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ASP.NET Web Services Security
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Reported System

What is it?

Component-based
Authentication and Authorization (A&A) architecture
for ASP.NET Web services

Key features

Less effort to integrate into enterprise security

More granularity and scalability: scalable and fine-
grained configuration of machine-wide A&A functions

More extensibility: easy to add new A&A logic
Better reusability: A&A components can be combined




Separation of Enforcements & Decisions
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Component Framework for A&A Logic
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Permission Examples

Permission Example

Explanation

http://foobank.com/bar.asmx

Only the URL is used

com.foobank.ws.Sbar/m1

Class and method names

D1/com.foobank.ws.Sbar/m1

Same but in domain “"D1”

com.foobank.ws.Sbar/owner=smith

Class name and attribute

D1/com.foobank.ws.Sbar/owner=smith/m1

Domain / class / attribute / method




Call Sequence

get_permission
' —

get_credentials S
get_decision{ permission, credentials )
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Example 1

University Course Web Service

Copyright © 2005 Konstantin Beznosov




University Course Web Service Policy

Anyone can lookup course descriptions.
All users should authenticate using HTTP-BA.

Registration clerks can list students registered for the
course and (un)register students.

The course instructor can list registered students as
well as manage course content.

Registered for the course students can download
assignments and course material, as well as submit
assignments.




Policy Engine Assembly for Example 1
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Example 2

Human Resources Web Service
for an International Organization

Copyright © 2005 Konstantin Beznosov




HR Web Service Policy

Only users within the company’s intranet or
those who access the service over SSL and have valid
X.509 certificates issued by the company should access.

Anybody in the company can look up any employee and
get essential information about her/him.

HR employees can modify contact information and review

salary information of any employee from the same

division.
HR managers can modify any information about the
employees of the same division.




Policy Engine Assembly for Example 2
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Expected Lessons Learned

It's possible to design security decision logic as
components

e reusable from policy to policy

e composable to support different policies

e replaceable to allow new policies

ASP.NET container is suitable for extensions (in the
form of components)

effective design required deep understanding of
access control, Web services, and (ASP).NET

effective configuration (packaging) crucial

embracing (not ignoring or suppressing) ASP.NET
idiosyncrasies lead to the success
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Unexpected Lessons Learned

customers did

not care that much about

standard com

pliance & interoperability

hard to interpret very flexible WS-Security spec

switching to XP-like User Stories too shocking

avoid showing all the capabilities/flexibility

unscalable life-cycle of interceptors

SOAP interceptor intercepts only SOAP

messages (du

h!)




Summary

perience report about designing and
implementing protection framework for
ASP.NET Web services

(un)expected lessons learned

e (B authentication and authorization mechanisms
e feasable

e evolve with policies

= details
e in the paper
o http://konstantin.beznosov.net




