component Graph7 

 

There are two further possibilities which were considered for dealing with cyclic parts of 
graphs. These additional methods are described in the following paragraphs along with 
reasons for not choosing them.  

7.2.2 Deleting edge(s) 
The first alternative option to deal with cycles is to remove one edge contributing to form the 
cycle. Choosing the edge is an arbitrary choice since deleting any of the edges of the cycle will 
break it.8  
This method of deleting edges was declined for the reason of two main drawbacks: 

By deleting an edge, one certainly makes a choice of the order of trust for the remaining 
vertices. If, for instance, the edge (c, a) in graph G is deleted, the order of trust among the 

                                                

 
7 The algorithm for the procedure call 'StronglyConnectedComponents( )' is depicted in [Cormen, 2001, p. 554] 
or [Manber, 1989, p. 231]. 
8 There are types of strongly connected components where possibly more than one edge has to be deleted to 
dissolve the cyclic part. However, in most cases it remains ambiguous which edges should be removed. 

ALGORITHM 4: GENERATESCCG(G) 
Input: G = {E, R} (cyclic directed graph) 
Output: G' = {E', R'} (acyclic directed graph) 

1 G' ← create empty graph 
2 SC[ ] ← call StronglyConnectedComponents(G)  Ø SC[ ] = list of strong components 
3 for each sc ∈ SC  
4   create composite vertices cv 
5 E'[ ] ← all vertices v ∈ E and ∉ SC 
6 E'[ ] ← all composite vertices cv 
7 for each vertex v ∈ E and ∉ SC  Ø loops: create edges between   
8   for each sc ∈ SC      v ∉ SC and composite vertices 
9    if edges r[ ] = (v, sc) ∈ R exist 
10        R'[ ] ← r' ← create (v, cv)  Ø cv ∈ E' resulted from sc ∈ SC in  
11   else if r[ ] = (sc, v) ∈ R exist      step 4 
12              R'[ ] ← r' ← create (cv, v) 
13     d'(r') ← avg( d(r) ) 
14 for each sc1 ∈ SC Ø loops: create edges between  
15   for each sc2 ∈ SC and sc1 ≠ sc2           composite vertices 
16    if edges r[ ] = (sc1, sc2) ∈ R exist 
17       R'[ ] ← r' ← create (cv1, cv2) 
18              d'(r') ← avg( d(r) ) 
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entities which were part of the cycle is now c, b, a (in descending order) with entity a as least 
trustworthy. However, by deleting the edge (a, b) the resulting order is different in that node a 
is now the most trusted entity. The order of trust in descending order in this case is: a, b, c.  

The second consequence of removing ambiguous parts of the graph (edges in this case) is, it 
affects consistency. Hence, further analyses of the relation graph will necessitate the 
consideration and evaluation of several cases such as how far removing edge (a, b) instead of 
edge (c, a) would affect the final result. 

7.2.3 Deleting node(s) 
It is also possible to break a cycle by removing one or more nodes v within a cycle to interrupt 
it. Additionally every edge (v, x) or (x, v) previously connected to the node is deleted as well. 
This method too has drawbacks similar to those mentioned above thus equivocally affecting 
the order of trust relation of remaining entities, as well as the possibility of affecting the 
consistency of the result.  

Furthermore, depending on which node of the cycle is chosen to be deleted (which is basically 
an arbitrary choice, too) the resultant graph might become disconnected.9 This is the case, for 
instance, by removing node c to interrupt the cycle {a, b, c, a} in the sample graph G. In this 
case, node g would become disconnected. Relations between entities in disconnected graphs 
cannot be resolved. 

7.3 Handling Graph Recommendations 
The merging and utilizing of other authorities' graphs is an ongoing process and it is easily 
possible that multiple graph recommendations are utilized. This section deals with this issue 
and shows how to cope with it. 

7.3.1 Merging Multiple Graphs 
When multiple graphs have to be unified, it is possible that a certain relation (directed link 
between two entities) is recommended more than once from different authorities. In particular 
is such a case of interest, if different distances are associated with the recommended relations. 
As stated in section 7.1, the distance for the resulting relation is determined by averaging their 
sources and an exemplary algorithm for merging two graphs was given. The following 
algorithm extends Algorithm 3 to make it suitable for multiple merging processes.  

                                                

 
9 A graph becomes disconnected when a cut-vertex is deleted. "A vertex v of a connected graph G is a cut-vertex 
of G if and only if there exist vertices u and w (u, w ≠ v) such that v is on every u-w path of G." [Chartrand, 
1986] 
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Algorithm 5: Merge Multiple Graphs 

 

To maintain consistency all relation graphs considered for unifying should be merged in one 
single step using Algorithm 5. An inconsistency when merging several graphs in multiple 
steps comes from the calculation of the distances. The result is different if multiple steps are 
used. 

7.3.2 Giving Graph Recommendations  
Up to now, only authorities have been considered who ask other authorities for their 
recommendations. In some cases, however, an authority may also get requests for 
recommendations.  

When authorities recommend trust relations by providing their own relation graph, it is critical 
that they only provide their initial relation graph as introduced in chapter 6. Otherwise, when 
recommending relation graphs that already contain parts from other authorities or those that 
have already been ran through the algorithm that collapses cycles, inconsistencies in the same 
sense as in section 7.3.1 are bound to arise.  
This concludes the discussion about the first of three steps. The next chapter will introduce the 
transfer of the merged context-based relation graph into Bayesian Networks.  

ALGORITHM 5: MERGEMULTIPLEGRAPHS(G[ ]) 
Input: G[ ] = {G1 = (E1 , R1), …, Gn = (En , Rn)} (n directed graphs) 
Output: G' = G1 ∪ … ∪ Gn 
1 G' ← create empty graph  
2 for each graph Gi ∈ G[ ] 
3   for each vertex e ∈ Ei and ∉ E' 
4   E'[ ] ← e  Ø add vertex e to the list of vertices E' 
5   for each edge rm ∈ Ri 
6     if rm ∉ R' 
7    R'[ ] ← r'm ← rm Ø save edge rm as r'm and add it to R'[ ] 
8      r'm.d ← d(rm) Ø save the distance of edge rm 
9      r'm.count ← 1 Ø r'm.count counts the amount of same relations 
10    else    
11      r'm.d ← r'm.d + d(rm)  
12      r'm.count ++   Ø increment counter 
13 for each edge r' ∈ R' 
14  d(r') ← r'm.d / r'm.count Ø compute the average distance for every r' 
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8 Developing the structure of Bayesian Networks 
In this chapter the general structure for the Bayesian Networks (BNs) is introduced. This is the 
second of three steps on the way to compute the total order of the entities in a relation graph.  
This chapter is divided into three main sections.  

1) An Introduction in Bayesian Networks, 
2) A Bayesian Network for Trust Evaluation, and 

3) Dynamic Conditional Probability Values for Bayesian Networks. 
The first section gives a basic introduction into BNs. It shows where BNs are used, explains its 
structure and components and presents an introductory example.  
The second section shows the transfer of the relation graph into BNs. It defines the basic 
structure of the BNs and prepares the basis for the dynamic extension developed in section 3.  
In the third section the dynamic parts of the BNs are developed. This extension transfers the in 
the previous section modelled basic BNs into a dynamic network for individual consideration 
of the relations in the network.  

With the dynamic BNs as result from this chapter, the following chapter 9 will introduce the 
method to compute the total order. 

8.1 An Introduction in Bayesian Networks 
Bayesian Networks, also known as Bayesian belief networks, probabilistic networks, or causal 
networks provide a method of reasoning using probabilities.  

BNs are used in a variety of applications. Their main use takes place in the area of (medicine) 
diagnosis (e.g. the Pathfinder Project [Heckerman, 1992]). Other areas are, for example, 
language understanding, risk prediction, or forecasting. 
Bayesian Networks are built on the structure of directed acyclic graphs. In the next paragraph 
the nodes of such a network will be discussed. This will be followed by a discussion about the 
edges and a short example to make it clearer.  

The nodes are random variables. Every node has its own set of values which represent the 
states a variable can adopt. In the simplest case they are binary which means there are two 
values for every node. For example, imagine a node represents the activities of a 'fire 
department.' The values might be fire or idle, reflecting 'the fire department is at a fire' or 'the 
fire department is idle.' However, generally a node's number of values is not limited. To give 
an example for multiple values, think of an extension of the fire department's node with a 
value drill, reflecting 'the fire department is having a drill.'  
Each possible value has a probability associated which expresses the degree of confidence in 
that value. For example, the probabilities for the fire department activity node might be  
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P(fire) = 0.9 (strong belief that the fire department is at a fire), P(idle) = 0.0 (no belief that the 
fire department is idle) and P(drill) = 0.1 (small belief that the fire department is having a 
drill).10 

The arcs in the BN specify the dependencies (probabilistic correlations) between the variables. 
The arrows always point towards the affected variable. In a very simple BN as shown in 
Figure 12, node E would have a direct influence in node T.  
 

 
 

Figure 12: A Bayesian Network. 

 
To give a short example, let node E stand for 'Event', node S for 'Snow' and node T for 'Traffic 
Jam'. All nodes can adopt the values absent and present, reflecting the possibility of the 
absence or presence of an event, snow and of traffic jam, respectively. The arrow from E to T 
expresses that the absence or presence of an event has a direct influence in the absence or 
presence of traffic jam. Also, the absence or presence of snow has a direct influence in the 
absence or presence of traffic jam.  
How strong and in which way a node influences others is determined by 'Conditional 
Probability Tables' (CPTs). There is always one table for every node in a BN. The table lists 
the conditional probabilities, given for every combination of states of the node's parents in the 
network. For instance, the conditional probabilities for 'Traffic Jam' are shown in the lower 
table in Figure 12. The first line shows that if there is no event and no snow the probability 
that there will be a traffic jam is P(Traffic Jam = absent | Event = absent, Snow = absent) = 
0.03.11 The second line states the probability for a traffic jam if there is no event, but snow. 

                                                
 
10 This example was taken form [Morawski, 1989]. 
11 The probability-values are sample values and do not necessarily reflect a real-world scenario. 

E S T = absent T = present 
absent absent 0.97 0.03 
absent present 0.25 0.75 
present absent 0.10 0.90 
present present 0.01 0.99 

 

T 

E S 

E = absent E = present 
0.67 0.33 

 

S = absent S = present 
0.60 0.40 
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The third line represents the case if there is an event, but no snow. And the last line has the 
probability for a traffic jam if there is both, an event and snow. 
If all needed (conditional) probability values are given, the BN can be fully evaluated and 
every node's degree of confidence in its states can be computed. "The basic computation on 
belief networks is the computation of every node's belief given the evidence that has been 
observed so far." [Charniak, 1991] In particular, Bayes' rule is used to calculate the belief at 
each node. A complete description of the process is also described in [Morawski, 1989] and 
[Neapolitan, 2004].  
The evaluated BN for the example described above (also see Figure 12) is shown in Figure 13. 

 

 
 

Figure 13: A complete evaluated BN. The probability values reflect the belief in every state of a variable. 

 

In the rest of this paper, probability theory is used and the following formalization holds. 
Random variables (nodes) are generally denoted by a capital letter. P(X = x) denotes the 
probability or probability distribution of the random variable X. Events are denoted by a small 
letter. Using the example above, the probability distribution of the random variable T (Traffic 
Jam) is P(T = t) where t is either the event absent or present.  

8.2 A Bayesian Network for Trust Evaluation 
In this section and the following one will show how the Bayesian Networks are built to finally 
compute the total order of the entities. The model introduced in this thesis works with two 
Bayesian Networks. In the following these two structures are introduced. One is called the 
Backward Graph, the other the Forward Graph. In general, both networks are based on the 
structure of the Context-based Relation Graph defined in chapter 4.  

For every knowledge-based network, the structure and the parameters which initialize the 
network are most important. The structure is for both networks (Backward Graph and Forward 
Graph) already given by the structure of the relation graph. The parameters have yet to be 
specified.  

T = absent T = present 
0.48 0.52 
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In BNs these parameters are gathered in the Conditional Probability Tables. The following 
diagram shows a roadmap to determine the CPTs. 
 

 
 

Figure 14: Roadmap to develop the CPTs. 

 

The starting point is the Trust Relation specified in Definition 3. The examination of its trust 
statement "one entity is no less trustworthy than the other" will lead to the Conditional 
Dependencies. They specify the dependencies between two entities connected to each other by 
a trust relation. Then the Conditional Probabilities are determined which finally give the 
parameters for the CPTs. 
In the next section, the basic CPTs for the Backward Graph are determined. Afterwards, the 
results are adapted for the Forward Graph. 

8.2.1 Backward Graph 
The first of the two Bayesian Networks is called the Backward Graph. It is based on the 
Context-based Relation Graph in the system introduced in chapter 4. This means  

1.) the nodes in the relation graph are the nodes in the BN, and  
2.) the edges in the relation graph are the arcs between the nodes.  

For the Backward Graph, the edges of the relation graph are reversed. Figure 15 illustrates this 
transfer. Please note that lower letters are used for relation graphs and capital letters and dotted 
lines for BNs. 
 

Trust Relation 

Conditional Dependencies 

Conditional Probabilities 

CPTs 
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Figure 15: Transfer from Relation Graph to the Backward Graph  
which serves as the structure for the BN. 

 
Every node in a BN has a set of values. The values reflect the states a node can adopt. It is 
important that the selected states are mutually exclusive and exhaustive. In case of this model, 
the nodes of the network represent the entities and every entity has the values trustworthy (tw) 
and not trustworthy (ntw). The states are mutually exclusive; no entity can be trustworthy and 
not trustworthy at the same time. The states are also exhaustive; for the final goal to evaluate 
the trustworthiness of an entity, the entities can either be trustworthy or not trustworthy, 
nothing else. 

The BN has only nodes of the type 'Entity.' Therefore, there are only dependencies between 
'Entities', represented by an arc between them ('Entity' → 'Entity'). At this point it is important 
to note that in BNs the direction of an arc plays a significant role. All conditional probability 
values in the CPTs are determined according to this direction.  

Table 1 shows an exemplary CPT of node E1 for a Relation Graph (RG) and its Backward 
Graph (BG). The contents of the table show that all probabilities are conditional dependent on 
entity E2 which is the parental node of E1. 
 

 
 

Table 1: CPT of node E1 for a relation with two entities. 

 

e2 

e1 

e3 

e4 

E2 

E1 

E3 

E4 

RELATION GRAPH (RG) BACKWARD GRAPH (BG) 

 E1 = tw E1 = ntw 

E2 = tw P(E1 = tw | E2 = tw) P(E1 = ntw | E2 = tw) 

E2 = ntw P(E1 = tw | E2 = ntw) P(E1 = ntw | E2 = ntw) 

 

E1 

E2 

e1 

e2 

BG RG 
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The goal is to determine the values for the conditional probabilities shown in Table 1. To 
specify these probabilities the Conditional Dependencies are determined and the probability 
values are derived from them. 

Conditional Dependencies express in words in which way one entity is dependent on its 
connected parental entity or entities. Consider a relation between entity e1 and entity e2 such as 
shown beneath Table 1 (e1

A
c≤ e2).  

To determine the Conditional Dependencies for the relation between e1 and e2 it is to examine 
how the child node is conditional dependent from its parental node. It is therefore assumed E2 
is either in its state not trustworthy or in its state trustworthy. Both cases are depicted in Figure 
16. 
 

 
 

Figure 16: The conditional dependencies graphically illustrated for a relation  
between two nodes E1 and E2 in a Backward Graph.  

 
In Case 1, E2 is assumed to be not trustworthy. The original relation states E1 is equally or less 
trustworthy than E2. In this case E2 is already not trustworthy which concludes E1 can only be 
not trustworthy, too. The conditional probability that E1 is not trustworthy given E2 is not 
trustworthy is therefore P(E1 = ntw | E2 = ntw) = 1.00. According to probability theory then 
P(E1 = tw | E2 = ntw) = 0.00. 

In Case 2, E2 is assumed to be trustworthy. Again, the original relation states E1 is equally or 
less trustworthy than E2. If E1 is 'equally trustworthy' then E1 would be trustworthy, too. If E1 
is 'less trustworthy', E1 could be anything between trustworthy and not trustworthy. Therefore 
is the conditional probability that E1 is trustworthy given E2 is trustworthy:  
P(E1 = tw | E2 = tw) = 0.50. Accordingly, P(E1 = ntw | E2 = tw) = 0.50.  
 

Table 2 summarises these conclusions. 
 

not trustworthy 

trustworthy 

CASE 1 CASE 2 

 

E2       E1 E2       E1 
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Table 2: Conditional Dependencies between two exemplary entities E1 and E2. 

 
Figure 17 shows the Bayesian network with its CPTs. The root probabilities for node E1 
are set to P(E1 = tw) = 0.50 and P(E1 = ntw) = 0.50 since the trustworthiness of a root 
node cannot be derived at this point. They will be considered in chapter 9. 

 

 
 

Figure 17: A Bayesian Network with its CPTs. 

 

This concludes the basic structure for the first Bayesian network, Backward Graph.  

8.2.2 Forward Graph 
The second graph also uses the Context-based Relation Graph defined in chapter 4 as 
basis. Compared to the Backward Graph, however, all arc directions remain. It is called the 
Forward Graph. Please see Figure 18 for illustration. 
 

assumed 
state E2 

deduced  
states for E1 

Conditional Probability  
P(E1 | E2) 

trustworthy either trustworthy or 
not trustworthy 

P(E1 = tw | E2 = tw) = 0.50 
P(E1 = ntw | E2 = tw) = 0.50 

not 
trustworthy 

not  
trustworthy 

P(E1 = tw | E2 = ntw) = 0.00 
P(E1 = ntw | E2 = ntw) = 1.00 E1 

E2 

E1 

E2 

P(E2 | E3) E4 = tw E4 = ntw 
E3 = tw 0.50 0.50 
E3 = ntw 0.00 1.00 

P(E1 | E2) E2 = tw E2 = ntw 
E1 = tw 0.50 0.50 
E1 = ntw 0.00 1.00 

 

E1 = tw E1 = ntw 
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E3 

E4 
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E1 = tw 0.50 0.50 
E1 = ntw 0.00 1.00 
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Figure 18: Transfer from Relation Graph to the Forward Graph which serves as structure for the BN. 

 
Also for this graph the goal is to specify the values for the conditional probabilities in the 
CPTs. For a relation between two entities e1 and e2 such that e1

A
c≤ e2, a CPT is given with 

Table 3. Consider the Forward Graph shown beneath the table. This time, E2 is the child node 
and the probabilities have to be specified depending on its parental node, E1.   
 

 
 

Table 3: CPT for node E2 for a relation with two entities. 

 
To specify the conditional probabilities, again the Conditional Dependencies are determined 
considering the two cases. This time node E1 is assumed to be either trustworthy or not 
trustworthy. Figure 19 illustrates both cases.  
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RELATION GRAPH (RG) FORWARD GRAPH (FG) 

 E2 = tw E2 = ntw 
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Figure 19: The conditional dependencies graphically illustrated for a relation  
between two nodes E1 and E2 in a Forward Graph. 

 
In the first case node E1 is assumed to be trustworthy. Since E2 is, according to the relation 
graph, equally or more trustworthy than E1 and E1 is already assumed to be trustworthy, E2 
must be trustworthy as well. Therefore is E2 concluded to be trustworthy given E1 is 
trustworthy: P(E2 = tw | E1 = tw) = 1.00. Consequently is P(E2 = ntw | E1 = tw) = 0.00. 
In the second case E1 is assumed to be not trustworthy. E2 with the condition to be equally or 
more trustworthy can either be trustworthy or not trustworthy. The conditional probability for 
E2 to be trustworthy given E1 is not trustworthy is therefore P(E2 = tw | E1 = ntw) = 0.50. And 
thus P(E2 = ntw | E1 = ntw) = 0.50. 
For the Forward Graph, Table 4 summarises the conclusions. 

 

 
 

Table 4: Conditional Dependencies between two exemplary entities E1 and E2. 

 
Figure 20 shows the Bayesian network with its CPTs. Also for the Forward Graph are the 
root probabilities for node E1 set to P(E1 = tw) = 0.50 and P(E1 = ntw) = 0.50 since the 
trustworthiness of a root node cannot be derived at this point. They will be considered in 
chapter 9. 
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states for E2 

Conditional Probability  
P(E2 | E1) 

trustworthy trustworthy P(E2 = tw | E1 = tw) = 1.00 
P(E2 = ntw | E1 = tw) = 0.00 

not 
trustworthy 

either trustworthy or  
not trustworthy 

P(E2 = tw | E1 = ntw) = 0.50 
P(E2 = ntw | E1 = ntw) = 0.50 

 

E1 

E2 

not trustworthy 

trustworthy 

CASE 1 CASE 2 

E1       E2 E1       E2 
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Figure 20: A Bayesian Network with its CPTs. 

 

The CPTs for the networks in Figure 17 and Figure 20 are generic and thus every relation is 
treated equally. However, not every relation in the system is the same. In Definition 4 the 
notion of distance was specified and explained throughout in section 6.2. This notion will be 
used to extend the above described method to determine the CPTs with a more individual and 
dynamic approach. This is discussed in the next section. 

8.3 Dynamic Conditional Probability Values for the Bayesian Networks 
Up to now, the generic structures of the two BNs have been defined. The way to make this 
system dynamic is by determining the values for the CPTs according to an individual, relation-
dependent aspect.  

In this section it is discussed how the CPTs and the accompanying conditional probabilities 
can be specified to meet a relation's conditions dynamically. This issue will be discussed using 
the Backward Graph as subject. Afterwards, the dynamic CPTs for Forward Graphs will be 
specified by deriving the results developed next. 

8.3.1 Filling the CPTs dynamically 
The connecting link between generic and dynamic CPTs is the notion of distance between two 
entities which was introduced with Definition 4. A dynamic CPT is expressed by individual 
conditional probabilities for every relation, dependent on the distance between two entities.  
Please recall Figure 16 presented in section 8.2.1 for a Backward Graph with the two nodes E1 
and E2. The relation was e1

A
c≤ e2. In 'Case 1' E2's state was assumed to be not trustworthy. 

The conclusion was E1 can only be not trustworthy, too. In 'Case 2' E2's state was assumed to 
be trustworthy. E1 was derived to be either trustworthy or not trustworthy.  
In the next step, the two cases above are revised by considering the conditional dependencies 
related to the distance between the two entities.  

E1 = tw E1 = ntw 
0.50 0.50 

 

E2 

E1 

E3 P(E3 | E1) E3 = tw E3 = ntw 
E1 = tw 1.00 0.00 
E1 = ntw 0.50 0.50 

P(E2 | E1) E2 = tw E2 = ntw 
E1 = tw 1.00 0.00 
E1 = ntw 0.50 0.50 

E4 P(E4 | E3) E3 = tw E3 = ntw 
E4 = tw 1.00 0.00 
E4 = ntw 0.50 0.50 
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In Case 1, E2 is assumed to be not trustworthy. Compared to section 8.2.1, E1 remains to be 
not trustworthy. Even in the best case for E1 (minimal distance to E2), E1 can never get 
trustworthy. Thus, E1 remains not trustworthy given E2 is not trustworthy  
(P(E1 = ntw | E2 = ntw) = 1.00). 
 

 
 

Figure 21: The dynamic conditional dependencies graphically illustrated for a relation  
between two nodes E1 and E2 in a Backward Graph. 

 
In Case 2, E2 is assumed to be trustworthy. Using distances gives a measure to determine the 
trustworthiness of E1. If the distance is minimal (both entities are equally trustworthy) and E2 
is trustworthy, E1 is consequently trustworthy as well. The greater the distance between the 
two of them gets, the smaller gets the probability for E1 to be trustworthy. If the distance is 
maximal, E1 is independent from the state of E2 and can either be trustworthy or not 
trustworthy. Please see Figure 21 (Case 2 with Distances) for illustration. 
To put it in numbers, with a minimal distance (d = 0.0) the conditional probability  
P(E1 = tw | E2 = tw) = 1.0. With a maximal distance (d = 1.0) the conditional probability  
P(E1 = tw | E2 = tw) = 0.5. Hence, the conditional probabilities range between the borders 0.5 
and 1.0, dependent on the distance. The values between these borders are assumed to be 
proportional to the distance d.  

The following formula defines the conditional probability for a relation with two entities in the 
Backward Graph given node E2 is trustworthy:  

 
 P(E1 = tw | E2 = tw) = 1- d/2. (8.1) 

 
Table 5 shows the current dynamic CPT for a node E1 with one parental node (singly 
connected node) for a Backward Graph, given the relation e1

A
c≤ e2. 

 

not trustworthy 

trustworthy 

CASE 1 CASE 2 

 

E2       E1 E2       E1 E2       E1 

CASE 2 
WITH DISTANCE 

d 
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Table 5: Dynamic CPT for singly connected nodes in the Backward Graph. 

 

The dynamic CPTs for the Forward Graph are very similar to those of the Backward Graph. 
However, in the Forward Graph, node E2 is conditional dependent on node E1.  

Please recall Figure 19 presented in section 8.2.2. The relation was e1
A
c≤ e2.  

In Case 1, E1 is assumed to be trustworthy. Compared to section 8.2.2, E2 remains to be 
trustworthy. Even in the worst case for E2 (minimal distance to E1), E2 can never become not 
trustworthy. Thus, E2 remains not trustworthy given E1 is trustworthy (P(E1 = tw | E2 = tw) = 
1.00). 
 

 
 

Figure 22: The dynamic conditional dependencies graphically illustrated for a relation  
between two nodes E1 and E2 in a Forward Graph. 

 

In Case 2, E1 is assumed to be not trustworthy. If the distance is minimal (both entities are 
equally trustworthy) and E1 is not trustworthy, E2 is consequently not trustworthy either. The 
greater the distance between the two of them gets, the greater the probability for E2 to be 
trustworthy. If the distance is maximal, E2 is independent from the state of E1 and can in 
consequence be either trustworthy or not trustworthy. Please see Figure 22 (Case 2 with 
Distances) for illustration. 

not trustworthy 

trustworthy 

CASE 1 CASE 2 

E1       E2 E1       E2 E1       E2 

CASE 2 
WITH DISTANCE 

d 

E1 

E2 P(E1 | E2) E1 = tw E1 = ntw 
E2 = tw 1 - d/2 d/2 
E2 = ntw 0.00 1.00 
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To put it in numbers, with a minimal distance (d = 0.0) the conditional probability  
P(E1 = ntw | E2 = ntw) = 1.0. With a maximal distance (d = 1.0) the conditional probability 
P(E1 = ntw | E2 = ntw) = 0.5. Hence, the conditional probabilities range between the borders 
0.0 and 0.5, depending on the distance. The values between these borders are assumed to be 
proportional to the distance d.  

The following formula defines the conditional probability for a relation between two entities 
in the Forward Graph given node E1 is not trustworthy:  

 
 P(E1 = tw | E2 = ntw) = d/2. (8.2) 

 
Table 6 summarizes the values for the conditional probabilities for the current CPT assigned to 
a node with one parent (singly connected node) in a Forward Graph, given the relation 
e1

A
c≤ e2. 

 

 
 

Table 6: Dynamic CPT for singly connected nodes in the Forward Graph. 

 

At this point, the dynamic CPTs for both BNs, the Forward Graph and the Backward Graph 
are developed. This concludes the discussion about dynamic CPTs for singly connected 
entities. 

In the next section the CPTs for nodes with multiple parental nodes are discussed.  

8.3.2 CPTs for nodes with multiple parental nodes 
This section deals with the CPTs in the BNs in case of multiple parental nodes. A sample 
relation graph and its Backward Graph illustrating the situation are shown in Figure 23.  

For the CPT of node Ex, the conditional probabilities for all possible combinations of states of 
its parents must be given. For instance, node 'Traffic Jam' in the small example in section 8.1 
had two parental nodes; each of them with the two states 'present' and 'absent'. The CPT for 
'Traffic Jam' therefore provided conditional probabilities for every possible combination of 
these two states.  
 

E1 

E2 P(E2 | E1) E2 = tw E2 = ntw 
E1 = tw 1.00 0.00 
E1 = ntw d/2 1 - d/2 
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 Figure 23: Backward Graph: Node Ex with multiple parental nodes. 

 

So far, only the probabilities which were conditioned on the states of one predecessor node 
had to be determined. The next step is to determine the probabilities for a child node given n 
parental nodes. 
Assume such a node with n parental nodes as shown in Figure 23 (right). Every node has two 
states (trustworthy and not trustworthy). For a CPT for node Ex, 2n probability values have to 
be specified since all possible combinations of the parental nodes' states have to be considered. 
The problem at this point is that only the conditional probabilities for single relations are 
known, rather than the probabilities conditioned on every possible combination of the parental 
nodes' states. 
This problem is known and was addressed by Pearl in 1988 by introducing the noisy OR-gate 
model [Pearl, 1988]. It uses, in such cases, only the individual conditional probabilities to 
determine the 2n probabilities for the CPT. Figure 24 illustrates this. 

 

 
 

Figure 24: Rather than determining the conditional probabilities for every possible combination of the 
states of n parental nodes, the noisy OR-gate model uses the conditional probability for every single 

relation. 
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Before launching into a description of how the noisy OR-gate model is used in this work, it is 
worth discussing the basics of it in more detail.  
The noisy OR-gate, widely used in Bayesian Networks, approximates the conditional 
probability distributions such that fewer parameters are required. The original noisy OR-gate 
introduced by Pearl, models the case in which every variable in the relation has only two 
states. Usually these values are called binary and reflect the states absent and present or false 
and true, respectively (see also the example in section 8.1).  

In BNs the relation between two variables are defined by cause and effect. Usually, the 
parental node causes the effect reflected by the child node. In the example in section 8.1, for 
instance, the cause, snow, produced (for a certain probability) the effect, traffic jam. 
Given a set X of n binary variables as causes (see Figure 25), the model from Pearl assumes 
that every variable can cause an effect independent of other causes. In other words, the sole 
presence of the cause Xi (e.g. snow) is enough to produce the effect Y (e.g. traffic jam).  

 

 
 

Figure 25: The effect node Y has n binary variables as causes. 

 

The probability of causing an effect is usually termed by pi which is the conditional 
probability that an effect Y will occur, given the sole presence of Xi. In [Neapolitan, 2004] pi 
is referred to as causal strength.  
To derive a complete CPT for a set of n parental nodes (X = {X1, X2, …, Xn}) the following 
formula is given by Pearl. Hereby, let S be a set of indices such that i ∈ S if and only if  
Xi = true.12 

 

 ∏
∈

−−===
Si

ipxXtrueYp )1(1)|(  (8.3)

  
 

                                                

 
12 The formalization is partly taken from [Neapolitan, 2004]. 
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The noisy OR-gate as such regards only causes which are present. It consequently models that 
the absence of all causes at no time produces a presence of Y.  
Henrion extended in his work [Henrion, 1989] the noisy OR-gate by additionally modeling 
that an effect Y can spontaneously occur even if all causes are absent. He introduced the 
concept of a leak probability p0.13 The extended leaky noisy OR-gate formula is given by: 

 

 ∏
∈ −

−
−−===

Si

i

p
ppxXtrueYp

)1(
)1()1(1)|(

0
0  (8.4) 

 

The noisy OR-gate model is used for the model introduced in this thesis. It provides a method 
to use known conditional probabilities to approximate the values for a complete CPT if 
multiple parental nodes are given.  
Henrion's extension is also used in this thesis. In particular, the leak probability corresponds in 
this system to the case in which an effect node Ex is independent from its predecessors. This is 
the case if all distances are maximal. In probability theory it holds, if event A is independent 
from event B, P(B | A) = P(B). The conditional probabilities in case of independence between 
Ex and its predecessors is P(Ex = ex | En = en) = 0.5. Thus, for this system p0 = 0.5 holds.  

Using the leaky noisy OR-gate as given, tests showed that the trustworthiness was dependent 
on the number of predecessors, rather than on the distance between the nodes. If the number of 
predecessors a node Ex has increased, its trustworthiness increased or decreased as well, 
dependent on the use of the Forward or Backward Graph. Such behaviour could have easily 
been used to manipulate results. 

As a consequence the following requirement for the BNs was introduced. To describe it, let  
E = {E1, E2, …, En} be the set of random variables, and let e = {e1, e2, …, en} be a set of 
values of the variables in E. Further, let the nodes in E be the direct predecessors of Ex (see 
Figure 24). Then the requirement for both, the Backward and Forward Graph is: 

The number of direct predecessor nodes E must not influence the 
trustworthiness of the direct successor node Ex. 

This implies that if, for instance, all distances dn = 0.00 and all parental nodes are equally 
trustworthy, Ex is as trustworthy as its parental nodes, regardless of the potency of set E.  

As described above, the noisy OR-gate only takes the conditional probabilities into account 
where the predecessor nodes' states Xi = true, or respectively Ei = trustworthy in the 
Backwards Graph. By empirical study it was found that weighting the CPT values according 
to the number of influencing probabilities achieves the specified requirement. 

For illustration, Table 7 shows which individual conditional probabilities for the calculation of 
P(Ex = tw | E = e)14 in case of three predecessors are considered. Let S be a set of indices such 

                                                
 
13 For further details please see [Henrion, 1989]. 
14 In case of three predecessors, P(Ex = tw | E = e) = P(Ex = tw | E1 = e1, E2 = e2, E3 = e3). 
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that i ∈ S if and only if Ei = tw and ¬S be a set of indices such that j ∈ ¬S if and only if  
Ej = ntw.15 Further, let |S| be the potency of S. 
 

E1 = e1 E2 = e2 E3 = e3 |S| P(Ex = tw | E1 = e1, E2 = e2, E3 = e3) 
tw tw tw 3 P(Ex = tw | E1 = tw), P(Ex = tw | E2 = tw), P(Ex = tw | E3 = tw) 
tw tw ntw 2 P(Ex = tw | E1 = tw), P(Ex = tw | E2 = tw) 
tw ntw tw 2 P(Ex = tw | E1 = tw), P(Ex = tw | E3 = tw) 
tw ntw ntw 1 P(Ex = tw | E1 = tw) 

ntw tw tw 2 P(Ex = tw | E2 = tw), P(Ex = tw | E3 = tw) 
ntw tw ntw 1 P(Ex = tw | E2 = tw) 
ntw ntw tw 1 P(Ex = tw | E3 = tw) 
ntw ntw ntw 0 --- 

 
Table 7: Using the noisy-OR gate, only those conditional probabilities are considered for  

P(Ex = tw | e1, e2, e3) where the conditioned predecessor Ei = trustworthy (Backward Graph). The table lists 
which probabilities are considered in each case. |S| is the number of considered conditional probabilities. 

 

The leaky noisy OR-gate formula extended with the weighting factor is given for a Backward 
Graph with formula (8.5).  
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Since P(Ex = tw | Ei = tw) = 1 - di/2 (see formula (8.1)), P(Ex = tw | Ei = tw) can be substituted. 
The result is formula (8.6). 
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The following table shows as an example the conditional probabilities P(Ex = ex | E = e) 
calculated with (8.6). It is the CPT for a successor node in a Backward Graph as shown in 
Figure 24 with three parental nodes, E1, E2, and E3. The assumed distances are d1 = 0.4, d2 = 
0.8, and d3 = 0.5. 

 
 

                                                

 
15 The formalization is partly taken from [Neapolitan, 2004]. 
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E1 E2 E3 |S| P(Ex = tw | e1, e2, e3) P( E = ntw | e1, e2, e3 ) 
tw tw tw 3 0.92 0.08 
tw tw ntw 2 0.56 0.44 
tw ntw tw 2 0.60 0.40 
tw ntw ntw 1 0.27 0.73 
ntw tw tw 2 0.53 0.47 
ntw tw ntw 1 0.20 0.80 
ntw ntw tw 1 0.25 0.75 
ntw ntw ntw 0 0.00 1.00 

 
Table 8: Conditional probabilities for a Bayesian network as shown in  

Figure 24 with 3 parental nodes. 

 

Previous formula (8.6) is solely for calculating CPTs for the Backward Graph. The formula for 
the Forward Graph is introduced next. An exemplary Forward Graph is shown below in Figure 
26. 
 

 
 

Figure 26: (a) Forward Graph with a single node Ex and multiple predecessors.  
(b) The graph's division in its single relations. 

 

Also for the second BN, the leaky noisy-OR gate model is used. The following formula (8.7) 
is given for the Forward Graph. 
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Since P(Ex = tw | Ei = ntw) = di/2 (see formula (8.2)), P(Ex = tw | Ei = ntw) can be substituted. 
The result is formula (8.8). 
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The following table shows the conditional probabilities P(Ex = ex | E = e) calculated with (8.8). 
It is the CPT for node Ex as shown in Figure 26 with three predecessor nodes E1, E2, and E3. 
The assumed distances are d1 = 0.4, d2 = 0.8, and d3 = 0.5.  
 

E1 E2 E3 |¬S| P(Ex = tw | e1, e2, e3) P( E = ntw | e1, e2, e3 ) 
tw tw tw 0 1.00 0.00 
tw tw ntw 1 0.75 0.25 
tw ntw tw 1 0.80 0.20 
tw ntw ntw 2 0.47 0.53 
ntw tw tw 1 0.73 0.27 
ntw tw ntw 2 0.40 0.60 
ntw ntw tw 2 0.44 0.56 
ntw ntw ntw 3 0.08 0.92 

 
Table 9: Conditional probabilities for a Bayesian network as shown in Figure 26 with 3 parental nodes. 

 
This concludes the discussion about the development of the two Bayesian Networks, Forward 
Graph and Backward Graph.  
The following diagram summarizes the discussion of the two networks.  
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Figure 27: Summarized development of the dynamic Backward and Forward Graphs. 

 

The algorithm to transfer a Relation Graph into two Bayesian Networks is given with 
Algorithm 6. It creates both BNs using the structure of the relation graph given as input and 
computes the CPTs for every node. Hereby the formulas (8.1) and (8.6) are used to calculate 
the CPTs of the Backward Graph and the formulas (8.2) and (8.8) to calculate the CPTs for the 
Forward Graph. 
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Algorithm 6: Transfer Relation Graph to Bayesian Networks 

 
Since now both network structures are known, it is possible to continue with step 3 to compute 
the total order of the nodes in the relation graph.  
In the following chapter the procedure of determining the total order will be described using 
the Bayesian Networks developed in this chapter.  

ALGORITHM 6: TRANSFERRELATIONTOBNS(G) 
Input: G = (E, R) (Context-based Relation Graph) 
Output: 2 Bayesian Network models (BG and FG), each over the set of variables E 

1 BG ← create Bayesian Network using structure of G, but reversing edges 
2 for each variable v ∈ BG 
3   if v.parents[ ] =  Ø then set a-priori probabilities to 0.5 
4   else if v.parents[ ].count = 1 
5     compute CPT using formula (8.1)  
6   else  compute CPT using formula (8.6) 
7 FG ← create Bayesian Network using structure of G 
8 for each variable v ∈ FG 
9   if v.parents[ ] =  Ø then set a-priori probabilities to 0.5 
10   else if v.parents[ ].count = 1 
11     compute CPT using formula (8.2)  
12   else  compute CPT using formula (8.8) 
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9 Determination of the Total Order 
In this chapter it will be shown how the total order of the entities connected in one context-
based relation graph are finally determined.  
Assume two BNs as shown in Figure 28 (for a set of entities X = {A, B, C, D, E, F}). Also, 
assume the CPTs of all nodes are already initialized with the conditional probabilities 
according to the given distances.  

 

 
 

Figure 28: Two Bayesian Networks originated from the same relation graph.  
(a) Backward Graph; (b) Forward Graph 

 

The first step is to evaluate the two Bayesian Networks using Propagation Algorithms. They 
are provided, for example, by Pearl (Message Propagation Method, [Pearl, 1988]) or by 
Lauritzen & Spiegelhalter (Clustering Method, [Lauritzen, 1990]).  
These algorithms compute the belief in every single state of a random variable. Hence, after 
evaluating the BNs, the values P(Xi = trustworthy) and P(Xi = not trustworthy) are computed 
for every entity in each graph. Hereby P(Xi = tw) + P(Xi = ntw) = 1.00. Figure 29 shows the 
evaluated networks and the calculated beliefs for each node.16 
 

                                                

 
16 For clarity only P(Ei = tw) is depicted for each node.  
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Figure 29: The two evaluated Bayesian Networks.  

 

It is not possible to compute the total order by just evaluating one of the two networks. The 
reason is that the root probabilities for both networks are unknown. This model works solely 
on the basis of trust relations and their distances between two entities. Therefore the trust 
values or beliefs for single entities which would be needed to initialize the root nodes are not 
available.  
Hence, to compute the total order of the set of entities X, a second step is necessary. The 
approach is to merge the results of the two BNs into one. 
Both networks have root nodes which are the nodes that have no incoming edges. And both 
networks have local sinks which are nodes that have no exiting edges. In the networks in 
Figure 29 the local sinks are marked by a double line.  

By initializing the root nodes of both networks with the probability of P(trustworthy) = 0.5, all 
entities serving as root nodes are set on the same level of trust.  

Metaphorically speaking, the root nodes of each BN are building the ground level (see Figure 
30). In case of an evaluated Forward Graph, all beliefs are equal or greater than 0.5 (see Figure 
29, Forward Graph). The beliefs of the local sinks (node D and F) are the greatest. This 
allows, again metaphorically speaking, the evaluation of the 'peaks' of the network.  

In case of the Backward Graph, all beliefs are equal or smaller than 0.5. The beliefs of the 
local sinks (node A and B) are the smallest (see Figure 29, Backward Graph). This allows the 
evaluation of the 'depth of the roots' of the network.  
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Figure 30: The root nodes are initialized with the same value. By evaluating the Forward Graph, the peaks 
of the network are calculated. By evaluating the Backward Graph, the roots of the network are calculated. 

 
Putting these beliefs (the peak values from the Forward Graph and the root values from the 
Backward Graph) together into one graph 'balances the network', with every node evening out 
at a certain level.  

In other words, to 'merge' the results of the two networks, the beliefs for variable A and B 
from the Backward Graph are used as new root probabilities in the Forward Graph. The 
Forward Graph is instantly re-evaluated. The beliefs of the local sinks D and F in the Forward 
Graph are entered as likelihood values ('virtual evidence' [Morawski, 1989]) in the re-
evaluated Forward Graph.  
The final step is to sort the computed values in ascending order to get the total order of the 
entities. Figure 31 summarizes the final steps in principal. 
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Figure 31: Last steps to compute the Total Order. 

 
The following Algorithm 7 defines the determination of the total order with the input of the 
two BNs (Backward and Forward Graph) generated by Algorithm 6. 
 

 
 

Algorithm 7: Compute Total Order 

ALGORITHM 7: COMPUTETOTALORDER 
Input: 2 BNs (1 x Forward Graph (FG), 1 x Backward Graph (BG)) 
Output: Total Order of set of entities E 
1 Evaluate(FG) Ø using interference algorithm 
2 Evaluate(BG)  
3 BN ← create graph using structure and CPTs of FG 
4 BN.root_probabilities[ ] ← BG.local_sinks[ ] Ø initialize BN's root  
5 Evaluate(BN)      probabilities  
6 BN.local_sinks[ ] ← FG.local_sinks[ ] Ø insert virtual evidence 
7 Update(BN) Ø using interference algorithm 
8 Sort(BN.E[ ], asc) Ø sort entities according to their  

      beliefs 

 

D F P(tw) = 0.659 P(tw) = 0.601 

B A P(tw) = 0.350 P(tw) = 0.387 

B 

D 

E C 

A 

F 

d1 d2 d4 

d5 d3 

P(tw) = 0.388 P(tw) = 0.532 

P(tw) = 0.619 

P(tw) = 0.753 P(tw) = 0.631 

P(tw) = 0.631 

as virtual evidence 

as root probabilities 

D 

C 

E 

B 

A 

F 

Total Order 



Master Thesis A Method for Assessing the Trustworthiness of an Entity 
 

 
© August 2005 by Mathias Kohler  - 49 - 

This concludes the determination of the total order. In the next chapter a case scenario is 
given. It illustrates how the total order can be used to finally assess the trustworthiness of an 
entity. 
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10 Application Example 
This chapter describes a scenario which will illustrate the application of the introduced model.  

Assume Carol wants to buy a book of her interest and as a modern internet user she decides to 
buy it online. She finds that the book is offered by a number of online stores, sellers at 
Amazon's marketplace and sellers at eBay.17 However, only three of them (referred to as Seller 
S1, S2 and S3) offer it for a reasonable price. Due to increasing fraud in online transactions, 
Carol is unsure from which of the online sellers she should buy the book.  
Seller S1 acts over Amazon's marketplace. Amazon's marketplace is a platform where anybody 
can sell books. After a transaction, the buyer can rate the seller by giving a rating between 1 
and 5, where 1 represents a "negative feedback", 3 a "neutral feedback" and 5 a "positive 
feedback." The final rating for a seller reflects the summarized feedbacks given over the last 
12 months and is presented by a real number between 1.0 and 5.0. 

Seller S2 offers the book on eBay. eBay is an online auction platform. Similar to Amazon, 
after a completed transaction the buyer can rate how successful a transaction was by giving a 
"positive", "neutral" or "negative" feedback. The final rating for a seller reflects the percentage 
of his or her received positive feedbacks.  

Seller S3 runs a small online book shop. Ratings for online shops and services can be found, 
for example, on websites summarizing customer reports.18 In this example, a rating system is 
assumed where a rating between 0 "very bad" to 5 "very good" for a certain shop can be given. 
The final rating for a shop results in the average value of all ratings cast for a shop.  
To evaluate which of the three sellers is most trustworthy, Carol decides to build three 
hierarchical relation graphs.  
The first graph GAmazon is based on all sellers on Amazon's marketplace that offer her desired 
book. She uses a seller's transaction feedback for the hierarchical ordering.  
The second graph GeBay is based on all current sellers on eBay offering the book. Also here, 
Carol uses a seller's percentage of positive feedbacks to determine the hierarchical order 
among them. 

The third graph Gshops is the hierarchical ordered relation graph based on a number of book 
shops. Carol found them rated on a customer report website, along with the shop from which 
she is considering buying the book. 
The three graphs with all selected sellers and shops are shown in Figure 32. Every node shows 
its rating beneath it. The three sellers considered for purchase are marked by a double-lined 
node.  

 

                                                

 
17 Amazon is a registered trademark of Amazon.com, Inc.; eBay is a registered trademark of eBay Inc. 
18 An in Europe well established customer report side is, for instance, www.ciao.com.  
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Figure 32: Three hierarchical relation graphs.  

 

The next step is to calculate the distances using Algorithm 2. This is followed by a complete 
merge of the three graphs to unify the considered sellers into one relation graph.  

A merge of the three given relation graphs is only realizable because some shops or sellers are 
operating on more than one platform. For instance, seller "A" sells his books on Amazon 
marketplace as well as on the eBay platform, or seller "D" sells on Amazon marketplace and 
also has his own online shop. 

Since there are more than two graphs involved at this point, Algorithm 5 introduced in chapter 
7.3.1 is used for the graph merging process. This algorithm allows the merging of several 
graphs in one step. 
The merged graph with all computed distances is shown in the following Figure 33. 
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Figure 33: Merged relation graph. 

 
After the merge process, the relation graph might contain cyclic parts. Algorithm 4 handles 
cyclic parts by collapsing them. The result is a directed acyclic graph. Since Carol's merged 
relation graph has no cyclic parts it is already in its desired structure for further processing.  

The next step is to form the Bayesian network structures. In particular, the Backward and the 
Forward Graph including their CPTs must be built. Algorithm 6 transfers the relation graph 
into the two BNs. To calculate the conditional probability values for the CPTs the formulas 
introduced in chapter 8.3.1 and 8.3.2 are used. The formulas (8.1) and (8.2) are used to 
compute the CPTs for nodes with one predecessor. The (8.6) and (8.8) are used to populate 
CPTs for nodes with multiple predecessors.  
Using the structures of both BNs (Backward and Forward Graph), the total order of all given 
entities (sellers in this case) are computed. This will give Carol the needed information as to 
which of her three selected sellers is the most trustworthy. Algorithm 7 lists the final steps to 
compute the total order. 
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Figure 34: The computed Total Order of all given sellers according to their trustworthiness. 

 
The results of Algorithm 7 are the belief values for every node. In ordered sequence they give 
the total order of the sellers. Figure 34 shows all nodes in ascending order along with their 
computed values. The values show that some of the sellers can almost be considered equally 
trustworthy (e.g. 'E' and 'B').  
For Carol the result shows that according to the given information by the input relation graphs, 
seller S1 or S2 might be the right choice. 
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11 Review and Future Work 
This thesis presents a model of trust which allows the assessment of the trustworthiness of a 
new or hitherto unknown entity. For this purpose, the model uses recommendations from 
cooperative authorities. 

Unlike other trust models, the model in this work does not consider each entity individually, 
but determines its trustworthiness based on information about its trustworthiness in relation to 
other, known entities. This allows utilizing recommendations from various authorities for the 
process of assessing an entity, even if their methods of assessing an entity's degree of trust are 
incomparable among each other. 
For the evaluation of relations, the model uses the structure and interference algorithms of 
Bayesian Networks. The Bayesian Networks are commonly used as probability models for 
decision making. In this thesis, as an already established model for processing probabilities, 
they make it possible for one to consider all relations relevant to an entity, within a connected 
network and thus in a total context. 

By this means one gets an assessment of an entity's trustworthiness based on all relations 
between the individual entities involved. 

To evaluate the ability of the presented model, it was tested. In the process, individual, 
experimentally derived relation graphs with various structures were used. The input values 
were chosen in such a way that the results were known in advance. Thus it was possible to 
compare the known results with those gained by using the model. 
On the whole, the expected results were confirmed. However, there have been cases (in 
different networks) when comparing the expected total order with the resulting total order, 
differences occurred. The essentials shall be summarized in an example.  

Figure 35 shows an example network, illustrating the expected order as well as the resulting 
total order. The values shown in the graph reflect the beliefs held for each entity. They are 
used to calculate the distances between every two entities connected to each other. 
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Figure 35: Example network, illustrating the expected and computed total order. 

 
The graphic illustrates the mentioned differences. They are reflected by the changes regarding 
an entity's place if the calculated total order is compared with the expected total order. This 
introduces a certain aspect of uncertainty in the results.   

Due to the small number of trials carried out so far, it is, however, not possible to finally 
assess the extent of the uncertainty. The assessment of the extent of differences which possibly 
occur in a network could be analysed by carrying out further trials. A random generation of 
the structure of the relation graph as well as a random number-generation of the input values 
would be means to proceed.  
As perspectives and suggestions for a continuation of this work, two major aspects may be 
significant for further research: 

a) Developing a simulation environment for a systematic trial of the model 
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b) A further development of the model may take the trustworthiness of the authorities 
– and by this means, of their recommendations – into consideration. It is 
conceivable to that the procedure developed and presented in this work might be 
employed in the assessment of an authority's trustworthiness as well. 
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12 Conclusions 
In distributed computer systems, trust plays an increasing role. With the expansion of the 
internet in particular, it appears increasingly important to be able to assess the degree of 
trustworthiness of potential partners of interaction (or entities in general). 

The thesis in hand developed a model for the assessment of the trustworthiness of hitherto 
unknown entities by means of utilizing recommendations from cooperative authorities. The 
model allows this especially in situations when the enquired authorities are using different 
trust classifications.  

In analysing the trustworthiness of an entity, Bayesian Networks are used to model the entity's 
dependencies within the network and to calculate the trustworthiness by means of interference 
algorithms. 
In the model's field of application, for instance in the 'assessment of an entity's reliability in 
the execution of transactions', the model as presented in this thesis may make a contribution to 
choosing the appropriate partner of interaction by providing a method to assess the entity 
according to its ability for a certain task. 
In general provides the model which is developed on a scientific basis also a very good 
foundation for further research activities to determine the degree of trustworthiness of an 
entity by using Bayesian Networks. 
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