
Extreme Security Engineering: On Employing XP Practices
to Achieve “Good Enough Security”

without Defining It
Konstantin Beznosov

Electrical and Computer Engineering
University of British Columbia

2356 Main Mall, Vancouver, BC
Canada V6T 1Z4

beznosov@ece.ubc.ca

ABSTRACT
This paper examines practices of eXtreme Programming (XP) on
the subject of their application to the development of security
solutions. We introduce eXtreme Security Engineering (XSE), an
application of XP practices to security engineering, and discuss its
potential benefits and the scope of its applicability. We argue that
XSE could help achieve “good enough security” while avoiding
defining a priori what it is.

Categories and Subject Descriptors
K.6.1 [Management of Computing and Information Systems]:
Project and People Management -- Life cycle, Systems analysis
and design, Systems development, Management techniques; K.6.4
[Management of Computing and Information Systems]:
Security and Protection.

General Terms
Security, Design, Economics, Human Factors.

Keywords
Security Engineering, Agile Software Development, Extreme
Programming, eXtreme Security Engineering .

1. INTRODUCTION
One may think that as commercial customers slowly realize they
want just “good enough”, instead of “absolute”, security, it
becomes necessary for a security engineer to define what “good
enough security” is. However, rather than attempting to define
“good enough security” a priori, it could be more productive to
let the customer of a security solution be in charge of the
definition. Moreover, the customer should have the liberty of
adjusting it almost as frequently as they want.
Avoiding complete specification and “freezing” of the
requirements up-front in security engineering projects is critical

due to insufficient understanding of requirements, their frequent
changes, as well as budget changes and changes of other
resources. Particularly, it is the author’s industry experience that
at the beginning of most projects on enterprise infrastructures or
software applications where security is a major, if not the only,
objective, the customers usually have very vague idea about what
and how much “security” (and other features) they want to get by
the end of the project. At the same time, the developers, including
security designers and architects, even if they were given
complete and precise requirements, are unable to provide realistic
estimates about the amount of effort necessary to support all the
requirements due to the scale and uniqueness of each project. On
top of these restrictions, the projects tend to span multiple fiscal
periods and multiple political domains within the customer’s
organization, objectively limiting the power of forecasts about the
total budget available.
A possible way to provide control of “good enough security” to
the customer is through applying the principles of agile software
development (ASD) [8, 18] to security development/integration
projects, also referred to as “security engineering” in this paper.
We also consider other benefits an application of ASD to security
engineering could enjoy.
ASD principles deserve particular consideration because of the
popularity, even an orthodoxy in a way, they are gaining among
practitioners and researchers. Due to its wide acknowledgement
among software developers [3, 6, 7, 9, 15], for example, iterative
and incremental development (IID) [10], a more conservative
version of ASD, even became the recommended form of software
development for US DoD contractors in 1994 [11].
Specifically, we consider an application of eXtreme Programming
(XP) [2, 14, 17], arguably the most publicized and most
documented ASD representative with a catchy name, to security
engineering. It practices a specific set of techniques for
implementing both ASD’s and its own principles. The ability of
the customer in XP projects to adjust the definition of “good
enough” software almost at any moment in the development
process is especially important since both the budget priorities,
driven by the market performance, and the requirements, driven
by the business processes, tend to change frequently. On the other
hand, the developers do not have to lock themselves into
unrealistic long-term promises because they have a chance to
estimate the cost of incremental changes to the system each time
the customer asks for support of new requirements. Neither do the
have to “blow out” the customer’s budget and thus jeopardize the
existence of the project. Since XP has been shown [2] to be a
successful approach for some commercial projects in

development of “good enough software” with frequently changing
or even unclear requirements and budgets, one wonders if the XP
principles could be successfully applied to the development of
“good enough security” solutions.
In this paper, we examine ways to apply XP principles to create
“good enough security” solutions without defining what “good
enough security” is. We refer to this application of XP to security
engineering as eXtreme Security Engineering (XSE). The main
contribution of this paper is the introduction of XSE and a
discussion of its perceived advantages and disadvantages.
We make a case that the XSE approach could be successfully
applied to security engineering projects to achieve “good enough
security” as well as to improve project success rates and overall
customer satisfaction. The range of XSE applicability to different
kinds of projects is expected to be similar to the one of XP and
other ASD approaches.
The rest of the paper is organized as follows. XP overview is
provided in Section 2. We describe XSE approach in Section 3.
Section 4 contains discussion of the proposed approach. Summary
and conclusions are drawn in Section 5.

2. XP OVERVIEW
Along with other ASD approaches, XP addresses the following
important problems faced by software development projects:

� The resulting system solves the wrong problem
(requirements not met).

� The resulting system is out of date before it is in use
(requirements change).

� Software quality is so poor that the system cannot be used.
To deal with the empirical nature of software development, all
ASD methods rest on two cornerstone principles: the short
“inspect-and-adapt” development cycles and the short feedback
loop.

2.1 PRINCIPLES
In addition, here is a selection of other key principles that ASD
methodologies, including XP, follow (further details are available
at www.agilemanifesto.org):
� Customer satisfaction is achieved through early and

continuous delivery of valuable software.
� Changes in requirements or business environment are

embraced instead of being ignored or mitigated.
� Working software is delivered frequently.
� Customers and developers work together daily throughout

the project.
� The most efficient and effective method of conveying

information to and within a development team is face-to-face
conversation.

� Working software is the primary measure of progress.
� Participating customers and developers should be able to

maintain a constant pace indefinitely.
� Simplicity -- the art of maximizing the amount of work not

done -- is essential.

� At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior accordingly.

2.2 PRACTICES
XP carries out the above principles through its own practices, the
most important of which are summarized below (adopted from
[2]):
Small Releases. The system is put into production in a few
months, before solving the whole problem. New releases are
made often — anywhere from daily to monthly. The customer
picks the next release by choosing the most valuable features
(called “user stories” in XP) from among all the possible stories,
as informed by the costs of the stories and the measured speed of
the team in implementing stories.
Planning game. Customers decide on the scope and timing of
releases based on estimates provided by programmers. Developers
implement only the functionality demanded by the user stories in
this iteration.
Metaphor. The shape of the system is defined by a metaphor or
set of metaphors shared between the customer and the developers.
Simple Design. The system is designed in such a way that the
design communicates everything the developers want to
communicate, contains no duplicate code, and has the fewest
possible classes and methods. The correctness of the design is
insured by frequent testing.
Tests. The developers write unit tests minute by minute.
Organized in test suites, these tests must all run successfully to
maintain confidence in the correctness of the system design.
Customers write functional tests for the stories in an iteration.
These tests should also all run, although practically speaking,
sometimes a business decision must be made by comparing the
cost of shipping a known defect and the cost of a delay.
Refactoring. The design of the system evolves through
transformations of the existing design that keep all the tests
running.
Pair Programming. All production code is written by two people
at one screen/keyboard/mouse.
Continuous Integration. The new code is integrated into the
current system after no more than a few hours. When integrating,
the system is built from scratch and all tests must pass or the
changes are discarded.
Collective Ownership. Every programmer improves any code
anywhere in the system at any time if they see the opportunity.
On-site Customer. The customer is present onsite and works
with the team full-time.
40-hour Weeks. No one can work a second consecutive week of
overtime. Even isolated overtime, when used too frequently, is a
sign of deeper problems that must be addressed.
Open Workspace. The team works in a large room with small
cubicles around the periphery. Paired programmers work on
computers set up in the center.
Just Rules. By being part of an eXtreme team, you sign up to
follow the rules. But these rules are not set in stone. The team can
change the rules at any time as long as they agree on how they
will assess the effects of the change.

Although user stories (or just “stories”) are not identified as a
separate principle, they deserve special attention because they are
the results of requirements analysis in a short form of use cases. A
user story is so short that it can fit on an index card. Each story is
business-oriented, testable, and estimable. Although not
mandatory, the use of index cards makes it easy for the customer
to prioritize the stories, to select those that should be implemented
in the next release or iteration, and to get a nice warm feeling
when the cards are moved from the pile of desired stories into the
pile of implemented.

2.3 HOW IT WORKS
By using small releases and even shorter iterations within
releases, XP leaves it up to the customer of a software system to
make some important decisions; they include particular (i.e.,
usually the most important) functional elements and non-
functional properties that should be added to the system during
the next iteration. Based on their current understanding of the
budget and the requirements as well as the experience of using the
previous release of the system, the customer decides what
feature(s) will make the system good enough when its new release
will become available in next several weeks or months. The
customer describes the required features in user stories written on
index cards.
The definition of these new features is achieved through the
development of functional tests that check for presence of the
asked features. The customers and developers work together on
defining the tests thus insuring common understanding of the new
features. Then the developers determine the tasks necessary to
implement the stories for the current iteration and estimate
amount of effort for performing each task as well as all the stories
in the current iteration.
After the customer and the developers are happy with the total
effort estimated for the iteration, and the stories to be supported
after the iteration, the developers choose pairs and start creating
unit tests that, once passed successfully, would indicate the
completion of the corresponding tasks. While working on the
tasks, the developers constantly (re)design, a.k.a., refactor, the
necessary parts of the system. Before each task is completed, the
system is rebuilt and re-integrated into the customer’s
environment. Since the development cycles are short, by the time
a new system release is ready, the requirements and the budget
could not have changed dramatically. After a release, which
consists of several iterations, is completed, the updated system is
put into use and the customers can decide if the updated
requirements and budget warrant the next release, and, if so, what
new most important feature(s) should be added to the system.
The stability of the system in the face of frequent iterations and
small releases, and confidence in the measurable quality of the
system are achieved via XP flavor of testing. A set of automated
tests can clearly show if the new/old features have been
added/deleted to/from the system. Test automation allows the
creation of integrated test suites that check for the presence of all
the features requested by the customers so far, leading to the
stability of the system in the presence of frequent changes.
Functional tests developed by the customer as well as unit tests
implemented by the developers are the XP keys to the
implementation of a short feedback loop.

During the process of developing a software system using XP
methodology, each development increment is locally optimized,
similarly to the Greedy Algorithms [1] approach, in the hope that
some globally optimal solution will be achieved at the end.
However, it is well known that in worst case scenarios, further
addition of new (non) functional features could require dramatic
changes to the system architecture. For example, belated
introduction of a requirement for the support of “undo” operation
could require a costly replacement of the transaction sub-system
in a distributed application. This example also illustrates a point
of view that ASD/XP are not universal solutions applicable for all
software development projects. In some cases, however
impractical it may sound, agreeing on all requirements at the
beginning of a project could increase its chances of success.

3. EXTREME SECURITY ENGINEERING
Like software development, security engineering cannot be
considered a defined [12] process because the budget,
requirements, and technologies undergo too much change while a
security solution is being developed. Instead of attempting to
reduce the amount of change in a project, security engineers could
benefit, as in ASD, from embracing frequent changes by
employing short “inspect-and-adapt” cycles and frequent, short
feedback loops, which are the necessities of empirical engineering
processes [15] and the foundations of XP and other ASD methods.
Extreme Security Engineering (XSE) is an adoption of ASD
principles (Section 2.1) in general and XP practices (Section 2.2)
in particular to security engineering. The question is how XP
practices can be applied to security engineering? In this section
we discuss one probable way of adopting them while
acknowledging that there could be other possibilities.

Only when applied together, all XP practices, are responsible for
the cumulative effects seen in the software development projects
where XP is applied. Researchers recently started attempts to
measure the effects of each individual practice (or a subset of
them) applied in isolation (e.g., pair programming by Williams
and Cockburn [19]). Nonetheless, to simplify the discussion in
this section, we consider the adoption of each of the major XP
practices and other elements to security engineering separately.
The reader, however, needs to keep in mind that the intent is to
apply them in XSE all together.
Although we support such practices as Collective Ownership, 40-
hour Week, Open Workspace, and Just Rules, we do not discuss
here their applicability to security engineering due to their general
role in the productivity of any workplace and the space
constraints for this paper.

3.1 PLANNING GAME
Similarly to XP, the planning game’s objective in XSE is to
schedule small releases and short iterations in such a way that the
project can continue with a sustainable rate while delivering
“good enough security” in the form of most valuable tested units
of functionality that make business sense to the customer.
To achieve the objective, the planning game has a set of rules that
allows technical people to make the technical decisions and
business people to make the business decisions. The development
team estimates each user story in terms of ideal development
weeks. The customer then decides which subset of stories is most
important and, when implemented, would make the security

solution usable and testable. Measured in the previous iterations,
the project velocity is used to estimate either how many stories
can be implemented before a given date or how long a set of
stories will take to finish. Stories included in the upcoming
release/iteration and completion dates are negotiated until the
developers, customers, and managers can all agree upon the
release/iteration plan. Each release/iteration planning is performed
just before it begins and not in advance.

3.2 USER STORIES
It is the author’s experience that failure usually occurs when
conventional, plan-driven, ways are used to engineer all security
requirements upfront. It is not a surprise. Due to their negative
nature and highly technical level of security functionality in
systems, the corresponding requirements tend to be more vague
and confusing than requirements for other aspects of a system or
infrastructure. Both security developers and customers regard the
engineering of security requirements as a painful and non-
productive process. It often results in a huge collection of
outdated items by the time they are engineered. In addition, these
items are in relationships and have priorities that both sides have a
hard time to comprehend.
Applying XP user stories to security engineering, on the other
hand, could allow customers to use familiar business-like
language and capture, in the form of simple stories, what they
want to see when the security solution is implemented. The
opportunity for customers to put on a table 50-100 cards with user
stories and then decide which stories have the highest priorities
(and therefore should be implemented in the next iteration) could
be a key enabler of “good enough security” without security
engineers having to define what it is exactly. Using cards with
desirable scenarios written in a plain language could only make
an incremental improvement in the overall success rate of security
projects, though.
What should make the difference is the combination of user
stories with other techniques adopted from XP. Most important of
them are small releases with short iterations and testing. Small
releases provide frequent opportunities for customers to update
and re-prioritize the user stories. Thus the definition of “good
enough security,” specified by the customer through required user
stories, could fluctuate with every iteration reflecting shifts in
both the technology and the business environment. Despite
regular changes, due to frequent testing, both the security
engineers and the customer can be confident that the security
solution supports all implemented stories.

3.3 SMALL RELEASES
Small releases with short iterations provide the foundation that
supports other XP practices. They are so short that neither the
budget nor the requirements can drastically change in between,
enabling the production of a working system that meets its
requirements at the end of each iteration and release. Early critical
feedback from the customer is another benefit of small releases.
Security engineering projects, which often combine custom
software development with integration of COTS products and
hardware systems, as well as procedural changes in the
customer’s organization, could be difficult to “slice” into 1-2
week iterations and even into 1-2 month releases. Yet, the
benefits from short iterations, not necessarily of same length,
could make it worth the extra effort.

Like in software development, the use of small releases with short
iterations, combined with other practices, is expected to provide
the following benefits:
� The delivery of even a partially working solution (or parts of

the solution) at the end of each iteration allows the customer to
have a clear understanding of what is actually being created and
make better choices of high-priority user stories to be
implemented in next iteration.

� Early and frequent feedback from the customer significantly
helps security engineers “drive” the development efforts always
in the direction that seems to be optimal for the customer.

� Security engineers could use measurements from previous
iterations to make more precise estimates regarding the effort
for further changes and additions to the solution being
developed.

� Changes in the business environment, budget priorities, the
customer’s political landscape, and technology are easier to
accommodate.

“Slicing” a security solution in small releases and short iterations,
although more difficult, is similar to dividing a pure software
project. In most security engineering projects, it is possible to
identify small units of functionality that make good business
sense and can be released into the customer's environment early in
the project. For example, a directory infrastructure, the backbone
of identity management and access control services in information
enterprises, could be released first, just for using it as an
electronic phone book by the employees, before it is employed in
the security solution.
One of the obvious complications with small releases and short
iterations applied to the feedback-driven development is the
difficulty of maintaining traditional plan-based contractual
relationships between customers and developers. Since neither
side can claim the knowledge of the project’s exact result, it is
hard to negotiate a contract with the precise amount of work done
and money paid. Alternatively, “body shop”-like relationships,
where the developers are paid for the amount of time they spend
on the project, although they seem to be more suitable for XSE,
have well known drawbacks, where time-oriented, instead of
result-oriented, nature of work is the biggest one. However, this
issue should probably be left to the specialists in business
management.
Another perceived shortcoming of small iterations combined with
XP testing and continuous integration is the amount of effort
spent on making incremental changes to the system. Like with
XP, those who try to deliver the working system in several week
iterations find too much overhead due to the frequent runs of test
suites and the integration of the changed parts. True, short
iterations require a meticulously organized development, testing,
and integration environment including custom automation scripts
and redundant resources, in order to avoid prohibitively painful
delivery of each release. However, the payoffs could be
significant: the opportunity for the customer to see alive and
running what has been developed so far, the discovery of
unexpected integration and deployment problems at the beginning
of the project instead of the end, and the confidence that the
developers are delivering a solution that will work in the
customer’s environment.

3.4 TESTING
Tests define what “good enough” security solution is and help to
gain confidence in its quality as well as functionality. Written in
plain business-like language, user stories cannot be used directly
by security engineers as requirements to be implemented. Instead,
each story translates into one or more functional test cases,
developed by the customers themselves. Reaching the point when
all the tests run smoothly is the indication for security engineers
that they are done with the functionality. If particular features
cannot be implemented as planned, failed tests help identify the
missing parts.
In addition to functional tests, security engineers develop unit
tests to control the quality of the developed parts (e.g., LDAP
access to the directory service, smart card authentication devices,
the authorization server for Web Services) and catch regressions.
Furthermore, unit tests communicate the intent of the design,
which is independent of the implementation details.
Due to the diversity of the technology and products commonly
utilized in security solutions, unit test frameworks would require
more effort to implement then in pure software development
projects. Nonetheless, the significant payoff from XP testing
practice reported by Beck in, although anecdotic, success stories
[2] gives hope that similar testing adopted by XSE could also
result in good quality and stability of security solutions in the face
of frequent changes.
Another difficulty with testing in XSE could be due to the
negative nature of security properties (e.g., lack of means to
bypass the enforcement function in an access control mechanism),
which makes them difficult to test. However, an application of XP
practices to security engineering neither alleviates nor exacerbates
this concern.

3.5 CONTINUOUS INTEGRATION
In some security engineering projects, integration is the
dominating portion of the effort and the main activity. Still,
following the XP strategy of evolutionary increase in the system
functionality and continuous integration even in those projects
could create some valuable payoff. Integrating the solution with
the customer’s environment earlier allows for avoiding the
dangerous anomaly in the life of any security development project
– the period before a system first goes into production.
What's more, continuous integration, combined with XP testing
and short iterations, aids to discovering the differences between
the customer’s environment and the security engineers’
understanding of it.
The main challenge in adopting this XP practice to security
engineering is due to the difficulty (in some projects) of creating
staging environment where early versions of the solution are
deployed. Such an environment could be prohibitively costly
because of expensive hardware and other non-software elements,
or just hard to recreate (e.g., due to the need to process
confidential data or to provide physical security).

3.6 SIMPLE DESIGN AND REFACTORING
Practicing simple initial design that evolves through frequent
refactoring is essential for balancing the principles of early,
continuous delivery and embracing unexpected, frequent changes
in security engineering projects. The avoidance of collecting and
fixing all requirements upfront is another driving force.

As with software projects, security engineers need to adhere to
Einstein’s principle of making everything “as simple as possible
but not simpler” to stay away from the danger of simplistic
design.
We expect frequent refactoring to be difficult to realize in those
security projects, which include inflexible and costly non-
software or COTS components.

3.7 PAIR DEVELOPMENT
If security engineering is similar enough to software development,
pair development could have similar impact on security
development projects. Recent research on the costs and benefits
of pair programming [19] shows that software products can be
produced in less time and with higher quality. Furthermore, the
majority of programmers involved in the studies or surveyed in
industry seem to enjoy the development process and feel more
confident about the results of their work, when they work with a
partner. Although not based on any evidence, our expectation is
that security engineers, like software developers, working in pairs
could produce higher quality results, possibly at the price of
slightly lower performance.

3.8 ON-SITE CUSTOMER
The customer’s time is distributed differently in XSE projects
than in traditional plan-driven ones. It is spared initially by not
requiring a detailed requirements specification and saved later by
not delivering an uncooperative solution. Instead, the customer
representative is actively involved in the development process on
site and is responsible for:
� writing user stories,
� negotiating user stories to be included in each scheduled

release,
� clarifying and possibly refining user stories for the

developers while they are working on implementing the stories,
� providing additional details for the security engineers to

complete development tasks,
� developing (or helping with) functional tests as well as

defining the input and output data for the tests.

4. DISCUSSION
An adoption of XP practices to security development projects,
XSE is meant to aid the projects developed for business customers
with achieving “good enough security” without defining a priori
what it is. Other important benefits from practicing XP techniques
in XSE are expected to be increased customer satisfaction, lower
defect rates, faster development times, and a way to handle
rapidly changing requirements.

4.1 Can XSE Succeed?
The idea of applying XP practices to security engineering,
outlined in this paper, has not been tried explicitly as of time of
writing. Therefore, there is no direct evidence in support of our
expectations of the overall benefit of XSE. However, the author’s
personal industrial experience from participation in commercial
software development and security development projects, and the
evidence collected in other fields raise a certain hope.
First, the way commercial software and security engineering are
practiced today makes these two disciplines similar. For example,
consider the following paraphrased list of reasons why waterfall,

a.k.a., plan-driven, approach with complete specification and
“freezing” of system requirements is impractical:
� A system’s users seldom know exactly what they want and

cannot articulate all they know.
� Even if we could state all requirements, there are many

details that we can only discover once we are well into
implementation.

� Even if we knew all these details, as humans, we can master
only so much complexity.

� Even if we could master all this complexity, external forces
lead to changes in requirements, some of which may invalidate
earlier decisions.

The above points could very well be made about security
engineering, although they were stated by Parnas and Clements in
a discussion regarding software development only [13].
Another reason to believe that the two disciplines are similar
enough is based on the personal experience of the author in both
software development and security engineering projects. The
experience indicates that:
� Both software and security development are empirical

engineering processes [12] necessitating short “inspect-and-
adapt” cycles and frequent, short feedback loops [15].

� The notion of “good enough” varies significantly from
project to project in both disciplines.

� Waterfall-like plan-driven approaches to the development of
both software and security solutions fail repeatedly.

� Commercial customers are not any more in a position to
specify and, most importantly, “freeze” all requirements
upfront.

The similarity could be exploited to apply those approaches that
are successful in one discipline to the other.
Second, the experience of other engineering fields shows that
some of the interactive and incremental development principles
are successfully applied to non-software manufacturing.
Examples of companies that used IID approaches for non-
software products in the 1980s are Honda, Canon, and Fujitsu
[16].
The author’s personal experience from industry, the success of
IID approaches in manufacturing, as well as anecdotic and
scientific evidence of ASD benefits in software development
provide the base for the belief in XSE as a better methodology for
some security engineering projects.

4.2 What Kinds of Projects Could XSE Be
Suitable For?
Obviously, not every security engineering project should be
expected to benefit from XSE. Due to the novelty of XSE, one
can only extrapolate the scope of XP or, more broadly, ASD
applicability to XSE. By 2001 enough experience with ASD
approaches has been collected to identify their scope as
“nonsafety-critical projects with volatile requirements, built by
relatively small and skilled collocated teams” [18].
Boehm and Turner [4, 5] suggest a finer demarcation between
agile and plan-driven approaches in a five-dimensional space:
size, criticality, dynamism, personnel, culture. Even more, they

present a risk-based method for structuring projects to incorporate
both agile and plan-driven approaches according to a project’s
needs. If security and software engineering are sufficiently similar
disciplines, the method of Boehm and Turner could be applicable
to security engineering projects as well.

4.3 What Needs to be Done for XSE to
Succeed?
To complete the adoption of XP to the domain of security
engineering, a number of adjustments and changes are necessary.
They are all related to the incremental nature of XSE.
We see a need for developing techniques for the incremental risk
analysis, including vulnerabilities analysis, as well as the
incremental testing of security properties. The techniques are
necessary in order to reduce the cost of short iterations and small
releases. The XP process is supported by unit test suites
implemented for different languages in the form of third-party
libraries. They enable simple and easy ways to develop and add
new test cases with each new feature in an incremental fashion.
Ideally, similar solutions are necessary for the risk and
vulnerability analyses.
Unlike most other properties, security properties are negative
(e.g., protection from unauthorized access), which makes their
testing hard. It is even harder is to perform incremental testing of
these properties. On the other hand, the ability to do such testing
in an incremental and inexpensive fashion is critical when XSE is
employed.

5. SUMMARY AND CONCLUSIONS
In this paper, we attempted to bring to the attention of the security
engineering community the fact that such a related discipline as
software engineering is experiencing a turn from plan-driven to
iterative and incremental development, a.k.a., ASD, approaches.
Furthermore, we proposed eXtreme Security Engineering (XSE),
an adoption of eXtreme Programming (XP) practices to security
engineering projects.
In addition to the prospect of achieving “good enough security,”
XSE could improve the project success rate and overall customer
satisfaction. It remains to be seen whether the XSE approach
could be successfully applied to security engineering projects.
However, the similarity between software and security
engineering disciplines and the history of the positive application
of ASD methods to software and non-software manufacturing
raise certain hope. The range of XSE applicability to different
kinds of projects is expected to be similar to the one of XP and
other ASD approaches.
The next steps are to try XSE out and validate it through
experimental as well as real-world projects.

6. ACKNOLEDGEMENTS
Participants of Software Engineering Exploration and Discussion
Seminar (SEEDS) at the University of British Columbia,
especially Paul Davies, Lee Iverson, Jeff Joyce, Philippe
Kruchten, and Guy Lemieux, provided valuable feedback on this
paper ideas from the perspective of software engineering. It is the
feedback from Philippe Kruchten that influenced the author’s
decision to change the name of the approach from Agile Security
Engineering (the way it was referred to in BizSec ’03 workshop
pre-proceedings) to eXtreme Security Engineering. The change

reflects the fact that the majority of the XP practices have been
adopted by the approach. Copyediting comments from Tatiana
Teslenko made this paper much more readable.

7. REFERENCES
[1] Aho, A. V. and Hopcroft, J. E., The Design and Analysis of

Computer Algorithms, 1st ed., Addison-Wesley, 1974.
[2] Beck, K., "Embracing Change with Extreme Programming",

IEEE Computer, vol. 32, no. 10, October 1999, pp. 70-77.
[3] Boehm, B., "Get Ready for Agile Methods, with Care", IEEE

Computer, vol. 35, no. 12, January 2002, pp. 64-69.
[4] Boehm, B. and Turner, R., Balancing Agility and Discipline:

A Guide for the Perplexed, Addison-Wesley, 2003.
[5] Boehm, B. and Turner, R., "Using Risk to Balance Agile and

Plan-Driven Methods", IEEE Computer, 2003, pp. 57-66.
[6] Cockburn, A. and Highsmith, J., "Agile Software

Development: The People Factor", IEEE Computer, vol. 34,
no. 11, November 2001, pp. 131-133.

[7] Crocker, R., Large-Scale Agile Software Development,
Addison-Wesley, 2003.

[8] Highsmith, J., Agile Software Development Ecosystems,
Addison-Wesley Professional, 2002.

[9] Highsmith, J. and Cockburn, A., "Agile Software
Development: The Business of Innovation", IEEE Computer,
vol. 34, no. 9, September 2001, pp. 120-122.

[10] Larman, C. and Basili, V. R., "Iterative and Incremental
Development:A Brief History", IEEE Computer, vol. 36, no.
6, June 2003, pp. 47-56.

[11] Newberry, G. A., "Changes from DOD-STD-2167A to MIL-
STD-498", Crosstalk: The Journal of Defense Software
Engineering, April 1995.

[12] Ogunnaike, B. A. and Ray, W. H., Process Dynamics,
Modeling, and Control, Oxford University Press, 1994.

[13] Parnas, D. and Clements, P., "A Rational Design Process:
How and Why to Fake It", IEEE Transactions on Software
Engineering, vol. 19, no. 2, February 1986, pp. 251-257.

[14] Paulk, M., "Extreme Programming from a CMM
Perspective", IEEE Software, vol. 18, no. 6,
November/December 2001, pp. 19-26.

[15] Schwaber, K. and Beedle, M., Agile Software Development
with SCRUM, Prentice Hall, 2002.

[16] Takeuchi, H. and Nonaka, I., "The New New Product
Development Game", Harvard Business Review, January
1986, pp. 137-146.

[17] Williams, L., "The XP Programmer: The Few-Minutes
Programmer", IEEE Software, vol. 20, no. 3, May/June 2003,
pp. 16-20.

[18] Williams, L. and Cockburn, A., "Agile Software
Development: It’s about Feedback and Change", IEEE
Computer, vol. 36, no. 6, June 2003, pp. 39-43.

[19] Williams, L., Kessler, R. R., Cunningham, W., and Jeffries,
R., "Strengthening the Case for Pair-Programming", IEEE
Software, vol. 17, no. 4, July/August 2000, pp. 19-25.

	INTRODUCTION
	XP OVERVIEW
	PRINCIPLES
	PRACTICES
	HOW IT WORKS

	EXTREME SECURITY ENGINEERING
	PLANNING GAME
	USER STORIES
	SMALL RELEASES
	TESTING
	CONTINUOUS INTEGRATION
	SIMPLE DESIGN AND REFACTORING
	PAIR DEVELOPMENT
	ON-SITE CUSTOMER

	DISCUSSION
	Can XSE Succeed?
	What Kinds of Projects Could XSE Be Suitable For?
	What Needs to be Done for XSE to Succeed?

	SUMMARY AND CONCLUSIONS
	ACKNOLEDGEMENTS
	REFERENCES

