

JANKS: Junk Authorizations for Massive-scale Enterprise Services

Konstantin (Kosta) Beznosov Laboratory for Education and Research in Secure Systems Engineering lersse.ece.ubc.ca

outline

the problem

- context
- target environment
- limitations of point-to-point architectures
- the approach
- summary & future work

the problem

- processor time virtually free
- human time/attention expensive
- commodity computing most cost-effective

target environments

target environments

with 0.5M of commodity computing systems
0.5--1.5M application instances
with MTTF of 1 year
1,300--4,000 fail every day
with availability of 99.9%
500--1,500 unavailable at any given moment

request-response paradigm

enables PDP reuse

addressed problem

point-to-point authorization architectures at massive scale

- become too fragile, requiring costly human attention, and
- fail to reduce latency by exploiting the virtually free CPU resources and high network bandwidth

the approach

addressing the problem

1. decouple PEPs from PDPs with publish-subscribe architecture(s)

2. recycle policy decisions

3. flood PEPs with speculatively computed (junk) authorizations

publish-subscribe architecture

Used properties:many-to-manyasynchronous

publish-subscribe for policy decisions

PDP

PDP

PDP

recycling authorizations

Bob is a *customer*

He gets authorization to view "Software Design"

recycling authorization

Alice preferred customer

- More privileges than Bob
- System recycles the authorization for Bob and allows Alice to view the book

Secondary and Approximate Authorizations Model (SAAM)

basic elements

request <s, o, a, c, i>

- s -- subject
- o -- object
- a -- access right
- c -- context
- i -- identity of the request
- <{id="Bob", role="customer"}, {id="eB-23"}, view, {date="05-08-15"}, 6112>

response <r, i, E, d>

- r -- response identity
- i -- identity of the request
- E -- evidence
- d -- decision
- < 934598438, 6112, [], allow > -- direct (from PDP) response
- < 943498843, 6115, [6112], allow > -- indirect/precise response
- < 990923124, 6120, [6112], allow > -- indirect/approximate response

recycling authorizations

secondary authorizations

- re-using decisions made for other, but equivalent, requests
- example <s, o, a, c, i> <s, o, a, c, i'>

approximate authorizations

- re-using decisions made for other, but similar, requests
- examples
 - preferred customer ≥ customer ≥ visitor
 - row \leq table
 - read \leq modify

back to JAMES

flooding with speculative authorizations

summary

problem

- context and assumptions
 - human time/attention is too expensive
 - CPU resources are virtually free
 - commodity computing is most cost effective
- target environments
 - massive-scale enterprises with 10⁵ machines
- limitations of point-to-point architectures
 - too fragile, high latency, too expensive to maintain
- approach
 - decouple PEPs and PDPs with publish-subscribe
 - recycle authorizations
 - secondary and approximate authorization model (SAAM)
 - flood with junk authorizations

current status and future work

current work

- SAAM_{BLP}, SAAM_{RBAC}, SAAM_{significant}
- simulation
- P2P-based authorization recycling
- publish-subscribe for authorizations
- future work
 - speculative authorizations

An Overview of The Ongoing Research at LERSSE

Konstantin Beznosov http://konstantin.beznosov.net

What's LERSSE?

<u>Laboratory for Education and Research</u> in <u>Secure Systems Engineering</u>

- Research group at the Department of Electrical & Computer Eng. UBC
- People
 - Faculty
 - Konstantin Beznosov, lead (computer security)
 - Sidney Fels (Human Computer Interaction), lead of HCT Lab
 - 2 Ph.D. students
 - 5 Master students + 2 joining in September

http://lersse.ece.ubc.ca

Research Directions and Projects

- engineering security 1. mechanisms
 - CORBA Security, RAD, \bullet AAS, RAD JACCet, SDMM, attribute function, 4. network security EASI, composable authorization engines,
- 2. access control models & languages
 - CORBA-RBAC, RelBAC \mathbf{O} XACML v1.0, SAAM, probabilistic trust

- **3.** engineering secure software
 - agile security assurance
 - - MC-SSL
- JAMES, AC mech. eval. 5. critical infrastructure interdependencies
 - **CITI** interdependencies
 - 6. usable security
 - **HOT Admin**

agile security assurance

problem

mismatch between agile development & security assurance

contributions

- **1. examined** (pain points)
- **2. classified** assurance methods
- **3. alleviated** (tools, knowledge codification, new methods research, intermittent assurance)

Further research

- tool support
- knowledge classification
- new assurance methods

HOT Admin: <u>Human</u>, <u>Organization</u>, and <u>Technology</u> Centred Improvement of IT Security <u>Admin</u>istration

- purpose
 - 1. evaluation methodology for sec. admin. effectiveness
 - 2. guidelines and techniques to design sec. admin. tools
- problem addressed
 - conflict of human, organizational, and technological forces

Organizational

Human

- approach
 - resolve the conflict through harmonizing the forces
- work plan (3 years)
 - 1. pilot studies to fine-tune the methodologies
 - 2. inventories and an initial analysis through field research
 - 3. development of models
 - 4. design of techniques and methodologies
 - 5. validation and evaluation of the project's key results.
- team
 - Kosta Beznosov (security), Sid Fels (interfaces), Lee Iverson (collaborations), Brian Fisher (interaction)

multiple-channel SSL

end-to-end security with partially trusted proxiesselective data protection