
PERFORMANCE CONSIDERATIONS FOR A CORBA-BASED
APPLICATION AUTHORIZATION SERVICE1

Konstantin Beznosov, Luis Espinal, Yi Deng

The Center for Advanced Distributed Systems Engineering
Florida International University, Miami, FL, 33199

{beznosov,lespin03,deng}@cs.fiu.edu

Contact: Dr. Yi Deng deng@cs.fiu.edu
Words: 7660

Submission type: Proceedings

April 3, 2000

Abstract
Resource Access Decision (RAD) Service allows separation of authorization from application function-

ality in distributed application systems by providing a logically centralized authorization control mecha-

nism. RAD has attractive features such as decoupling of authorization logic from application logic,

simplicity, generality, flexibility, support for complex application level access control, and ease of policy

administration in heterogeneous, distributed systems. However, there is a concern of performance penalty

for obtaining authorization decisions from a possibly remote server on each application request. We

describe our work in measuring run-time performance of a CORBA-based Application Authorization Ser-

vice (CAAS), which is compliant with the OMG specification of Resource Access Decision Facility, and

draw conclusions about performance considerations in implementation of RAD compliant authorization

services. We identify factors, which affect overall run-time performance of the approach and suggest possi-

ble solutions.

Keywords
Authorization, security, application-level security, distributed systems, heterogeneous systems, soft-

ware engineering, performance evaluation, CORBA, distributed object technology.

1. This work was supported in part by the NSF under grant No. HDR-9707076. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official polices or endorsements either expressed or implied by
NSF.

PERFORMANCE CONSIDERATIONS FOR A CORBA-BASED
APPLICATION AUTHORIZATION SERVICE1

1. INTRODUCTION

Security is an essential function and concern to every enterprise. In general, application systems embed
security mechanisms [1, 2] such as access control within their own application logic. This embedding
causes enterprise security administrators to configure access control logic on application-by-application
basis [3]. This application-based multiple-point security control makes enterprise security administration
tremendously difficult, costly and error prone. It makes security policies and control mechanisms harder to
change, and makes application software difficult to develop, change and dynamically reconfigure [3, 4].
Suitable security architectures, which separate authorization logic from application logic by treating autho-
rization as an independent generic service, and which supports complex application level access control,
are necessary in order to enable enterprise system evolution. By using these architectures, changes in
authorization logic should have minimal or no impact on application-specific logic and vice versa.

Beznosov et al. [3] suggested a conceptual architecture of an authorization service for CORBA-based
application systems. This body of work served as foundation for Resource Access Decision Facility (RAD)
specification from the OMG [5]. RAD approach promises to provide a common foundation for a security
architecture, which separates authorization logic from applications, to support fine-grained, dynamic, com-
plex policies, and to enable interoperability based on open standards. However, it is an open issue as how
to design and implement a flexible, maintainable, extensible, and portable authorization server based on
the logical design of RAD. Even more important question is what performance implications arise from
using such an authorization server. Regardless of how attractive an approach for developing application
systems is, if the resulting systems’ performance decreases significantly, the approach would not be of
much help to system developers. Hence, before studying the validity of all these promises by the approach,
it is necessary to address the question of run-time system performance in the first place. One would expect
middleware and communication overhead to affect run-time performance. However, we need to qualify
and quantify overhead due to middleware and communication subsystem. This is because RAD architec-
ture includes multiple components that can be located in the same process, in the same host or in different
hosts in a network environment. In each of these configurations, middleware and communication sub-
system will affect to different extend overall run-time performance. At the time this work is presented (4-
2000), no work on architecture of authorization servers affecting performance has been reported that we
can use to reason about RAD performance.

To address the above issues, we designed and implemented a CORBA-based Application Authorization
Service (CAAS) according to the logical design of RAD to server as experimental test-bed. The focus of
this research was to measure run-time performance of application systems that obtain authorization deci-
sions from a possibly remote RAD server. We measure run-time performance of CAAS under various con-
figurations, loads and server-side business logic delays using a basic performance model. By analyzing the
performance of potential systems that use RAD approach for authorization decisions, we expect to obtain
information that enable us to design and deploy appropriate RAD servers.

1. This work was supported in part by the NSF under grant No. HDR-9707076. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official polices or endorsements either expressed or implied by
NSF.
2

The main contributions of our work are our performance measurements and conclusions we have drawn
from them. Results from our experiments measure architecture of RAD-compliant authorization service
affecting run-time performance. We identify factors affecting run-time performance of systems using
CAAS and possible solutions for improving run-time performance of implementations of RAD. Moreover,
we believe our performance results can be used to reason and measure run-time performance of authoriza-
tion servers in general.

The organization of this paper is the following: Section 2 discusses background information and related
work. Section 3 introduces RAD conceptual architecture, CAAS design requirements, design and imple-
mentation. Performance model, considerations, and measurement results are covered in Section 4. We dis-
cuss our findings in Section 5, and we draw conclusions along with status report and summary in
Section 6.

2. BACKGROUND AND RELATED WORK

The idea of authorization decisions being separated from application logic is not new. An abstract
model of a reference monitor [6] is a classical example of authorization decisions being made and enforced
outside of applications. The industry achieved considerable results in regards to the control of access to
resources of operating systems, databases and middleware [7-18]. However, fine-grain control of applica-
tion resources is done traditionally in ad-hoc manner [19], and there is no automated means to ensure
enterprise-wide consistency of such controls.

The research community has being working towards systematic ways to address the problem. There are
three main research directions. They are policy agents, interface proxies and interceptors, as well as enter-
prise-wide authorization services.

The direction of policy agents [4] is motivated mainly by the goal of accommodating the existing body
of products and technologies. The key property of the direction is centralized access control (AC) manage-
ment via translation of AC rules into supported by local mechanisms languages, and distribution of the
rules across systems. Approaches under this direction have a number of advantages: there is inherent fault
tolerance; enterprise security is naturally compartmentalized without penalizing run-time performance; the
architecture facilitates achieving nominal performance overhead; there is high degree of run time auton-
omy. The main challenge facing the approaches is the consistency of enforced global policy, and automa-
tion of mapping a global policy into various instances of AC mechanism languages and representations.
The approaches also suffer from a number of inherent limitations. First, the granularity and expressiveness
of AC policies in a policy domain can be only as good as the policies supported by the most coarse-grain
and least expressive AC mechanism in that domain. Second, distribution of policy updates can be very
slow. The direction of policy agents becomes irreplaceable, if other approaches fail in those circumstances
when application systems are already deployed. The question if it is the best way to address the problem of
application-level AC for newly developed systems remains open.

Approaches under another direction employ either interface proxies, as in views as objects [20], role
classes [21], security meta objects [22, 23], or interception of intersystem communications, as in SafeBots
[24, 25] and Legion system [26-28]. Access to an application system is controlled externally. The main
advantage of the direction is that it does not require almost any changes to the application system. The ref-
erence monitor is implemented externally to the application system, and security developers can control its
size. Another advantage is the ability to make all the decisions locally to an application system, which
3

AS
rmance

ccess
rip-
facilitates performance scalability. However, there are a number of significant limitations. First, AC granu-
larity cannot be finer than method and arguments granularity. Second, decisions have to be made either
before or after an application system is in possession of control. Third, variables, whose values become
available at some point after the method is invoked, cannot be used in authorization decisions. Fourth,
since there are as many instances of controls as application systems, insuring consistency of enforced poli-
cies as well as coherency of data used for authorization decisions becomes a challenge.

Another direction in AC for distributed application systems is based on authorization services [3, 29-
32]. Decisions provided by an instance of the service are enforced by an application system. Both an appli-
cation system and an authorization server constitute a reference monitor [6], which requires an application
system to be trusted to enforce AC decisions. The main advantages of the direction are inherent consis-
tency and coherence of enforced authorization policies, ease of policy changes and updates, ability to
change policies and their policy types without affecting application systems, relatively low cost of AC
administration, ability to obtain authorization decisions just when they are needed, and potentially any
level of granularity of the resources to be protected. However, in order to construct a successful architec-
ture for a distributed authorization service, one must address several key problems. They are performance,
fault tolerance, scalability, security of communicating authorization information, guarantee of authoriza-
tion decisions being enforced, and common representation of information used for making the decisions.

We believe that contemporary information enterprises have to have application AC implemented in all
three forms. Successful architectural solutions will employ a combination of proxies, interceptors, policy
agents, and authorization services because solutions from all three groups complement each other. For sys-
tems with the existing AC mechanisms tightly integrated into applications, policy agents are the only
choice. In those existing systems, where AC mechanisms are missing, weak, or have too coarse granular-
ity, interceptors and proxies, combined with the ideas from policy agents and authorization services could
cure the problem. New applications with requirements for fine-grain, complex or very dynamic AC poli-
cies or to be deployed in organizations of different types (e.g. military, government, finance, health care,
telecommunications) and sizes, will be best constructed with the use of application authorization service.

Beznosov et al. [3] outlines a conceptual architecture of an authorization service for CORBA-based
application systems, which served as foundation for Resource Access Decision Facility (RAD) specifica-
tion from the OMG [5]. We continue research on RAD approach by investigating how RAD architecture
affects run-time performance. CAAS design, which is based on RAD architecture is the topic of the next
section.

3. CAAS DESIGN

By using current technologies, namely CORBA and Java, we have designed and developed a CORBA-
Based Application Authorization Service (CAAS) compliant with OMG’s RAD specification. CA
design was flexible, configurable, extensible and portable, and served as a test-bed for our perfo
measurements. RAD conceptual architecture is described next.

3.1. RAD CONCEPTUAL ARCHITECTURE

We use the terms RAD service, RAD logical design or simply RAD to denote the Resource A
Decision Authorization Facility as outlined in the OMG’s RAD specification [5]. Detailed RAD desc
tion can be found in [3, 5].
4

 “inter-

iversity
RAD architecture is designed to accommodate needs of organizations that differ in size, structure, and
market sectors and to enable integration with existing infrastructures. RAD is not intended to replace mid-
dleware or other security environments, such as CORBA Security. The design rather assumes the existence
of a capable middleware security, and compliments it with the capability of more sophisticated authoriza-
tion, which is independent from the application logic.

RAD approach is a representative example of authorization services direction described in Section 2.
As most authorization services, RAD provides authorization decisions to an application system (AS)
(Figure 1). An application client or simply client sends an application request to AS (step 1). If the applica-
tion request needs to be authorized, the AS sends one or more authorization requests to RAD (step 2). Each
authorization request consists of client security credentials, name of the resource to be accessed, and name
of the operation to be performed on the resource. Client security credentials are supposed to be obtained by
AS from the middleware security infrastructure. AS is expected to compute the resource operation names
as part of its application logic. For each authorization request, AS receives back a binary (yes/no) authori-
zation decision (step 3). AS enforces the authorization decision(s) and returns back to the client (step 4).
Interactions between a client, an AS and an instance of RAD are very common to most solutions based on
authorization services. The main difference between RAD and other authorization services is in its
nal” architecture.

RAD design aims to enable implementation of its components by various vendors due to the d

Figure 1: Interaction between Client, Application System and RAD Server

Figure 2: Sequence of events in an authorization decision request

1. Application R equest

Application
System

(ADO client)

Access
Decision

Object
C lient

3. Reply to authorization request4. Reply to application request

Application
Client

R AD
Server

M iddlew are
Ap plication

Server

2. Authorization request

ADO AS

access_allowed({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver, role=nurse})

PE
L

RBAC PE DC DA
S

get_policy_decision_evaluators({patient_id=29984329,record_part=PN})

get_dynamic_attributes({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse})

combine_decisions({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse }, {RBAC PE})

evaluate({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse })

RAD

role caregiver
can read
patient_name
5

in the requirements to AC policies, performance, scalability and other system properties from different
government and commercial markets. A RAD server is composed of the following components: 1) an
AccessDecision Object (ADO), 2) zero or more PolicyEvaluator (PE) objects, 3) a PolicyEvaluatorLocator
(PEL), 4) a DynamicAttributeService (DAS), and 5) a DecisionCombinator (DC) object. RAD conceptual
architecture is such that all of these components could be replaced dynamically by different implementa-
tions as long as they comply with the interface specifications. The components are only logically disjoint.
In practice they can be co-located in the same process or host. This feature is provided to further the sup-
port for dynamic composition and re-configuration, as well as for high availability and fault tolerance of
the services based on RAD architecture.

3.2. COMPUTATION OF AUTHORIZATION DECISIONS

An authorization decision is computed through a sequence of operations carried out by the RAD com-
ponents. These sequence of operations or control flow is described in the next section. The ADO receives
requests for authorization decisions from ASs (RAD clients in this context). Through DC, ADO delegates
evaluation of policies governing access to resources to corresponding PEs, which encapsulate AC policies.
Unlike most authorization services [29, 30, 33], RAD design does not impose any particular authorization
language. Each policy evaluator can be administered using a different interface and AC rules written in a
different language. Such a design is done to enable use of the existing policy engines (such as RACF [10]),
that were not originally developed to be PEs. It also enables dynamic swapping of PEs. ADO delegates a
DC the task of combining multiple results of evaluations made by PEs into a final decision. This is because
there can be several PEs responsible for the same resource name. Each DC implements a particular combi-
nation policy. Its response is returned to the ADO and becomes the authorization decision, which the AS is
expected to enforce. To obtain references to PEs and DCs, the ADO consults a PEL, which implements the
logic of deciding what PEs and DCs are to be used to authorize a given access operation on a given
resource name.

In order to support AC policies based on the factors whose value can change from request to request,
ADO obtains dynamic privilege attributes of the application client from DAS before it passes the request to
the corresponding DC and PEs. Dynamic attributes are privilege attributes, which can be determined only
at the time when a request for an authorization decision takes place. Thus they are specific to the authoriza-
tion request in question. Examples of such attributes are relationships between physicians and patients in a
hospital [34]. DAS is an important architectural element, which distinguishes RAD from other authoriza-
tion services and enables support of complex and dynamic AC policies with traditional access matrix [35].

To illustrate the work of RAD components, we provide an example of processing an authorization
request in Figure 2. It shows the sequence of invocations among RAD components in a hypothetical case.
For the sake of illustration, let us assume that there is an authorization policy, which contains a statement
that a user can read patient name (PN) if the user is performing role caregiver. In this example, AS is
requesting to authorize read access to patient_name of the medical record on patient with ID 29984329 for
a user with user_id d, who activated role nurse, which is senior to role caregiver. ADO obtains a list of ref-
erences to PEs and to a DC, which should be used for making authorization decision on resource with
name {patient_id=29984329, record_part=PN}. The PEL returns a reference to the DC and a reference to
one PE - RBAC PE. The DAS does not change the list of privilege attributes, which specifies that the user
ID is g and the roles the user activated are caregiver and nurse. RBAC PE implements authorization based
on roles [2]. According to the authorization rules, users acting as caregivers have access to names of all
6

patients. Thus the PE returns "yes" and DC returns back to ADO the same answer. The ADO authorizes the
AS to access patient name for patient with ID 29984329.

When an AS requests an authorization decision for access to a particular resource, one or more PE
objects that encapsulate policies controlling access to that resource may be invoked. For that particular
authorization decision request, only one DC would combine PE results into an authorization decision.
Also, in an authorization decision, DC consults each PE once (unless PEL returns duplicated object refer-
ences to ADO). How DC and PE objects are associated with resource names depends on the access control
mechanism or mechanisms implemented and maintained by security administrators.

3.3. DESIGN AND IMPLEMENTATION OF CAAS

For the sake of brevity we demonstrate the key design decisions of CAAS using the design of PE.
Although ADO, PEL, DAS and DC are important components of CAAS, their designs share similarities
with PE design, and it has the most complex design. A more detailed description of the design and imple-
mentation of all CAAS components can be found in [36].

PE has run-time and administrative interfaces, which we wanted to implement using the same class.
However, IDL interfaces are implemented in Java using implementation classes, which makes it impossi-
ble to implement multiple IDL interfaces in Java via inheritance [37]. We resolved this issue by using a
delegation pattern known as Tie Approach [38]. Tie approach means the use of delegation over inheritance
when implementing IDL interfaces.1 IDL interfaces are implemented with a tie class (PolicyEvaluator-
Context in Figure 3), which provides functionality needed to operate with the ORB middleware. The tie
class delegates implementation of operations to a delegate class, which in the case of PE is the PolicyEval-
uatorContext. PolicyEvaluatorContext implements operations defined in PolicyEvaluatorExt and Poli-
cyEvaluatorAdminExt IDL interfaces (see Figure 3). In summary, Tie Approach separates application-
dependent logic from middleware logic by encapsulating middleware mechanisms in the tie class and
application logic in the delegate class.

CAAS may use PE components implementing different policy evaluation mechanisms based on file
system permissions, role-based access control (RBAC) [2], or even default evaluation policies which

1. . In principle, this is similar to the Bridge pattern described in [39].

Figure 3: PolicyEvaluator Design

P o l i c y E v a l u a t o r
ev a lu a t e ()

< < I D L I n t e r f a c e > >

P o l ic y E v a l u a t o rA d m i n

s e t _ p o lic ie s ()
a d d _ p o li c i e s ()
l i s t_ p o l i c ie s ()
s e t _ d e f a u lt _ p o lic y ()
d e le t e _ p o lic i es ()

< < I D L I n t e r f a c e > >

S t ra t e g y
P a t t e rn

A l w a y sD e n y E v a l u a t o r A l w a y sG ra n t E v a l u a t o r

N u l l P o l i c i e sB y R e so u rc e N a m e M a p

A l w a y s G ra n t D e n y A b s t ra c t E v a l u a t o r

P o l i c y E v a l u a t o rA d m i n E x t O p e ra t i o n s
< < I n t e r f a c e > >

P o l i c y E v a l u a t o rA d m i n E x t
s h u t d o w n ()

< < I D L I n t e r f a c e > >

P o l i c y E v a l u a t o rE x t
< < I D L I n t e r f a c e > >

+ t h e P o l ic y E v a l u a to rA d m i n E x t

P o l i c y E v a l u a t o rE x t O p e ra t i o n s
< < I n t e r f a c e > >

P o l i c y E v a l u a t o rS t ra t e g y
e v a lu a t e U s in g P o lic y ()
a re V a l id P o li c ie s ()
l is t _ p o li c ie s ()
g e tD af u l t P o li c y ()

< < I n t e rf a c e > >

P o l i c i e sB y R e so u rc e N a m e M a p
c le a r ()
h a s R e s o u rc e N a m e ()
g e t P o l ic ie s ()
is E m p t y ()
p u t P o l ic ie s ()
r e m o v e P o li c ie s ()

< < I n t e r f a c e > >

P o l i c y E v a l u a t o rC o n t e x t

s e t _ p o li c ie s ()
a d d _ p o l ic ie s ()
l i s t _ p o li c ie s ()
s e t _ d e f a u lt _ p o li c y ()
d e le t e _ p o l ic ie s ()
e v a lu a t e ()

0 . . *

1 . . 1

0 . . *

1 . . 1

0 . . *

1 . . 1

0 . . *

1 . . 1

t ie
m e c h a n i sm

N u l l O b j e c t
P a t t e rn

T e m p l a t e
P a t t e rn

N t f sF i l e S y st e m P e rm i ssi o n sE v a l u a t o rU n i x F i l e S y st e m P e rm is i o n sE v a lu a to r

F i l e S y st e m P e rm i ssi o n sE v a l u a t o r

R B A C E v a l u a t o r
7

always grant or deny access. However, most of these PE instances may use the same mechanisms to asso-
ciate resource names to access control policies. In this situation, using one implementation class per evalu-
ation policy could introduce many related PE classes that differ only in their evaluation policy.

To address this issue, we used a solution based on Strategy pattern [40] in which PolicyEvaluatorCon-
text implements functionality common to most other implementations of PE such as addition and removal
of access control policies. Different policy evaluation mechanisms are delegated to an object implementing
the PolicyEvaluatorStrategy Java interface as shown in Figure 3. Similarly, management of associations of
resource names to access policies may vary between instances of PE. Consequently, PolicyEvaluatorCon-
text delegates the implementation of such functionality to objects implementing the PoliciesByResource-
NameMap Java interface. By using this interface, developers can implement associations using any form of
storage suitable to their needs independently of the implementation of PolicyEvaluatorStrategy.

Implementations of PolicyEvaluatorStrategy interface are further refined using a design pattern known
as Template. The rationale behind Template pattern (or Template Method pattern) is to define an outline or
skeleton of an algorithm in a base (potentially abstract) class while leaving some steps to be defined in sub-
classes as shown in Figure 3 [39, 40]. By doing so, the design of PE allows extensions and modifications to
policy evaluation mechanisms with relative ease as security requirements change during the system life
cycle.

To know what access policies to evaluate given input parameters (from DC), a PolicyEvaluatorContext
must maintain relationships or mappings between AC policies and resource names. These mappings are
also implemented using Strategy pattern. That is, a class implementing such mappings implements the Pol-
iciesByResourceNameMap interface shown Figure 3. Developers can use this interface to implement rela-
tionships using any form of storage suitable to their needs independently of the implementation of
PolicyEvaluatorStrategy. The design includes a default PoliciesByResourceNameMap implementation
based on the Null Object pattern [40], the NullPoliciesByResourceNameMap class. With Null Object pat-
tern, developers can provide do-nothing versions of classes for which no particular implementation exists
during execution. By using Null Object pattern, PolicyEvaluatorContext is relieved from testing for null
values before accessing methods of PolicyByResourceNameMap.

We refer to [36] for detailed description of the design and implementation of RAD components.

4. PERFORMANCE MEASUREMENTS

For our performance measurements, we decided to measure run-time performance of CAAS in the pres-
ence of one client only, which sends requests to a single AS in a sequential manner as shown in Figure 4-c.

(a) (b) (c)

Figure 4

C A A S

A SC lien t
U ser

A SC lien t
U ser

A SC lien t
U ser

C lien t
U serU ser

A SC lien t
U ser

A SC lien t
U ser

A SC lien t
U ser

C lien t
U serU ser

A SC lien t
U ser

A SC lien t
U ser

C lien t
U serU ser

U sers , C lien ts , A S (s) and C A A S

G en era l C ase

UserUser

Reference Model

Te

Client AS
UserUser

Response Time for Configuration
using CAAS

CAASASClient

Tc Tas Tcaas
8

That is, the client waits until it receives reply from its previous request before it makes a new one. This
allows to estimate a lower bound run-time performance of CAAS -- performance would be expected to
degrade in the presence of multiple ASs sending concurrent authorization requests as shown in Figure 4-a.
Since our immediate goal was to study only performance, we decided to leave performance scalability
experiments for future research.

Another consideration was that CAAS flexibility allows developers and administrators to deploy its
components on different hosts, as separate processes in the same system, or even as objects in the same
address space. It was also possible to deploy CAAS and ASs on different hosts or as co-located processes.
We expected such configurations to be important factors affecting run-time performance.

4.1. MEASUREMENTS MODEL

Our first step towards measuring performance was to build an experimental model and determine what
aspect of AS-CAAS interaction would be as performance metric. We decided to measure response time Tc

experienced by a client while making requests to AS as shown in Figure 4-c. We could have also measured
response time at time Tcaas when CAAS completes the processing of an authorization request and at time
Tas when AS finish processing of an application request, which in turn contains time Tcaas. We chose to
measure response time perceived by clients since it includes response times at the other two points, and it
was the main concern when authorization decisions are computed by CAAS. That is, our performance met-
ric for CAAS is end-to-end response time that clients experience while interacting with AS.

We also needed to determine if absolute or relative response delay values should be used for the perfor-
mance analysis. Since we did not use any standard benchmarks and our test bed is based on a prototype
implementation, we measured response time relatively to a reference configuration or model that simulates
traditional client-server systems where authorization logic is implemented within AS. That is, performance
measurements are relative to overall response time Te experienced by a user in the case of the reference
model as shown in Figure 4-b. Moreover, by measuring relative response time, we minimized any over-
head introduced by programming environments, which can affect absolute measurements. Using measure-
ments Tc, and Te, we calculated the response time increase percentage I of external access control for each
configuration of CAAS with respect to embedded access control using the following formula:

(1)

The goals of conducting performance measurements on CAAS was to observe response time experi-
enced by end users of ASs using CAAS to obtain authorization decisions relative to AS using embedded
authorization. We expected overhead from ORB middleware and communication subsystem to be the most
contributing factor in response time increase. Therefore, we needed to relative measure run time perfor-
mance of CAAS under different configurations, which are discussed next.

4.2. CAAS CONFIGURATIONS

CAAS configurations determine the boundaries crossed by messages send during computation of an
authorization request. Figure 5 shows configurations considered during performance measurements. Mes-
sages can be sent between AS and CAAS (external messages) and among CAAS components (internal
messages). Furthermore, messages can be sent between objects, processes, or systems as shown in
Figure 5.

I
Tc

Te
----- 1–

 100×=
9

Messages cross object boundaries when components are co-located in the same address space and use
direct method calls through JVM to communicate. Messages cross process boundaries when communicat-
ing components are co-located in the same host but run in their own processes. In this case, communication
takes place through the ORB middleware, which is why we also call these boundaries as middleware
boundaries. This form of communication, however, can take place using other mechanisms such as IPC
[41, 42]. Finally, messages cross host boundaries when components reside on separate hosts; this involves
middleware and communication subsystem overhead. CAAS can be deployed in any combination of con-
figurations.

Even though code responsible for application and authorization logic can be highly coupled, we believe
that code can be re-arranged into equivalent code in such a way that it will allow for every computer oper-
ation to identify whether it contributes to application or authorization performance overhead. Using this
assumption, we simulate our Reference Model, which uses embedded authorization logic, by co-locating
all CAAS components within the application process. This arrangement is illustrated in Figure 5-A.

With Process/Object configuration, AS and CAAS are co-located as independent processes in the same
server host, and CAAS components are co-located within the same process as illustrated in Figure 5-B.
Messages between AS and CAAS are transmitted via ORB middleware (process boundaries) whereas
CAAS components communicate using native method calls using the JVM (object boundaries). Figure 5-C
shows Process/Process configuration where CAAS components are deployed in their own process (pro-
cess boundaries). In Host/Object configuration shown in Figure 5-D, CAAS components are co-located in
the same process; however, AS and CAAS are on different hosts. That is, messages between AS and

(A) Reference Model

(B) Process/Object (C) Process/Process (D) Host/Object

(E) Host/Process (F) Host/Object/PE-Host (G) Host/Process/PE-Host

Figure 5: Reference model and some possible CAAS configurations

C
L

IE
N

T

Application Process

Client Host Server Host

App.
Logic
App.
Logic CAAS

C
L

IE
N

T

CAAS

Application
Process

Authorization
Process

Client Host Server Host

App.
Logic C

L
IE

N
T

Application
Process

CAAS Authorization
Processes

Client Host Server Host

ADOADO

DASDAS DCDC

PELPEL PEPE

App.
Logic
App.
Logic C

L
IE

N
T

CAAS

Application
Process

Authorization
Process

Client Host Server Host Authorization Host

App.
Logic
App.
Logic

C
L

IE
N

T

Application
Process

Client Host Server Host

CAAS Authorization
Processes

ADOADO

DASDAS DCDC

PELPEL PEPE

Authorization Host

App.
Logic
App.
Logic C

L
IE

N
T

CAAS

Application
Process

Authorization
Process

Client Host Server Host Authorization Host

PE
Process

PEPE

PE Host

App.
Logic
App.
Logic

CAAS
Authorization

Processes

ADOADO
DASDAS

DCDC

PELPEL

Authorization Host

C
L

IE
N

T

Application
Process

Client Host Server Host

PE
Process

PEPE

PE Host

App.
Logic
App.
Logic
10

CAAS are delivered through the ORB middleware and communication subsystem (host boundaries) while
messages among CAAS components cross object boundaries.

In Host/Process shown in Figure 5-E , AS and CAAS are on different hosts, and CAAS components are
on their own processes in the same host. Figure 5-F illustrates Host/Object/PE-Host configuration. This
configuration is similar to Host/Object except that PE component runs in a different host. Communication
among CAAS components incur object and host boundaries. Finally, in Host/Process/PE-Host configura-
tion illustrated in Figure 5-G, PE is located in a host other than the authorization host while the other
CAAS components run in different processes co-located in the authorization host. It is important to notice
that when two components exchange messages through process boundaries, message passing involves
middleware overhead and possibly context switch overhead at the host where the two reside. Host bound-
aries, on the other hand, do not involve such context switch overhead since the communicating compo-
nents do not compete with each other for execution time.

This configurability allows developers and administrators to deploy CAAS in a way to obtain maxi-
mum performance (by avoiding ORB middleware and network overhead), or flexibility (by having any
component in any system in the network). For example, administrators may deploy CAAS using Host/
Object configuration to avoid middleware and network overhead. However, in an organization where one
or more PE components are remotely located (perhaps in a different subnet), CAAS can be deployed using
Host/Object/PE-Host or Host/Process/PE-Host configurations. Host/Process or Process/Process configu-
rations can be used to deploy CAAS components developed by third parties, which are not enabled to run
in the same address space with other components. In a real scenario, we expect to see most components be
co-located in the same process or host while one or more components, possibly PE, be deployed in remote
locations.

4.3. TEST ENVIRONMENT

Our test environment is composed of 4 Gateway E-4200 400MHz Pentium III PC’s running Windows
NT Workstation 4.0 service pack 4. Each workstation has 128MB of physical memory, 139MB of swap
space and its performance properties set to maximum boost for foreground applications. Also, each work-
station is equipped with a Intel (R) PRO/100+ Management network adapter. These workstations interop-
erate on an 100Mb Ethernet with one hub, and connect to the rest of the domain through a 100Mb switch.
Furthermore, during testing we used JDK 1.1.7 and Visibroker 3.3, and all java classes and jar Files were
located in the local hard-drives.1 Also, we use run Naming service on a 4 Gateway E-4200 400MHz Pen-
tium III PC with same hardware configuration and RedHat Linux 6.1. We carry out performance measure-
ments only when network utilization is less than 1% so that we eliminate or minimize any factors that are
not of CAAS itself, which can affect our performance measurements.

4.4. EXPERIMENT PROCEDURE

Our experiment procedure consisted of one client, one AS, one Access Decision Object (ADO), one
Policy Evaluator Locator (PEL), one Dynamic Attribute Service (DAS), one Decision Combinator (DC),
and one Policy Evaluator (PE). The goal of the performance measurements was to estimate a worst case
performance penalty experienced by clients when CAAS is used authorization requests. These perfor-

1. During our experiments, we noticed that our test clients experienced a response time increase of 40ms more per authorization request
for a configuration with no external access control when our java classes were located in a remote drive than when these same classes
were on a local disk.
11

mance penalty measurements are relative to performance experience by clients using the Reference Model
shown in Figure 5-A. We estimated the response time experienced by the client when external access
control is implemented using the CAAS. Then, we estimated the response time using embedded access
control. Using these two measurements, we calculated the response time increase percentage I of external
access control for each configuration of CAAS with respect to embedded access control using Equation 1
on page 9. DC objects used in the experiments implement logical-AND combination policy while PE
objects implement simple policies that always grant access.

This procedure was repeated using configurations described in Section 4.2. Other parameters for our
performance measurements were application processing or business logic time B and number of authoriza-
tion requests N generated for each client request. Application processing time represents delays experi-
enced by AS while servicing client requests and enforcing authorization decisions returned by ADO; it
does not include processing time incurred by CAAS. Although we used one client during the experiment,
in an actual system, a client request can trigger any number of authorization requests by AS. This was sim-
ulated using a variable number of authorization requests in our performance measurements.

We concentrated on simple combination and evaluation policies in order to estimate a worst case per-
formance penalty relative to the Reference Model. This is because more complex AC policies would most
likely increase computation overhead without increasing significantly middleware and communication
overhead due RAD components. In the Reference Model shown in Figure 5-A, this increase in computa-
tion overhead would mostly occur within embedded authorization logic. This would also be the case in
Host/Process/PE-Host configuration shown in Figure 5-G. That is, complex AC policies would require an
increase in computation overhead at the PE while communication between DC and PE remain unaltered.
Similarly, complex combination policies would increase computation overhead within DC only. If compu-
tation overhead increases faster than communication and middleware overhead, response times of CAAS
(Tc), and Reference Model (Te,) would converge reducing relative response time increase I in Equation 1.

For our performance experiments we did not considered caching or encryption. Caching was not con-
sidered since it reduces communication overhead, may increase computation overhead, and therefore
reduces relative response time increase I. Encryption, on the other hand, increases communication over-
head, thus increasing I. Communication overhead, however, is something we cannot control. Moreover,
encryption is application dependent. Different applications require different levels of encryptions. As a
result, we decided not to consider encryption and estimate a worst case response time increase strictly in
terms of middleware and communication due to RAD.

4.5. MEASUREMENT RESULTS

Measurements were carried out using CAAS configurations in Figure 5. The results from these mea-
surements are illustrated in Figure 6. We measured response time increase as a function of application pro-
cessing (business logic) time per authorization request. These measurements suggest that combined
middleware and context switch overhead between two components co-located as separate processes in the
same host can be as high as network overhead between the same components in different hosts. In
Figure 6, when an authorization requests takes 10ms of application processing time (or when there are 100
authorization requests per second), response time increase for configuration Host/Process (Figure 5-E) dif-
fer from response time increase of Process/Process (Figure 5-C) by only 2%. When authorization requests
take 1 second, differences between response times for these two configurations are negligible.

A more drastic difference is seen when comparing relative response increase of Host/Process (Figure 5-

Tc

Te
12

E) or Process/Process (Figure 5-C) configuration with relative response time of Host/Object/PE-Host
illustrated in Figure 5-F. When authorization requests take 10ms of application processing time (or when
there are 100 authorization requests per second), relative response time increase of Host/Object/PE-Host is
measured at 52% whereas relative response time increase of Host/Process is 188% (200% for Process/Pro-
cess). Even though Host/Object/PE-Host has a PE in a different host, it performs better than Host/Process
and Process/Process since the later configurations incur in much greater middleware and context-switch
overhead.

Our results suggest that response time of a configuration using CAAS increases between 3% and 30%
when authorization requests take 100ms or more of application processing time or when there are 10 or
less authorization requests per second. In the presence of an external PE, response time seems to increase
from 16% (Host/Object/PE-Host with respect to Host/Object) to over 80% (Host/Process/PE-Host vs. Pro-
cess/Process) as illustrated in Figure 6.

5. PERFORMANCE CONSIDERATIONS

Our measurement results are consistent with our expectations that remote calls would be the most con-
tributing factor in run-time performance of CAAS. More important, they suggest that for small business
logic delays (1ms-1sec) or for large numbers of authorization requests, context-switch overhead affects
response time as much as communication subsystem overhead in the presence of one client and one AS.
Our measurements identify worst-case scenarios occurring with small business logic delays and/or large
numbers of authorization requests per second of application processing. In such cases, response time of a
configuration using CAAS can increase by 500% relative to systems using embedded authorization logic
since greater context switch overhead is incurred within CAAS.

Since we measured performance in the presence of one client and one AS, these results provide a lower
bound in response time increase for configurations using CAAS for authorization requests. When multiple
clients and ASs are present, response time will most likely increase exponentially when the number of cli-
ents exceeds certain capacity level. Investigating response time increase as a function of the number and
nature of external CAAS components warrants further research.

Figure 6: Response Time Increase for Various CAAS Configurations. Error size: 0.5±

100

0

100

200

300

400

500

600

700

Ap p lica tio n P ro ce ssin g T im e /Au th oriz a tio n (m s)

R
es

p
o

n
se

 T
im

e
In

cr
ea

se
 %

P roc es s /O bjec t 32 10 1 0 0

Hos t/O bjec t 76 31 4 0 0

Hos t/O bjec t /P E -Hos t 139 52 7 1 0

Hos t/P roc es s 533 188 26 3 0

P roc es s /P roc es s 529 200 27 3 0

Hos t/P roc es s /P E -Hos t 633 211 30 3 0

1 10 100 1000 10000
13

 same
tely

d imple-
interac-
at have

be opti-
g smart

hat war-
. Safety
ncurrent
ue, we
operty
rvation, it
 ready to
ich can
 than to
nularity,
ightfor-
icient
ients and

ion [5]
 inter-
iminary
fits of
d in the
DC and
ch war-
imple-
tations
 further

ication
control
cisions
-Based
Messaging overhead can be minimized by co-locating components in the same process or by using
smart ORBs, which provides “smart” binding by detecting if two communicating objects are in the
address space or host.1 However, in situations where some or all of CAAS components are remo
deployed, middleware overhead contributes the most to increase in response time. Deployment an
mentation of RAD-based authorization services such as CAAS should take into consideration the
tions among components. That is, optimizations just mentioned should be applied to components th
a high rate of interaction. For example, evaluations of policies that require more than one PE can
mized by co-locating corresponding PEs with the appropriate DC in the same process or by usin
ORBs. Further research is needed for investigating possible optimizations at the middleware level.

Although concurrent requests were not part of our performance measurements, it is an aspect t
rants further research. Concurrency is not a trivial issue to handle in component-based systems
preservation, the insurance that all objects in a system maintain valid states in the presence of co
access, requires the avoidance of read/write and write/write conflicts [44]. To address this iss
decided in the current implementation of CAAS to use fully synchronized methods. Although this pr
does not guarantee the system to be free of liveliness failures such as deadlocks and resource sta
does guarantee consistency of values at the object level. Also, synchronized object instances are
be used in concurrent settings [44]. However, this introduces unnecessary synchronization, wh
affect overall run time performance because calls to synchronized methods are more expensive,
unsynchronized ones. Also, synchronized operations on CAAS components are of a coarse gra
which can cause threads to block and unblock unnecessarily. The current version CAAS is a stra
ward implementation of the RAD logical design. We plan to re-design CAAS in order to achieve eff
concurrent access and extend the scope of our performance measurements to include multiple cl
ASs.

The original design of RAD service defines an operation, the multiple_access_allowed() operat
for requesting multiple authorization requests. However, this operation is only defined in the ADO
face. Other components do not have operations defined for multiple authorization requests. Prel
results from performance measurements suggest that with the current design bene
multiple_access_allowed() are substantial only when most or all of RAD components are co-locate
same host. We believe multiple authorization requests methods can be implemented in PEL, DAS,
PL objects. Such an enhancement will improve overall performance, we believe. Other issues, whi
rant further research include scalability, replication, caching, fault-tolerance, and the possibility of
menting RAD using middleware other than CORBA. Measuring the performance of such implemen
as well as performance over high-speed networks or over the Internet-like environments warrants
study.

6. STATUS AND CONCLUSION

Resource Access Decision (RAD) Service enables separation of authorization logic from appl
logic. This decoupling allows development and maintenance of applications with fine-grain access
requirements independently from particular access control policies, factors used in authorization de
and from particular access control models. As of February 2000, we have implemented a CORBA

1. Visibroker 3.3 for Java, the orb utilized for our experiments, provides “smart” binding for objects in the same address space. How-
ever, for objects in different process even if they are in the same host, Visibroker orb uses IIOP [43].
14

enta-
orrec-

ce,

ation

, 1999.

-

ESD-

urity

M
Application Authorization Service (CAAS) compliant with the OMG specification of RAD Facility, and its
run-time performance has been measured under different parameters (configuration, load and server-side
delays). The design and implementation of components available in CAAS is covered with more detail in
our technical report [36]. More information and documentation on CAAS current status, including the
report, is available at http://cadse.cs.fiu.edu/.

The main contributions of our work are the performance measurements and the conclusions drawn from
them. These measurements estimate a worst case response time increase for systems using CAAS for
authorization decisions. Our performance results confirm quantitatively that middleware and context
switch overhead can be more expensive that network overhead. Implementation of RAD servers can
improve performance by co-locating as many components as possible in the same address space. In situa-
tions when this is not possible, utilization of smart ORBs that skip middleware layer for objects located in
the same host have the potential to significantly improve response time. These optimizations should focus
on components with high rate of interaction such as DC and PE components. Our measurements results are
not only relevant to CORBA-based systems using RAD approach. Relative performance results for Pro-
cess/Object configuration shown in Figure 5-B can be used to estimate response time increase of authori-
zation servers co-located with application systems. Similarly, response time increase for authorization
servers remote to application systems can be estimated from measurement results for Host/Object illus-
trated in Figure 5-B.

The authors would like to thank CADSE’s Suresh R. Chegireddy, for his help with CAAS implem
tion and Bangalore Guruprakash, Manish Mahajan, Nathan N. Vuong for helpful comments and c
tions on the first draft of the paper.

REFERENCES

[1] T. Y. C. Woo and S. S. Lam, “Authentication for Distributed Systems,” Computer, vol. 25, pp. 39-52, 1992.

[2] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based Access Control Models,” IEEE Computer,

vol. 29, 1996.

[3] K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A Resource Access Decision Service for

CORBA-based Distributed Systems,” presented at Annual Computer Security Applications Conferen

Phoenix, Arizona, USA, 1999.

[4] J. Hale, P. Galiasso, M. Papa, and S. Shenoi, “Security Policy Coordination for Heterogeneous Inform

Systems,” presented at Annual Computer Security Applications Conference, Phoenix, Arizona, USA

[5] OMG, “Resource Access Decision Facility,” Object Management Group OMG document number: cor

bamed/99-05-04, May 1999.

[6] J. Anderson, “Computer Security Technology Planning Study,” Air Force Electronic Systems Division

TR-73-51, Vols. I and II, 1972.

[7] J. H. Saltzer, “Protection and the Control of Information Sharing in Multics,” in Communications of the

ACM, vol. 17, 1974, pp. 388-402.

[8] B. J. Walker, R. A. Kemmerer, and G. J. Popek, “Specification and Verification of the UCLA Unix Sec

Kernel,” Communications of the ACM, vol. 23, pp. 118, 1980.

[9] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn, “A Retrospective on the VAX VM

Security Kernel,” IEEE Transactions on Software Engineering, vol. 17, pp. 1147-1165, 1991.
15

tric

he

USA,

ed/

irst

ity,”

inci-

curity

bling

t

 and

f Vir-

8.

stin,

-

n

na,
[10] M. Benantar, R. Guski, and K. M. Troidle, “Access control systems: From host-centric to network-cen

computing,” IBM Systems Journal, vol. 35, pp. 94-112, 1996.

[11] M. J. McInerney, Windows NT Security: Prentice Hall, 1999.

[12] CA, “CA-ACF2 for OS/390,” : Computer Associates, 1998.

[13] CA, “CA-Top Secret for OS/390,” : Computer Associates International, 1998.

[14] IBM, Resource Access Control Facility (RACF). General Information: IBM Red Books, 1976.

[15] OMG, “Security Service Specification,” in CORBAservices: Common Object Services Specification: Object

Management Group, 1996.

[16] OSF, “Authentication and Security Services,” : Open Software Foundation, 1996.

[17] W. Rubin and M. Brain, Understanding DCOM: P T R Prentice Hall, 1999.

[18] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers, “User Authentication And Authorization In T

Java Platform,” presented at Annual Computer Security Applications Conference, Phoenix, Arizona,

1999.

[19] W. Wilson and K. Beznosov, “CORBAmed Security White Paper,” Object Management Group corbam

97-11-03, November 1997.

[20] B. Hailpern and H. Ossher, “Extending Objects to Support Multiple Interfaces and Access Control,” IEEE

Transactions on Software Engineering, vol. 16, pp. 1247-1257, 1990.

[21] J. Barkley, “Implementing Role-based Access Control Using Object Technology,” presented at The F

ACM Workshop on Role-Based Access Control, Fairfax, Virginia, USA, 1995.

[22] T. Riechmann and F. J. Hauck, “Meta Objects for Access Control: Extending Capability-based Secur

presented at New Security Paradigms Workshop, Langdale, Cumbria, UK, 1997.

[23] T. Riechmann and F. J. Hauck, “Meta Objects for Access Control: A Formal Model for Role-based Pr

pals,” presented at New Security Paradigms Workshop, Charlottesville, VA USA, 1998.

[24] R. Filman and T. Linden, “SafeBots: a Paradigm for Software Security Controls,” presented at New Se

Paradigms Workshop, Lake Arrowhead, CA USA, 1996.

[25] R. Filman and T. Linden, “Communicating Security Agents,” presented at The Fifth Workshop on Ena

Technologies: Infrastructure for Collabarative Enterprises, Stanford, CA, USA, 1996.

[26] W. A. Wulf, C. Wang, and D. Kienzle, “A New Model of Security for Distributed Systems,” presented a

New Security Paradigms Workshop, Lake Arrowhead, CA USA, 1996.

[27] A. S. Grimshaw, M. J. Lewis, A. J. Ferrari, and J. F. Karpovich, “Architectural Support for Extensibility

Autonomy in Wide-Area Distributed Object Systems,” Department of Computer Science, University o

ginia CS-98-12, 1998.

[28] A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,” in Communica-

tions of the ACM, vol. 40, 1997, pp. 39-45.

[29] V. Varadharajan and C. C. a. J. Pato, “Authorization in Enterprise-wide Distributed System: A Practical

Design and Application,” presented at 14th Annual Computer Security Applications Conference, 199

[30] T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorization Service,” University of Texas at Au

Computer Sciences Department TR93-29, September 1993.

[31] T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorization Service,” presented at IEEE INFO

COM, San Francisco, 1998.

[32] M. E. Zurko, R. Simon, and T. Sanfilippo, “A User-Centered, Modular Authorization Service Built on a

RBAC Foundation,” presented at Annual Computer Security Applications Conference, Phoenix, Arizo

1998.
16

ti-

d

99.

stems,

rver,”

ami

t

[33] R. Simon and M. E. Zurko, “Adage: An Architecture for Distributed Authorization,” OSF Research Ins

tute, Cambridge 1997.

[34] J. Barkley, K. Beznosov, and J. Uppal, “Supporting Relationships in Access Control Using Role Base

Access Control,” presented at ACM Role-based Access Control Workshop, Fairfax, Virginia, USA, 19

[35] B. W. Lampson, “Protection,” presented at 5th Princeton Conference on Information Sciences and Sy

Princeton, 1971.

[36] L. Espinal, K. Beznosov, and Y. Deng, “Design and Implementation of Resource Access Decision Se

Center for Advanced Distributed Systems Engineering (CADSE) - Florida International University, Mi

technical report 2000-01, January 2000.

[37] OMG, “IDL to Java Language Mapping,” Object Management Group, technical report OMG documen

number: formal/99-07-53, 1999.

[38] D. Pedrick, J. Weedon, J. Goldberg, and E. Bleifield, Programming with VisiBroker: A Developer’s Guide to

Visibroker for Java. New York: Wiley Computer Publishing, 1998.

[39] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson, Design Patterns: Elements of Reusable Object-Ori-

ented Design. Reading, MA: Addison-Wesley, 1994.

[40] M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML, vol. 1. New

York: Wiley Computer Publishing, 1998.

[41] G. Nutt, Operating Systems: A Modern Perspective: Addison-Wesley, 1997.

[42] W. R. Stevens, Advanced Programming in the UNIX Environment: Addison-Wesley, 1993.

[43] Visibroker 3.3. for Java Programmer's Guide. Scotts Valley, CA: Inprise Corporation, 1998.

[44] D. Lea, Concurrent Programming in Java: Design Principles and Patterns. Reading, MA: Addison-Wesley,

1996.
17

	Performance Considerations for a CORBA-Based Application Authorization Service
	Performance Considerations for a CORBA-Based Application Authorization Service
	1. Introduction
	2. Background and Related Work
	3. CAAS Design
	3.1. RAD Conceptual Architecture
	3.2. Computation of Authorization Decisions
	3.3. Design and Implementation of CAAS

	4. Performance Measurements
	4.1. Measurements Model
	4.2. CAAS Configurations
	4.3. Test Environment
	4.4. Experiment Procedure
	4.5. Measurement Results

	5. Performance Considerations
	6. Status and Conclusion
	References

