THE UNIVERSITY OF BRITISH COLUMBIA

Experience Report:
Design and Implementation of a
Component-Based

Protection Architecture for
ASP.NET Web Services

Konstantin Beznosov

Laboratory for Education and Research in
Secure Systems Engineering (LERSSE)

Electrical and Computer Engineering
University of British Columbia

Copyright © 2005 Konstantin Beznosov

How ASP.NET Web Services Work

unmanaged code

SOAP/HTTP | IIS

1 v
ASP.NET_ISAPI.DLL

A v
HTTP Modules

ASP.NET web service
handler factory

1 !

SOAP Extensions —‘
4 v

web service implementation

<

managed code (.NET CLR)

ASP.NET Web Services Security

Disclaimer: Biased, qualitative, unsupported comparison

Reported

Out-of-the-box Architecture

granular 5 555

scalable

extensible

reusable

Outline

= System architecture

= Examples

= | essons learned

= Summary

Reported System

What is it?

Component-based
Authentication and Authorization (A&A) architecture
for ASP.NET Web services

Key features

Less effort to integrate into enterprise security

More granularity and scalability: scalable and fine-
grained configuration of machine-wide A&A functions

More extensibility: easy to add new A&A logic
Better reusability: A&A components can be combined

Separation of Enforcements & Decisions

unmanaged code

SOAP/HTTP [IIS

t v
ASP.NET_ISAPLDLL

T v

ASP.NET web service
handler factory

SOAP Interceptor >
Legend: | :
eglleple

4
web service implementation

managed code (.NET CLR)

<

T

Interceptor enforces, “"AR&A logic” decides

Component Framework for A&A Logic

interceptor

obtains permission from /enforces decision of .
btains credentials from

».

DecisionCombinator

PermissionFactory combines decisions from K& NETE 2 (G

«creates» FLIHGUIATEINEIG]S «creates»

permits or denies authenticates

DomainRetriever TargetAttributeRetriever

Q
«creates» \ «Ccreates»
0..1 .. wvO-.
1 L

TargetName MethodName

/N

QualifiedClassName Replaceable

Permission Examples

Permission Example

Explanation

http://foobank.com/bar.asmx

Only the URL is used

com.foobank.ws.Sbar/m1

Class and method names

D1/com.foobank.ws.Sbar/m1

Same but in domain “"D1”

com.foobank.ws.Sbar/owner=smith

Class name and attribute

D1/com.foobank.ws.Sbar/owner=smith/m1

Domain / class / attribute / method

Call Sequence

get_permission
' —

get_credentials S
get_decision{ permission, credentials)

THE UNIVERSITY OF BRITISH COLUMBIA

Example 1

University Course Web Service

Copyright © 2005 Konstantin Beznosov

University Course Web Service Policy

Anyone can lookup course descriptions.
All users should authenticate using HTTP-BA.

Registration clerks can list students registered for the
course and (un)register students.

The course instructor can list registered students as
well as manage course content.

Registered for the course students can download
assignments and course material, as well as submit
assignments.

Policy Engine Assembly for Example 1

interceptor

obtains credential fro obtains permission from
nforces decision of

AV
Permit Overrides
Decision Combinator

N

-
HTTP BA

. . combines decisions from PermissionFactory
Credential Retriever

N

Course :
«Ccreates» PUb“CmethOdS «creates»

PolicyEvaluator PolicyEvaluator

authenticates permits or denies \

N L > A% L
«Credential P L Courseld
ermission

HTTP_BA AttributeRetriever

«Creates»

Legend

.V‘

Generllc Custom QualifiedClassName MethodName «TargetAttrlt?ute
Prebuilt CourseldAttribute

THE UNIVERSITY OF BRITISH COLUMBIA

Example 2

Human Resources Web Service
for an International Organization

Copyright © 2005 Konstantin Beznosov

HR Web Service Policy

Only users within the company’s intranet or
those who access the service over SSL and have valid
X.509 certificates issued by the company should access.

Anybody in the company can look up any employee and
get essential information about her/him.

HR employees can modify contact information and review

salary information of any employee from the same

division.
HR managers can modify any information about the
employees of the same division.

Policy Engine Assembly for Example 2

HTTP BA
Credential
Retriever

Vi

Authorized IP
PE

«creates»

interceptor

obtains credential from

enforces decision of

obtains permission from obtains credential from

(AuthroizedIP v Certificate) A (PublicMethod v (Role A Division))

autneticates

|4

DomainRetriever

«Credential
HTTP_BA

«creates»

v

Decision Combinator

combines decisions from

v
Public
methods
PE

Division
PE

permit or deny

Permission

N

PermissionFactory

«creates» «Ccreates»

DomainName

QualifiedClassName

CourseldAttribute MethodName

Generic
Prebuilt

Expected Lessons Learned

It's possible to design security decision logic as
components

e reusable from policy to policy

e composable to support different policies

e replaceable to allow new policies

ASP.NET container is suitable for extensions (in the
form of components)

effective design required deep understanding of
access control, Web services, and (ASP).NET

effective configuration (packaging) crucial

embracing (not ignoring or suppressing) ASP.NET
idiosyncrasies lead to the success

Expected Lessons Learned

It's possible to design security decision logic
as components

e reusable from policy to policy
e composable to support different policies
e replaceable to allow new policies

ASP.NET container is suitable for extensions
(in the form of components)

effective design required deep understanding
of access control, Web services, and (ASP).NET

effective configuration (packaging) crucial

embracing (not ignoring or suppressing)
ASP.NET idiosyncrasies lead to the success

Unexpected Lessons Learned

customers did

not care that much about

standard com

pliance & interoperability

hard to interpret very flexible WS-Security spec

switching to XP-like User Stories too shocking

avoid showing all the capabilities/flexibility

unscalable life-cycle of interceptors

SOAP interceptor intercepts only SOAP

messages (du

h!)

Summary

perience report about designing and
implementing protection framework for
ASP.NET Web services

(un)expected lessons learned

e (B authentication and authorization mechanisms
e feasable

e evolve with policies

= details
e in the paper
o http://konstantin.beznosov.net

