Part II of Introduction to Cryptography: Probabilistic Encryption

Konstantin Beznosov
COT 6421 / Spring 1998

April 2, 1998

We Will Discuss Today:

- Why do we need probabilistic encryption?
- The idea behind
- Optimized algorithm
- Drawbacks

Why do we need probabilistic encryption?

$$
\begin{gathered}
C=E_{k}(M) \\
C^{\prime}=E_{k}\left(M^{\prime}\right) \text { and } \mathrm{C}^{\prime}=\mathrm{C} \Rightarrow \mathrm{M}^{\prime}=\mathrm{M}
\end{gathered}
$$

The idea behind probabilistic encryption

$$
C_{1}=E_{k}(M), C_{2}=E_{k}(M), C_{3}=E_{k}(M), \ldots, C_{i}=E_{k}(M)
$$

$$
M=D_{k}\left(C_{1}\right)=D_{k}\left(C_{2}\right)=D_{k}\left(C_{3}\right)=\ldots D_{k}\left(C_{i}\right)
$$

$C_{i}=E_{k}(M)$ even if $\mathrm{M}^{\prime}=\mathrm{M}$ it cannot be checked by comparing $C_{i}=$ $E_{k}(M) C_{j}=E_{k}\left(M^{\prime}\right)$

Simplified description of the optimized algorithm

p and q are primes
$p=3 \bmod 4$ and $q=3 \bmod 4$
private key - p and q
public key $-n=p q$

Optimized algorithm: encryption

1. Choose some random x, relatively prime to n.
2. Compute $x_{0}=x^{2} \bmod n$
3. Run BBS generator with x_{0} as the seed. The generator spits out bits b_{i}, where each b_{i} is the least significant bit of $x_{i} \equiv x_{i-1}^{2} \bmod n$
4. Use the output of the generator as a stream cipher.
5. Compute $X O R M$, one bit at a time, with the output of the generator. $\mathrm{M}=m_{1}, m_{2}, m_{3}, \ldots, m_{t} \mathrm{C}=m_{1} \oplus b_{1}, m_{2} \oplus b_{2}, m_{3} \oplus b_{3}, \ldots, m_{t} \oplus b_{t}$
6. Append the last computed value, x_{t}, to the end of the message C.

Decryption \& Drawbacks

DECRYPTION
Values of $\mathrm{p}, \mathrm{q}, \mathrm{n}, \mathrm{t}$ and x_{t} are used to recover x_{0} and the original plaintext.
Drawbacks of probabilistic encryption:

- Ciphertext large size
- Totally insecure against a chosen-ciphertext attack

