Middleware and Web Services Security Mechanisms

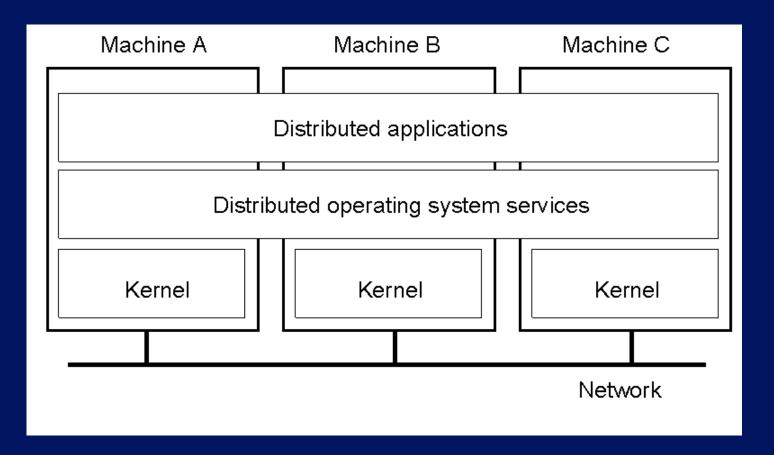
Secure Application Development Module 9 Konstantin Beznosov

Copyright © 2004-2005 Konstantin Beznosov

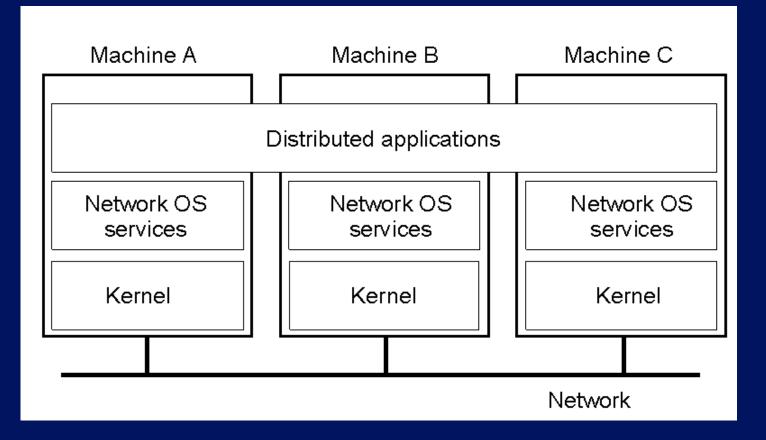
Conventional Computer Security

Protection		Assurance						
Author	rization	Accountability	Avail	ability	ance	се	rance	Irance
Access Control	Protection	Audit	Continuity	Secovery	nents Assurance	n Assurance	Development Assurance	Operational Assurance
Access	Data Pr	Non- Repudiation	Service (Disaster Recovery	Requirements	Design	Developr	Operat
		Authenticatic	on					
		Cryptograph	y					

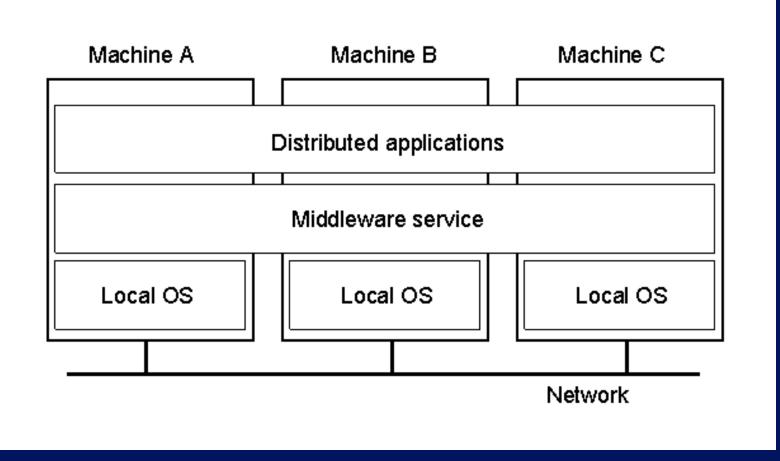
Outline


- Middleware and Web services
 - What are middleware and Web services?
 - What's special about middleware and Web services security?
- Security in middleware and Web services
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?
- Conclusions
 - Summary
 - Where to go from here?

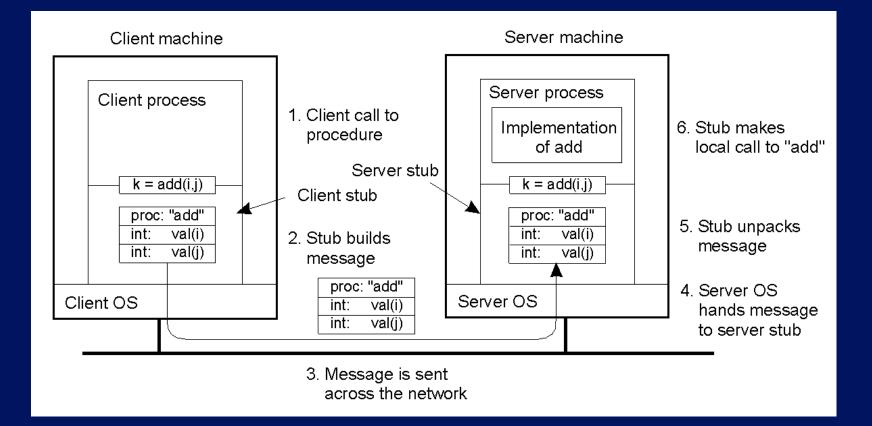
What is middleware?

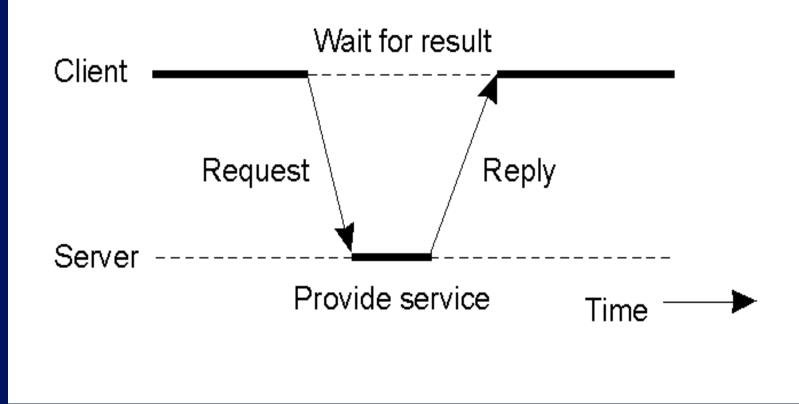

It's what's between topware and underwear

Copyright © 2004-2005 Konstantin Beznosov


Distributed Application Built Using DOS

Distributed Application Built Using NOS

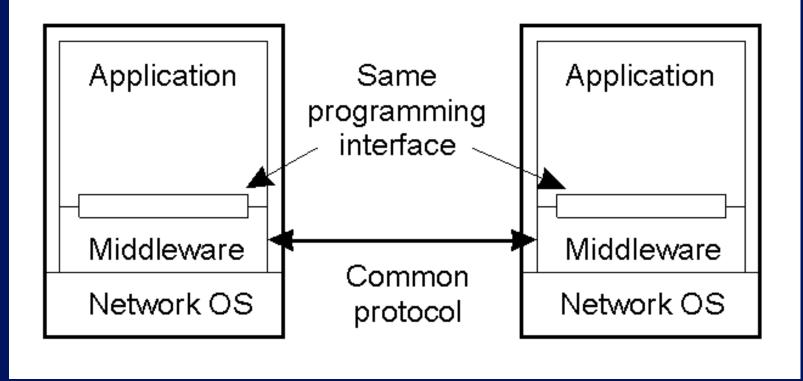

Distributed Application Built Using Middleware


Software Support for Distributed Applications

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

Most Middleware Uses Remote Procedure Call (RPC)

RPC Clients and Servers


Distributed Objects

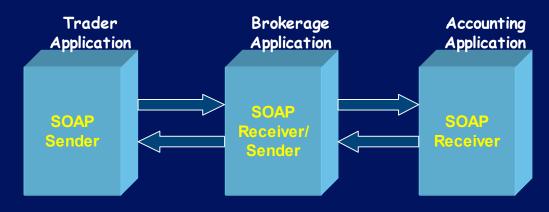
- Distributed Computing Environment (DCE) Remote Objects
- Common Object Request Broker Architecture (CORBA)
- Microsoft's Distributed Component Object Model (DCOM) & COM+
- Java Remote Method Invocation (RMI)
- Enterprise Java Beans (EJB)
- .NET Remoted Objects

Middleware Services

- Communication facilities
- Naming
- Persistence
- Concurrency
- Distributed transactions
- Fault tolerance
- Security

Middleware Openness

What's Web Services?


Copyright © 2004-2005 Konstantin Beznosov

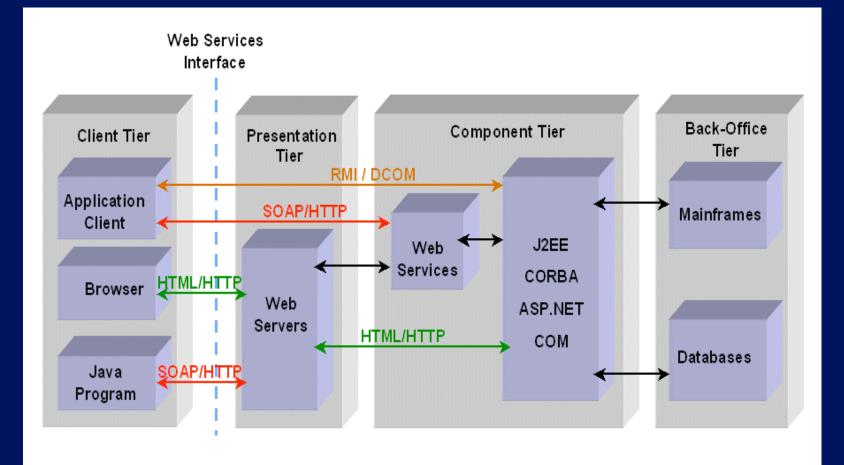
How do middleware and Web services differ?

Features/ properties	middle	Web _services	
	traditional	MOM	
Client server	yes	no	no
RPC	yes	no	no
OS independent	mostly	mostly	yes
Completeness and portability	yes	mostly	no
interoperability	yes	yes	yes

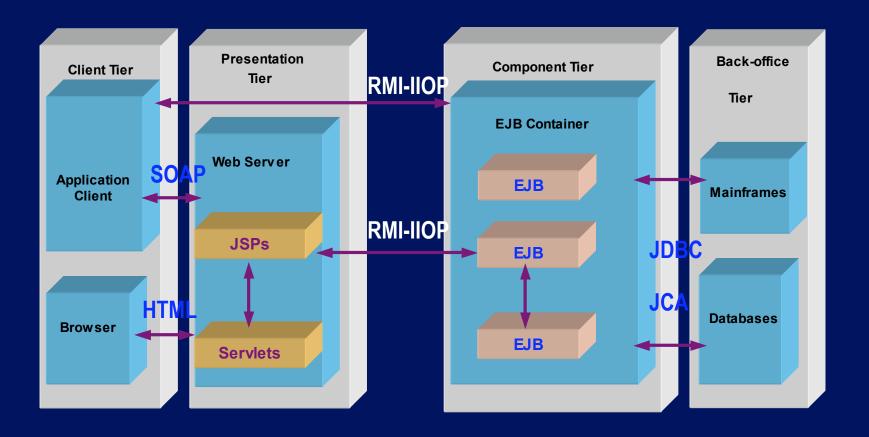
Promise of Web Services

- Interoperability across lines of business and enterprises
 - Regardless of platform, programming language and operating system
- End-to-end exchange of data
 - Without custom integration
- Loosely-coupled integration across applications
 - Using Simple Object Access Protocol (SOAP)

Web Services Features

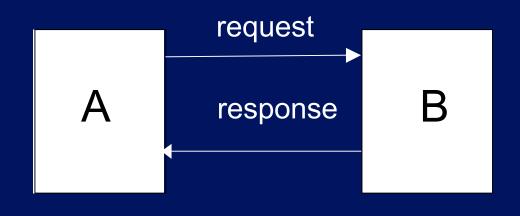

XML-based messaging interface to computing resources that is accessible via Internet standard protocols

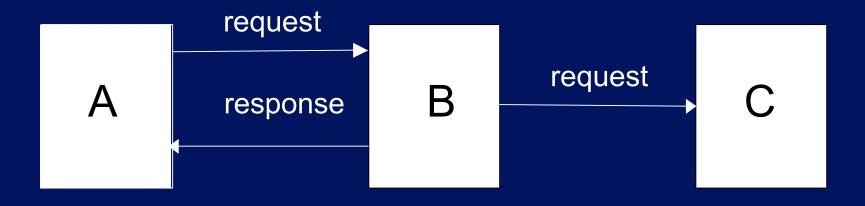
- WS help intranet (business units) and extranet (business partners) applications to communicate
- SOAP format for WS communications
 - Defined in XML
 - Supports RPC as well as document exchange
 - No predefined RPC semantics
 - Stateless
 - Can be sent over various carriers: HTTP, FTP, SMTP, ... postal service


SOAP Message Example

<?xml version="1.0" ?> <env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope"> <env:Header> <n:alertcontrol xmlns:n="http://example.org/alertcontrol"> <n:priority>1</n:priority> <n:expires>2001-06-22T14:00:00-05:00</n:expires> </n:alertcontrol> </env:Header> <env:Body> <m:alert xmlns:m="http://example.org/alert"> <m:msg>Pick up Mary at school at 2pm</m:msg> </m:alert> </env:Body> </env:Envelope>

Typical Web Service Environment


J2EE Web Service Systems



Outline

- Middleware and Web services
 - What are middleware and Web services?
 - What's special about middleware and Web services security?
- Security in middleware and Web services
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?
- Conclusions
 - Summary
 - Where to go from here?

client-server paradigm & security

requirements due to distribution

centralized administrationlocalized run-time decisions

Online Course Application

Interface Course with methods

- postMaterials (Materials m, Module module)
- Materials getMaterials (Module module)
- submitAssignment (Assignment a)
- Assignment getAssignment (Student student, int number)
- postAssignmentInstructions (Instructions i, int number)

object paradigm & security (1/2)

objects

- small amounts of data ==> large numbers
 - R: Scale on large numbers of objects and methods
- diverse methods ==> complex semantics
 - R: Security administrators should not have to understand semantics of methods

collections

- R: Similar names or locations should NOT impose membership in same collection(s).
- R: For an object to be assigned to the same collection, name similarity and/or co-location should not be required.

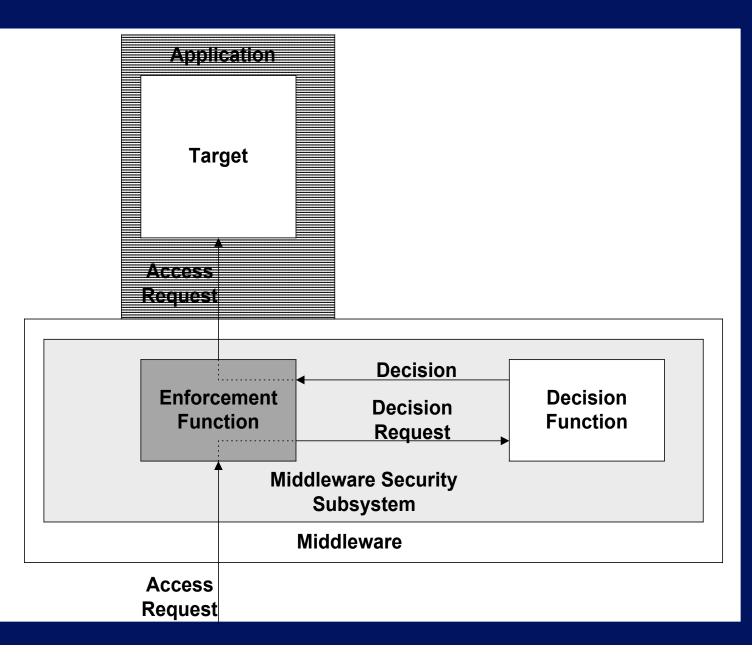
object paradigm & security (2/2)

- many layers of indirection and late binding
- names
 - multi-name, nameless and transient objects
 - R: Transient objects should be assigned to security policies without human intervention.
 - less rigid naming hierarchies
 - R: No assumptions that administrators know a name of each object in the system.

Outline

Middleware and Web services

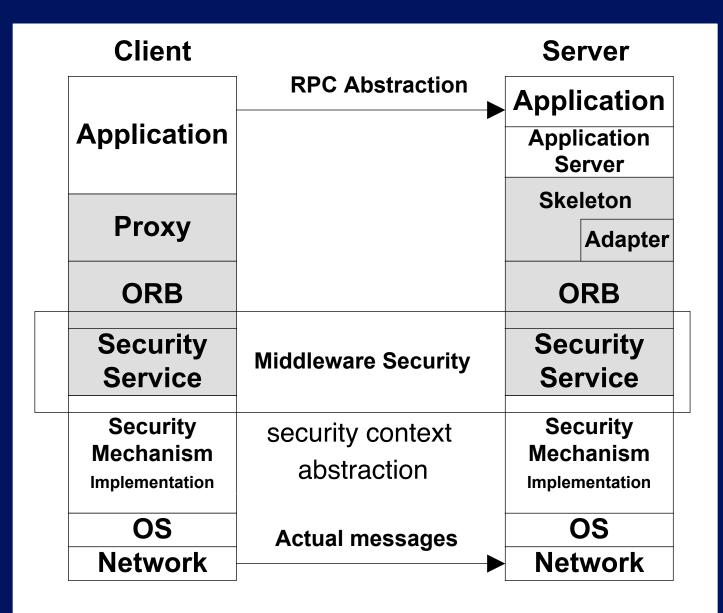
- What are middleware and Web services?
- What's special about middleware and Web services security?


Security in middleware and Web services

- What are common architectures for security mechanisms in most middleware and Web service technologies?
- What are the differences among security mechanisms of COM+ and EJB?
- Conclusions
 - Summary
 - Where to go from here?

Middleware Security Stack

Client		Server Application Application Server Skeleton	
	RPC Abstraction		
Application	-		
Proxy		Adapte	
ORB		ORB	
Security Service	Middleware Security	Security Service	
Security Mechanism Implementation	security context abstraction	Security Mechanism Implementation	
OS	Actual messages	OS	
Network		Network	


Policy Enforcement and Decision

Distributed Authentication

- Password-based
- Symmetric key
 - e.g., Kerberos
- Asymmetric key
 - e.g., PKI

Data Protection

Data Protection in Web Services

Copyright © 2004-2005 Konstantin Beznosov

SOAP Message with WS-Security

```
<? Xml version=1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2001/12/soap-envelope"</pre>
  xmlns:sec="http://schmas.xmlsoap.org/ws/2002/04/secext"
  xmlns:sig="http://www.w3.org/2000/09/xmldsig#"
  xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
  <env:Header>
   <sec:Security
     sec:actor="http://www.w3.org/2001/12/soap-envelope/actor/next"
     sec:mustUnderstand="true">
     <sig:Signature>
      ...
     </sig:Signature>
     <enc:EncryptedKey>
      . . .
     </enc:EncryptedKey>
     <sec:BinarySecurityToken</pre>
      ...
     </sec:BinarySecurityToken
   </sec:Security>
  </env:Header>
  <env:Body>
   <enc:EncryptedData>
   </enc:EncryptedData>
  </env:Body>
</env:Envelope>
```

WS-Security

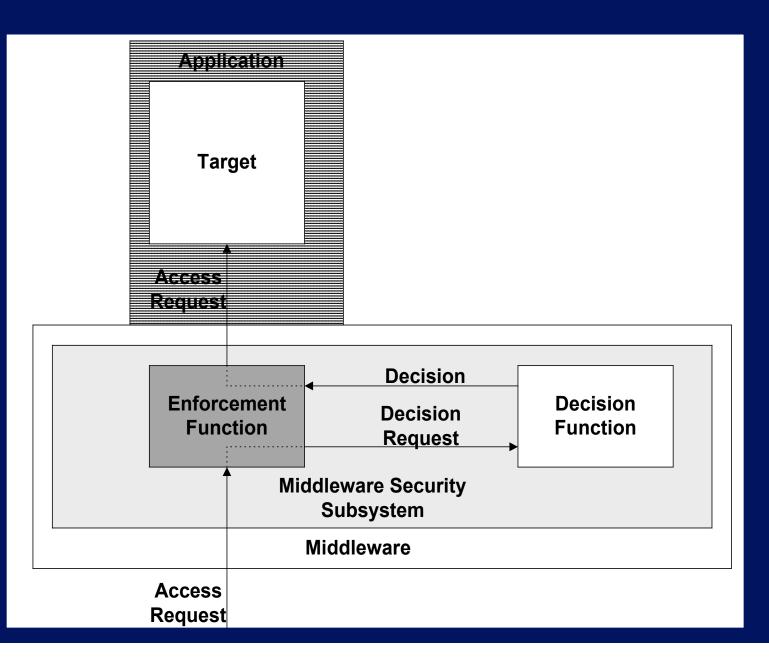
- Message integrity and message confidentiality
- Compliance with XML Signature and XML Encryption
- Encoding for binary security tokens
 - Set of related claims (assertions) about a subject
 - X.509 certificates
 - Kerberos tickets
 - Encrypted keys

XML Encryption

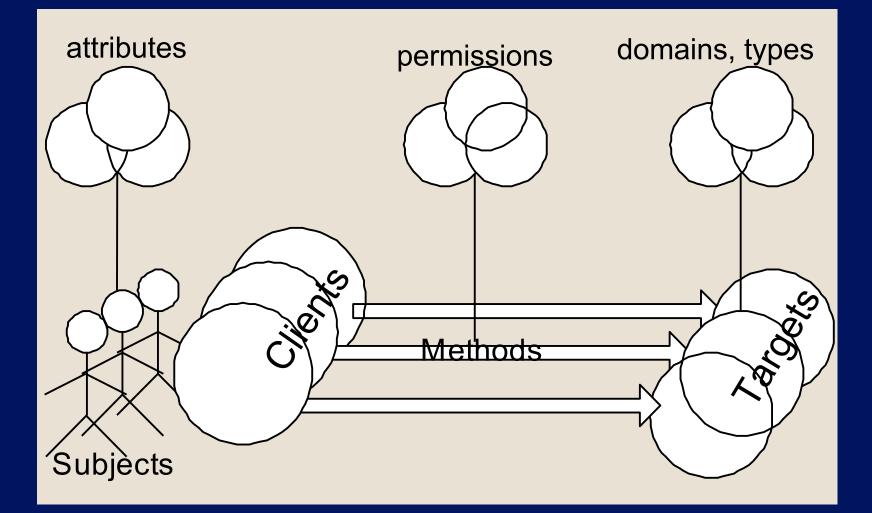
- Encrypt all or part of an XML message
- Separation of encryption information from encrypted data
- Super-encryption of data

```
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='http://www.w3.org/2001/04/xmlenc#Content'>
<EncryptionMethod Algorithm='http://www.w3.org/2001/04/xmlenc#3des-cbc'/>
<ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
<ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
<ds:KeyName>John Smith</ds:KeyName>
</ds:KeyInfo>
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</CipherData>
</CipherData>
</CipherData>
```

XML Signature

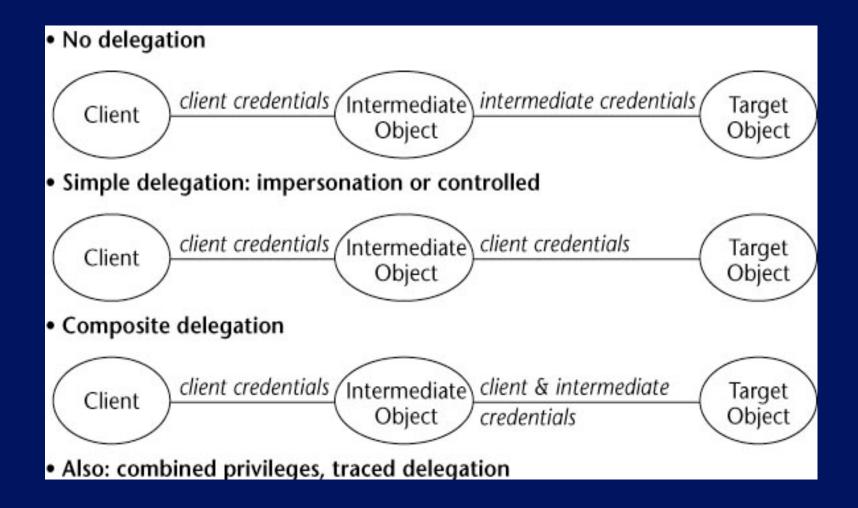

- Apply to all or part of a document
- Contains: references to signed portions, canonicalization algorithm, hashing and signing algorithm Ids, public key of the signer.
- Multiple signatures with different characteristics over the same content

```
<Signature Id="MySignature" xmlns="http://www.w3.org/2000/09/xmldsig#">
  <SignedInfo>
    <CanonicalizationMethod Algorithm="http://www.w3.org/.../REC-xml-c14n-20010315"/>
    <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
    <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
      <Transforms>
        <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
      </Transforms>
      <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
    </Reference>
  </SignedInfo>
  <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
  <KeyInfo>
    <KeyValue>
      <DSAKeyValue>
        ...<____</p><___</p><___</p>
      </DSAKevValue>
    </KeyValue>
  </KevInfo>
</Signature>
```


Security Policy Decisions

Copyright © 2004-2005 Konstantin Beznosov

Policy Enforcement and Decision



scaling policy decisions

Credentials Delegation

What are credentials?Push and pull models

Issues in Distributed Audit

- Monitor activity across and between objects.
- Order of the audit records is hard to determine because of the lack of global time.
- Performance
- No guarantee that an event has been logged.

Outline

Middleware and Web services

- What are middleware and Web services?
- What's special about middleware and Web services security?

Security in middleware and Web services

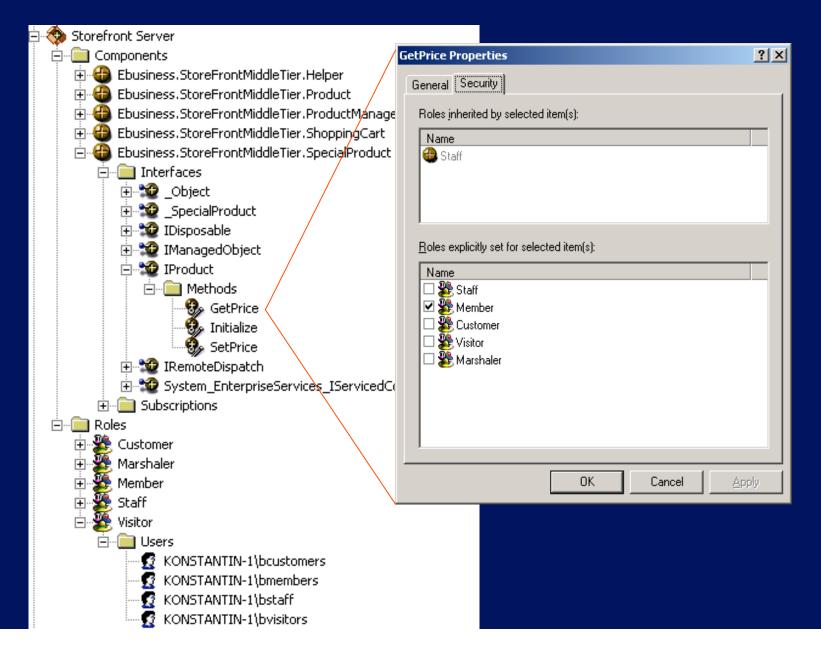
- What are common architectures for security mechanisms in most middleware and Web service technologies?
- What are the differences among security mechanisms of COM+ and EJB?
- Conclusions
 - Summary
 - Where to go from here?

COM+ Specifics

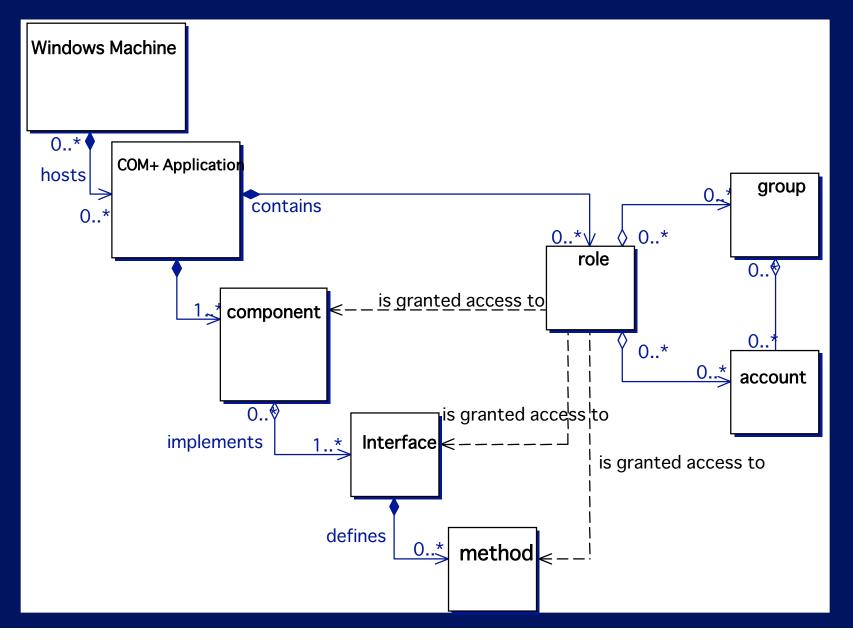
Copyright © 2004-2005 Konstantin Beznosov

Authentication in COM+

- Supported mechanisms
 - Kerberos
 - Windows NT LAN Manager (NTLM)
- Granularity modes
 - Never
 - At the time of establishing secure channel
 - On every call
 - With every network packet
- Credentials delegation options
 - No delegation
 - Unconstrained simple delegation (a.k.a., impersonation)
 - Only one hop for NTLM


Data Protection in COM+

- Supported modes
 - Origin authentication and integrity protection
 - As above + confidentiality protection


Access Control in COM+

- The three hurdles to go through
 - 1. Activate server process
 - 2. Process border checks
 - 3. DLL border checks
- Granularity
 - Component
 - Interface
 - Method

Administering Access Control

COM+ Access Control Architecture

Application Description

Application:

- 10 students: $s_1 \dots s_{10}$
- 3 instructors: i_1 , i_2 , i_3
- 5 courses: $c_1, ..., c_5$
 - $C_1 = \{i_1, \{s_1, s_2, s_3\}\}$
 - $C_2 = \{i_2, \{s_3, s_4, s_5\}\}$
 - $C_3 = \{i_3, \{s_5, s_6, s_7\}\}$
 - $C_4 = \{i_1, \{s_7, s_8, s_9\}\}$
 - $C_5 = \{\{i_2, i_3\}, \{s_8, s_9, s_{10}\}\}$

Policy:

- 1. Students can
 - 1. read course material and assignment instructions for the courses they are registered
 - 2. submit (i.e., write) their assignments for the registered courses
- 2. Instructors can
 - 1. read student submitted assignments for the courses they teach, and
 - 2. post (i.e., write) course material and assignment instructions for their courses

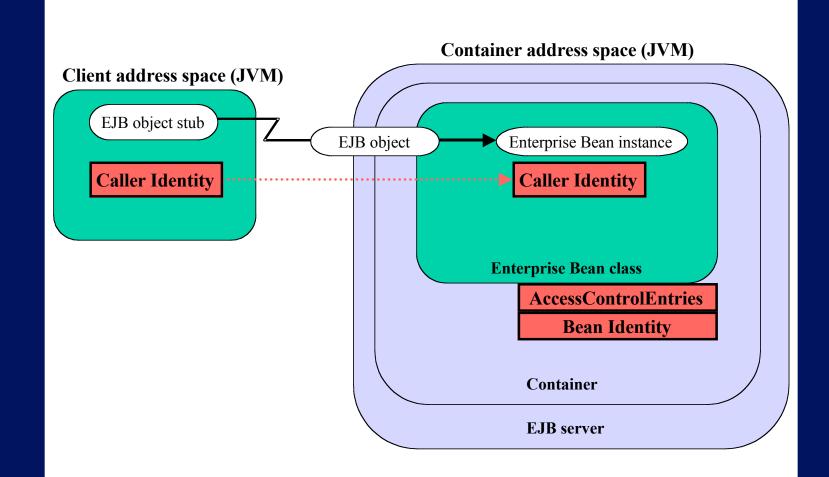
Configure COM+ online course application to implement this policy

A Possible Solution

Interface Course with methods

- postMaterials (CourseId id, Materials m, Module module)
- Materials getMaterials (CourseId id, Module module)
- submitAssignment (CourseId id, int assignmentNumber)
- getAssignment (CourseId id, Student student, int number)
- postAssignmentInstructions (CourseId id, Instructions i, int number)

	student	instructor
postMaterials		+
getMaterials	+	+
submitAssignment	+	
getAssignment		+
postAssignmentInstructions		+


Accountability in COM+

- No out-of-the-box support
- Developers should rely on Windows event logs

EJB Specifics

Copyright © 2004-2005 Konstantin Beznosov

EJB Run-time Security

Common Secure Interoperability (CSI) v2 defines wire protocol

Authentication in EJB

- Defines only the use of JAAS for authenticating and credentials retrieving
- Implementation-specific
- Credentials delegation options
 - No delegation
 - Unconstrained simple delegation (a.k.a., impersonation)

Data Protection in EJB

Implementation-specific

Access Control in EJB

- Configured through deployment descriptor
- Granularity
 - Down to individual method on a class, but not bean instance
 - Can be different from JAR to JAR
- Expressiveness
 - method grouped into "method permissions"
 - Subjects grouped by plain roles
 - No role hierarchy
- Java Authorization Contract for Containers (JACC)
 - APIs for plugging authorization engines

Defining Roles in EJB

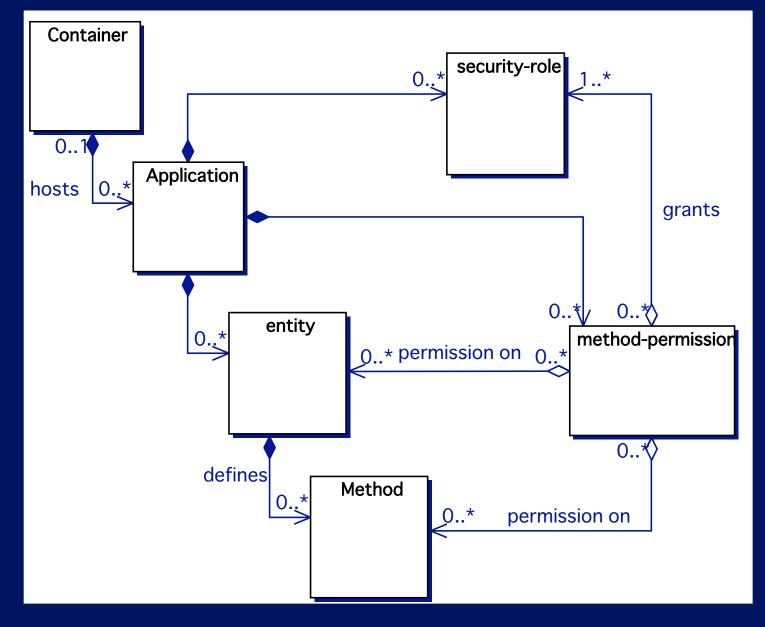
<assembly-descriptor>
<security-role>
<description>
blah-blah-blah ...
</description>
<role-name>student</role-name>
</security-role>

<security-role> <description> blah-blah-blah ... </description> <role-name>instructor</role-name> </security-role>

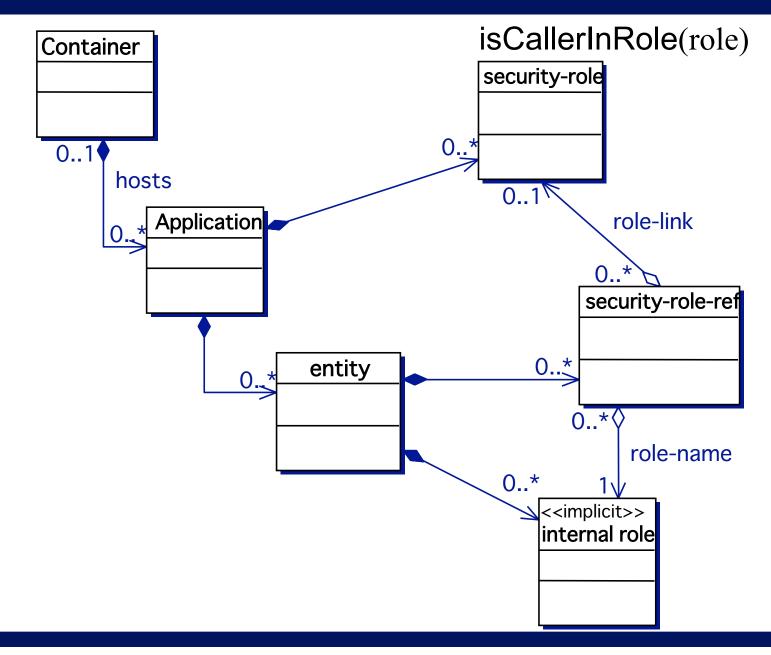
</assembly-descriptor>

Assigning Users to Roles in EJB

<security-role-mapping> <role-name>student</role-name> <principal-name>S1</principal-name> <principal-name>S2</principal-name> <group-name>students</group-name> </security-role-mapping>


<security-role-mapping> <role-name>instructor</role-name> <principal-name>I1</principal-name> </security-role-mapping>

Assigning Methods to Roles in EJB


<method-permission> <role-name>student</role-name> <method> <ejb-name>Course</ejb-name> <method-name>getMaterials</method-name> <method-name>submitAssignment</method-name> </method> </method>

<method-permission> <role-name>instructor</role-name> <method> <ejb-name>Course</ejb-name> <method-name>postMaterials</method-name> <method-name>getAssignment</method-name> </method> </method>

roles and permissions in EJB

Fine-grain authorization in EJB

Accountability in EJB

Implementation-specific

Summary

Middleware & Web services

- Software layer between OS and application to provide transparencies
- Security-related issues: scaling, granularity, naming
- Security in Middleware & Web services
 - Common features/elements
 - Technology/product specific

Where To Go From Here?

- B. Hartman, D. J. Flinn, K. Beznosov, and S. Kawamoto, chapter 7, Mastering Web Services Security, John Wiley & Sons, Inc., 2003.
- E. Roman, S. Ambler, and T. Jewell, Mastering Enterprise JavaBeans, Second ed: Wiley Computer Publishing, 2002.
- B. Hartman, D. J. Flinn, and K. Beznosov, Enterprise Security With EJB and CORBA. John Wiley & Sons, Inc., 2001.
- "Security Engineering ..." by Ross Anderson