
1

Recycling Authorizations: Toward
Secondary and Approximate Authorizations Model

(SAAM)

Konstantin Beznosov
Laboratory for Education and Research in Secure Systems Engineering (LERSSE)

Department of Electrical and Computer Engineering
University of British Columbia

Technical Report
LERSSE-TR-2005-01

March 2005

Abstract: In large and complex enterprises, obtaining authorizations could be
communicationally and/or computationally expensive, and, due to infrastructure failures,

some times even impossible. This paper establishes the concept of recycling previously
made authorizations for serving new authorization requests. It introduces secondary and

approximate authorizations model (SAAM) with the semantics of matching best suitable

approximate authorizations.

1 Introduction
Although, every authorization decision to be enforced should ideally have been made
specifically for the authorization request in question, it is not always possible due to the

failures in the underlying infrastructure. Some times, it is not even desirable due to the

prohibitively high cost of making authorizations in the case of complex policies or
expensive to obtain information used for policy evaluation. With the business and policy

decisions commonly made to be just “good enough” and security mechanisms
implemented and configured to be broad, imprecise inexpensive authorizations could

provide a viable alternative to the all-or-nothing model supported by conventional

authorization systems.

2

This paper introduces the concept of recycling previously made authorizations for

serving new authorization requests. By putting forth Secondary and Approximate
Authorizations Model (SAAM), it attempts to define precisely the notions of primary vs.

secondary and precise vs. approximate authorizations. Another contribution of this paper
is in suggesting a method of selecting the best approximate authorization for a given

request from a set of existing authorizations. The method is applicable to a large class of

authorization policies that satisfy two basic requirements: monotonic policies, and the
abstraction of subjects as sets of name-value pair attributes. By adding another

assumption, that an authorization policy could identify those subject attributes that were
critical for arriving at the final authorization decision, the method for selecting the best

approximate authorization is improved further.

The rest of the paper is organized as follows. Section 2 develops the argument against
precise and in favour of secondary and approximate authorizations. Basic model is

introduced in Section 3, whereas advanced models are presented in Section 4. Related

work is discussed in Section 5. Conclusions are drawn and future work is discussed in
Section 6.

2 Authorizations: Primary vs. Secondary And Precise
vs. Approximate

As with other types of decisions, one is better off with enforcing authorization decisions

that have been made specifically for the authorization request in question and using

information from the request about the corresponding subject, object, required
permission(s), etc. We refer to such authorizations as primary and precise. An

authorization decision is primary if and only if it is made for the authorization request in
question, i.e., not for some other request. Otherwise an authorization is secondary. A

primary authorization is also precise.

Primary and precise authorizations could simply be unavailable to the enforcement
function or other entity at the time, or could take too long to make. In this section, we

argue that primary and precise authorizations are not always possible, desirable, or
necessary, and that secondary and approximate ones could be used instead.

3

2.1 An Argument Against Precise Authorizations
We distinguish between secondary and approximate authorizations because a secondary
authorization could be either precise or approximate. An authorization (decision) is

precise if and only if it is made based on the information about the subject, object,
permission, and environment exactly matching the corresponding information in the

authorization request. Otherwise, such a decision is approximate. Note that the same

decision could be precise for one authorization request and approximate for another.
Primary and precise authorizations are not always possible, desirable, or necessary.

They are not always possible because the authorization engine(s) responsible for
making the authorization is/are unavailable due to the failure (transient, intermittent, or

permanent) of the network, software located in the critical path (e.g., OS), hardware, or

even due to a miss-configuration of the supporting infrastructure. Consider, for instance,
a massive-scale enterprise with hundreds of thousands of networked computers. Even if

the mean time to failure (MTTF) of each computer (and all its critical software and
hardware components) were one year, in an enterprise with half a million of computers,

over 1,300 would stop every day.1 With the average availability of every machine

maintained at the level of 99.9% (somewhat unrealistically high expectation for such a
large population), 500 computers would be unavailable at any given moment.

Precise authorizations are not always desirable due to the cost of arriving at them. In a

large-scale enterprise, making authorizations could be computationally expensive due to
the heterogeneity and the large size of the object and subject populations. The overall

delay of requesting and obtaining an authorization could be comparable to, or larger than,
the time of processing the corresponding application request, making the authorization

overhead prohibitively expensive.

Authorizations don’t necessarily have to be precise because other (even more critical)
decisions in business environments are made to be just “good enough.” Businesses (and

1 Some enterprises, such as Amazon.com, are not far away from having that many
computers with reliability as short as two months [12].

4

governments, as the recent events in Iraq, showed [2]) often make decisions based on

incomplete information for the issue on the table. Furthermore, taking into account that
protection mechanisms are commonly designed, implemented, and configured to be

broad [1], the necessity of precise authorizations is reduced even further.

2.2 An Argument in Favour of Secondary and Approximate
Authorizations

Secondary and approximate authorization decisions are expected to be useful mainly

when the supporting enterprise infrastructure is partially unavailable for making and
delivering primary decisions by a deadline, a case expected to be frequent for massive-

scale enterprises with large numbers of computers, objects, and subjects. While waiting
for a primary authorization, a system can speculatively compute or otherwise obtain a

secondary, and probably approximate, authorization based on prior decisions (made for

other authorization requests) cached locally or obtained from its neighbours. By the time
the system times out on an authorization request from a remote authorization server, it

could continue application processing by enforcing the best approximate authorization.

3 Basic Model – SAAMB
This section defines more precisely elements of the basic model, SAAMB. We first define

several essential and auxiliary elements, such as authorization request and decision,
request identicity and equivalence. Then, we use them to define primary/secondary and

precise/approximate authorizations. We start with a central building block, authorization

request:

Definition 1 (authorization request) An authorization request is a five-

tuple (s, o, p, e, i), where s ∈ S is a subject, o ∈ O is an object, p ∈ P is a

permission, e ∈ E is environment, and i ∈ I is identity of the request.

In the basic model, we do not assume any specific structure and/or semantics of any of
the five elements that comprise a request. This generality enables the basic model to be

universally applicable to any authorization system. In the following sections, however,

5

additional assumptions on the structure and/or semantics of request elements are imposed

in order to devise useful semantics for authorization approximation.

We promote request identity to be an explicit element of authorization requests to

distinguish between primary and secondary authorizations, as it will become clear in
Definition 7. Request identity, however, is not just a convenience abstraction. It is

commonly supported by the underlying technologies for matching authorizations to the

corresponding requests. For example, in middleware based on the semantics of remote
procedure calls (RPC) such as CORBA [10], EJB [11], DCOM [5], and DCE [4], an

object request broker (ORB) uses request ids to pair the outgoing requests on remote
objects with the incoming replies. Format and representation of request identities are

technology-specific, e.g., Universal Unique IDentifier (UUID), Universal Resource

Identifier (URI) [3].

Environment is an optional representation of request time and other attributes of the

environment provided to the enforcement and/or authorization function(s) and could be

used for computing authorizations.

Definition 2 (authorization) An authorization is a tuple (r, d), where r ∈

R is an authorization request, as defined in Definition 1, and decision d ∈ D

is a result of the authorization granting or denying access.

We leave structure of decisions undefined to enable not only binary grant/deny decisions,
but also other types such as conditions and obligations, defined, for example, in UCON

[7]. The only assumption about d is that it contains enough information to answer

decisively the question if access should be granted or denied:

Invariant 1 For any decision d ∈ D, it is possible to derive if access should be

allowed, provided all specified in d obligations and/or conditions, if any, are met.

For simplicity, we will refer to specific elements of authorization requests and

decisions by concatenating instance variable with the element name while separating
them with a dot.

Example 1 For an authorization request r, r.i is the identity element of r.

6

Example 2 For an authorization decision a, a.r.o is the object element of the

request, for which the decision was made.

We also need to define what it means for two requests to be equivalent and identical:

Definition 3 (identical requests) Authorization requests r and r' are
identical iff r.i ≡ r'.i.

Definition 4 (function identical_requests) Boolean function

identical_requests(r, r') returns True iff requests r and r' are identical

according to Definition 3.

Since, more than one request could be made in regards to the same object, subject,

permission, and environment, some requests could differ only in their identities. We refer

to such requests as equivalent.

Definition 5 (equivalent requests) Authorization requests r and r' are

equivalent iff r.s ≡ r'.s ∧ r.o ≡ r'.o ∧ r.p ≡ r'.p ∧ r.e ≡ r'.e.

Definition 6 (function equivalent_requests) Boolean function
equivalent_requests(r, r') returns True iff requests r and r' are equivalent

according to Definition 5.

To ensure that all requests with the same identities are exactly same, we require that if
two requests are identical they are also equivalent:

Invariant 2 ∀ r and r' from R, identical_requests(r, r') ⇒ equivalent_requests(

r, r').

It follows from definitions 3 and 5, and Invariant 2 that the only difference between
equivalence/identicity is the inequality/equality of the identity elements of the requests.

Using definitions 1 to 6, we can now define primary, secondary, precise, and approximate
authorizations.

Definition 7 (primary and secondary authorizations) For an

authorization request r, an authorization decision a is primary iff r and a.r are
identical. Otherwise, a is secondary for r.

7

Definition 8 (function primary_authorization) Boolean function

primary_authorization (r, a) returns True iff authorization a is primary for
request r according to Definition 7.

Clearly, False result of primary_authorization means that the authorization is secondary.
A similar function operating on a set of authorizations could also be defined:

Definition 9 (function select_primary_authtorization) For a given

authorization request r and a set of authorization decisions A, function
select_primary_authtorization (r, A) returns either an authorization a from A

such that primary_authorization (r, a), or 0.

Definition 10 (precise and approximate authorizations) For an

authorization request r, an authorization decision a is precise iff r and a.r are

equivalent. Otherwise, a is approximate for r.

Definition 11 (function precise_authorization) Boolean function

precise_authorization (r, a) returns True iff authorization a is precise for

request r according to Definition 10.

It follows directly from definitions 3, 5, 7, and 10 that if for request r authorization a is

primary, it is also precise for r.

In our model, we also require that for any request any two precise authorizations

should have same decisions:

Invariant 3 ∀ r ∈ R, ∀ a ∈ A, ∀ a' ∈ A: precise_authorization(r, a) ∧

precise_authorization(r, a') ⇒ a.d ≡ a'.d.

The above invariant does not exclude time-sensitive policies because time is part of
the request’s environment element, e. Therefore, two requests that differ only in when

they are made would have different value of the time component in their environment
elements, and hence would differ.

Next, we introduce a convenience function for selecting precise authorizations from a

set of candidates:

8

Definition 12 (function select_precise_authtorizations) For a given

authorization request r and a set of authorization decisions A, function
select_precise_authtorizations (r, A) returns a subset A' ⊆ A such that ∀ a ∈

A': precise_authorization (r, a).

Note that select_precise_authorizations(…) might return an empty set when A contains
no precise authorizations for r.

3.1 Selecting Approximate Authorizations
Given a set of authorizations A and an authorization request r, one can select some
authorization a from A such that a would be the best authorization approximation for r in

A. In a general case, a is selected in the following order:

1. If select_primary_authorization(r, A) ≠ 0, then a =

select_primary_authorization(r, A). Otherwise,

2. if A' = select_precise_authorization(r, A) ∧ A'≠ ∅, then a is assigned to any2

authorization from set A'. Otherwise,

3. best_approximate_authorization(r, A).

To define function best_approximate_authorization(…), we make further

assumptions on the structure and semantics of authorization requests and decisions, as

described in the following section.

4 Advanced Models
In this section, we make additional assumptions on the structure and semantics of
authorization requests, making it possible to define function

best_approximate_authorization(…).

Definition 1 does not impose any structure or semantics on subject, object,
permission, environment, or identity. To refine the semantics of authorization

approximation further, we will make an assumption in the following sub-section that a

2 Due to Invariant 3, it does not matter which one from A' is chosen.

9

subject is a set of attributes. In this section, the following generic structure for attributes

and a convenience function for retrieving them are defined:

Definition 13 (attributes) Attribute attr ∈ ATTR is a tuplet of name and

value: (n, v), where n ∈ N and v ∈ V.

Definition 14 (attribute subsets) For two sets of attributes A and B, A ⊆ B

⇔ ∀ a ∈ A ∃ b ∈ B: a.n ≡ b.n ∧ a.v ≡ b.v.

Definition 15 (function attributes) For any subject s ∈ S, object o ∈ O,

permission p ∈ P, and environment e ∈ E, function attributes() ⊆ ATTR

returns a set of attributes of that element.

We do not assume any specific format or structure of name and value elements of

attributes, although some architectures refine attribute formats further. For instance, a
subject attribute in CORBA Security [6] is defined as a triplet of type, authority (who

issued the attribute), and value. A simple translation of CORBA subject attributes into

SAAM could be done by concatenating authority and value to represent value in our
model and using CORBA’s attribute type as name. In XACML [13], subject attribute is a

triplet of attribute id, data type, and value. Again, without loss of expressiveness, one
could translate XACML’s subject attributes into SAAM by combining id and data type of

the attribute into SAAM’s name. Having defined the notion of attributes, we are ready to

introduce other SAAM models.

Also, Invariant 1 allows us to introduce a convenience function that reduces a

decision into a binary form:

Definition 16 (function access_allowed) For any decision d ∈ D, function

access_allowed(d) returns True iff access should be allowed, provided all

specified in d obligations and/or conditions, if any, are met. Otherwise, it

returns False.

Subsequently, we define another convenience function also used in SAAMB refinements:

Definition 17 (function authorized) For some subject s, object o,

permission p, and environment e, Boolean function authorized(s, o, p, e) ⇒

10

(∃ authorization a: a.r.s ≡ s ∧ a.r.o ≡ o ∧ a.r.p ≡ p ∧ a.r.e ≡ e ⇒

access_allowed(a.d)).

This function returns True if the access control policy would allow access if the
corresponding authorization request were submitted. Note that here we assume that the

authorization engine can be queried, whereas before our reasoning was limited only by
existing authorization requests and decisions.

4.1 SAAMSM—Subject Attributes with Monotonic Policies
In this section, we define best_approximate_authorization(…) introduced in Section 3.1
by making two assumptions. Firstly, we assume that subjects are sets of attributes that

have structure according to Definition 13. Secondly, we assume that policies used for
making authorization decisions are monotonic, i.e., consist of only positive rules. We

refer to the refinement of SAAMB based on these two assumptions as SAAMSM.

In order to further refine best_approximate_authorization(…) for SAAMSM, we
define dominates partial order relation on subjects:

Definition 18 (dominates relation) For any two subjects s and s', s

dominates s' iff ∀ o, p, and e: authorized(s', o, p, e) ⇒ authorized(s, o, p, e).

That is, s is authorized whenever s' is authorized. Observe that dominates relation is
reflexive, asymmetric, and transitive. We use ‘≥’ as a shorthand for ‘dominates’, e.g., s ≥

s'. Also note that ∀ s and s': s ≥ s' ∧ s' ≥ s ⇒ s ≡ s'.

It might seem that the only way to determine if two subjects are in dominates
relationship is to check their rights for every combination of object, permission, and

environment. However, since in SAAMSM monotonic policies and subject representation

as a set of attributes are assumed, then for any two subjects s and s': s' ⊆ s ⇒ s ≥ s'. This

observation allows us to have an efficient and reliable, albeit conservative, way of
determining if two subjects are in dominates relationship: if one is a superset of the other

than the former dominates the latter. From now on, we will assume that dominates

relationship is tested using this method.

11

Another auxiliary term to be used in defining best_approximate_authorization, is of

maximal set of suitable authorizations:

Definition 19 (suitable authorization) For a request r and authorization a,

a is suitable for r iff a.r.o ≡ r.o ∧ a.r.p ≡ r.p ∧ a.r.e ≡ r.e.

Definition 20 (maximal suitable authorizations) For a request r and a set
of authorizations A, A' is a maximal set of suitable authorizations for r on A

iff (∀ a' ∈ A': a' is suitable for r) ∧ (∀ a'' ∈ (A-A'): a'' is not suitable for r)

We can now define a simple version of best_approximate_authorization(…), in which,

for a given authorization request r, the function returns any suitable authorization whose
subject is dominated by r’s subject. However computationally efficient implementations

of such semantics could be, the result returned by this version of the function depends not

only on the request r and set A of known authorizations, but also the order of iterating
through elements of A.

To define another version, although more computationally expensive, of this function
with implementation-independent semantics, we introduce the notion of least dominated

element of a set of subjects/requests/authorizations. Such an element is dominated by the

subject in question and it also dominates any other element in the set dominated by that
subject:

Definition 21 (least dominated element of set) For a given subject s and a
set M of subjects/requests/authorizations, subject/request/authorization m ∈

M is least dominated subject/request/authorization in regards to s iff ∀ m' ∈

M: s dominates subject element of m' ⇒ subject element of m dominates

subject element of m'.

Now, we define semantics of best_approximate_authorization(r, A) as follows. It first

selects set A' of maximal suitable authorizations for r on A. Then, the least dominated

authorization in A' in regards to r.s is used as the result returned by the function. The

following is a more precise definition:

Definition 22 (function best_approximate_authorization) For a set A of
authorizations and a request r, function best_approximate_authorization(r, A)

12

returns the least dominated authorization in regards to r.s of the maximal

subset of suitable authorizations for r on A.

With the above definition, SAAMSM completes the semantics of selecting approximate

authorization for a given request (Section 3.1) by defining
best_approximate_authorization(). To do so, this advanced model adds the assumptions

about subjects represented as sets of name-value attributes and close-world policies with

only positive rules to SAAMB. In other words, SAAMSM is SAAMB extended with
Definition 13 through Definition 22.

The efficiency of SAAMSM can still be improved without imposing over-constraining
assumptions on the model. We discuss these improvements in the next section.

4.2 SAAMSMS – Significant Attributes
To improve SAAMSM, we take advantage of the fact that not all subject attributes
influence authorization decisions. For example, subject id and group membership

attributes are not used in authorizations made against pure RBAC [8] policies. Therefore,
if two subjects have same roles activated, then they would have same rights even if their

id and group membership attributes were different. Due to the monotonic policy

assumptions in SAAMSM, additional attributes could only increase the rights of a subject,
which allows us to care only about significant attributes—those attributes that did

influence a particular authorization:

Definition 23 (significant subject attribute) For an authorization a, a
subject attribute attr ∈ a.r.s is significant iff authorization decision for

otherwise same request but with the subject lacking attr would result in a

decision different from a.d.

Now, we extend SAAMSM into SAAMSMS by assuming that authorization engines mark

significant subject attributes in the authorizations they return. One possible marking

option is to leave only significant attributes in a.r.s and remove others. With this option,
no changes to best_approximate_atuhroization() function defined in SAAMSM are

necessary in order to take advantage of significant attributes. For example, with pure
RBAC policies, only role attributes would constitute subject elements of authorizations,

13

and any subject whose roles are a superset of the ones present in an authorization would

dominate the subject element of that authorization.

5 Related Work
To the best of our knowledge, no prior work on the topic of recycling authorizations has
been published. The literature considers only the issues related to arriving at and

enforcing access control decisions. Although one can argue that selecting the best

approximate authorization out of existing ones is just another form of making
authorizations, the key difference here is that SAAMSM(S)models assume no knowledge

about the details of the authorization policies, except that they are monotonic. In some
sense, the authorization logic treaded in SAAM as an oracle, which is only known to

return same authorization in response to same request and that its policies are monotonic.

Due to the generality of the model and little or no assumptions about the structure and
format of authorization elements (Definition 2), SAAM seems to be compatible with

most traditional and modern access control models, including UCON [7].

6 Conclusions and Future Work
This paper explores the question of recycling existing authorizations (a.k.a., access

control decisions) for serving new authorization requests. Scalable and efficient recycling
of authorizations is critical when the authorization logic is not available (e.g., due to

infrastructure failures), or caching is employed to optimize performance. We introduce
the notions of primary vs. secondary as well as precise vs. approximate authorizations.

Another significant contribution of this paper is an initial version of secondary and

approximate authorizations model. We define its basic (SAAMB) and advanced
(SAAMSM and SAAMSMS) variations that take advantage of additional assumptions about

the representation of subjects as sets of simple attributes as well as the policies being

monotonic to define suitable semantics for selecting the best approximate authorization
for a given request.

Further improvements of SAAM are certainly possible. One is to take into account
the partial order relations defined over subject attributes in some access control models,

14

e.g., lattice-based MAC [9] and RBAC with role hierarchies. This could make testing of

subjects for dominates relationship more effective and less conservative. Another
possible improvement is to assume an attribute-based structure of the request

environment and to take advantage of the distinction between significant and
insignificant environment attributes (similarly to significant subject attribute, Definition

23). For example, if time of the request is insignificant attribute of the environment, then

more authorizations could qualify as suitable for a given request. One more candidate for
future improvement is studying partial order relation(s) among objects (and possibly

permissions), where rights over one object could (perhaps transitively) imply rights over
other objects. Yet another opportunity for extending SAAMSM(S) is to drop the assumption

about the policies being monotonic. SAAM variations presented in this paper implicitly

assume one policy authority therefore avoiding conflicts or inconsistencies among
authorizations. An interesting generalization would be to support multiple authorities.

7 Acknowledgements
The author is thankful to Frank Piessens for providing helpful feedback on the initial

ideas presented in this paper. This work has been supported in part by NSERC Discovery

Grant.

References
[1] Bishop, M. Computer Security: Art and Science. Pearson Education, Inc., Boston, 2003.
[2] Diamond, J. Senators' report faults CIA on Iraq, USA Today, 2004.
[3] IETF. RFC 1630, Universal Resource Identifiers in WWW. Berners-Lee, T. ed., Internet

Engineering Task Force, 1994.
[4] Jindal, A., Distributed Computing Environment. in Proceedings. SHARE Europe Spring

Meeting: Managing Communications in a Global Marketplace, 30 March-3 April 1992,
(Cannes, France, 1992), SHARE Europe (SEAS), 385-401.

[5] Kindel, Charlie and Brown. Distributed Component Object Model Protocol (DCOM/1.0),
Microsoft Corporation, 1998.

[6] OMG. CORBAservices: Common Object Services Specification, Security Service
Specification v1.8, Object Management Group, document formal/2002-03-11, 2002.

[7] Park, J. and Sandhu, R. The UCONabc usage control model. ACM Transactions on
Information and System Security, 7 (1). 128-174.

[8] Sandhu, R., Coyne, E., Feinstein, H. and Youman, C. Role-Based Access Control Models.
IEEE Computer, 29 (2). 38-47.

15

[9] Sandhu, R.S. Lattice-Based Access Control Models IEEE Computer, 1993, 9-19.
[10] Siegel, J. CORBA 3 Fundamentals and Programming. John Wiley & Sons, 2000.
[11] Sun. Enterprise JavaBeans Specification, Version 2.0, Sun Microsystems Inc., Palo Alto,

CA., 2000, 554.
[12] Vogels, W. How Wrong Can You Be? Getting Lost on the Road to Massive Scalability,

International Middleware Conference, 2004.
[13] XACML-TC. OASIS eXtensible Access Control Markup Language (XACML) version 1.0,

OASIS, 2003.

