On the Benefits of Decomposing
Policy Engines into Components

Konstantin Beznosov

Department of Electricaland Computer Engineering
University of British Columbia
Vancouver, B.C., Canada

beznosov @ece.ubc.ca

ABSTRACT

In order for middleware systems to be adaptive, their
properties and services need to support a wide variety of
application-specific policies. However, application developers
and administrators should not be expected to cope with
complex policy languages and evaluation engines or to
develop custom engines from scratch. In this paper, we discuss
the benefits of policy engines designed as component
frameworks with a mix of parameterized pre-built and custom
logic composed to implement complex policies. To provide an
example of such a design approach, we present an
authorization architecture for ASP.NET Web services that has
been implemented in a real-world system.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design —
distributed systems. D.2.11 [Software Engineering]: Software
Architectures — data abstraction, domain-specific
architectures, information hiding, patterns. D.2.13 [Software
Engineering]: Reusable Software — domain engineering, reuse
models.

General Terms
Design, Experimentation, Security, Standardization.

Keywords

Middleware, Policy, Authorization, Security, Architecture.

1. INTRODUCTION

Policy evaluation engines (or just “policy engines”) provide
decisions enforced by middleware mechanisms and services.
The design and capabilities of policy engines also determine
the corresponding administrative interfaces and languages.

The presupposition of this paper is that the research
community needs to find better ways of designing policy
engines that control the increasing flexibility of adaptive and
reflective middleware architectures. Otherwise, the developers
and owners of distributed applications will not be able to take

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

3rd Workshop on Adaptive and Reflective Middleware, Toronto,
Canada.

Copyright 2004 ACM 1-58113-949-7/00/0004...$5.00.

the advantage of the flexible architectures if they are provided
at the expense of administrative simplicity and usability.

To support flexible middleware behavior, policy decision
logic is commonly constructed as generic, low-performance,
and hard to administer complex policy engines in the attempt
to support as many policy types as possible, or it is left to
application developers to develop custom versions from
scratch. After making a case that neither extreme is suitable, we
argue that a better approach is to design policy engines as
component frameworks that can be reconfigured and/or
extended by re-arranging and/or adding/replacing individual
components. Another key aspect of our approach is the pre-
packaging of commonly used policy decision logic into
policy components. We believe that such a hybrid approach
gives the better of the two extremes. To show the feasibility of
the proposed approach and to give an idea of how it could
work, we describe an application of the approach to a specific
policy type, authorization.

Being implemented in a real-world security solution, the
described protection architecture makes ASP.NET Web service
applications easier to integrate with organizational security
infrastructure with a reduced effort on the side of Web service
developers and owners. The architecture allows flexible
configuration of the machine-wide authentication and
authorization (A&A) functions, with the ability to override
them for a sub-tree of the Web services. It supports a wide
variety of authorization policies with the overhead
proportional only to the complexity of the enforced policies.
Furthermore, one can reuse authorization logic components by
combining decisions from them according to predefined or
custom rules. Although this architecture is specific to
authorization, we hope that the general approach outlined in
this paper is applicable to other types of policy decision logic.

The rest of this paper is organized as follows. Next section
motivates the problem and discusses related work. Section 3
gives a general description of the proposed approach. In
Section 4, we illustrate the approach on a concrete example of a
policy engine. Examples of different configurations for the
engine are provided in Section 5. We summarize and draw
conclusions in Section 6.

2. PROBLEM MOTIVATION AND
RELATED WORK

Some changeable aspects of middleware behavior are
commonly implemented according to the principle of
separation between mechanisms and policies, which was
originally articulated by Levin et al. [11]. Policies are
implemented by the mechanisms, where high-level

mechanisms rely upon the low-level ones, creating a hierarchy
under relation “is implemented using.” In the cases when a
simple and efficient interface between policies and
mechanisms can exist, policy engines evaluate policies and
provide decisions executed by the corresponding mechanisms.

A common example is access control, implementations of
which follow the conceptual model of the reference monitor.
The monitor can be viewed as a sum of two distinct but related
parts: enforcement function, the mechanism, mediates access
to resources by enforcing access control decisions obtained
from the second part—decision function, the policy. Unless
provisional authorizations [8] are employed, the decisions are
binary, “deny” or “permit,” facilitating the separation between
the mechanism and the policy. Even though both functions are
part of the trusted computing base [6] and therefore have to be
carefully designed, implemented, and assured to perform
according to the specification, the hardest one is the decision
function due to the wide variety of policies and their flavors
used in real-world applications [16-18].

Access control is one of the examples where implementations
follow the decision-enforcement paradigm. Others are
cryptographic data protection, scheduling, resource allocation,
security audit, and object invocation dispatching.

The choices given to the developers and/or administrators of
the distributed applications, with respect to the policy
engines, are limited to two extremes. They are either pre-built
policy engines that support particular, usually fixed,
languages based on text or GUI, or programming interfaces for
“plugging in” custom policy logic, which have to be
constructed from scratch. As we argue in this section, both
choices have significant limitations and drawbacks hampering
their usefulness for real-world applications.

Among pre-defined policy languages and engines, some have
limited scope and purpose, which enables efficient
implementations, but limits the range of application domains
where such implementations can be employed. Examples are
COM+ and EJB authorization architectures described and
compared in [7]. Both support only permission grouping into
roles, whose scope is limited to an instance of a deployed
application, and which cannot be organized in hierarchies or
regulated by constraints, limiting both architectures to the
basic Role-based Access Control (RBAC) reference model,
RBAC,, [17]. The applicability scope of such restricted policy
logic is limited to a small class of application domains. As we
explain in [7], the COM+ and EJB authorization policy
engines are inadequate for enterprise-scale applications
because of the poor scalability and the limited expressiveness.

Other pre-defined policy engines are designed according to
“one size fits all” philosophy. Made very generic to support as
many application domains as possible, their designs tend to
sacrifice implementation efficiency to generality. Even worse,
they are error prone to administer due to the complexity of the
corresponding information models. An example is access
control architecture of CORBA Security [14]. It was shown to
support all major types of authorization policies: lattice-based
mandatory and owner-based discretionary models [10] as well
as role-based access control [4]. The versatile and generic
CORBA access control architecture is so complex that the
result of the author’s attempt to capture it in a UML diagram
for a research conference paper was criticized by a reviewer as a
“monstrosity.” Then, how could IT security administrators be

expected to translate back and forth between application-
specific policies and complex CORBA access control model?

The only other choice left to application developers and
administrators is to implement custom policy evaluation
engines using “plug in” programming interfaces available in
some middleware architectures (e.g., CORBA Security
replaceable interfaces, Java Authorization Contract for
Containers [19] in J2EE) and policy engines (e.g., SiteMinder
Authorization API [13]). This task could be notoriously hard
and error prone for non-trivial.

Neither approach is quite what is needed. Pre-built policy
engines are too limited, or too complex to administer and lack
low-cost efficient implementations. “Do-it-yourself”
extensions require prohibitively large development effort with
high rate of costly errors. What could help? How can
developers and/or administrators implement support for their
custom policies without getting trapped in the complexities of
the underlying generic languages and interfaces, or stepping
on the slippery slope of “do-it-yourself” custom re-
implementations of the policy logic?

This paper advocates an approach that can be viewed as an
alternative to pre-built and custom policy evaluation engine
approaches—policy engines designed as component
frameworks (CF) that define a set of abstract interactions by
which policy components cooperate in arriving to a policy
decision. Although the benefits of component-based
approaches are well known, little work has been published on
component-based policy engines, including authorization
ones.

Resource Access Decision (RAD) [5, 15] is one of few works
that proposes an architecture for a component framework for an
authorization service. RAD framework is composed of the
following components: The AccessDecisionObject serves as
the interface to RAD clients and coordinates the interactions
between other RAD components. Zero or more
PolicyEvaluators (PEs) perform evaluation decisions based on
their access control policies that govern the access to a
protected resource. The DecisionCombinator (DC) combines
the results of the evaluations made by potentially multiple
PEs into a final authorization decision by applying certain
combination policies. The PolicyEvaluatorLocator (PEL), for a
given access request to a protected resource, keeps track of and
provides references to a DC and the PEs, which are collectively
responsible for making the authorization decision to the
request. The DynamicAttributeService (DAS) collects and
provides dynamic attributes about the client in the context of
the intended access operation on the given controlled
resource. The protection architecture described in Section 4
follows RAD architecture more in spirit than in detail—rather
as an architectural style. Our architecture also makes next step
by decomposing the logic of retrieving authentication data
and creating permissions into components (Section 4.3).

IBM Tivoli Access Manager [9] divides its authorization
service into components similar to RAD. It supports custom
versions of PEs and DAS but limits DC to the one provided
with the implementation, and has no equivalent to PEL. In
addition, the Access Manager architecture enables
customization through the replacement of authentication data
transformation logic, administration service, and the logic of
retrieving data (e.g., “expense limit” information of customers)
necessary for those application-specific policies that can only

be evaluated by the application. Because the logic of
combining decisions from several PEs is restricted to simple
voting with each PE having pre-configured vote weight, the
capability of Access Manager architecture to support diverse
policies via components composition is fairly limited. For
instance, the policy from the second example (Section 5.2)
could not be implemented through the composition of PEs and
the use of the DC in the Access Manager.

3. WHAT COULD BE DONE ABOUT IT?

The premise of the approach proposed in this paper is the
following. Although application domains and even individual
applications differ in the specifics of their policies, common
elements are often present in many policy instances. For
example, many access control decisions are based on common
factors such as the roles of the users, their group memberships,
and the locations of the computers from which access is
attempted, to name a few. The difference is often found in the
weight of these factors in the final decisions as well as in those
factors that are specific to individual applications, e.g.,
relationship between a doctor and a patient [1]. Therefore we
propose the use of component frameworks for constructing
policy engines.

Continuing the example with access control, the logic of
policy-driven decisions based on roles, groups, client IP
addresses, etc., could be pre-built into authorization and other
related modules and packaged as components. Application
developers/administrators can then compose these modules
into specific policy engines without having to implement the
engines from scratch. On the other hand, with the sufficient
flexibility of the policy engine architecture, modules that
implement support for unusual factors should be easy to
implement and “plug in.”

In CF-based policy engines, the complexity and the
implementation efficiency are largely determined by the
complexity of the required policies and not by the (used and
unused) capabilities of the policy engine. In addition,
tailoring the evaluation logic to the idiosyncrasies of the
specific application (domain) would not necessarily require
complete re-implementation; incremental addition of a
custom-made component could suffice.

4. FEASIBILITY OF THE APPROACH

To support our position that designing policy evaluation
logic in the form of component frameworks, in which
individual policy modules are easy to re-use, replace, and
augment by combining with other such modules, is feasible
and advantageous, we describe one instance of this approach.

The protection architecture presented in this section makes
ASP.NET Web service applications easier to integrate with
organizational security infrastructure with a reduced effort on
the side of Web service developers. The architecture is flexible
because it allows configuring machine-wide authentication
and authorization functions, and overriding them for a sub-
tree of the Web services (up to an individual Web service) in
the directory-based ASP.NET hierarchy. Its extensibility is
revealed through the support of wide variety of authentication
and authorization (A&A) logic. Furthermore, one can reuse
other instances of such logic by combining authorization
decisions from them according to predefined or custom rules.

The following sub-sections describe the most relevant
elements of the architecture, whereas the detailed description
can be found in [3].

4.1 General Structure

To integrate with ASP.NET run-time, the architecture takes
advantage of the ASP.NET generic interception mechanism,
SOAPExtension [12], intended for custom processing of SOAP
messages. Our interceptor performs initial extraction,
formatting, and other preparation of HTTP and, contained in
them, SOAP messages, passing the data to the decision A&A
logic, and enforcing authorization decisions. The object of
discussion in this paper is the authorization policy evaluation
engine.

4.2 Authorization

The structure of the authorization-related elements follows
RAD and Attribute Function [2] architectural styles. An
authorization decision is reached in a three-step process.

Initial decisions are made by zero or more PolicyEvaluators.
The simplest PE is one that always returns same decision, e.g.,
“deny,” “permit,” depending on its static configuration. More
interesting PEs grant access based on IP address of the request
sender, name of the Web service target and its methods, and
decisions provided by an enterprise authorization server. The
strength of RAD architectural style is in the support of fairly
sophisticated' authorization policies without the need for
complex authorization engines. The support is achieved by
combining run-time decisions from several simple PEs into
one at the second step, performed by a DecisionCombinator.
Similarly to PEs, common variations of combination logic are
provided in pre-built DCs with the ability for developers to
“plug” custom implementations.

The authorization process continues to its third stage in order
to achieve fail-safe defaults, in the cases when a DC
experiences a failure, and due to a design or implementation
error, does not come to a binary decision, During this stage,
the interceptor, which originally delegated the process to the
corresponding DC, renders any decision, except “permit,”
received from the DC to “deny” and thus reaching
authorization verdict. If access has been denied, the
corresponding exception with the configurable explanation
message is thrown to the ASP.NET run time, which translates it
into an appropriate SOAP exception message.

Besides credentials, obtained from the SOAP message, the
corresponding HTTP request, or the underlying
communication channel, PEs are supplied with other
information related to the request. All this information is
constructed into a permission. The authorization process
results in a decision whether a permission should be granted
to a (potentially compound) subject given subject’s
credentials. If so, then the interceptor passes control to
ASP.NET which activates the corresponding Web service
implementation and passes to it the request contained in the
SOAP message. It is the construction of the permission that
furthers the flexibility and extensibility of the architecture.

4.3 Permission Construction

To support the flexibility and extensibility of the architecture,
we designed permission construction out of four distinct

! See [1] for an example.

elements, shown at the bottom of Figure 1: target name,
domain name, target attributes and method name. The
construction of permissions is done by a default permission
factory, which can be replaced by a custom implementation
possibly producing permissions of other format and content.

4.4 Replaceable Parts

The flexibility and extensibility of the architecture are
achieved via designing most of its elements as components.
Any of the black boxes in Figure 1 can be replaced by a
version that comes with the implementation or by a version
produced by Web service developers or owners.

Custom versions of the grey boxes are subject to the control
by those modules that create them. Other architectures, e.g.,
CORBA Security, also make some of their parts replaceable.
The novelty of our approach is in the level of replaceable
parts’ granularity. In CORBA Security, for instance,
authorization logic (encapsulated in AccessDecision interface)
has to be replaced as a whole, whereas in our architecture, one
can selectively replace specific PEs and/or a DC.

interceptor

obtains permission from [enforces decision of
btains credentials from

\

DecisionCombinator

creates»

DomainRetriever TargetAttributeRetriever

LT
«creates» \ «creates»
% ¢ i Q-1 0

TargetName MethodName

QualifiedClassName

Figure 1: Key elements of the authorization policy engine
architecture. (replaceable in black, modifiable in grey).

S. Examples

To demonstrate the ability of our architecture to be customized
through different compositions of its components, we provide
examples of implementing two different policies.

5.1 Example 1: University Course Web

Service

Consider a simplified hypothetical application that enables
online access to university courses as web services. Let us
assume that the following is a relevant to the example
fragment of the application security policy to be enforced:

Policy 1:
1. All users should authenticate using HTTP-BA.

2. Anybody can lookup course descriptions.

3. Registration clerks can list students registered for the
course and (un)register students.

4. The course instructor can list registered students as well
as manage course assignments and course material.

5. Registered for the course students can download
assignments and course material, as well as submit
assignments.

Given that each course is represented by a separate instance of
a web service, the following is a configuration of our
architecture that enables the enforcement of Policy 1. It is
illustrated in Figure 2 with custom-built modules in black.

obtains credential fro obtains permission from
enforces decision of

«DecisionCombinator
Permit_Overrides
==Creden|\ci::£sRe|r|ever combines decisions from PermissionFactory
" «PolicyEvaluator «PolicyEvaluator "
«creates» PE2 PE1 «creates»

authenticates
«Credential
HTTP_BA

permits or denies

«TargetAttributeRetriever

Permission CourseldAttributeRetriever

«createss»
v
«TargetAttribute
CourseldAttribute

Figure 2: Configuration 1.

Configuration 1:

= An HTTP-BA CredentialRetriever CR; extracts the user
name and password from the corresponding HTTP request.

= A custom TargetAttributeRetriever that provides the
course number in a form of an attribute, e.g.
Courseld=EECE412.

= The default PermissionFactory is configured to compose
permissions with the qualified .NET class name, as a
TargetName, the method name, and the attributes
provided by the custom retriever. Here is an example:
‘ca.ubc.CourseManagment.SimpleCourse/Courseld=EECE
412/GetDescription’. No domain name is used in this
configuration.

= A pre-built PolicyEvaluator PE, that grants permissions
to any request on public methods. In the case of Policy 1,
there is one public method, GetCourseDescription.

= A custom PolicyEvaluator PE, programmed and
configured to make authorization decisions according to
the rules informally described as follows:

1. Permit registration clerks to access methods
‘ListStudents’, ‘(Un)RegisterStudent’.

2. Permit users in role ‘instructor’ whose attribute
‘CourseTaught’ contains the course listed in
Permission.TargetAttributes.Courseld to list
students, manage course assignments and material.

3. Permit users in role ‘student’ whose attribute
‘RegisteredCourses’ contains the course listed in

obtains credential from

=

CR1

interceptor

enforces decision of

«CredentialsRetriever «DecisionCombinator

combines decisions from

obtains permission from obtains credential from

~ N

PermissionFactory

L W
«Createss «PolicyEvaluator «PolicyEvaluator «PolicyEvaluator «PolicyEvaluator «createss «createsn
PE3 PE6 PE1
autneticates permit ar deny utneticates
i % A" ” pa L
; ~ =)
D inRetri «Credential Permissi «Credential
omainRetriever HTTP BA ermission ClientCert
\ «createss \
v
DomainName QualifiedClassName CourseldAttribute MethodName

Figure 3: Configuration 2. Custom-built components have black fill color. Generic components from third-
party vendors have gray fill color.

Permission.TargetAttributes.Courseld to list
students, manage course assignments and material.

= A pre-built DecisionCombinator of type Permit
Overrides, which grants access if either PE grants access.

5.2 Example 2: Human Resource Web

Service for an International Organization
Now consider a multinational company. Each division has its
own department of human resources (HR). The company rolls
out a web service application to provide online access to
employee information. Each division has Web services
providing HR information of that division. The following
policy for accessing this application is to be enforced.

Policy 2:
1. Only users within the company’s intranet or those who
access the service over SSL and have valid X.509

certificates issued by the company should be able to
access the application.

2. Anybody in the company can look up any employee and
get essential information (e.g., contact information, title,
and names of the manager and supervised employees).

3. HR Employees can modify contact information and
review salary of any employee from the same division.

4. Managers of HR departments can modify any information
about the employees of the same department.

Configuration 2:
. Same CredentialsRetriever CR; as in Examplel.

= Another CredentialRetriever CR, obtains an SSL client
certificate from the corresponding HTTPS connection.

= A pre-built simple DomainRetriever that always returns
same statically configured domain name. The domain
name designates the division for which HR information is
served by the web service instance, e.g. ‘Japan’.

The default PermissionFactory is configured to compose
permissions with the domain name, NET class name, as a
target name, and the corresponding method name. No
target attributes are used in this case. Here is an example:
‘Japan/com.mega-foo.Employeelnfo/GetContactInfo’.

Same PolicyEvaluator PE; as in Example 1. In this case,
the public methods are: FindEmployee, GetEmployeelnfo,
GetEmployeeManager, GetSupervisedEmployees.

A pre-built PolicyEvaluator PE; that permits access to any
request made from a machine with an IP address in the
range of the company’s intranet addresses.

A custom-built PolicyEvaluator PE4 that permits access to
any request made by a user with valid X.509 certificate
issued by the company. The certificate is retrieved by CRo.

A generic RBAC PolicyEvaluator PEs that permits
invocation of different methods based on the user role:

1. Any user with role ‘hr employee’ can invoke methods
that modify contact information and review salary.

2. Any user with role ‘hr manager’ can invoke methods
permitted to users with role ‘hr employee’ as well as
methods that modify employee’s salary, title, and
names of the manager and supervised employees.

A custom built PolicyEvaluator PE¢ that permits access to
any authenticated user, whose attribute ‘Division’ has the
same value as the domain in the permission.

A custom-built DecisionCombinator DC, which grants
access according to the following formula: (PE; v PEg) A
(PE; v (PEs A PEg)). That is, a request is permitted only to
intranet users or those with valid compnay’s certificate
(PE; v PE4), provided that either the requested method is
public (PE|) or an authorized HR person is accessing a
record of the employee from same division (PEs A PEg).

The high degree of the architecture composability allows re-
using two pre-built (PE; & PE3). Even though configuration 2
has 3 more PEs and one more CredentialRetriever than
configuration 1, as shown in Figure 3, there are only three
components (DC,, PE4, and PE¢) that have to be custom-built.
Among them, PEs is simple to build using certificate
validation tools and libraries, and PEs requires marginal effort.
DC; can be implemented in one ‘if’ structure. Two other (PEs
and CR;) are generic and can be supplied by third-party
vendors.

6. SUMMARY AND CONCLUSIONS

In this paper, we consider the problem of constructing flexible
policy engines for adaptive middleware systems. Governing
the behavior of various middleware mechanisms and
properties, the engines have to support a wide variety of
policy types and their variants. This flexibility is commonly
achieved either through the construction of generic, low-
performance, and hard to administer complex policy engines
in the attempts to support as many policy types as possible, or
leaving application developers to implement custom engines
from scratch. After making a case that neither extreme is
suitable, we propose a hybrid approach.

We argue that a better approach is to design policy engines as
component frameworks that can be reconfigured and/or
extended by re-arranging and/or adding/replacing individual
components. Another key aspect of our approach is the pre-
packaging of commonly used policy decision logic into
policy components. We believe that such an approach is better
than the two extremes. It avoids the complexity and
unnecessary run-time and administrative overhead of generic
policy engines. At the same time, application developers have
a simpler job of creating custom policies by rearranging
existing policy components and/or incrementally adding new
ones. To show the feasibility of the proposed approach and to
give an idea of how it could work, we describe an application
of the approach to a specific policy type, authorization.

The protection architecture described in this paper makes
ASP.NET Web service applications easier to integrate with
organizational security infrastructure. The architecture allows
configuring machine-wide A&A logic, and overriding them for
a sub-tree of the Web services. Following the RAD [5] and AF
[2] architectural styles, it supports a wide variety of
authorization policies. The architecture has been implemented
in a real-world security solution.

There is an alternative to complex, generic, and therefore
expensive to build, execute, and administer, general-purpose
authorization engines. This alternative is lightweight, simple
to construct, and inexpensive to run authorization modules,
each of which is dedicated to evaluating very specific type of
authorization rules. Other lightweight specialized modules
combine decisions from these modules. As a result, for every
distinct authorization policy a specialized version of the
authorization engine is composed out of such modules. Even
more, multiple specialized engines can govern access to the
Web services co-located in one ASP.NET container. Although
this architecture is specific to authorization, we hope that the
general approach outlined in this paper is applicable to the
other types of policy decision logic.

7. REFERENCES

[1] Barkley, J., Beznosov, K. and Uppal, J., Supporting
Relationships in Access Control Using Role Based Access
Control. in Fourth ACM Role-based Access Control
Workshop, (Fairfax, Virginia, USA, 1999), 55-65.

[2] Beznosov, K., Object Security Attributes: Enabling
Application-specific Access Control in Middleware. in
4th International Symposium on Distributed Objects &
Applications (DOA), (Irvine, California, USA, 2002),
Springer-Verlag, 693-710.

[3] Beznosov, K., Protecting ASP.NET Web Services:
Experience Report. in preparation, (2004).

[4] Beznosov, K. and Deng, Y., A Framework for
Implementing Role-based Access Control Using CORBA
Security Service. in Fourth ACM Workshop on Role-Based
Access Control, (Fairfax, Virginia, USA, 1999), 19-30.

[5] Beznosov, K., Deng, Y., Blakley, B., Burt, C. and Barkley,
J., A Resource Access Decision Service for CORBA-based
Distributed Systems. in Annual Computer Security
Applications Conference, (Phoenix, Arizona, USA, 1999),
IEEE Computer Society, 310-319.

[6] DOD, DoD 5200.28-STD: Department of Defense (DoD)
Trusted Computer System Evaluation Criteria (TCSEC),
Department of Defense, 1985.

[7] Hartman, B., Flinn, D.J., Beznosov, K. and Kawamoto, S.
Mastering Web Services Security. John Wiley & Sons,
Inc., New York, 2003.

[8] Jajodia, S., Kudo, M. and Subrahmanian, V.S., Provisional
authorizations. in Ist Workshop on Security and Privacy
in E-Commerce, (Athens, Greece, 2000), Kluwer Academic
Press, Boston, MA.

[9] Karjoth, G. Access control with IBM Tivoli Access
Manager. ACM Transactions on Information and Systems
Security, 6 (2). 232-257.

[10] Karjoth, G. Authorization in CORBA Security. Journal of
Computer Security, 8 (2/3). 89-108.

[11] Levin, R., Cohen, E., Corwin, W., Pollack, F. and Wulf, W.,
Policy/mechanism separation in Hydra. in ACM
Symposium on Operating Systems Principles, (Austin,
Texas, United States, 1975), ACM Press, 132--140.

[12] Microsoft. Altering the SOAP Message Using SOAP
Extensions, 2002.

[13] Netegrity. SiteMinder Developer's APl Guide, Netegrity,
Waltham, MA, 2000, 410.

[14] OMG. CORBAservices: Common Object Services
Specification, Security Service Specification v1.8, Object
Management Group, document formal/2002-03-11, 2002.

[15] OMG. Resource Access Decision Facility, Object
Management Group, 2000.

[16] Sandhu, R., Access Control: The Neglected Frontier
(Invited Paper). in First Australasian Conference on
Information Security and Privacy, (Wolongong,
Australia, 1996).

[17] Sandhu, R., Coyne, E., Feinstein, H. and Youman, C. Role-
Based Access Control Models. IEEE Computer, 29 (2). 38-
47.

[18] Sandhu, R.S. Lattice-Based Access Control Models /EEE
Computer, 1993, 9-19.

[19] Sun. Java Authorization Contract for Containers, 2002.

