
337

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 337-352, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Experience Report: Design and Implementation of a
Component-Based Protection Architecture for ASP.NET

Web Services

Konstantin Beznosov

Laboratory for Education and Research in Secure Systems Engineering,
 University of British Columbia
beznosov@ece.ubc.ca

Abstract. This report reflects, from a software engineering perspective, on the
experience of designing and implementing protection mechanisms for
ASP.NET Web services. The limitations of Microsoft ASP.NET container se-
curity mechanisms render them inadequate for hosting enterprise-scale applica-
tions that have to be protected according to diverse and/or complex application-
specific security policies. In this paper we report on our experience of design-
ing and implementing a component-based architecture for protecting enterprise-
grade Web service applications hosted by ASP.NET. Due to its flexibility and
extensibility, this architecture enables the integration of ASP.NET into the or-
ganizational security infrastructure with less effort by Web service developers.
The architecture has been implemented in a real-world security solution. This
paper also contributes a best practice on constructing flexible and extensible au-
thentication and authorization logic for Web services by using Resource Access
Decision and Attribute Function (AF) architectural styles. Furthermore, the les-
sons learned from our design and implementation experiences are discussed
throughout the paper.

1 Introduction

ASP.NET container is a popular hosting environment for Web services built and run
atop Microsoft Windows and .NET platforms. However, the ASP.NET security archi-
tecture [11, 13], as provided “out-of-the-box,” is not sufficiently scalable, flexible,
and easily extensible to be adequate for enterprise applications [3]. As we describe in
[8], ASP.NET supports limited authentication and group/user-based authorization,
both bound to Microsoft proprietary technologies (Windows domains and Passport
[12]). If a Web service application needs to be protected via third-party authentication
or authorization services available in the enterprise security infrastructure, the real-
world developers have two options. The first is to develop homegrown container
security extensions, which are hard for average application developers to get right.
The second is to program the security logic into the Web service business logic, mak-
ing the resulting application costly to change and support. In both cases, the devel-
opment of security-specific parts by average application developers is commonly
believed to result in high vulnerability rates due to hard-to-avoid security-related

338 Konstantin Beznosov

bugs. Because our architecture achieves fine-grain flexible decomposition of the
security logic into components, the design allows a higher degree of security logic
reuse whilst supporting application-specific security policies and the separation be-
tween business and security logic. We expect the reuse will lead to fewer errors by
developers.

Due to its flexibility and extensibility, our component-based protection architec-
ture enables the integration of ASP.NET into the organizational security infrastruc-
ture with less effort by Web service developers. The architecture is flexible because it
allows for the configuring of machine-wide authentication and authorization func-
tions, and for their overriding for a sub-tree of the Web services (up to an individual
application) in the directory-based ASP.NET hierarchy. Its extensibility is revealed
through the support of a wide variety of authentication and authorization (A&A)
logic, as long as the logic can be translated into a .NET component and/or accessed
(possibly via a proxy) through a predefined .NET API. Furthermore, one can reuse
those components by combining authorization decisions from them according to pre-
defined or customized rules.

These properties were achieved via
1. separating custom SOAP [21] extension modules, which act as ASP.NET-specific

A&A enforcement logic, from the A&A decision logic;
2. following Resource Access Decision (RAD) architecture style [4, 5, 17], which,

through the decomposition of the authorization engine into components, makes the
customization of access control decision logic easier and avoids the need for a ge-
neric policy evaluation engine;

3. taking advantage of the extensibility, inheritance, and caching features of
ASP.NET web.config configuration mechanism; and

4. separating the logic of retrieving attributes from the authorization and business
logic by following the Attribute Function (AF) approach [2].

Although this paper discusses the design of a protection architecture for Web ser-
vices, we believe that our approach and design decisions could be useful in a broader
context of component-based protection sub-systems for distributed applications.

This paper is organized as follows. The next section reviews ASP.NET Web ser-
vices. Section 3 discusses the requirements for the design. Intertwined with the dis-
cussion of the design decisions and lessons learned, an architecture description fol-
lows in Section 4. To illustrate the architecture capabilities, we present two examples
of policies and corresponding configurations in Section 5. We conclude in Section 6.

2 Overview of ASP.NET Web Services

This section provides background information on ASP.NET Web services technology
for the uninformed reader to aid with understanding the rest of the paper. Those fa-
miliar with the technology can skip to Section 3.

A Web service is an XML-based messaging interface to computing resources that
is accessible via Internet protocols. A Web service front end can be added to an exist-
ing information-processing infrastructure. Alternately, applications can be engineered
to use a consistent Web services model in all tiers, from data stores and back-ends to

Experience Report 339

middle and presentation tiers. A key Web services technology, SOAP [21] is a unidi-
rectional XML-based protocol for passing structured information.

ASP.NET is the most popular platform among Microsoft technologies for engi-
neering Web services. ASP.NET Web Services rely upon ASP.NET, .NET Frame-
work, IIS, and, underneath them all, the Windows OS platform. ASP.NET can be
viewed as a middleware container, similar to J2EE, for hosting components of .NET-
based distributed applications accessible via Microsoft’s Internet Information Server
(IIS). Since ASP.NET runs in .NET’s virtual machine, common language runtime
(CLR)—whereas IIS is a regular Windows executable—ASP.NET_ISAPI dynami-
cally linked library (DLL) acts as a bridge between the two, as shown in Figure 1.
The DLL receives HTTP requests for URLs ending with specific extensions, the one
for ASP.NET Web Services being .asmx.

Fig. 1. Request handling by ASP.NET Web services

While running in unmanaged code, IIS forwards a request to the
ASP.NET_ISAPL.DLL first. The DLL passes the request to ASP.NET, where the
request passes through registered HTTP modules acting as invocation interceptors
and reaches the Web Service Handler Factory. The factory uses the information in the
URL to determine which Web service implementation should handle the request.
ASP.NET dispatches the request to the implementation on demand of the factory. Not
used only for performing security functions, the HTTP modules are also used for
protecting ASP.NET Web services “out-of-the-box.”

Discussed in detail in [8], the ASP.NET Web services preinstalled security mecha-
nisms consist of the security available for the building blocks of these services and
SOAP security. Overall, Microsoft products provide a convenient family of technolo-
gies to support the security of modest-sized applications with little effort. However,
when the security requirements reach the enterprise scale, one needs either significant
amounts of in-house development or additional third-party products and services to

340 Konstantin Beznosov

fill the gap. Fortunately, .NET in general and ASP.NET in particular have architec-
tures that accommodate various security extensions. We designed our protection
architecture as an extension to a typical ASP.NET installation.

3 Requirements

The design of the architecture was driven by its requirements and the underlying
technology, ASP.NET. The functional objectives of the architecture were to allow
flexible authentication and authorization for ASP.NET Web service applications. It
was required to support “out-of-the-box” the following types of data (a.k.a. security
tokens) for client and message authentication:
• user name and password from the HTTP header, a.k.a. HTTP Basic Authentication

(HTTP-BA),
• ASP.NET Session state object with a pre-configured name,
• “stringified” credentials token found in any of the following:
• the custom field of the HTTP header, and/or
• HTTP cookie with a pre-configured name, and/or
• header block of the SOAP message that carries the request to the ASP.NET Web

service, similar to WS-Security [15] (WSS).
One of the lessons learned from the requirements engineering exercise was that the

end users did not care about the compliance with the security standards related to
Web services as long as the design was in the spirit of those standards and therefore
enabled eventual compliance with them in the future. The likely reason was the lack
of plans for mixing heterogeneous (i.e., produced by different development teams)
Web services. That is, no cross-enterprise Web service deployments were envisioned.

Another conclusion drawn from the work concerns the difficulty of determining a
practical set of compliance criteria. Taking into account the flexibility of the informa-
tion architectures for WSS and related specifications, we found it hard to define what
a compliant implementation is expected to do. Furthermore, without prior agreement
between application owners about the WSS profiles, two compliant applications
would not necessarily interoperate in a useful manner.

In regards to authorization, the architecture was required to support a) third-party
enterprise-wide A&A products, such as Policy Director [9], SiteMinder [14], getAc-
cess [7], etc., b) selective availability of some service methods for public (i.e.,
anonymous) access, and c) simple variations of authorization logic.

The architecture was also required to be extensible enough to accommodate new
types of A&A logic, e.g., access restriction based on the IP addresses of the Web
service clients or the access day and time. Since it was impossible to envision all
probable instances of A&A policies, the extension mechanisms had to be sufficiently
generic. We also anticipated the need to compose new authorization policies out of
existing ones (where developers could re-use much of the existing A&A logic).1 Be-
cause this paper focuses on A&A, we do not discuss other requirements such as audit.

1 For example, some publicly accessible methods with the remaining methods controlled by the

enterprise-wide authorization.

Experience Report 341

4 Architecture Overview

To integrate with ASP.NET run-time, the architecture takes advantage of the
ASP.NET generic interception mechanism, SOAPExtension [10], intended for addi-
tional processing of SOAP messages. As shown in Figure 2, our custom version of
SOAPExtension (labeled “interceptor”) performs the initial extraction, formatting,
and other preparation of HTTP requests and, contained in them, SOAP messages,
passing the data to the decision A&A logic and enforcing authorization decisions.

Fig. 2. General organization of the architecture into an interceptor and A&A logic

Since the purpose of the architecture is A&A, SOAP messages are processed on
their way in and only after ASP.NET run-time has successfully parsed all SOAP-
specific XML and HTTP formatting. If the protection of data in transit were a re-
quirement, then the additional processing of the SOAP messages on their way out
would be necessary. Since we did not anticipate it to undergo future changes, the
interceptor has been designed with no extension or modification points. On the other
hand, its design and implementation were optimized for performance since it was the
most frequently used component in the architecture, invoked each time a protected
Web service is accessed. Design for change [19], however, was a major goal for the
decision part of the architecture, labeled as “A&A logic” in Figure 2. This part is
composed of several other elements as described in the following sections.

4.1 Authentication

Authentication is commonly divided into two phases: retrieving authentication data
and validating it. Following the same division, our CredentialsRetriever objects spe-
cialize in retrieving authentication data. Each retriever implementation is responsible
for extracting particular data types (e.g., user name and password encoded as HTTP-
BA, credentials token found in the SOAP message header, etc.) from the appropriate
locations and encapsulating them in Credential objects. In the design of the authenti-
cation-related components, we wanted to isolate anticipated changes due to variations

342 Konstantin Beznosov

in authentication policies (“What data is acceptable for authentication?”) from the rest
of the architecture. For this purpose, retrieved authentication data and retrievers
themselves are represented as implementations of Credential and CredentialsRe-
treiver interfaces. This approach allows for adding new modules of retrieving logic to
the architecture by application developers, owners, or third-party vendors. For in-
stance, the use of new types of authentication data, such as a client’s public key cer-
tificate in requests over HTTPS, could be accommodated by developers by creating a
new implementation of CredentialsRetreiver that retrieves the corresponding attrib-
utes of the HTTPS connection and packages them into a new instance of Credential.
Before retrieved credentials can be used in authorization decisions, they need to be
validated.

There are several reasons why credentials validation is separated from the retrieval
phase and delayed until authorization. First, some credentials could be computation-
ally expensive to validate. For instance, the validation of credentials signed by a pri-
vate key requires public key operations as well as potentially unbound delays due to
the checking certificate revocation lists. Second, only during the authorization step is
it determined which credentials will be used for authorization. For example, if a re-
quest is accompanied by a certificate and a username-password but only the certifi-
cate is used, then there is no need to validate the latter. Third, some useful policies
might call for the evaluation of the same credential with more than one authentication
authority. Yet the fourth reason is due to the frequent co-location of authentication
and authorization services in enterprise security servers. Lumping authentication and
authorization steps in one batch and sending it to a remote server allows for a sub-
stantial reduction of the communication overhead in such cases.

Delaying credentials validation until the authorization phase, however, turns out to
have a disadvantage as well. Those authorization components that implement the
PolicyEvaluator interface have to contain credential-specific validation logic. In
retrospect, a better design could be to encapsulate such validation logic into objects as
parts of the credentials and configure binding between validators with the credentials.

4.2 Authorization

An authorization decision is reached in a three-step process, which is supported by
the structure based on RAD and AF architectural styles. Initial decisions are made by
zero or more predefined or custom authorization modules referred to as Poli-
cyEvaluator (PE). The simplest PE is one that always returns the same decision, e.g.,
“deny,” “permit,” depending on its static configuration. Clearly, it ignores any cre-
dentials or other attributes of the request or target in question, environment, or the
history about the previous requests. Despite its dullness, such a PE turns out to be
very handy for testing, debugging, and deploying Web service applications and the
architecture itself. More interesting PEs, supplied with the architecture implementa-
tion, grant access based on the IP address of the request sender, the name of the Web
service target and its methods, and the decisions provided by an enterprise authoriza-
tion server. The strength of RAD architectural style is in the support of fairly sophis-
ticated authorization policies (see [1] for an example) without the need for complex
authorization engines. This support is achieved by combining run-time decisions from

Experience Report 343

several simple PEs into one at the second step, performed by a DecisionCombinator
(DC).

Another reason for dividing the authorization process into the phases of evaluating
(possibly several) policies and combining evaluation results, i.e., decisions, is to en-
able a high degree of authorization components reuse. Based on prior experience with
protection for enterprise applications, we expected that, on the one hand, authoriza-
tion policies would vary not only from organization to organization but also from
application to application. On the other hand, common elements of authorization
logic (e.g., decisions based on the roles, groups, and other attributes of the users)
recur in most policies, making them perfect candidates for reusable components.

Fig. 3. Resulting configuration with the PE restricting access based on the sender’s IP address

To appreciate the power of DC&PEs approach, consider a composition of “All
Permits Required” DC with a role-based access control (RBAC) [20] PE. They im-
plement authorization based on user roles and their hierarchies. If the application
owners decide to restrict access further to a particular range of IP addresses, they can
do so by adding a PE that authorizes IP addresses, instead of modifying the fairly
complex logic of the RBAC PE. The result is shown in Figure 3. Support for policies
in which PEs might have different priorities is enabled through the use of (unique) PE
names so that custom DC logic can discriminate between them.

The authorization process continues to its third stage. This stage is important for
achieving fail-safe defaults in those cases when a DC experiences a failure due to a
design or implementation error and does not come to a binary decision. During this
stage, the interceptor renders any decision, except “permit,” received from the DC to
“deny” and thus reaches authorization verdict. If access has been denied, the corre-
sponding exception with the configurable explanation message is thrown to the
ASP.NET run time, which translates it into an appropriate SOAP exception message.

Besides credentials—obtained from the SOAP message, the corresponding HTTP
request, or the underlying communication channel—PEs are supplied with other in-
formation related to the request: name and attributes of the Web service, its policy
domain, and the method to be invoked. All this information is constructed into a per-
mission. Thus, the authorization process results in a decision on whether a given
permission should be granted to a given subject (represented by its credentials). If so,
the interceptor passes control to ASP.NET, which activates the corresponding Web
service implementation and passes to it the request contained in the SOAP message. It
is the construction of the permission that furthers the flexibility and extensibility of
the architecture.

344 Konstantin Beznosov

4.3 Permission Construction

To support the flexibility and extensibility of the architecture, we designed permis-
sion construction out of four distinct elements, as shown in Figure 4.

Fig. 4. Elements of the permission generated by the default permission factory

1. TargetName—the name of the target Web service can be represented by either a
URL or the .NET class name of the service implementation. The URL represents
the web server’s interpretation of the URL from the corresponding HTTP request.
The use of URLs for naming Web services is less attractive in ASP.NET because
the same .NET class can be reused to create separate instances of Web services. In
the ASP.NET environment, a single file hosts each target Web service. Different
URLs can be used to invoke the same implementation class. The presence of these
synonyms can pose a challenge to the security administrator’s primary goal—
maintaining proper security policy for Web services. The use of the .NET class
name instead of the URL means that all instances of a Web service application can
share the same authorization policy rules. This reduces the cost of maintenance and
allows the same application logic to be protected no matter how many names under
which it is deployed. When used together with the domain capability, several in-
stances of the same Web service can be treated the same, or distinctly, as appropri-
ate for the application structure.

2. DomainName—the use of a domain classifier is borrowed from CORBA Security
[6, 16] architecture, whose policy domains support different security requirements
for implementations of the same interfaces. In our architecture, optional domains
allow discrimination between those same implementations of a Web service that
have different access control requirements. Another purpose of domains is to allow
for a logical grouping of several Web services, perhaps so that they can share an
authorization server or its policy database. Since the means of determining the do-
main of a Web service is highly specific to the application and its authorization
policies, our architecture provides a simple version of a domain retriever and a
means for replacing it with custom implementations.

3. Target attributes—further differentiation among Web service instances is achieved
through an optional list of one or more name-value pairs holding target attributes.
For example, a Web service representing a bank account manager could have at-

Experience Report 345

tributes that identify the branch to which all the managed accounts belong, pro-
vided the division of the accounts among such managers is based on the branches.
As it was argued in [2], the use of target attributes reduces the need for mixing au-
thorization and other security logic with business logic. These application-specific
attributes and the mechanism for obtaining them at run time are directly based on
the prior work on Attribute Function [2, 18]. The extensible retrieval mechanism is
designed as a replaceable TargetAttributeRetriever interface, with a simple imple-
mentation provided by the architecture implementation.

4. Method—since ASP.NET, at the time of this work, supported only RPC semantics
for interactions with hosted Web service implementations, acceptable SOAP mes-
sages had to specify the method of the .NET implementation class responsible for
processing the request. As with other RPC-based middleware technologies, it was
important to support these authorization decisions based on method name. The
method name is optional in the constructed permission to support types of applica-
tions that do not require authorization policy granularity at the method level.

Table 1 shows examples of permissions:

Table 1. Examples of permissions

Permission Example Explanation
http://foobank.com/bar.asmx Only the URL is used
com.foobank.ws.Sbar/m1 Class and method names
D1/com.foobank.ws.Sbar /m1 Same but in domain “D1”
com.foobank.ws.Sbar/owner=smith Class name and attribute
D1/com.foobank.ws.Sbar/owner=smith/m1 Domain, class, attribute, method

The construction of permissions is done by a default permission factory, which can

be replaced by a custom implementation possibly producing permissions of other
format and content. The configuration, described below, determines which permis-
sion factory, DC&PEs, credential retrievers, and other replaceable parts of the archi-
tecture are used for serving requests for each Web service instance.

4.4 Replaceable Parts

As stated before, the flexibility and extensibility of the architecture is achieved via
designing most of its elements to be replaceable. Any of the black boxes in Figure 5
can be replaced by a version that comes with the implementation or by a version
produced by Web service developers or owners. Custom versions of the grey boxes
are subject to the control by those modules that create them. Other architectures, e.g.,
CORBA Security [6, 16], also make some of their parts replaceable. The novelty of
our approach is the level of replaceable parts’ granularity. In CORBA Security, for
instance, authorization logic (encapsulated in AccessDecision interface) has to be
replaced as a whole, whereas in our architecture, one can selectively replace specific
PEs and/or a DC. Furthermore, each Web service in the same container can be pro-
tected by a different set of replaceable elements, which is not the case with CORBA
Security, COM+, or EJB implementations. Flexible and manageable configuration
turns out to be critical for making fine-grain and yet scalable replaceability workable.

346 Konstantin Beznosov

Fig. 5. Key elements of the architecture

4.5 Configuration

Flexible and scalable configuration is critical in order for our architecture to be exten-
sible and, at the same time, carry low administration or run-time overhead. Since an
ASP.NET container might host many Web services, each with its own security re-
quirements, and deployment and maintenance life cycles, the run-time changes to the
configuration should not result in the restart of the container or its lasting perform-
ance degradation. It turns out that ASP.NET configuration architecture, with settings
defined in web.config files, had most features we were looking for.

The use of simplified XML in web.config files enables a flexible hierarchy of con-
figuration elements, as shown in Figure 6. By leveraging the web.config ability to
delegate the handling of new configuration sections to custom handling logic, we
developed a simple hierarchical language to define and configure various elements of
the A&A decision logic as well as the protection policies that comprise them.

A protection policy can simply be viewed as a collection of specific credential re-
trievers, PEs, DC, as well as of attribute and domain retrievers, and permission fac-
tory. They are defined in other sections of the configuration and the policy only refers
to them by name (and possibly re-configures them), thus enabling reuse.

Since all of these elements are defined independently of the policies and have
unique names, they can be referenced by more than one protection policy. A singleton

Experience Report 347

in the scope of a web.config instance, Governing Policy (GP) specifies which particu-
lar policy is used for controlling access to the Web service in question. Thus, one can
prepare and test a protection policy, and perform a quick switch to the new policy by
just changing the name attribute of a GP, a reference to specific protection policy.
Multiple policies can be prepackaged and used to alter the behavior of the protection
mechanisms in response, for example, to the changes in the threat level.

The hierarchal nature of web.config parsing semantics enables good scalability
without losing a fine level of granularity in the control over sub-sets of (or individual)
Web services. The GP defined in the root web.config determines the protection of all
those Web services, for which no web.config file between the service and the root
directory overrides it. Thus, developers can deploy their Web services, which can be
administered by changes to the root web.config file. This approach, though, does not
address the question of scalable administration for multiple ASP.NET containers,
which is an issue for COM+ and standard EJB containers as well. Similar to product-
specific solutions on the EJB market, one could remedy the problem by synchroniz-
ing web.config files or their specific sections across multiple containers.

Fig. 6. Simplified model of the configuration elements with default cardinality “0..*”

The configuration flexibility is achieved through two design decisions. First, any
web.config file down in the ASP.NET directory hierarchy can override GP, or define
any new element, including new policies, as long as the name of this element has not
been used in an ascendant web.config (i.e., one down in the directory hierarchy).
Unfortunately, the freedom of overriding GP means the loss of control over GPs used
for protecting the Web services located down in the directory hierarchy. However,
this loss can be remedied by the use of OS file system controls, if necessary, by the
Windows administrator restricting the rights of other users to modify web.config files
down the directory hierarchy. Second, to reduce the effort required for creating policy
variations, we also implemented a single inheritance mechanism for protection policy
definitions. Thus, a policy could reuse most of the other policy’s definition and over-
ride just a few elements, such as a DomainRetriever or a specific PE.

The performance overhead from storing all configuration information in
web.config seems to be relatively small because ASP.NET caches read web.config
files and invalidates the cache when the OS detects any changes to the file. Since the
behavior or cache of our protection mechanisms is not affected by the changes to

348 Konstantin Beznosov

descendent web.config files, the goal of isolating Web services that are developed
independently but co-hosted by one instance of an ASP.NET container is half-
reached. The other half, eliminating the possibility of undesirable effects from
changes in the higher levels of the hierarchy, can be achieved by allocating separate
directory sub-trees to independent applications and sharing little or no settings
through the web.config mechanism. Even though this solution is far from perfect, we
believe it is good enough for most environments.

Adding a new component to the protection sub-system requires the simple step of
adding an entry with the information about the corresponding .NET assembly, class
name, and the name of the component into the web.config file. Afterwards, this com-
ponent can be referenced in the corresponding sections of web.config. Removing a
component involves the same steps but in reverse order. The above steps do not even
require stopping the protection sub-system.

5 Examples

To demonstrate the ability of our architecture to be customized through different
compositions of replaceable components, we provide hypothetical examples of im-
plementing two different policies. These examples also illustrate the high degree of
security logic reuse that, we expect, could reduce the error rate in the corresponding
parts of the applications and their supporting infrastructure. Real commercial applica-
tions and policies that have used our implementation cannot be discussed due to the
lack of permissions from the application owners.

5.1 Example 1: University Course Web Service

Consider a simplified application that provides online access to university courses as
Web services. Let us assume that the following is a relevant fragment of the applica-
tion security policy to be enforced:
Policy 1

1. All users should authenticate using user name and password in HTTP header
(HTTP-BA).

2. Anybody can look up course descriptions.
3. Registration clerks can list students registered for the course and

(un)register students.
4. The course instructor can list registered students, manage course assign-

ments and course material.
5. Registered for the course students can get assignments and course material,

and submit assignments.
Given that each course is represented by a separate instance of a web service, the

following is a configuration of our architecture that enables the enforcement of Policy
1. It is illustrated in Figure 7 with custom-built modules in black.
Configuration 1:
 An HTTP-BA CredentialRetriever CR1 extracts the user name and password

from the HTTP request that carried the corresponding SOAP request.

Experience Report 349

Fig. 7. Configuration 1. Custom-built components appear in the black boxes

 A custom TargetAttributeRetriever provides the course number in a form of an

attribute, e.g. CourseId=EECE412.
 The default PermissionFactory is configured to compose permissions with the

qualified class name of the .NET class, as a TargetName, the corresponding
method name, and the attributes provided by the custom retriever. No domain
name is used in this configuration. Here is an example:
“ca.ubc.CourseMngmnt.SimpleCourse/CourseId=EECE412/GetDescription”.

 A pre-built PolicyEvaluator PE1 grants permissions to any request on publicly
accessible methods. In the case of Policy 1, there is one public method, Get-
CourseDescription.

 A custom PolicyEvaluator PE2 is programmed and configured to make authoriza-
tion decisions according to the rules informally described as follows:
1. Permit users in role “registration clerk” to access methods “ListStudents”,

“RegisterStudent” and “UnregisterStudent”.
2. Permit users in role “instructor” whose attribute “CourseTaught” contains

the course listed in Permission.TargetAttributes.CourseId to list registered
students, manage course assignments and material.

3. Permit users in role “student” whose attribute “RegisteredCourses” contains
the course listed in Permission.TargetAttributes.CourseId to list registered
students, manage course assignments and material.

User roles and other attributes are retrieved by the PE during or after it validates
the credential received from HTTP-BA CredentialRetriever. We refrain from
discussing this step since it is very specific to the particular student and employee
databases used by the university and is irrelevant to the discussion.

 A pre-built DecisionCombinator of type Permit Overrides grants access if either
PE grants access.

This example also illustrates one specific issue with any component-based design:
even when each component satisfies its specification, there is no inherent guarantee

350 Konstantin Beznosov

that the assembled system also does. For instance, PE2 (which assumes the presence
of a CourseId attribute in the permission passed to it) depends on the TargetAttrib-
uteRetriever to retrieve such an attribute and on the PermissionFactory to insert the
attribute into the permission. All three have to function together for the protection
sub-system to function as expected. In our solution, we have not addressed this issue,
leaving developers to ensure the consistency of the assembled protection mechanisms
manually. The development of a specific automated solution for consistency verifica-
tion is a potent topic for future research on component-based security subsystems.

5.2 Example 2: Human Resource Web Service for International Organization

Now consider a multinational company that has divisions in Japan, Canada, the USA,
and Russia. Each division has its own department of human resources (HR). The
company rolls out a Web service application in all of its divisions to provide online
access to employee information. Each division has one or more Web services provid-
ing HR information for that division. The company establishes the following security
policy for accessing this application.
Policy 2
1. Only users within the company’s intranet or those who access the service over

SSL and have valid X.509 certificates issued by the company should be able to
access the application.

2. Anybody in the company can look up any employee and get essential informa-
tion about her/him (e.g., contact information, title, and names of the manager and
supervised employees).

3. Employees of HR departments can modify contact information and review sal-
ary information for any employee from the same division.

4. Managers of HR departments can modify any information about the employees
of the same department.

Configuration 2:
 Same CredentialsRetriever CR1 is used as in Example 1.
 Another CredentialRetriever CR2 obtains an SSL client certificate from the

HTTPS connection.
 A pre-built simple DomainRetriever always returns the same statically config-

ured domain name. The domain name designates the division for which HR in-
formation is served by the web service instance, e.g., “Japan”.

 The default PermissionFactory is configured to compose permissions with the
domain name, qualified class name of the .NET class, as a target name, and the
corresponding method name. No target attributes are used in this case.
Here is an example: “Japan/com.mega-foo.EmployeeInfo/GetContactInfo”.

 Same pre-built PolicyEvaluator PE1 as in Example 1 is used. This time, there are
four public methods: FindEmployee, GetEmployeeInformation, GetEmployee-
Manager, GetSupervisedEmployees.

 A pre-built PolicyEvaluator PE3 permits access to any request made from a ma-
chine with an IP address in the range of the company’s intranet addresses.

 A custom-built PolicyEvaluator PE4 permits access to any request made by a
user with a valid X.509 certificate (retrieved by CR2) issued by the company.

Experience Report 351

Fig. 8. Configuration 2. Custom-built components appear in black boxes. Generic ones sup-
plied by vendors appear in gray boxes

 A generic RBAC PolicyEvaluator PE5 permits the invocation of different meth-

ods based on the role of the user:
1. Any user with the role “hr employee” can invoke methods that modify con-

tact information and review salary.
2. Any user with the role “hr manager” can invoke methods permitted to users

with role “hr employee” as well as methods that modify an employee’s sal-
ary, title, and the names of the manager and supervised employees.

 A custom-built PolicyEvaluator PE6 permits access to any authenticated user,
whose attribute “Division” has the same value as the domain in the permission.

• A custom-built DecisionCombinator DC2 grants access according to the follow-
ing formula: (PE3 ∨ PE4) ∧ (PE1 ∨ (PE5 ∧ PE6)). That is, a request is permitted
only to intranet users or those with a valid company certificate (PE3 ∨ PE4), pro-
vided that either the requested method is public (PE1) or an authorized HR per-
son is accessing a record for the employee from the same division (PE5 ∧ PE6).

The high degree of the architecture composability allows for re-using two pre-built
(PE1 & PE3) from configuration 1. Even though configuration 2 has three more PEs
and one more CredentialRetriever than configuration 1, as shown in Figure 8, there
are only three components (DC2, PE4, and PE6) that have to be custom-built. Among
them, PE4 is simple to build with certificate validation tools and libraries, and PE6
requires marginal effort. DC2 can be implemented in one ‘if’ structure. Two other
(PE5 and CR2) are generic and can be supplied by third-party vendors.

6 Conclusions and Acknowledgement

This paper reports an experience of designing a flexible and extensible architecture
for protecting enterprise-grade ASP.NET Web services. The architecture’s flexibility

352 Konstantin Beznosov

and extensibility have been achieved through a component-based design that follows
the architectural styles of RAD [4, 5, 17] and Attribute Function [2]. This architecture
has been implemented in a real-world security solution. We described requirements,
presented the architecture, and explained the design decisions along with the lessons
learned from this work.

The author thanks the anonymous reviewers for their insightful comments that
helped to improve this paper. ICICS editorial assistant Ben D’Andrea was instrumen-
tal in making this paper more readable.

References

1. Barkley, J., Beznosov, K. and Uppal, J., “Supporting Relationships in Access Control Using
Role Based Access Control,” in Proceedings of the Fourth ACM Role-based Access Control
Workshop, (Fairfax, Virginia, USA, 1999), pp. 55-65.

2. Beznosov, K., Object Security Attributes: Enabling Application-specific Access Control in
Middleware. in 4th International Symposium on Distributed Objects & Applications (DOA),
(Irvine, California, USA, 2002), Springer-Verlag, pp. 693-710.

3. Beznosov, K. Overview of .NET Web Services Security, presented at Distributed Object
Computing Security Workshop, Baltimore, MD, USA, 2002.

4. Beznosov, K., Deng, Y., Blakley, B., Burt, C. and Barkley, J., A Resource Access Decision
Service for CORBA-based Distributed Systems. in Proceedings of the Annual Computer
Security Applications Conference (ACSAC), (Phoenix, Arizona, USA, 1999), pp. 310-319.

5. Beznosov, K., Espinal, L. and Deng, Y., “Performance Considerations for CORBA-based
Application Authorization Service,” in Proceedings of the Fourth IASTED International
Conference Software Engineering and Applications, (Las Vegas, Nevada, USA, 2000).

6. Blakley, B. CORBA Security: an Introduction to Safe Computing with Objects. Addison-
Wesley, Reading, MA, 1999.

7. Entrust. getAccess Design and Administration Guide, Encommerce, 1999, 182p.
8. Hartman, B., Flinn, D.J., Beznosov, K. and Kawamoto, S. Mastering Web Services Secu-

rity. John Wiley & Sons, New York, 2003.
9. Karjoth, G., “The Authorization Service of Tivoli Policy Director,” in Proceedings ACSAC,

(New Orleans, Louisiana, 2001), pp.319-328.
10.Microsoft. “Altering the SOAP Message Using SOAP Extensions,” 2002.
11.Microsoft Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication. Microsoft Press, 2002.
12.Microsoft. Microsoft .NET Passport, 2001.
13.Microsoft. “Securing XML Web Services Created Using ASP.NET” in .NET Framework

Developer's Guide, 2001.
14.Netegrity. SiteMinder Concepts Guide, Waltham, MA, 2000, 78p.
15.OASIS. Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), 2004.
16.OMG. CORBAservices: Security Service Specification v1.7, formal/01-03-08, 2001.
17.OMG. Resource Access Decision Facility, formal/2001-04-01, 2001.
18.OMG. Security Domain Membership Management Service, Final Submission, 2001.
19.Parnas, D.L. “Designing Software for Ease of Extension and Contraction,” IEEE Transac-

tions on Software Engineering, SE-5(2):128-137, 1979.
20.Sandhu, R. et al. “Role-Based Access Control Models,” IEEE Computer, 29(2):38-47,1996.
21.W3C. SOAP Version 1.2 Part 1: Messaging Framework, W3C, 2002.

	1 Introduction
	2 Overview of ASP.NET Web Services
	3 Requirements
	4 Architecture Overview
	5 Examples
	6 Conclusions and Acknowledgement
	References

