
T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 3 – 18, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Here’s Your LegoTM Security Kit: How to Give 
Developers All Protection Mechanisms  

They Will Ever Need 

Konstantin Beznosov 

Department of Electrical and Computer Engineering, University of British Columbia 
beznosov@ece.ubc.ca 

1   Introduction 

The main premise of this paper is that the developers and owners of distributed 
applications need and can be provided with three things: 1) Lego -like reusable and 
versatile building blocks, 2) middleware architectures and tools for composing 
useful customized solutions out of such blocks, and 3) the means of creating their 
own inexpensive and error-proof building blocks. They could then create custom 
distributed applications suitable to their needs and environments, while avoiding 
costly reinvention and reconstruction of generic and, more often than not, quite 
complex functionality common across applications. And we are not referring to the 
business logic, which could arguably be included in the list. The focus is on the 
nonfunctional properties and services (fault tolerance, performance, security, etc.) 
of distributed applications. 

The above needs have been determined from the author’s experience of working 
for end-user, consulting, and vendor organizations. Working on the end-user side 
showed that no vendor could ever satisfy all requirements for customizing their solu-
tions to our needs and constraints. Vendors’ customization mechanisms required too 
much effort and expertise from in-house developers. Experience as a consultant, prod-
uct developer and architect gave convincing evidence that this problem was common 
to many end-user organizations. 

To demonstrate that useful building blocks, architectures, and extension means can 
indeed be provided for customizing nonfunctional properties of distributed applica-
tions without demanding seasoned expertise in the subject matter from application 
developers, we present an authentication and authorization (A &A) architecture for 
ASP.NET Web services. This architecture, we believe, features all three desired char-
acteristics. It builds on the results of several years of applied research and practical 

Abstract. By presenting a protection architecture for ASP.NET Web services, 
this paper demonstrates the feasibility of creating middleware mechanisms in 
the form of composable, flexible, and extensible building blocks. Like LegoTM 
constructor parts, such blocks enable the reduction of the effort of constructing, 
extending, and adjusting the application properties and middleware services in 
response to requirements or environment changes. 

TM



4 K. Beznosov 

experience, giving the hope that similar architectures can be developed for easy cus-
tomization of other properties and services for distributed applications. 

The paper is organized as follows: section 2 provides background and discusses re-
lated work; Section 3 explains technical motivations for the architecture and gives its 
overview; Section 4 highlights those design decisions that made the architecture easy 
to customize; discussion is in Section 5; and we conclude with Section 6. 

2   Background and Related Work 

Research on composition and customization for middleware has been largely focused 
on three areas: core functionality; domain-specific properties and characteristics; and 
middleware services. Research in core functionality concentrates on data 
(un)marshaling, invocation dispatching, object life-cycle, data transport, etc. (TAO [1], 
Quarterware [2], COMERA [3], Spring [4]). Examples from the work in domain-
specific properties and characteristics are real-time [5], load-balancing [6], QoS [7, 8], 
performance and consistency [9]. Our work is on composable and customizable A&A 
mechanisms and belongs to middleware services research, which concentrates on such 
services as event notification [10], transactions and concurrency [11, 12], and security. 

Work on customizable security mechanisms in middleware has been conducted at 
least since DCE [13]. A wider known example is CORBA, which has a Security Ser-
vice [14] architecture that enables customization by supporting interceptors as well as 
making authorization and audit decision objects, security context and some other 
elements replaceable. However, because the granularity of CORBA Security replace-
able parts is too coarse it takes too much effort to customize the service. This draw-
back can also be viewed as low degree of composability. Besides DCE and CORBA, 
other examples of architectures with replaceable security logic but low degree of 
composability are more modern JAAS [15], Java Authorization Contract for Contain-
ers architecture [16], and Legion [17]. Our approach achieves fine granularity of the 
replaceable parts and therefore a higher degree of composability. 

What our approach (intentionally) leaves unanswered is how to express A&A poli-
cies and map them into a composition of A&A building blocks. Andersen et al. [18] 
approach the problem from the other end and propose “programmable security” ap-
proach that uses Obol language to “program” middleware security protocols without 
addressing the issue of translating such programs into compositions of specific ele-
ments of the middleware security architecture.  

Design of the authorization mechanism described in this paper is largely based on 
the Resource Access Decision (RAD) architecture [19, 20], which we follow more in 
the spirit than in detail—rather as an architectural style. Briefly reviewed in Appendix 
A, RAD is one of the first attempts to compose and customize authorization logic out 
of simpler parts.  

Although, neither RAD nor this work address the issue of conflicts that could arise 
as a result of authorization logic composition, several solutions have been proposed 
elsewhere. Jajodia et al. [21] have proposed an access control model in which incon-
sistencies among authorizations can be resolved using rules. The framework for ac-
cess control policy enforcement developed by Siewe et al. [22] allows multiple poli-



 Here’s Your LegoTM Security Kit 5 

cies to be enforced through policies composition. It provides a way to specify com-
plex policies and to reason about their properties. 

3   Architecture Motivation and Overview 

The ASP.NET container is a popular hosting environment for Web services built and 
run on Microsoft Windows and .NET platforms. However, the ASP.NET security 
architecture [23], as provided out-of-the-box is not sufficiently flexible and extensible 
to be adequate for enterprise applications. As we describe in [24], ASP.NET supports 
limited authentication and group/user-based authorization, both bound to Microsoft 
proprietary technologies. If an application needs to be protected with enterprise A&A 
services, the developers have two options: The first, is to develop home-grown con-
tainer security extensions, which are hard for average application developers to get 
right. The second option is to program the security logic into the Web service busi-
ness logic, but the resulting application is costly to evolve and support. In both cases, 
the development of security-specific parts by average application developers is com-
monly believed to result in high vulnerability rates due to security-related bugs that 
are hard to avoid and catch. 

Due to its flexibility and extensibility, the protection architecture described in this 
paper makes ASP.NET easier to integrate with organizational security infrastructure 
with a reduced effort on the side of Web service developers. The architecture is flexi-
ble because it allows configuring of machine-wide authentication and authorization 
functions, and overriding them for a subtree of the Web services (up to an individual 
Web service application) in the directory-based ASP.NET hierarchy. Its extensibility is 
revealed through the support of wide variety of A&A logic, as long as the logic can be 
programmed as a .NET class and/or accessed (possibly via a proxy) through a prede-
fined .NET API. Furthermore, one can reuse other instances of such logic by combin-
ing authorization decisions from them according to predefined or custom rules. 

4   The Architecture 

The architecture details are described elsewhere [25]. This section focuses mainly on 
those features of the architecture that enable the composition of more complex A&A 
functionality from basic, reusable, building blocks. There are five features: 

1. the separation of A&A enforcement logic from the decision logic,  
2. the employment of the RAD architecture style, which makes creation of custom 

authorization decision logic easier and avoids the need for a general-purpose pol-
icy evaluation engine, 

3. flexible configuration-driven construction of the authorization decision informa-
tion, 

4. fine-grained replaceable modules that enable support for a wide range of A&A 
functionalities, and 

5. the support for the scalability, extensibility, and reusability in the configuration 
part of the architecture. 



6 K. Beznosov 

While most of these features have been already reported individually in the literature, 
the novelty of our approach is in achieving new characteristics of middleware protec-
tion mechanisms by exploiting and combining these features. 

4.1   Separation of Enforcement and Decision Logic 

To integrate with ASP.NET run-time, the architecture takes advantage of the 
ASP.NET interception mechanism, SOAP Extension [26], intended for additional 
processing of SOAP messages. Although this mechanism is specific to ASP.NET, 
other modern middleware technologies (e.g., CORBA, EJB, RMI) can intercept re-
quests or even individual messages [27-30]. Hence, the reliance on the existence of an 
interception point in the request invocation chain does not limit our approach or 
makes it specific to ASP.NET. 

 

Fig. 1. General organization of the architecture into an interceptor 

As shown in Figure 1, our custom version of SOAP Extension module (labeled “in-
terceptor”) performs initial extraction, formatting, and other preparation of HTTP re-
quests and contained in them SOAP messages, passing the data to the decision A&A 
logic, and enforcing authorization decisions. Through the separation of the enforce-
ment and decision functions, we were able to make the enforcement policy neutral and 
common to all Web services, while allowing the latter to be customizable to each ap-
plication. The customizable functionalities are authentication and authorization. 

Authentication is commonly divided into two phases: retrieving authentication data 
and validating it. CredentialsRetriever objects specialize in retrieving authentication 
data, whereas validation follows lazy strategy and is left to the authorization phase. 
Each retriever implementation is responsible for extracting particular data types from 
appropriate locations. Authentication data and retrievers are represented in a uniform 
fashion as implementations of Credential and CredentialsRetreiver interfaces accord-
ingly. This extensibility enables support for diverse authentication policies. For in-
stance, in the same ASP.NET container, one application might use only HTTP basic 



 Here’s Your LegoTM Security Kit 7 

authentication with username and password (HTTP-BA) over SSL, whereas another 
could require client SSL certificate and a security token in the SOAP message header 
to be present for successful authentication. 

4.2   Employment of the RAD Architectural Style 

The structure of the authorization-related elements of the architecture follows RAD 
style, which enables the composition of more complex authorization policies out of 
simpler ones. A brief overview of RAD is provided in Appendix A. 

An authorization decision is reached in a three-step process made by evaluators, 
combinator, and interceptor. Initial decisions are made by zero or more predefined or 
custom authorization modules referred as Policy Evaluators (PEs). The strength of 
RAD architectural style is in the support of fairly sophisticated authorization policies 
(see [31] for an example) without the need for complex authorization engines. The 
support is achieved by combining run-time decisions from several simple PEs into 
one at the second step, performed by a Decision Combinator (DC). 

Similarly to PEs, common variations of combination logic are provided in pre-built 
DCs with the ability for developers to “plug in” custom implementations. To appreci-
ate the power of DC&PEs approach, consider a composition of “All Permits Re-
quired” DC with a role-based access control (RBAC) [32] PE. If an application owner 
decides to further restrict access to a particular range of IP addresses, he or she can do 
so by adding a PE that authorizes IP addresses, instead of modifying fairly complex 
logic of the RBAC PE. The result is shown in Figure 2. Support for policies in which 
PEs might have different priorities, is enabled through the use of PE names so that a 
DC can discriminate between them. 

 

Fig. 2. Resulted configuration after adding the PE, which restricts access based on the sender’s 
IP address 

The authorization process continues to its third stage in order to achieve fail-safe 
defaults, in the cases when a DC experiences a failure, and, due to a design or imple-
mentation error, does not come to a binary decision, During this stage, the interceptor, 
which originally delegated the process to the corresponding DC, renders any decision, 
except “permit,” received from the DC to “deny” and thus reaches an authorization 
verdict. If access has been denied, the corresponding exception is thrown to the 
ASP.NET run-time, which translates it into an appropriate SOAP exception message. 



8 K. Beznosov 

4.3   Adaptable Information for Authorization Decisions 

Besides credentials, PEs are supplied with other request-related information, which is 
constructed into a permission. Thus, the authorization process determines whether a 
permission should be granted to a subject given its credentials. It is the adaptable 
construction of the permission that furthers the composability and customizability of 
the architecture. A permission is constructed out of four distinct elements, as shown in 
Figure 3. Examples are provided in Table 1 at the end of this subsection. 

 
Fig. 3. Elements of the permission generated by the default permission factory 

1. TargetName: the name of the target Web service can be represented by either the 
URL or the .NET class name of the service implementation. By using the .NET 
class name instead of the URL, all instances of a Web service application can 
share the same authorization policy rules. 

2. DomainName: the use of the domain classifier is borrowed from CORBA Secu-
rity [14] architecture, whose policy domains support different security require-
ments for implementations of same interfaces. In our architecture, optional do-
mains allow discrimination between those same implementations of a Web ser-
vice that have different access control requirements. Another intended purpose of 
domains is to allow a logical grouping of several Web services, perhaps so that 
they can share an authorization server or its policy database.  

3. TargetAttributes: further differentiation among Web service instances is achieved 
through an optional list of name-value pairs holding target attributes. For exam-
ple, a Web service representing a university course could have the course Id as 
one of its attributes. The use of target attributes reduces the need for mixing au-
thorization and other security logic with business logic. These application-
specific attributes and the mechanism for obtaining them are directly based on 
our prior work on Attribute Function (AF) [33, 34], overview of which is pro-
vided in Appendix B. 

4. MethodName: since ASP.NET supports only RPC semantics, acceptable SOAP 
messages have to specify the method of the corresponding .NET server class. 



 Here’s Your LegoTM Security Kit 9 

Table 1 shows examples of permissions. The construction of permissions is done 
by a default permission factory, which can be replaced by a custom implementation 
possibly producing permissions of other format and content. 

Table 1. Examples of permissions 

Permission Example Explanation 
http://foobank.com/bar.asmx Only the URL is used 
com.foobank.ws.Sbar/m1 Class and method names 
D1/com.foobank.ws.Sbar /m1 Same but in domain “D1” 
com.foobank.ws.Sbar/owner=smith Class name and attribute 
D1/com.foobank.ws.Sbar/owner=smith/m1 Domain, class, attribute, method 

 
Fig. 4. Key elements of the architecture: black elements are replaceable, and grey elements are 
modifiable by their creators 



10 K. Beznosov 

4.4   Fine-Grained Replaceability 

The flexibility and extensibility of the architecture is achieved in part by designing 
most of its elements to be replaceable. Any of the black boxes in Figure 4 can be 
replaced by a version that comes with the implementation or by a version produced by 
application developers or owners.  

Custom versions of the grey boxes are subject to the control by those modules that 
create them. Other architectures, e.g., CORBA Security, also make some of their parts 
replaceable. The novelty of our approach is the level of replaceable parts’ granularity. In 
CORBA Security, for instance, authorization logic has to be replaced as a whole, 
whereas in our architecture, one can selectively replace specific PEs and/or a DC. Addi-
tionally, each Web service in the same container can be protected by a different set of 
replaceable elements, which is not the case with CORBA Security implementations.  

To demonstrate the ability of our architecture to be customized through different 
compositions of black-box implementations we provide examples of implementing 
two different policies. 

4.4.1   Example 1: University Course Web Service 
Consider a simplified hypothetical application that enables online access to university 
courses as Web services. Let us assume that the following is a relevant to the example 
fragment of the application security policy to be enforced: 

Policy 1: 

1. All users should authenticate using HTTP-BA. 
2. Anybody can lookup course descriptions. 
3. Registration clerks can list students registered for the course and (un)register 

students. 
4. The course instructor can list registered students as well as manage course as-

signments and course material. 
5. Registered students can download assignments and course material, as well as 

submit assignments. 

Given that each course is represented by a separate instance of a Web service, the fol-
lowing is a configuration of our architecture that enables the enforcement of Policy 1. 

Configuration 1: 

 An HTTP-BA CredentialRetriever CR1 extracts the user name and password 
from the HTTP request that carried the corresponding SOAP request. 

 A custom TargetAttributeRetriever provides the course number in a form of an 
attribute, e.g. CourseId=EECE412. 

 The default PermissionFactory is configured to compose permissions with the 
qualified class name of the .NET class, as a TargetName, the corresponding 
method name, and the attributes provided by the custom retriever. For example: 
‘ca.ubc.CourseManagment.SimpleCourse/CourseId=EECE412/GetDescription’. 
No domain name is used in this configuration. 



 Here’s Your LegoTM Security Kit 11 

 A prebuilt PolicyEvaluator PE1 grants permissions to any request on publicly ac-
cessible methods. In the case of Policy 1, there is one public method, Get-
CourseDescription.  

 A custom PolicyEvaluator PE2 is programmed and configured to make authori-
zation decisions according to the rules informally described as follows: 

1. Permit users in role ‘registration clerk’ to access methods ‘ListStudents’, 
‘RegisterStudent’ and ‘UnregisterStudent’. 

2. Permit users in role ‘instructor’ whose attribute ‘CourseTaught’ contains the 
course listed in Permission.TargetAttributes.CourseId to list registered stu-
dents, manage course assignments and material. 

3. Permit users in role ‘student’ whose attribute ‘RegisteredCourses’ contains the 
course listed in Permission.TargetAttributes.CourseId to list registered stu-
dents, manage course assignments and material. 

Note that user roles and other attributes are retrieved by the PE during or after it 
validates the credential received from HTTP-BA CredentialRetriever. This step 
is not discussed since it is very specific to the particular student and employee da-
tabases used by the university and is irrelevant here. 

 A pre-built DecisionCombinator of type Permit Overrides, which grants access 
if either PE grants access. 

4.4.2   Example 2: Human Resource Web Service for International Organization 

Now consider a multinational company that has its divisions in Japan, Canada, Aus-
tria, and Russia. Each division has its own department of human resources (HR). The 
company rolls out a Web service application in all of its divisions to provide online 
access to employee information. Each division has one or more Web services provid-
ing HR information of that division. The company establishes the following security 
policy for accessing this application. 

Policy 2: 

1. Only users within the company’s intranet or those who access the service over 
SSL and have valid X.509 certificates issued by the company should be able to 
access the application. 

2. Anybody in the company can look up any employee and get essential informa-
tion about her/him (e.g., contact information, title, and names of the manager and 
supervised employees). 

3. Employees of HR departments can modify contact information and review sal-
ary information of any employee from the same division. 

4. Managers of HR departments can modify any information about the employees 
of the same department. 

Configuration 2: 

 Same CredentialsRetriever CR1 as in Example 1. 
 Another CredentialRetriever CR2 obtains an SSL client certificate from the cor-

responding HTTPS connection. 



12 K. Beznosov 

 A prebuilt simple DomainRetriever that always returns same statically config-
ured domain name.  The domain name designates the division for which HR in-
formation is served by the Web service instance, e.g., ‘Japan’. 

 The default PermissionFactory is configured to compose permissions with the 
domain name, qualified class name of the .NET class, as a target name, and the 
corresponding method name. No target attributes are used in this case. For ex-
ample: ‘Japan/com.mega-foo.EmployeeInfo/GetContactInfo’.  

 Same prebuilt PolicyEvaluator PE1 as in Example 1. In the case of Policy 2, 
there are four public methods: FindEmployee, GetEmployeeInformation, 
GetEmployeeManager, GetSupervisedEmployees. 

 A prebuilt PolicyEvaluator PE3 that permits access to any request made from a 
machine with an IP address in the range of the company’s intranet addresses. 

 A custom-built PolicyEvaluator PE4 that permits access to any request made by a 
user with valid X.509 certificate issued by the company. This certificate, if avail-
able, is retrieved by CR2. 

 A generic RBAC PolicyEvaluator PE5 that permits invocation of different meth-
ods based on the role of the user: 
1. Any user with role ‘hr employee’ can invoke methods that modify contact in-

formation and review salary. 
2. Any user with role ‘hr manager’ can invoke methods permitted to users with 

role ‘hr employee’ as well as methods that modify employee’s salary, title, 
and names of the manager and supervised employees. 

 A custom-built PolicyEvaluator PE6 that permits access to any authenticated 
user, whose attribute ‘Division’ has the same value as the domain in the per-
mission. 

The high degree of the architecture composability allows reusing two prebuilt (1 & 
3) and one generic (RBAC) PE (5) out of five. Among the other two, PE4 is simple to 
build using certificate validation tools and libraries, and PE6 requires marginal effort. 
The DC can be implemented in one ‘if’ structure. 

4.5   Configuration Scalability, Extensibility, and Reuse 

Extensible and scalable configuration turned out to be critical in order for our archi-
tecture to support the composition of more complex A&A functionality from basic, 
reusable, building blocks, and, at the same time, carry low administration or run-time 
overhead. We developed a simple hierarchical language for defining and configuring 
various elements of the A&A decision logic as well as the protection policies com-
posed of them. The relationships among these elements and the policies are shown in 
Figure 5. 

A custom-built DecisionCombinator, which grants access according to the fol-
lowing formula: (PE3 ∨ PE4) ∧ (PE1 ∨ (PE5 ∧ PE6)). That is, a request is permit-
ted only to intranet users or those with valid company’s certificate (PE3 ∨ PE4), 
provided that either the requested method is public (PE1) or an authorized HR 
person is accessing a record of the employee from same division (PE5 ∧ PE6). 



 Here’s Your LegoTM Security Kit 13 

 

Fig. 5. Simplified model of the configuration elements with default cardinality “0..*” 

A protection policy can simply be viewed as a collection of specific credential re-
trievers; Pes; DC; target and domain and target attribute retrievers; as well as a per-
mission factory, which is defined in other sections of the configuration. Since all these 
elements are defined independently of the policies and have unique names, they can 
be referenced by more than one policy. Governing Policy (GP) specifies which par-
ticular policy is used for controlling access to a Web service. Thus, multiple policies 
can be prepackaged and used for quickly switching the behavior of the protection 
mechanisms from one predefined mode to another.  

Illustrated in Figure 6, the hierarchal nature of web.config parsing semantics en-
ables a high degree of scalability without losing a fine level of granularity in the con-
trol over subsets of (or individual) Web services. The GP defined in the web.config of 
the ASP.NET root determines the protection of all those Web services, for which no 
web.config file between the service and the root directory overrides it. 

 

Fig. 6. The association among Web services, their implementations, directories and configura-
tion files 

The configuration extensibility and reusability is achieved through two design de-
cisions: First, any web.config file down in the ASP.NET directory hierarchy can over-
ride GP, or define any new element, including new policies as long as the name of 



14 K. Beznosov 

this element has not been used in an ascendent web.config.1 Second, to reduce the 
amount of effort required for creating policy variations, we also introduced single 
inheritance mechanism for policy definitions. This way, a policy could reuse most of 
another policy’s definition and override just few elements. 

5   Discussion 

Besides the practical value for developers and owners of Web services hosted by 
ASP.NET containers, the work on the A&A architecture demonstrated two points 
worth of discussion: First, the architecture of protection mechanisms for distributed 
applications can be designed as a collection of easy-to-create building blocks with 
multiple places for extending and altering the overall behavior. Hopefully, this work 
will encourage middleware and software engineering communities to look into the 
feasibility of similar designs for other mechanisms and services. 

Second, there is an alternative to complex, almost universal (and therefore expen-
sive to build and administer) general-purpose authorization engines. This alternative 
is lightweight, simple to construct, and provides an inexpensive way to run authoriza-
tion modules, each of which is dedicated to evaluating very specific subset of authori-
zation rules. The decisions from these modules are combined with yet other light-
weight specialized modules. As a result, for every distinct authorization policy, a 
specialized version of the authorization engine is composed out of such modules.  

What are the benefit(s), if any, of avoiding general-purpose authorization languages 
and engines for run-time decisions? We can identify several. To start, no matter how 
completely a language is supported by an authorization engine, there will always a case 
that it does not support. Even though most modern authorization languages and engines 
come with extension points, we are not aware of any instance that would enable simple 
and efficient synthesis of authorization run-time logic out of existing and new logic. 

Composing run-time authorization logic from lightweight specialized modules also 
enables “pay-for-what-you-use” implementations. The run-time and the administra-
tive overheads become proportional to the complexity of the policies enforced and not 
to the complexity of all the possible policies supported. Last, but not least, the learn-
ing curve for administering, as well as the effort for testing authorization logic com-
posed out of simple modules is again believed to be proportional to the complexity of 
the enforced policy. By avoiding large generic decision engines and replacing them 
with the architectures and tools for composing customized engines, developers can 
better meet the goals for short times to market and for developing solutions useful in a 
wide range of application domains. 

Our approach is not in conflict with the principle of designing a system with secu-
rity in mind from the beginning. The design of distributed applications still has to take 
into account the security requirements as well as the capability of the security mecha-
nisms and the underlying middleware technology. For instance, unless each employee 
record in Example 2 is designed to correspond to a separate distributed object, it 
would be impossible to allow employees to change their own contact information 

                                                           
1 By “ascendent web.config” we mean a web.config file located down in the directory 

hierarchy. 



 Here’s Your LegoTM Security Kit 15 

without mixing authorization and application logic. What our approach aims at is 
reducing the effort required to create and adjust adequate A&A controls in the pres-
ence of changes to security policies. 

5.1   What About AOSD? 

The two points discussed above also apply to the aspect-oriented software develop-
ment (AOSD) methods. Even though AOSD is mostly about dealing with crosscutting 
concerns that cannot be cleanly modularized, the question of designing decision logic 
remains. The approach of Lego™-like building blocks combined with a flexible and 
extensible base for composition, as well as the means of creating new blocks can be 
employed for designing whatever parts of the aspect in question that the AOSD tech-
niques and tools are able to decouple from the business logic. This also pertains to the 
choice between large generic policy engines and those composable from specialized 
light-weight modules. 

It is not surprising that the reverse is also applicable, i.e., the implementations of 
the architectures like the one presented in this paper could benefit from AOSD tech-
niques. An example can be found in [35] which proposes an AOSD-based approach 
for improving the flexibility and extensibility of security systems at finer levels of 
granularity than what OO techniques can offer. 

6   Conclusions 

In this paper, we presented a flexible and extensible authentication and authorization 
architecture for protecting ASP.NET Web services. While presenting the architecture, 
we demonstrate the feasibility and benefits of a) the use of lightweight building 
blocks along with the means for composing them into specialized solutions as well as 
adding new blocks with custom logic, and b) composing run-time logic for authoriza-
tion decisions from small encapsulated units of specialized logic. The architecture has 
been implemented in an actual security solution. 

References 

1. Schmidt, D.C. and C. Cleeland, Applying patterns to develop extensible ORB middleware. 
IEEE Communications Magazine, 1999. 37(4): p. 54-63. 

2. Singhai, A., A. Sane, and R.H. Campbell. Quarterware for middleware. in 18th Interna-
tional Conference on Distributed Computing Systems. 1998. Amsterdam, Netherlands: 
IEEE Computer Society. 

3. Wang, Y.-M. and W.-J. Lee. COMERA: COM extensible remoting architecture. in Pro-
ceedings of COOTS: 4th USENIX Conference on Object-Oriented Technologies and Sys-
tems, 27-30 April 1998. 1998. Sante Fe, NM, USA: USENIX Assoc. 

4. Hamilton, G., M.L. Powell, and J.G. Mitchell, Subcontract; A flexible base for distributed 
programming. Operating Systems Review (ACM): Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles, Dec 5-8 1993, 1993. 27(5): p. 69-79. 



16 K. Beznosov 

5. Balasubramanian, K., et al. Towards composable distributed real-time and embedded 
software. in WORDS 2003: 8th International Workshop on Object-oriented Real-Time De-
pendable Systems, 15-17 Jan. 2003. 2003. Guadalajara, Mexico: IEEE. 

6. Othman, O., C. O'Ryan, and D.C. Schmidt, Designing an adaptive CORBA load balancing 
service using TAO. IEEE Distributed Systems Online, 2001. 2(4). 

7. Nahrstedt, K., et al., QoS-aware middleware for ubiquitous and heterogeneous environ-
ments. IEEE Communications Magazine, 2001. 39(11): p. 140-8. 

8. Venkatasubramanian, N., Safe 'composability' of middleware services. Communications of 
the ACM, 2002. 45(6): p. 49-52. 

9. Krishnamurthy, S., W.H. Sanders, and M. Cukier, An Adaptive Quality of Service Aware 
Middleware for Replicated Services. IEEE Transactions on Parallel and Distributed Sys-
tems, 2003. 14(11): p. 1112-1125. 

10. Crowcroft, J., et al., Channel islands in a reflective ocean: large-scale event distribution in 
heterogeneous networks. IEEE Communications Magazine. 40(9): p. 112-15. 

11. Yang, J. and G.E. Kaiser, JPernLite:  extensible transaction services for the WWW. IEEE 
Transactions on Knowledge and Data Engineering, 1999. 11(4): p. 639-657. 

12. Houston, I., et al., The CORBA Activity Service Framework for supporting extended trans-
actions. Software - Practice and Experience, 2003. 33(4): p. 351-73. 

13. Gittler, F. and A.C. Hopkins, The DCE Security Service. Hewlett-Packard Journal, 1995. 
46(6): p. 41-48. 

14. OMG, CORBAservices: Common Object Services Specification, Security Service Specifi-
cation v1.8. 2002, Object Management Group, document formal/2002-03-11. 

15. Sun, Java Authentication and Authorization Service (JAAS). 2001, Sun Microsystems. 
16. Sun, Java Authorization Contract for Containers. 2002. 
17. Chapin, S.J., et al., New model of security for metasystems. Future Generation Computer 

Systems, 1999. 15(5): p. 713-722. 
18. Andersen, A., et al. Security and middleware. in WORDS 2003: 8th International Work-

shop on Object-oriented Real-Time Dependable Systems, 15-17 Jan. 2003. 2003. Guadala-
jara, Mexico: IEEE. 

19. Beznosov, K., et al. A Resource Access Decision Service for CORBA-based Distributed 
Systems. in Annual Computer Security Applications Conference. 1999. Phoenix, Arizona, 
USA: IEEE Computer Society. 

20. OMG, Resource Access Decision Facility. 2001, Object Management Group. 
21. Jajodia, S., et al., Flexible support for multiple access control policies. ACM Transactions 

on Database Systems, 2001. 26(2): p. 214-60. 
22. Siewe, F., A. Cau, and H. Zedan. A compositional framework for access control policies 

enforcement. in Proceedings of the 2003 ACM Workshop on Formal Methods in Security 
Engineering, FMSE'03, Oct 30 2003. 2003. Washington, DC, United States: Association 
for Computing Machinery. 

23. Microsoft, Building Secure ASP.NET Applications: Authentication, Authorization, and Se-
cure Communication. 2002: Microsoft Press. 

24. Hartman, B., et al., Mastering Web Services Security. 1st ed. 2003, New York: John Wiley 
& Sons, Inc. 

25. Beznosov, K. Protecting ASP.NET Web Services: Experience Report. in preparation. 
2004. 

26. Microsoft, Altering the SOAP Message Using SOAP Extensions. 2002. 
27. Fleury, M. and F. Reverbel. The JBoss extensible server. in ACM/IFIP/USENIX Interna-

tional Middleware Conference. 2003. Rio de Janeiro, Brazil: Springer-Verlag. 



 Here’s Your LegoTM Security Kit 17 

28. Wang, N., et al., Evaluating meta-programming mechanisms for ORB middleware, in 
IEEE Communications Magazine. 2001. p. 102-113. 

29. Baldoni, R., C. Marchetti, and L. Verde, CORBA request portable interceptors: analysis 
and applications. Concurrency and Computation Practice & Experience, 2003. 15(6): p. 
551-579. 

30. Narasimhan, N., L.E. Moser, and P.M. Melliar-Smith, Interceptors for Java Remote 
Method Invocation. Concurrency Computation Practice and Experience, 2001. 13(8-9): p. 
755-774. 

31. Barkley, J., K. Beznosov, and J. Uppal. Supporting Relationships in Access Control Using 
Role Based Access Control. in Fourth ACM Role-based Access Control Workshop. 1999. 
Fairfax, Virginia, USA. 

32. Sandhu, R., et al., Role-Based Access Control Models. IEEE Computer, 1996. 29(2):  
p. 38-47. 

33. Beznosov, K. Object Security Attributes: Enabling Application-specific Access Control in 
Middleware. in 4th International Symposium on Distributed Objects & Applications 
(DOA). 2002. Irvine, California, USA: Springer-Verlag. 

34. OMG, Security Domain Membership Management Service, Final Submission. 2001, Ob-
ject Management Group. 

35. Gao, S., et al. Applying Aspect-Orientation in Designing Security Systems: A Case Study. 
in The Sixteenth International Conference on Software Engineering and Knowledge Engi-
neering. 2004. Banff, Alberta, Canada. 

Appendix A. Overview of Resource Access Decision Architecture 

With the RAD architecture, an application requests an authorization decision from 
a RAD authorization service and enforces the decision. A RAD service is com-
posed of the following components (Figure 7): The AccessDecisionObject (ADO) 
serves as the interface to RAD clients and coordinates the interactions between 
other RAD components. Zero or more PolicyEvaluators (PEs) perform evaluation 
decisions based on certain access control policies that govern the access to a  
protected resource. The DecisionCombinator (DC) combines the results of the 
evaluations made by potentially multiple PEs into a final authorization decision by 
applying certain combination policies. The PolicyEvaluatorLocator (PEL), for a 
given access request to a protected resource, keeps track of and provides refer-
ences to a DC and potentially several PEs, which are collectively responsible for 
making the authorization decision to the request. The DynamicAttributeService 
(DAS) collects and provides dynamic attributes about the client in the context of 
the intended access operation on the given resource associated with the provided 
resource name.  

Figure 7 shows interactions among components of authorization service: 

1. The authorization service receives a request via the ADO interface.  
2. The ADO obtains object references to those PEs associated with the resource 

name in question and an object reference for the responsible DC.  
3. The ADO obtains dynamic attributes of the principal (client) in the context of the 

resource name and the intended access operation.  
 
 



18 K. Beznosov 

4. The ADO delegates an instance of DC for polling the PEs (selected in Step 2).  
5. The DC obtains decisions from PEs and combines them according to its policy.  
6. The decision is forwarded to the ADO, which returns it to the application. 

Further details on RAD architecture could be found in [19, 20]. 

an Access Decision 
Object : AccessDecision

an Application 
System

a Locator : Policy
EvaluatorLocator

an Evaluator : 
PolicyEvaluator

an Attribute Service : 
DynamicAttributeService

a Combinator : 
DecisionCombinator

2: get_policy_decision_evaluators(ResourceName)

3: get_dynamic_attributes(AttributeList, ResourceName, Operation)

4: combine_decisions(ResourceName, Operation, AttributeList, PolicyEvaluatorList)

1: access_allowed(ResourceName, Operation, AttributeList)

6: 

5: * evaluate(ResourceName, Operation, AttributeList)

 

Fig. 7. RAD interaction diagram 

Appendix B. Overview of Attribute Function Architecture 

The concept of the Attribute Function  (AF), as an addition to the traditional decision 
and enforcement functions, has been proposed in [33]. Its application to CORBA was 
developed as well [34]. 

AF has simple syntax: it accepts (middleware-specific) data that are necessary for 
identifying the state of the target object and returns a set of application-specific attrib-
utes of that object. The target object state is necessary for retrieving such object meta-
data. Since the semantics of object attributes is very specific to the application being 
protected, AF is provided by the application and not by the middleware or security 
layers. 

The introduction of the AF in the security mechanism design for distributed appli-
cations is expected to enable the use of application-specific factors in security policy 
decisions without coupling enforcement and decision functions with the application.  


	Introduction
	Background and Related Work
	Architecture Motivation and Overview
	The Architecture
	Separation of Enforcement and Decision Logic
	Employment of the RAD Architectural Style
	Adaptable Information for Authorization Decisions
	Fine-Grained Replaceability
	Configuration Scalability, Extensibility, and Reuse

	Discussion
	What About AOSD?

	Conclusions
	References

