
Copyright © 2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Experience Report:
Design and Implementation of a

Component-Based
Protection Architecture for

ASP.NET Web Services
Konstantin Beznosov

Laboratory for Education and Research in
Secure Systems Engineering (LERSSE)

Electrical and Computer Engineering
University of British Columbia

2

How ASP.NET Web Services Work
unmanaged code

managed code (.NET CLR)

IIS

ASP.NET_ISAPI.DLL

web service implementation

SOAP
client

SOAP/HTTP

ASP.NET web service
handler factory

HTTP Modules

SOAP Extensions

3

ASP.NET Web Services Security

********granular

********reusable

******extensible

*********scalable

Reported
ArchitectureOut-of-the-box

Disclaimer: Biased, qualitative, unsupported comparison

4

Outline

 System architecture

 Examples

 Lessons learned

 Summary

5

Reported System
What is it?

Component-based
Authentication and Authorization (A&A) architecture
for ASP.NET Web services

Key features

Less effort to integrate into enterprise security

1. More granularity and scalability: scalable and fine-
grained configuration of machine-wide A&A functions

2. More extensibility: easy to add new A&A logic

3. Better reusability: A&A components can be combined

6

Separation of Enforcements & Decisions

Interceptor enforces, “A&A logic” decides

unmanaged code

managed code (.NET CLR)

IIS

ASP.NET_ISAPI.DLL

web service implementation

SOAP
client

SOAP/HTTP

Legend:

protection subsystem

ASP.NET web service
handler factory

SOAP Interceptor

A&A logic

7

Component Framework for A&A Logic

Legend

Created by
ReplaceableReplaceable Fixed

8

Permission Examples

Domain / class / attribute / methodD1/com.foobank.ws.Sbar/owner=smith/m1

Class name and attributecom.foobank.ws.Sbar/owner=smith

Same but in domain “D1”D1/com.foobank.ws.Sbar/m1

Class and method namescom.foobank.ws.Sbar/m1

Only the URL is usedhttp://foobank.com/bar.asmx

ExplanationPermission Example

9

Call Sequence

Copyright © 2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Example 1

University Course Web Service

11

University Course Web Service Policy

1. Anyone can lookup course descriptions.

2. All users should authenticate using HTTP-BA.

3. Registration clerks can list students registered for the

course and (un)register students.

4. The course instructor can list registered students as

well as manage course content.

5. Registered for the course students can download

assignments and course material, as well as submit

assignments.

12

Policy Engine Assembly for Example 1

Publicmethods
PolicyEvaluator

CourseId
AttributeRetriever

Course
PolicyEvaluator

HTTP BA
Credential Retriever

Permit Overrides
Decision Combinator

Legend

CustomGeneric
Prebuilt

Copyright © 2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Example 2

Human Resources Web Service
for an International Organization

14

HR Web Service Policy
1. Only users within the company’s intranet or

those who access the service over SSL and have valid

X.509 certificates issued by the company should access.

2. Anybody in the company can look up any employee and

get essential information about her/him.

3. HR employees can modify contact information and review

salary information of any employee from the same

division.

4. HR managers can modify any information about the

employees of the same division.

15

Policy Engine Assembly for Example 2

Public
methods

PE

Authorized IP
PE

X.509
Certificate

PE

RBAC
PE

Division
PE

X.509 Certificate
Credential
Retriever

HTTP BA
Credential
Retriever

(AuthroizedIP ∨ Certificate) ∧ (PublicMethod ∨ (Role ∧ Division))
Decision Combinator

Legend

Generic from
Third-party CustomGeneric

Prebuilt

X.509 Certificate
Credential

16

Expected Lessons Learned

 It’s possible to design security decision logic as
components
• reusable from policy to policy
• composable to support different policies
• replaceable to allow new policies

 ASP.NET container is suitable for extensions (in the
form of components)

 effective design required deep understanding of
access control, Web services, and (ASP).NET

 effective configuration (packaging) crucial
 embracing (not ignoring or suppressing) ASP.NET

idiosyncrasies lead to the success

17

Expected Lessons Learned

 It’s possible to design security decision logic
as components
• reusable from policy to policy
• composable to support different policies
• replaceable to allow new policies

 ASP.NET container is suitable for extensions
(in the form of components)

 effective design required deep understanding
of access control, Web services, and (ASP).NET

 effective configuration (packaging) crucial
 embracing (not ignoring or suppressing)

ASP.NET idiosyncrasies lead to the success

18

Unexpected Lessons Learned
 customers did not care that much about

standard compliance & interoperability

 hard to interpret very flexible WS-Security spec

 switching to XP-like User Stories too shocking

 avoid showing all the capabilities/flexibility

 unscalable life-cycle of interceptors

 SOAP interceptor intercepts only SOAP

messages (duh!)

19

Summary

 experience report about designing and
implementing protection framework for
ASP.NET Web services

 (un)expected lessons learned
• CB authentication and authorization mechanisms

• feasable

• evolve with policies

 details
• in the paper

• http://konstantin.beznosov.net

