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Abstract
This paper makes two main contributions towards estab-

lishing support for application-specific factors in middleware
security mechanisms. First, it develops a simple classification
framework for reasoning about the architecture of the security
mechanisms in distributed applications that follow the deci-
sion-enforcement paradigm of the reference monitor. It uses
the framework to show that the existing solutions lack satisfy-
ing trade-offs for a wide range of those applications that
require application-specific factors to be used in security
decisions while mediating access requests. 

Second, by introducing attribute function in addition to
decision and enforcement ones, it proposes a novel scheme for
clean separation among suppliers of middleware security,
security decision logic, and application-logic, while support-
ing application-specific protection policies. To illustrate the
scheme on a concrete example, we describe its mapping into
CORBA Security.
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1 INTRODUCTION

The employment of application-specific factors in security
decisions is not new. Target ADI in OSI access control frame-
work is an example [1]. Most today commercial distributed
application security systems [2-5] provide various levels of
support for the factors. What missing is a systematic inclusion
of the support for these factors in the architecture of access
control and other security mechanisms of middleware sys-
tems.

The void results in the lack of adequate architectural pro-
visions in middleware security leading to ad-hoc solutions.
Although some efforts are under way to develop support for
object security metadata in authorization policies [6], our
analysis did not reveal any notable work done in the research
community on support for application-specific factors in the
security mechanisms of distributed applications. Systematic
support for application-specific factors is necessary but it is
missing in the architecture of distributed applications.

In this paper, we propose a schema for systematic support
of application-specific factors in security mechanisms for dis-
tributed applications. To facilitate analysis of the existing
solutions for supporting such factors as well as to describe the
proposed solution, we develop a framework for reasoning

about those security mechanisms in distributed applications
that follow decision-enforcement paradigm (such as access
control, audit and quality of message protection). The frame-
work allows classifying all solutions into four major schemes.

We use the framework to introduce our solution, which has
two main components: generic representation of application-
specific security-related factors in the form of object security
attributes, and additional function for retrieving them at the
time of access request mediation by the security sub-system.
Being conceptually simple, the approach enables the use of
application-specific factors in security policy decisions with-
out coupling evaluation engines and target objects while keep-
ing underlying middleware security application-neutral.
Therefore, the security decision function can be provided by a
third-party, while the enforcement function stays in the mid-
dleware freeing the application owner from implementing
either. To substantiate relatively-abstract explanation of the
proposed solution, we show its translation into a concrete
architecture of CORBA Security.

The rest of the paper is organized as follows. The problem
to be addressed is stated in the next section. The framework is
introduced and the available solutions are discussed in
Section 3. Section 4 presents our solution in generic form. Its
concrete application to CORBA Security is discussed in
Section 5. Discussion is provided in Section 6. Conclusions
are drawn in Section 7. Acknowledgments can be found in
Section 8. Section 9 contains references.

2 PROBLEM MOTIVATION

The problem raises because of the conflict of the following
forces. On the one hand, a capable implementation of middle-
ware security is usually a complex and expensive piece of
machinery, and is somewhat similar in its generality to operat-
ing system security. Due to its critical nature, it needs to be
carefully designed, implemented, tested, assured, and tuned
for performance and scalability. Thus it is essential for the
producers of middleware security to avoid changes to their
products and yet apply them to diverse application domains.

On the other hand, there is strong and natural interest
among numerous owners of distributed applications in making
security decisions, mainly authorization ones, based on factors
specific to the applications and organizational workflow,
which is some times referred as object security metadata, as in
[6]. 
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2.1 WHAT ARE APPLICATION-SPECIFIC FACTORS

Unlike a resource security attribute, an application-spe-
cific factor is a certain characteristic or property of an applica-
tion’s resource produced, modified, and processed in the
course of normal application execution and not for the sole
purpose of a security policy decision. In OO middleware and
other distributed systems, application objects are such
resources. A remote analogy could be resource access control
decision information (ADI), defined as a description of the
resource’s security-relevant properties, in ISO access control
framework [1]. The difference between ADI and application-
specific factors is that the former could be administered and
utilized for the sole purpose of making access control deci-
sions.

2.2 EXAMPLE

For the sake of illustrating the needs of user organizations,
consider the following real-life examples from banking and
telecommunication domains. Several people could be associ-
ated with each bank account each having different rights. For
example, primary holder could do everything, including delet-
ing the account, whereas secondary holders, depending on the
loyalty of the primary holder, could have different levels of
limited access, such as withdrawing limited amounts, review-
ing, etc. All others can only deposit to the account. Implemen-
tation of such policies requires dynamic evaluation of the
relationship between the accessing subject and an account.
List of account holders and their “rank” (i.e. primary, second-
ary, etc.) are such application-specific factors.

Security policies that U.S. long distance telephone carriers
need to enforce depend on the state (e.g. Florida, Pennsylva-
nia) a particular account is in. At the same time, accounts
change phone numbers (and therefore possibly state) due to
the relocations of their owners. Appearing to be a little and
relatively infrequently occurring task, manually re-associating
an account object with the corresponding state’s policy
becomes a resource consuming operation for carriers with
millions of subscribers (relocating on average every 5 years
over 5,000 per day for 106 subscribers). Instead, the policy
could be determined using the first 6 digits of the phone num-
ber, which becomes one of the application-specific factors to
be used in security policy decisions.

2.3 OBJECTIVE

Also advocated in by others ([6]) and identified as one of
the input types for access decision function in [1], this demand
for the use of application-specific information in authorization
and other security decisions has clear rationale. The more
application or workflow information is used in security deci-
sions the better is the integration between security and appli-
cation administration, which leads to low administration costs
and fewer errors of application and security administrators.
Even more importantly, enforcement of application-specific
policies in the middleware frees developers from coding such
policies in their applications thus making systems less com-
plex, quicker to build, and easier to evolve. These two factors

mean significant long-term savings for application developers
and owners.

At the same time, a number of enterprise-scale authoriza-
tion products first appeared on the market of web servers
security, and then expanded into application servers. These
systems are perfect candidates for providing authorization ser-
vices to distributed applications and the underlying middle-
ware security. However, as we will show it in the next section,
there are technical obstacles in integrating them with either
the former or the latter.

Naturally a question arises: is there a way to keep middle-
ware security services generic and yet allow for enforcement
of security policies specific to different application domains,
possibly with the use of enterprise authorization systems?

3 AVAILABLE SOLUTIONS

For the purpose of analyzing solutions to the problem, we
differentiate all approaches to security policy decision and
enforcement in distributed systems by two factors. They are
the nature of policy decision and enforcement functions.
Roughly, each of these functions can be provided either by the
distributed application itself, or by the security subsystem of
the underlying distribution infrastructure, i.e. middleware
security. Using acronyms defined in Table 1, we have four

possible combinations of decision and enforcement: MDME,
ADAE, MDAE, and ADME. In the following subsections, we
explain each scheme and use this classification to argue that
the available solutions do not provide desirable trade-offs.

3.1 MDME -- EVERYTHING IS DONE BY MIDDLEWARE

The first case is the most obvious, when both functions of
security decision and its enforcement are provided by the mid-
dleware security, as shown in Figure 1. This is what practical

Decision 
Function

Enforcement 
Function

Middleware MD ME
Application AD AE

Table 1: Acronyms for different locations of security policy decision 
and enforcement

Figure 1: MDME Schema
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middleware security systems implement. Being generic, both
decision and enforcement functions come with the security
subsystem. Applications are security-unaware, and therefore
are easier to design, develop, test, deploy and support. In addi-
tion, since the reference monitor is not “spilled” over into the
application layer, assurance efforts are limited to the middle-
ware layer and those below. This is why MDME schema is
considered to be the best for the purpose of enterprise security
integration. However, with this approach no application-spe-
cific factors can be used for security policy decisions. Conse-
quently, MDME schema is of no use for addressing the stated
problem.

3.2 ADME -- APPLICATION DECISIONS ARE ENFORCED 
IN MIDDLEWARE

A more capable way is to externalize application-specific
security logic into a separate service or module and make the
middleware security subsystem to obtain policy decisions
from it. This ADME schema is illustrated in Figure 2.

The schema has been realized in a number of middleware
architectures. CORBA Security [7] has replaceable AccessDe-
cision and other interfaces. Java authentication and authoriza-
tion service (JAAS) [8, 9], which recently became a part of
J2SDK v1.4, has replaceable interface Policy that serves
authorization decisions.

Although appearing to be versatile, ADME schema has
two major drawbacks. Firstly, even being application-specific,
decision function (DF) still has the same generic interface for
the enforcement function (EF) to query it because the latter
remains generic. The interface protocols are not capable of
communicating application-specific information between EF
and DF. For instance, operation access_allowed() in CORBA’s
replaceable AccessDecision interface takes subject’s creden-
tials, reference to the target object (just “target” for short), tar-
get type, and operation on it. Java’s Policy::getPermissions()
accepts, as input parameters, information representing original
location of the code (where the code came from) and the pub-
lic key(s) of its signer. Microsoft’s .NET security model,
although not well documented at this time, appears to have
security architecture similar to Java in this regard. Clearly,

neither of them provide for application-specific factors to be
communicated from enforcement to decision point.

And, even if the DF interface supported communication of
application-specific factors, the means of retrieving such fac-
tors in the EF are not defined. Thus, a custom implementation
of DF would have to use a back door to go back to the target
object (or a data repository) and retrieve application-specific
factors from there, as shown in Figure 3. 

If a back-door is provided by a target object, the main
drawback of the technique is due to the performance hit. Spe-
cifically, in some applications, target objects could be very
expensive to restore their state and make them ready to serve
requests (including those coming through back doors). Con-
sider applications that use secondary or even ternary storage
for storing object state between sessions. It could be prohibi-
tively expensive to restore an object, obtain some data through
its back door, and make authorization decision just to find out
that the access has been denied. Performing expensive re-
incarnation of target objects for making security decisions also
creates a vulnerability for denial of service attacks.

Despite of DF having a potential to be specific to the
application domain, ADME schema allows enforcement of
only those run-time pre-requisites, such as (dynamic) condi-
tions in [10, 11] and [6], obligations in XACML [12] and pro-
visions in [13], that are non-specific to application domains
(such as CPU load). This limitation is due to EF being part of
the generic middleware layer.

Secondly, being all-or-nothing solution, the use of applica-
tion-specific decision function forces the new logic to re-
implement authorization decisions completely, which is pro-
hibitively complex and difficult to do correctly for distributed
large scale systems, thus rendering this approach unrealistic
for most user organizations with the needs in application-spe-
cific authorization and other security logic. End-user organi-
zations are just do not want to be in the business of
implementing authorization (and other security policy) evalu-
ation engines, which is required if application-specific factor
were to be used in security policy evaluation.

Figure 2: ADME Schema
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Figure 3: Back Doors to Target in ADME Schema
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3.3 ADAE -- SECURITY-AWARE APPLICATIONS

ADAE schema is more flexible then the previous two. The
idea is to let an application-provided EF to call the DF (also
provided by the application) thus obviating the problem of
obtaining application-specific factors by a generic EF. The
schema is illustrated in Figure 4. Although being generic, the

protocol of supplying necessary information to a DF and
retrieving decisions from it can be used for communicating
application-specific factors. 

The general case (Figure 4) of this schema, when EF is
external to targets, although being employed in some research
systems [14-17], is not known to be popular in real-life solu-
tions. We believe, this is because it requires a proxy object
implementing EF to “wrap” each target, and it does not allow
enforcement of fine-grain policies because EF is outside of the
target.

ADAE With Target Implementing EF
However, a particular case of ADAE, when EF is imple-

mented in the target, as shown in Figure 5, is widely used. It is

popular in distributed application systems constructed on top
of limited middleware security technologies (for instance,
those lacking access control enforcement, such as Kerberos
[18] and SESAME [19]) or implementations. Another reason
for employing ADAE schema with EF implemented in targets

is the capability to enforce fine-grain security policies, and the
ease of obtaining application-specific factors because of the
collocation of the business and enforcement functions.

One example of the approach is Resource Access Decision
(RAD) architecture [20, 21], where a resource name, com-
posed of a name-value pair list, can be used for encoding
application-specific factors. In our example with shopping
cart application customer ID number, encoded in the name of
the resource in question, can be now used during policy evalu-
ation.1

Other examples of middleware security systems where
enforcement function is implemented by an application sys-
tem are Praesidium from HP [22], Adage [23], GAA API [10,
11, 24], and Access Control Unit in [6]. As in RAD, these
solutions feature an authorization function invoked by an
application for obtaining access control decisions, which are
expected to be enforced by an application. 

Unfortunately, this active role of the target in composing
queries to DF and enforcing decisions results in a number of
disadvantages. The most salient one is the necessity for secu-
rity-related code to be mixed with business logic making tar-
gets security-aware. As we argue in [25], this security
awareness by target objects makes them more complex and
prone to security vulnerabilities. It also makes more difficult
to perform security assurance, and forces application develop-
ers to be experts in security programming despite of external-
izing security decision logic.

Being the best and sometimes the only viable solution for
particular cases with complex, application-specific, or fine-
grain security policies, programming EF inside of target
objects is still a sub-optimal approach for those application
domains where a combination of a general purpose security
decision function with application-specific attributes could
suffice.

3.4 MDAE SCHEMA

We are not aware of any solutions that employ MDAE
schema. This is not surprising since application-executed
enforcement of security decisions made by the middleware
security subsystem does not seem to bring any advantage over
any other scheme, while having all the disadvantages and lim-
itations of MDME schema and some of ADAE.

3.5 REAL LIFE HYBRIDS

Several commercial solutions for securing web and mid-
dleware applications [2-5, 26] implement an authorization
server. It can be queried by either an application itself (ASP or
JSP in a web server, bean in EJB container, or CORBA/COM
application object), or a middleware-specific enforcement
function (web server filter, EJB container, or CORBA security
interceptor). Although widely employed in large organiza-
tions, neither of these usages introduces any novel solution to

Figure 4: ADAE Schema: General Case

Figure 5: ADAE Schema: target implements EF
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the stated problem. The former is an instance of ADAE and
the latter -- ADME schemes.

4 GENERIC SOLUTION -- ADME/AF SCHEMA

We introduce a new approach, which enjoys the advan-
tages of ADME schema and yet enables the use of applica-
tion-specific factors in security policy decisions without
coupling evaluation engines and target objects. Therefore, DF
can be provided by a third-party company, including an autho-
rization product vendor, while EF stays in the middleware
freeing the application owner from implementing either.

As we discussed in Section 3.2, though allowing security
decision logic to be application-specific, original ADME
schema suffers from the lack of the means (a) to communicate
application-specific factors to DF, and, most importantly, (b)
to obtain them given the target object in question. 

We address the first, simpler, problem by introducing
generic representation for application-specific factors. These,
as we refer to them, object security attributes (OSA) could be
expressed in a number of formats varying in complexity from
name-value pairs to arbitrary XML-based structures. The
semantic interpretation of an OSA is completely up to the pro-
cessing entity -- DF. In our example with a telecommunication
carrier, for each account object there could be an OSA “hold-
ing” the current phone number of the account. More than one
OSA can be associated with a target object, comprising a col-
lection of OSAs.

We resolve the second issue, obtaining OSAs for the corre-
sponding target object, by introducing additional function in
the ADME schema -- attribute retrieving function, or just
attribute function (AF) for short, as shown in Figure 6. This

function has simple syntax: it accepts (middleware-specific)
data necessary for identifying the state of the target object and
returns a set of OSAs for that object. The target object state is
necessary for retrieving such object metadata as its OSAs.

Since OSA semantics is very specific to the application
being protected, AF is provided by the application and not by
the middleware or security layers.

What function obtains OSAs via AF is very dependent on
the particular implementation of the approach. In some cir-
cumstances, EF could be in better position to make an invoca-
tion to AF. In others -- DF. Even more, some implementations
could make EF and DF to perform this step together. For
example, in Section 5, we show how CORBA-specific realiza-
tion of ADME/AF schema splits AF into two objects, one of
which is invoked by EF and the other by DF.

There is a number of advantages, if AF is invoked by EF.
First, data, necessary for identifying the target state that EF
has at its disposal at the invocation point is very specific to the
middleware technology and the type of the particular object
adapter that hosts the target. Therefor, for a DF to obtain
OSAs from AF, EF would have to pass such data to DF. Sec-
ond, since DF is usually a COTS, which serves authorization
decisions in other schemes, such as ADAE, and for different
middleware systems, decision interface to it is too generic to
support target state data. Third, there are could be more than
one DF (one for each type of security policy, i.e. authoriza-
tion, audit, quality of protection, non-repudiation, etc.)
invoked at every access to a target. It seems beneficial to min-
imize the number of potentially expensive invocations on AF
by obtaining OSAs once per access request.

On the other hand, postponing invocation of AF allows for
lazy strategy, when OSAs are retrieved only if some DF is
going to use them. More over, a DF could need only particular
OSA(s). Retrieving only needed OSA(s) is simple to imple-
ment when invocation to AF is done by DF.

This introduction of OSAs as a way to represent target
metadata related to security decisions in distributed applica-
tions, and a function for retrieving them, AF, enables security
decisions to be application-specific while keeping EF in the
middleware security layer and using COTS authorization (and
other security policy decision functions) systems without
modifications. We refer to this approach as ADME/AF
schema.

5 APPLICATION TO CORBA SECURITY

So far, we stated the problem, analyzed available solu-
tions, and presented our approach in a form independent of
any particular middleware technology. Even more, we gener-
alized the solution so that it is applicable not only to the access
control but also to other security functions that can be decom-
posed into decision and enforcement phases on each access
request. Now, we are going to consider particular middleware
security technology -- CORBA security -- and show how the
general solution applies to it.

5.1 CORBA ARCHITECTURE

This section provides a description, adopted from [27, 28],
of CORBA ORB architecture. The architecture consists of
several primary components illustrated in Figure 7 and
described below.

Target object (or just object for short) -- a CORBA pro-
gramming entity that consists of an adapter-specific identity,
an interface, and an implementation, which is known as a Ser-

Figure 6: Attribute Function in ADME Schema
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vant. Servant is an implementation programming language
entity that defines the operations that support a CORBA IDL
interface. Servants can be written in a variety of languages,
including C, C++, Java, Smalltalk, and Ada.

Client -- the program entity that invokes an operation on
an object implementation using object reference (OR).
Accessing the services of a remote object should be transpar-
ent to the caller. Ideally, it should be as simple as calling a
method on an object, i.e., obj->op(args). The remaining com-
ponents in Figure 7 help to support this level of transparency.

Object Request Broker (ORB) provides a mechanism for
transparently communicating client requests to target object
implementations. The ORB simplifies distributed program-
ming by decoupling the client from the details of the method
invocations. This makes client requests appear to be local pro-
cedure calls. When a client invokes an operation, the client
and target ORBs are responsible for finding the object imple-
mentation, transparently activating it if necessary, delivering
the request to the object, and returning any response to the
caller. An ORB is a logical entity that may be implemented in
various ways (such as one or more processes or a set of librar-
ies). To decouple applications from implementation details,
the CORBA specification defines an abstract interface for an
ORB, which provides various helper functions.

CORBA IDL stubs and skeletons serve as the “glue”
between the client and server applications, respectively, and
the ORB. The transformation between CORBA IDL defini-
tions and the target programming language is automated by a
CORBA IDL compiler. The use of a compiler reduces the
potential for inconsistencies between client stubs and server
skeletons and increases opportunities for automated compiler
optimizations.

Object Adapter (OA) assists the ORB with delivering
requests to the object and with activating the object. More
importantly, an object adapter associates object implementa-
tions with the ORB. Object adapters can be specialized to pro-
vide support for certain object implementation styles (such as
OODB object adapters for persistence and library object
adapters for non-remote objects). The ORB and the OA coop-
erate to allow client applications to invoke requests on
CORBA objects and ensure that each valid CORBA object is
mapped to a servant. In addition, the ORB and the OA cooper-

ate to transparently locate and invoke the proper servants
given the addressing information stored in CORBA object ref-
erences.

The primary type of OA used in today CORBA applica-
tions is portable object adapter (POA) [29]. A server applica-
tion can have multiple POAs nested within it. An application
might want to create multiple POAs to support different kinds
of CORBA objects and/or different kinds of servant styles.
For example, the application might have two POAs, one that
supports transient objects and one that supports persistent
objects.

A nested POA can be created by invoking a factory opera-
tion on another POA. All servers have at least one POA called
the Root POA. To create a POA nested under the Root POA,
the application invokes the create POA operation on the Root
POA. The object reference for the Root POA is available from
the ORB. The characteristics of each POA other than the Root
POA are controlled at POA creation time using different POA
policies.

5.2 RUN-TIME CORBA SECURITY

CORBA Security service (CS) [7] defines interfaces to a
collection of objects for enforcing a range of security policies
using diverse security mechanisms. It provides abstraction
from an underlying security technology so that CORBA-based
applications could be independent from the particular security
infrastructure provided by user enterprise computing environ-
ment. Due to its general nature, CS is not tailored to any par-
ticular access control model. Instead, it defines a general
mechanism which is supposed to be adequate for the majority
of cases and could be configured to support various access
control models. CS model comprises the following functional-
ities visible to application developers and security administra-
tors: identification and authentication, authorization and
access control, auditing, integrity and confidentiality protec-
tion, authentication of clients and target objects, optional non-
repudiation, administration of security policies and related
information.

One of the objectives of CS is to be totally unobtrusive to
application developers. Security-unaware target objects
should be able to run securely on a secure ORB without any
active involvement on their site. In the meantime, it must be
possible for security-aware objects to exercise stricter security
policies than the ones enforced by CS. In CS model, all object
invocations are mediated by the appropriate security functions
in order to enforce various security policies such as access
control. Those functions are part of CS and are tightly inte-
grated with the ORB and the corresponding OAs.

Security policies are enforced completely outside of an
application system at the ORB level. Everything, including
obtaining information necessary for making policy decisions
(such as access control), is done before the method invocation
is dispatched to the target object. As Figure 8 shows, policy
enforcement code is executed inside of CORBA Security
enforcement sub-system, when a message from client applica-
tion to a target object is passed through the ORB. Executed at

Figure 7: CORBA ORB Architecture
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the client ORB as well as at the target ORB, the enforcement
code uses the following three sources of information for mak-
ing policy decisions to enforce:

• The policy of the domain(s) to which the target belongs.

• The information from credentials of the client. In case of
access control policy enforcement, these are client privi-
lege attributes (such as access identity, group membership,
roles and clearance). Where as for audit policy enforce-
ment security attribute of type AuditId is used.

• The access request itself.

Although, a CORBA security sub-systems can be, and
usually is, integrated with the ORB and OAs using proprietary
means, for the sake of simplicity, we conceptualize its
enforcement function as a security interceptor.

5.3 ATTRIBUTE RETRIEVAL FUNCTION

In our solution to the domain of CORBA Security, the
closest analogy to AF is interface AttributeRetriever.1 This
interface provides operations for retrieving OSAs, as shown in
Figure 9. Having its operations implicitly tied into particular

target object, the interface constitutes only part of AF, which
is invoked by DF. However, there is another part of AF
invoked by EF. This is due to the problem of invoking
adapter-specific AF by adapter-neutral DF. AF has to be spe-
cific to the type of object adapter because, as in most middle-

ware technologies, the notion of object universal identity is
not well developed in CORBA architecture.2 But object spe-
cific identity is sufficiently strong in the context of a particular
object adapter, that is, the adapter has sufficient amount of
information in order to dispatch an access request to the right
object servant, which is responsible for processing application
requests for the object in question. On the other hand, it is
highly undesirable to have decision functions to be specific to
the adapter type.

This is why additional level of indirection via interface
Manager, the other part of AF, has been introduced. Adapter-
specific derivatives of Manager locate AttributeRetriever
objects and return them to the EF, which is implemented in the
form of a security interceptor. Being adapter-specific, such an
interceptor takes control over the access requests, as well as
obtains and enforces policy decisions. Before a security inter-
ceptor invokes DFs, it obtains a local reference to the correct
AttributeRetriever object from the corresponding Manager, as
shown in Figure 10, and places it on Current object that
serves as a thread-specific placeholder for OSA-related infor-
mation. Later, when the interceptor calls AccessDecision and
other objects, their implementations can obtain OSAs from
AttributeRetriever via its OR available off Current object.
This lazy strategy of making AttributeRetriever available for
later queries by DFs allows retrieval of OSAs only if it is nec-
essary. If OSAs are needed more than once per access request,
an AttributeRetriever could cache results of time expensive
retrieval operation.

5.4 REGISTERING AND DISCOVERING MANAGERS

Another issue is about the means for an application to reg-
ister and for the interceptor to obtain a local reference to a
Manager. Along with this, additional question needed a reso-
lution, specifically what should be the scope of Manager, i.e.
should one Manager serve AttributeRetrievers for all objects
in a given application. And, if not then how a security inter-
ceptor should determine what Manager serves a given object?
We saw certain benefit in making the solution flexible and
support existence of several Managers for each application.
This flexibility allows different implementations of Attribu-
teRetrievers in one application. Moreover, since adapter-spe-
cific derivatives of Manager have to be used, the limitation to
only one Manager instance would prevent different object
adapters from co-existing in the same application.

However, it turned out to be hard to find a way to share
multiple Managers among process collocated objects. The
essence of the problem is the lack of a placement for the infor-
mation associating an object with a Manager. An object
adapter appeared to be the only appropriate place to store such
information with good chances to retrieve it efficiently at the
time of mediating an access request. The associating informa-
tion is stored in the form of ManagerPolicy. This lightweight
object holds a reference to the Manager instance. The use of

Figure 8: Enforcement of Policies in CORBA Security

1. Names of all interfaces in this section are relative to 
ObjectSecurityAttribute IDL module, unless otherwise 
noted.

Figure 9: AttributeRetriever Interface

ORB
Security Enforcement Subsystem

Execution Context
Credential
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Privileges

Policy
Enforcement

Code

Client

Domain

Domain Policy

Target Object

Access Request

<<Idl-Interface>>
AttributeRetriever

+get_attributes_by_type(type:AttributeType):AttributeValueList
+get_all_attributes():ObjectAttributeList

2. See [30] for detailed discussion on the shortcomings of 
object identity in middleware security.
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ManagerPolicy follows the design philosophy exercised in the
design of POA, where configuration of a particular POA
instance is encoded in the form of POA policies “attached” to
the adapter at the time of its creation.

The relationships between target objects, Managers, Man-
agerPolicies and object adapters is illustrated in Figure 11.

Access requests for any given object are originally pre-pro-
cessed and then dispatched by the corresponding object
adapter (OA) to the object’s servant. OAs can constitute hier-
archies with one root, unlimited child and corresponding par-
ent adapters. For each OA there could be no more than one
Manager that serves OSAs for all objects under the adapter.
That Manager, is said, serves the OA. The same Manager can
serve more that one OA, as in the case of object adapters C
and D and Manager Z in Figure 11.

Each OA could contain an instance of ManagerPolicy,
which holds an object reference to the Manager serving the
adapter. If an application provides a Manager for the given
OA it sets ManagerPolicy (containing a reference to the Man-
ager) on the adapter using mechanisms specific to the adapter

type. For example, such a policy (among others) is passed to
the adapter’s parent at the child’s creation time in the case of
POA. If no ManagerPolicy is set on an OA (as for adapter A
in Figure 11), then no Manager serves this adapter, which is
equivalent to the lack of OSAs associated with the adapter’s
objects.

The diagram in Figure 12 depicts a sequence of invoca-

tions that an application performs for registering its Manager
implementation with an OA. After creating an implementation
of adapter-specific Manager sub-interface (invocation 1 in the
sequence diagram) the application obtains a reference to the
Current from the ORB by invoking
ORB::resolve_initial_references() with argument “ObjectSe-
curityAttributeCurrent” (invocation 2). Then, the application
uses a factory operation on the Current interface, to which it
supplies a valid OR for the Manager, for creating an instance
of a ManagerPolicy (invocation 3). While processing the invo-
cation, Current creates an instance of ManagerPolicy and
returns it to the caller.

Figure 10: CORBA Security Interceptor Prepares AttributeRetriever to be used by DFs

Security 
Interceptor

RequestInfo 
:PortableInterceptor::ServerRequestInfo

 : (ManagerPolicy)  : (Manager)  : AttributeRetriever  : (Current)

1: get_server_policy(policy_type : in CORBA::PolicyType)

2: _get_attribute_manager

3: get_attribute_retrieval_context(...)

5: _set_attribute_retriever

Gets the retriever using 
adapter-specific operation

4: create

Figure 11: Relationships Among Objects, Object Adapters, 
OSA Managers, and ManagerPolicies

Object Adapter A

Object Adapter B Object Adapter C Object Adapter D

Manager Y

Manager Policy

Application

Manager Z

Objects served by C

Objects served by A

Objects served by B
Objects served by D

Manager Policy Manager Policy

Figure 12: Sequence of Steps Done by an Application for 
Registering a Manager

Object AdapterApplication ORB Current

4: configure adapter with the policy

3: create_manager_policy

2: resolve_initial_reference

1: Create Manager
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The last step (invocation 4) is to “hand” the ManagerPol-
icy to the OA using the OA-specific mechanisms. For exam-
ple with POA, an instance of ManagerPolicy is inserted, with
other CORBA::Policy objects, in the list of policies provided
to the parent POA as an argument of factory operation Porta-
bleServer::POA::create_POA() for creating the POA that will
serve the same objects as the Manager referred in the Man-
agerPolicy will.

We summarize the discussion of the CORBA-based imple-
mentation of ADME/AF schema with a UML model of the
main data types depicted in Figure 13. Being a base interface

for adapter-specific sub-interfaces, Manager defines only type
attribute for indicating the adapter type (e.g. POA) which the
sub-interface supports.

Detailed architecture of the solution in the realm of
CORBA Security is provided in [31]. The work presented in
this section became a CORBA standard adopted by the Object
Management Group, and it is currently on finalization track.

6 DISCUSSION

ADME/AF schema is not ideal and does not work for all
cases. Being derived from ADME, it would not work for
applications that require fine grain protection because its gran-
ularity is not finer than methods exposed by a target object. It
does not support application-specific pre-requisites either.

Further, if a DF has to call an AF, then its implementation
becomes specific to AF interface, yet additional DF wrapping
could help. Some middleware technologies, such as COM+
[32], do not provide mechanisms for implementing ADME
schemes, which makes applicability of this approach limited.
Those rare applications in which security policies are very
hard to express using application-specific factors fall out of
the applicability scope too.

While having these limitations and disadvantages, the
approach gives all of the flexibility of embedding decision
functions in the target without requiring the target to be secu-
rity aware, for those applications whose security policies have
moderate granularity requirements, can be expressed using
OSAs, and need only decisions enforceable by generic EF. 

Our solution enables the process of implementing secure
distributed applications to be cleanly separated among

• middleware security suppliers, who implement EF, 

• security logic suppliers, who implement DF,
• application suppliers, who implement target objects, and

possibly AF, and
• application owners who, having possibly AF implemented,

configure EF, AF, and DF to work together and enforce
application-specific protection.
While we deliberately limited the proposed approach to

the domain of distributed applications, it will be interesting
and useful to investigate its applicability and utility for operat-
ing systems, as an example.

7 CONCLUSIONS

In this paper, we stated the problem of supporting applica-
tion-specific factors in security mechanisms in the field of dis-
tributed application systems. In order to address the problem,
we first created a framework for reasoning about those secu-
rity mechanisms in distributed applications that follow deci-
sion-enforcement paradigm. Using the framework, we showed
that all cases can be partitioned into four schemes depending
on whether middleware security or application provides deci-
sion and/or enforcement functions. Being most promising
solution for the stated problem, ADME schema lacks, how-
ever, the means of obtaining and communicating application-
specific factors to DF. In the described solution, we introduced
the notion of an object security attribute (OSA) as a generic
way to represent security-related information about the appli-
cation object being accessed. More importantly, we proposed
attribute retrieval function (AF) that serves attributes to DFs,
as a new element to the updated, schema. By introducing
ADME/AF schema, we made first step towards systematic
support for application-specific factors in middleware access
control mechanisms.

To illustrate the concepts of OSAs and AF on a concrete
technology, we described their realization for CORBA Secu-
rity. The described application of ADME/AF schema to
CORBA domain has been adopted by the Object Management
Group as part of SDMM specification [31] in November 2001,
and it is currently on finalization track.
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