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We Will Discuss Today:

� Probabilistic encryption

{ Average Case Computational Di�culty and the Worst Case Di�culty

� Identity-Based Public-Key Cryptography

� Fair Coin Flipping Using Public-Key Cryptography

� Fair Cryptosystems (Key Escrow)

� Zero Knowledge Interactive Proof Systems
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Average Case / Worst Case Di�culty: Cryptosystem

Cryptosystem is a collection of hidden hyperplanes:

� Private key { hidden hyperplanes

� Public key { a set of random points near the hyperplanes

{ Not to reveal the collection of hyperplanes

{ A random subset sum is close to a hyperplane

� A large n-dimensional cube # 2 Rnis selected and �xed.
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Average Case / Worst Case Di�culty: Encryption

Encryption is bit-by-bit:

� 0 { using public key to �nd a random vector v 2 # near one of the

hyperplanes

{ the ciphertext is v ;

� 1 { choosing a random vector u uniformly from #

{ the ciphertext is simply u.
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Average Case / Worst Case Di�culty: Decryption

� Determine the distance of ciphertext x to the nearest hidden hyperplane.

{ If this distance is su�ciently small, then x is decrypted as zero;

{ otherwise x is decrypted as one.

Small (but polynomial) probability of an error in decryption: 1 decrypted

as 0.

The ability to distinguish encryptions of zero from encryptions of one yields

the ability to solve the hidden hyperplane problem. This implies that the

only way to break the cryptosystem is to �nd the private key.
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Average Case / Worst Case Di�culty: Equivalence

Theorem

Theorem 1. For all c1; c2; c3; c4 > 0 there exists a c5 and a probabilistic

algorithm B (using an oracle) so that for all su�ciently large n, condition

(1) implies condition (2), where

1. A is a probabilistic circuit size nc1 so that if u; v1; :::; vm are picked at

random as described in the protocol generating the public and private

keys, then with probability of at least n�c2, A distinguishes the random

variables Sv1;:::;vm and Ev1;:::;vm, given v1; :::; vm with probability at least

1
2 + n�c3.

2. B, using A as an oracle, can solve any instance of size at most nc4 of the

nD2-unique shortest vector problem in time nc5 and with a probability at

least 1� 2�n.
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Identity-Based Public-Key Cryptography: Why?

Alice �! [secure message] �! Bob

✘ Public key from a key server

✘ Verify some trusted third party's signature on his public-key certi�cate

✘ Store Bob's public key on her own computer

✔ Send him a secure message

COT6421 6



Konstantin Beznosov 1998/04/07

Identity-Based Public-Key Cryptography

Also called Non-Interactive Key Sharing systems:

� Bob's public key is his identity

� Makes the cryptography about as transparent as possible

Problems:

� Issuing private keys to users based on their identity

� Change your identity to get another public/private key pair if your identity

is compromised

Most solutions turned out to be insecure or are very complicated to be

useful in real life.
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Fair Coin Flipping with PK Cryptography

The only requirement: the algorithm commute, i.e.

DK1
(EK2
(EK1
(M))) = EK2
(M)

It is not true for symmetric algorithms

It is true for some public-key algorithms: RSA with identical moduli
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Fair Coin Flipping: Simple Protocol

1. Alice and Bob each generate a public-key/private-key key pair.

2. Alice generates MT , MH { unique random strings. Alice �! EA(MT )

EA(MH)

3. EA(MH)

EA(MT )
�! Bob; EB(EA(M)) �! Alice

4. Alice �! DA(EB(EA(M))) = EB(M) �! Bob

5. Bob �! DB(EB(M)) =M �! Alice

6. Alice veri�es the arbitrary string (either for MT or MH) is correct.

7. Both Alice and Bob reveal their key pairs to check each other.

Protocol application: session-key generation
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Fair Cryptosystems (Key Escrow): Idea

1. Alice creates her private-key/public-key key pair. She splits the private

key into several public pieces and private pieces.

2. Alice sends a public piece and corresponding private piece to each of the

trustees. She also sends the public key to the KDC.

3. Each trustee, independently con�rms that public and private parts are

correct. Each trustee stores the private piece somewhere secure and

sends the public piece to the KDC.

4. The KDC performs another calculation on the public pieces and the

public key. Assuming that everything is correct, it signs the public key.

If the courts order a wiretap, then each of the trustees surrends their piece

to the KDC, and the KDC can reconstruct the private key.
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Fair Di�e-Hellman Algorithm

Basic Di�e-Hellman algorithm: a group of users share a prime p, and a

generator, g.

Alice's:

� private key { s

� public key { t = gsmod p.
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Fair Di�e-Hellman Algorithm: Detailed Example

1. Alice chooses integers, s1; s2; s3; s4 and s5, each < p-1. Alice's private

key is s = fs1 + s2 + s3 + s4 + s5gmod p � 1 and her public key is

t = gsmod p. Alice also computes ti = gsimod p; for i = 1 to 5 Alice's

public shares are ti, and her private shares are si.

2. Alice sends ti and si to each trusteei. She sends t to KDC.

3. Each trustee veri�es that ti = gs1mod p, signs ti and sends it to the

KDC. The trustee stores si in a secure place.

4. After receiving all �ve public pieces, the KDC veri�es that t = ft1 � t2 �

t3 � t4 � t5gmod p. If it does, the KDC approves the public key.
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Fair Di�e-Hellman Algorithm

The KDC knows that:

� the trustees each have a valid piece

� they can reconstruct the private key if required.

Neither KDC nor any of four of the trustees working together can reconstruct

Alice's private key.

Research in this area found how to make RCA fair and how to combine a

threshold scheme with the fair cryptosystem, so that m out of n trustees

can reconstruct the private key.
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Zero-Knowledge Interactive Proof Systems

Is it possible to prove a statement without yielding anything beyond its

validity?

Zero-knowledge proofs are proofs that yield no knowledge beyond the

validity of the assertion.

We gain knowledge only if we receive the result of a computation which is

infeasible for us.

Knowledge is related to computational di�culty, whereas information is not.
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Concrete Example: 0

Alice claims she knows a "Hamiltonian cycle" on a particular graph { her

proof of identity.

1. Alice scrambles the position of the cities.

2. Bob doesn't have any way of knowing which of the covered cities are

which.
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Concrete Example: 1

3. "Alice cuts, Bob chooses:" Bob is to make her either to show:

� the Hamiltonian cycle for this set of covered cities and links, or

� the cities uncovered.

4. Bob tosses a coin or chooses randomly somehow and says: "Show me

the cities."

5. Alice uncovers all the cities and Bob examines the graph and sees she

showed him the original graph.

6. Back to step 3.
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Concrete Example: 2

After 30 rounds, Alice has either

� produced a legal Hamiltonian cycle or

� produced a graph that is the same as (isomorphic to same cities linked

to same other cities) the registered graph in each and every one of the

rounds.

The odds of #1 being true drop rapidly as the number of rounds are

increased { 1 in 2n

Bob believes Alice knows the solution.
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Some Questions

1. Could someone else discover the Hamiltonian cycle of Alice's graph?

The Hamiltonian cycle problem is "NP-complete.`" 50 nodes is

intractable.

2. If �nding a Hamiltonian cycle is intractable, how did Alice ever �nd one?

She didn't have to �nd one! She knows a Hamiltonian cycle, by

construction.

3. Can Bob reconstruct what the Hamiltonian cycle must be by asking for

enough rounds to be done?

Not generally.
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