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Abstract
Decoupling authorization decision logic enables implementation of complex and consistent

access control policies across heterogeneous systems. However, this is difficult, if not impossible
to implement by exclusively using general-purpose infrastructures such as CORBA Security Ser-
vice. In response to this limitation of CORBA Security service the Object Management Group
(OMG) has adopted a Resource Access Decision (RAD) Facility, an authorization service for
distributed systems, as a pre-final standard. By using RAD facility, developers can implement
systems with authorization logic decoupled from application-specific logic and decentralized
evaluation and administration of the access policies.

This report documents the design and implementation of a Resource Access Decision (RAD)
facility. The report covers the different components that comprise a RAD system, their designs,
functions and interdependencies. The RAD prototype allows studying the validity of the frame-
work and conduction of experiments in the research of distributed access control. Since the
design of the prototype is heavily influenced by design patterns, the prototype can easily be main-
tained and augmented with more complex access control mechanisms.

Keywords
Authorization, access control, resource access decision, CORBA, Java, security, authorization, software

engineering, distributed security, distributed systems.
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1. INTRODUCTION

Contemporary enterprise systems have increased in size and complexity and tend to be distributed
across organizations with potentially heterogeneous computing platforms. Organizations in need of such
computing infrastructures rely on existing software middleware such as OMG’s Common Object Reque
Broker Architecture (CORBA) to build such systems. CORBA defines a platform and language ind
dent object-oriented middleware that allows integration of diverse systems [17]. This integration p
transparent access to remote services [17][24]. CORBA in general, and CORBA Security in par
provides uniform, general-purpose infrastructure with which to build secured object-oriented distr
systems for a wide variety of application domains. In order to build such systems, however, deve
need to extend this infrastructure and implement all the necessary features required for a particular
This is especially true for applications that require complex application domain-specific authori
decisions [20]. Moreover, developers need to have an architectural view of the system under devel
By architectural view we mean the structures constituting the components of the system, the nat
role of each component, their interfaces and expected interactions and system-wide properties or s
[14]. Unfortunately, these factors are beyond the intended scope of CORBA general-purpose infr
ture.

As a result, the need to realize these requirements and the lack of general approaches to ac
them has lead developers to thightly couple domain-specific authorization and application-specific
By application-specific logic we mean business domain logic which is separate of architectural fac
requirements such as security, transaction, performance, availability or scalability to name a few. Al
coupling application-specific logic and authorization logic (or other architectural concerns for that m
allows developers to realize the intended systems, the separation of the two gives significant benef
tems resulting from this separation are easier to manage since there is a clear separation of respo
between security administrators and developers [12].

In response to this limitation of CORBA Security service, at the time this report is written (200
Resource Access Decision (RAD) Facility [12][20] has been adopted by the Object Management
(OMG) as a pre-final standard. RAD facility (or server as it is also referred in this report) provides m
nisms to obtain authorization decisions. By using RAD facility, developers can implement system
authorization logic decoupled from application-specific logic and decentralized evaluation and adm
tion of the access policies. Another advantage of using RAD facility is that it partitions system ch
that can (and will) occur into application-specific and authorization decision changes. That is, cha
authorization decision logic are contained within the RAD facility without having great impact in app
tion-specific logic and vice versa. The RAD facility complements CORBA Security access mode
allow developers to implement access control mechanisms of arbitrary granularity [12].

As part of research at the Center for Advanced Distributed Systems Engineering (CADSE), a pro
of the RAD server has been implemented. The prototype allows studying the validity of such a fram
and conduction of various experiments in the research of distributed access control. The prototype
used for reasoning about properties and semantics of the prototype itself, other implementation
RAD server, and of applications using the prototype. The prototype can serve as a vehicle to
approaches for implementing extensible, maintainable solutions for authorization decision problem
2
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cost-effective manner. This report documents the design decisions made during the implementation of the
prototype and the forces influencing its design and implementation. 

The organization of this report is the following: Section 2 gives an overview of the RAD specification
including a brief overview of CORBA and scope of the authorization service. Section 3 introduces the
architecture of the prototype, its components, their functions, interfaces and interactions and observable
properties or semantics of the components. Lastly, section 4 describes the implementation of the prototype,
the design patterns used in the implementation of the components, and the additional implementation-spe-
cific properties of the component.

2. OVERVIEW OF RAD SPECIFICATION

The function of a RAD server is to administer and enforce security policies of varying complexity. As it
is defined in [20], a RAD server is built using CORBA; nevertheless, the same ideas could be implemented
using other middleware technologies such as DCOM or SunRPC. Notice that there is a RAD specification
and a RAD server. The RAD specification stands for the requirements, specifications, interfaces and sug-
gestions that guide the implementation of a CORBA facility as specified in [20] in response to the HRAC
RFP [19]. A RAD server is a concrete, executable implementation compliant with the RAD facility.
Throughout this report, unless specified otherwise, the term “RAD server” denotes the RAD prototyp
implemented at CADSE.

2.1. CORBA Overview

CORBA defines the programming interfaces and middleware architecture with which to de
object-oriented distributed systems. The building blocks of a CORBA-based system are CORBA o
and processes executing programs that contain CORBA objects are referred to as CORBA servers
ply servers) [5]. In a CORBA-based system, a CORBA object makes its services available to other
tially distributed CORBA objects. This involves giving CORBA objects a representation which ca
manipulated and managed by other CORBA objects [15]. To that end, services provided by a C
object are defined through interfaces written in OMG Interface Definition Language (IDL). Clients 
the operations provided by a CORBA object only know about its interface and need not worry ab
implementation and locality of the CORBA object. That is, a client treats a CORBA object the same
treats objects in the client address space.1

CORBA interfaces can be categorized as CORBA services and CORBA facilities [19]. CORBA
vices are general purpose services fundamental to the construction of CORBA-based systems or u
domain-independent services. CORBA facilities are also general interfaces applicable to most d
The difference is that CORBA facilities are end-user oriented in nature. In [19] and [20], RAD is spe
as a CORBA facility.

2.2. Scope of Authorization Service

A RAD server implements mechanisms for obtaining authorization decisions [20]. To understan
we mean by “authorization decision”, it is necessary to introduce several concepts pertaining to
(security) policies and access control. An access policy defines the security requirements of a syste
These security requirements govern how and when principals (users or systems running on behalf of use
operate and access system resources [6]. These access policies are enforced by means of access control
mechanisms which grant or deny principals’ requests for access to resources [6].

1. Some authors argue that distributed objects such as CORBA objects cannot be treated as objects located in a single 
address space since issues such as latency and partial failure are intrinsic observable properties of their interfaces [11].
3



Access control mechanisms enforce (mediate) grant or denial of requests by subjects (or principals) for
access to secured resources. During mediation, access control mechanisms evaluate applicable access pol-
icies, and the results from these evaluations determine whether to grant or deny a request. The decision to
grant or deny access to a resource based on an access policy evaluation is known as an authorization deci-
sion.

In a traditional scenario, the application server implements both the access control and authorization
decision logic (Figure 1). With RAD, the authorization decision logic is moved to an authorization server,
and the application server is expected to enforce the authorization decision (Figure 2). Thus, usage of the
RAD server allows decoupling of authorization logic from application logic. Also, the RAD server is used
to provide a standard interface to security-aware clients for requesting access control decisions [20].  

In RAD, the reply sent to the application server can either be the authorization decision (grant/deny) or
an exception indicating an internal failure while computing an authorization decision. This stresses the role
of the RAD as an access decision server (not as an access control server). As a consequence, the applica-
tion server must not only enforce the authorization decisions, but must also make the policy enforcement
decisions about how to proceed during exceptional circumstances [20]. It is important to understand that
the RAD server is concerned with implementing authorization decision logic at the application level.
Issues such as access control at the operating system level, authentication and intrusion detection falls out-
side the current scope of the RAD server.

3. ARCHITECTURE OF RAD SERVER

In this report, the architecture of the RAD server describes the components that make up the RAD
server, their externally visible properties and the interaction among them [14]. By component we mean a
replaceable unit of computation that provides services or operations to other services and may use opera-

Figure 1: Authorization logic implemented in the application server

Figure 2: Authorization logic residing in RAD (authorization decision) server
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tions on other components. By externally visible properties we mean the assumptions other components
can make about the component such as performance characteristics and services provided. This definition
also includes behavior discernible from the point of view of another component [14].

3.1. Components of RAD Server

A RAD server is composed of the following components [12][20]:

1. AccessDecision Object (ADO)

2. PolicyEvaluatorLocator (PEL)

3. DynamicAttributeService (DAS)

4. DecisionCombinator (DC)

5. PolicyEvaluator (PE).

Application servers (clients from the RAD server point of view) interact with RAD server only through
the ADO.1 That is, the ADO acts as a facade that provides a single, uniform interface to the other interfaces
that make the RAD server [8]. Given a resource name (a secured resource identifier), there can be zero or
more access control policies governing access to it. The evaluation of such policies is done by the Policy
Evaluator (PE) objects. 

After evaluation of a policy, a PE returns a grant or deny access (yes/no) or “don’t know” answer. A
“don’t know” answer is used by a PE when it cannot perform an evaluation. Also, A PE object can ev
one or more access policies for a given resource. However, access policies associated with a res
not necessarily evaluated by a single PE object. Therefore, we have a one-to-many relation fr
objects to access policies and a many-to-many relation from access policies to resources (Figure 3

Since there can be more than one access policy for a resource name, RAD uses a Decision Co
object to combine all policy evaluations into a single grant/deny authorization decision which is sen
to the client. A DC objects provides a combination policy. For example, a DC can implement an open
world or closed world policy.2 More complex decision combination policies can be implemented suc
granting access based on a majority vote or on hierarchies of PE objects where a decision from a

1. The RAD ADO has different semantics from the CORBAsec object of the same name even though they have similar 
functions [20].

Figure 3: Relationship among PE’s, access policies, resource names and DC’s

2. With open world combination strategy, a DC returns yes (grant access) only if none of the PE returns a no (deny).
closed world combination strategy grant access only if all PE’s grant access. In essence, open world strategy grants
access unless there is an explicit denial from a PE, and closed world strategy grants access only explicit grant acces
from all PE’s.
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level PE can override decisions from lower-level PE objects. When a PE cannot perform its evaluations
and returns “don’t know”, the combination policy used by DC will determine whether it returns “gran
“deny”.

Locating PE and DC Components
Whenever the ADO receives an authorization decision request, it needs to know what DC and P

applicable to the given secured resource. To this end, the ADO uses the PolicyEvaluatorLocator
object which decides what DC and PE(s) to use. A PEL maintains the relations of DC’s, PE’s and re
names, and isolates the ADO from potentially complex mechanisms for resolving and administerin
relations. Resolving mechanisms can range from a simple search in a local database to resolving re
to remote objects. Administrative mechanisms can range from setting default DC and PEs for all s
resources to associating these objects to PE objects to group of secured resources matched by a
name pattern (please see Section 4.3).

Dynamic Attributes
To evaluate an access policy, a PE needs to know what are the resource name, the intended ope

the resource, and the characteristics of the principals or security attributes. These security attributes ar
used by PE objects as criteria for evaluating access control policies. It is based on these security a
that an authorization decision is made.1 The principal’s security attributes can contain both static a
dynamic attributes.2 Static attributes represent the characteristics of the principal set by an adminis
(e.g. user name and role) which do not change while a principal operates in the system [20].

On the other hand, a dynamic attribute can only be determined at the time an access request tak
These dynamic attributes can denote relationships between a principal and a resource [20]. For ex
physician can access a patient’s medical records only if he is the attending physician for the patie
“attending physician” relationship between physicians and patients is subject to change from one a
zation request to another. In this scenario, the ADO delegates the discovery of dynamic attribut
Dynamic Attribute server (DAS). The DAS itself can become a proxy [7][8] to other, more specia
dynamic attribute servers or SDAS.

Control Flow
In summary, an authorization decision is computed through a sequence of operations carried ou

RAD components (Figure 4). The following algorithm describes how RAD components compute an 
rization decision:

Algorithm 1 Computing One Authorization Request

1) An application server (AS for short) contacts the ADO server for an authorization decision to per-
form an operation  on resource  by a principal  with a list (or set) of security attributes .

2) The ADO object requests the PEL object for references to a DC and any PE servers associated to the 
resource .

3) The PEL returns to the ADO a reference to a DC and a set  with zero or more references to PE 
objects.  represents the PE objects associated with resource  at the time the request for authori-
zation decision takes place.

4) The ADO requests the DAS for any dynamic attributes of  with respect to  and  at the time the 
request for the authorization decision takes place.

1. The authorization decision obtained from a policy evaluation can also be determined from implicit parameters such as 
the time the request is made. How this implicit parameters are handled or configured are outside the scope of this report.
2. For more information on security attributes, operations and resource names and their definitions, please refer to 
[12][18] and [20]

P R U a{ }

R

pe{ }
pe{ } R

U R P
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5) The DAS returns to the ADO a set  to be used in obtaining an authorization decision. Notice that 
the contents of  depend on the configuration of the DAS as well as of what dynamic attributes are 
available at the time the request takes place. The DAS can add dynamic attributes or remove existing 
attributes from set .

6) The ADO sends to the DC a set of PE servers  for evaluation of policies that control access to 
the resource .

7) The DC requests each PE in  to authorize or deny the operation  on the resource  given the 
security attributes  of the principal.

7.1) Each PE in  evaluates zero or more access policies associated with resource . Depending 
on the implementation of the PE server, it will combine all these policies into a single YES/NO/
DON’T KNOW reply. This reply is then returned to the DC server.

8) The DC combines all replies from all the PE servers in , and combines them into a single
or deny response. This response, the authorization decision, is returned to the ADO server.

9) The ADO returns the authorization decision from the DC server to the AS server.

10) The AS server receives the authorization decision from the ADO server and enforces it. The m
in which the authorization decision is enforced depends on the implementation of the AS serv

3.2. Computational Model

The RAD specification [20] introduces several standard interfaces that can be classified as run-time and
administrative interfaces. The run-time interfaces describe the objects and operations a client uses to obtain
an access decision from the RAD server. The administrative interfaces, on the other hand, describe the
objects and operations involved in the configuration of the RAD server. 

The implementation of the prototype RAD server introduces extensions to the required interfaces (see
Figure 5).  The extensions to the run-time interfaces provide operations to get references to administrative
interfaces. Extensions to the administrative interfaces provide operations for gracefully shutting down
components. Table 1 lists the standard and extended interfaces, and table 2 lists the classes implementing
the extended interfaces and the packages in which the classes are organized.1 

Figure 4: Sequence Diagram - 1 Authorization Request
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4. IMPLEMENTATION

Although the RAD components have different functions, their implementation faced two main prob-
lems. The first problem was to devise an initialization mechanism common to all RAD components. The
second problem was to implement IDL interfaces using a single class even though Java does not support
multiple inheritance. 

1. At the time this report is written (2000), the prototype did not have an implementation for the PolicyEvaluatorLocator-
NameAdmin and PolicyEvaluatorLocatorPatternAdmin, nor did it introduce extension interfaces for the DC.

Figure 5: RAD Server Computational Model - Implemented Interfaces only.

RAD Component Standard IDL Interface Extended IDL Interface
ADO AccessDecision AccessDecisionExt

AccessDecisionAdmin AccessDecisionAdminExt
PEL PolicyEvaluatorLocator

PolicyEvaluatorLocatorAdmin
PolicyEvaluatorLocatorBasicAdmin PolicyEvaluatorLocatorAdminExt
PolicyEvaluatorLocatorNameAdmin
PolicyEvaluatorLocatorPatternAdmin

DAS DynamicAttributeService DynamicAttributeServiceExt
DynamicAttributeServiceAdminExt

DC DecisionCombinator
PE PolicyEvaluator PolicyEvaluatorExt

PolicyEvaluatorAdmin PolicyEvaluatorAdminExt

Table 1: Implemented interfaces

RAD Component Java Package
ADO edu.fiu.cadse.rad.ado
PEL edu.fiu.cadse.rad.pel
DAS edu.fiu.cadse.rad.das
DC edu.fiu.cadse.rad.dc
PE edu.fiu.cadse.rad.pe

Table 2: Implemented packages
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4.1. Component Implementation and Initialization

A RAD component can have multiple interfaces (run-time and administrative). Since each administra-
tive interface is used to configure the run-time interface of a component (which may require some degree
of interdependency), it was be desirable that each component has a single class implementing both the run-
time and administrative interfaces. Another desirable property was to have a generic approach to initialize,
or bootstrap the components. 

This initialization mechanism should be transparent to the component. The meaning of this requirement
is twofold. First, changes to the initialization logic should not introduce changes in the implementation of
the components. Likewise, a component should not expect a particular initialization procedure insofar as
this initialization provides to the component a working environment on which it can interact with other
components as expected.

Implementation of Multiple Interfaces
In Java, an IDL interface is implemented using a class which provides the minimum mechanisms

needed to interact with the ORB environment and defines public methods corresponding to the operations
and attributes of the IDL interface [16]. However, since Java does not support inheritance of multiple
classes, inheritance could not be used for implementing the run-time and administrative IDL interfaces.

To work around the single-inheritance restriction of Java, components were implemented using a dele-
gation mechanism known as Tie Approach [5]. In the tie approach, a tie class implements a given CORBA
interface or interfaces.1 However, the tie only implements the minimum mechanisms needed to interact
with the ORB environment. The actual implementation of the component’s operations is done in a delegate
class implementing the ComponentOperation interface. Figure 6 illustrates an IDL interface being imp
mented using tie objects. With the tie approach we obtain greater flexibility in composing objects sinc
delegate class is not restricted to inherit from any particular class. The only requirement is that the d
class implements the ComponentOperation interface.2 

Object Composition
During design, it became evident that RAD components such as DC and PE can exhibit different

ior. For instance, a DC can combine results from multiple PEs in more than one way. One solution

1. Tie approach in the CORBA community means the use of delegation over inheritance when implementing IDL inter-
faces [5]. In principle, this is similar to the Bridge pattern described in [7][8].

Figure 6: Implementing a CORBA object using the tie approach

2. One drawback of delegation is that systems that rely on object composition may be more difficult to comprehend [8].
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be to implement one class per component behavior. However, this would create many related classes that
differ only in their behavior. The solution we chose was based on the Strategy pattern.

In Strategy pattern, a Context class implements the logic common to all other implementations of a base
class (a RAD component in our case), and a Strategy class (interface in our case) provides behavior spe-
cific to an implementation (Figure 7). Strategy pattern allowed us to implement families of algorithms
related to each RAD component (strategy classes) and common functionality (context) classes [7][8][13].

In the implementation of the RAD prototype, we define strategies as Java interfaces. In this case, com-
ponent contexts are Java classes implementing the services published by the strategy interfaces. With the
implementation of the strategies for the DC and PE components, we took a step further: their implementa-
tion is based on a design pattern known as Template (Figure 8). The idea behind Template pattern (or Tem-

plate Method pattern) is to define an outline or skeleton of an algorithm in a base class while leaving some
steps to be defined in subclasses [7][8][13]. 

Template pattern was used in the design of DC and PE because implementations of these components
tend to share common functionality. For example, implementations of DC need to resolve references to PE
objects received from the ADO regardless of the decision combination policy being implemented. Simi-
larly, implementations of PE need to maintain associations of policies to resource names independently of

Figure 7: Implementing a server using Strategy pattern

Figure 8: Extending an interface using template pattern
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how the policies are maintained and evaluated. Such common functionality or behavior can be imple-
mented in an abstract strategy class (Figure 8). This abstract strategy class can later be extended or refined
to obtain specific implementations of DC and PE.

Run-time and Administrative Interfaces
Each RAD component (with the exception of DC) has a run-time and an administrative interface. Fig-

ure 9 illustrates our approach to implement both interfaces. The implementations of ADO, DAS and PE
follow such an approach. PolicyEvaluatorLocator (PEL) does not have an extension to its administrative
interface as it will be explained with more details in Section 4.4.3. The DecisionCombinator, on the other
hand does not have an administrative interface due to its simplicity (see Section 4.4.5.)

Component Initialization
Each RAD component in our implementation depends on a Start class for its initialization. The required

environment for each component may differ from one to the other; however, all start classes follow a simi-
lar initialization process. This process includes resolving references to remote CORBA objects, creation of
objects, vendor-dependent ORB detection, registration of interfaces with BOA, and exception handling.
Figure 9 illustrates our general approach to implement the run-time and administrative interfaces and ini-
tialize or bootstrap the component or server.

4.2. AccessDecision Object 

The run-time and administrative interfaces of the AccessDecision Object (ADO) are represented by the
AccessDecision and AccessDecisionAdmin interfaces [20]. Clients communicate with the RAD facility
through the AccessDecision interface. Meanwhile, the function of the AccessDecisionAdmin interface is to
provide a means to configure the ADO object. Configuring the ADO object means setting its references to
PEL and DAS objects. Its extension, the AccessDecisionAdminExt also provides a means for shutting
down the ADO object. The extension to the AccessDecision interface, AccessDecisionExt provides mecha-
nism to obtain a reference to the administrative interface. 

Figure 9: General approach for implementing a RAD component
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As will be described in section 4.4.1, we used a single Java object to implement the AccessDecisionExt
and AccessDecisionAdminExt, the ResourceAccessDecider class in edu.fiu.cadse.rad.ado package (see Fig-
ure 10). 

4.3. PolicyEvaluatorLocator

PolicyEvaluatorLocator (PEL) is represented by PolicyEvaluatorLocator (run-time) and PolicyEvalua-
torLocatorAdmin (administrative) interfaces. The function of the PEL object is to return a DecisionCombi-
nator (DC) and a list of PolicyEvaluator (PE) objects for authorization decisions on a resource name
[12][20]. In principle, a PEL could return 1) default DC and PE objects for all resource names, 2) DC and
PE objects specifically associated with a given resource name, or 3) DC and PE objects associated with a
family of resource names which can be matched with a resource name pattern (please see Section ).

The RAD specification [20] introduces three administrative interfaces for the PEL component: Poli-
cyEvaluatorLocatorBasicAdmin, PolicyEvaluatorLocatorNameAdmin and PolicyEvaluatorLocatorPatter-
nAdmin. The PolicyEvaluatorLocatorBasicAdmin is used to administer default associations between
PolicyEvaluators (or DecisionCombinators) and resource names [20]. The PolicyEvaluatorLocator-
NameAdmin is used to set explicit associations between DC and PE objects and resource names. These
associations take precedence over default associations set through PolicyEvaluatorLocatorBasicAdmin.

The PolicyEvaluatorLocatorPatternAdmin is used to administer associations based on resource name
patterns. As with PolicyEvaluatorLocatorNameAdmin, associations set by PolicyEvaluatorLocatorPatter-
nAdmin take precedence over default associations set through PolicyEvaluatorLocatorBasicAdmin. The
prototype of the RAD server does not include the PolicyEvaluatorLocatorNameAdmin and PolicyEvalua-
torLocatorPatternAdmin, yet. Please refer to the RAD specification [20] for more information on these
interfaces.

The RAD server prototype extends PolicyEvaluatorLocatorBasicAdmin into the PolicyEvaluatorLoca-
torAdminExt interface. This interface provides mechanisms to shutdown the PEL object. However, unlike
the AccessDecision interface, PolicyEvaluatorLocator is not extended. This is because PolicyEvaluatorLo-
cator itself provides mechanisms to get references to its administrative interface [20].

The object that implements PolicyEvaluatorLocatorAdminExt and PolicyEvaluatorLocator is Poli-
cyEvaluatorLocatorContext (in edu.fiu.cadse.rad.pel package), and its implementation follows tie
approach (Figure 11). At the time this report is written (2000), PolicyEvaluatorLocatorContext returns

Figure 10: Implementation of the AccessDecision object

R e s o u rce Acce s s D e c id e r

Acces s D ec i s io n

a cce s s _ a llo w e d ()
m u ltip le _ a cce s s _ a l lo w e d ()

(f rom  R es ourc eA c c e ss D e cis ion )

< < ID L  In te rfa ce > >

tie  th e s e  tw o  
in te rfa ce s

Acce s s D e c is io n Ad m in

g e t_ p o licy_ e va lu a to r_ lo ca to r()
s e t_ p o licy_ e va lu a to r_ lo ca to r()
g e t_ d yn a m ic_ a ttrib u te _ s e rvice ()
s e t_ d yn a m ic_ a ttrib u te _ s e rvice ()

(f rom  R es ourc eA c c ess D ecis i on )

< < ID L  In ter fac e> >

Acce s s D e c is io n E xtO p e ra tio n s
< < In te rfa ce > >

Acces s D ec i s io nE xt
< < ID L  In te rfa ce > >

Acce s s D e c is io n Ad m in E xt
s h u tdo w n ()

< <ID L  In ter fac e> >0 ..*
1 ..1

0 ..*

+ th e Acce s s D e c is io n Ad m in

1 ..1

A cces s D ec i sio nA dm in E xtOp er atio ns
< <In ter fac e> >
12



t
le for

nge from

DAS
ame and
nting the
 appli-
ve or
ed by
ences

es
namic
ions of
default DC and PE objects. However, PolicyEvaluatorLocatorContext can become more complex and
return different DC and PE objects depending on the resource name.

Resource Name Patterns
A resource name pattern describes a name pattern composed from combinations of symbols using regu-

lar expression syntax as defined in [1]. For example, the regular expression (resource name pattern) “a*”
would match all strings (resource names) that begin with the character ‘a’ . For more information on
resource name patterns, please see [20], and for regular expression syntax and usage, please see [1][10].

4.4. Dynamic Attribute Service

DynamicAttributeService (DAS) is represented by the interface of the same name. Unlike the previous
components, the DAS does not have an administrative interface [20]. However, the RAD server prototype
introduces a DAS administrative interface, DynamicAttributeServiceAdminExt. As in the design of PEL,
tie approach is used to design a DynamicAttributeServiceContext object that implements the extended run-
time and administrative interfaces of the DAS (Figure 12). The design of DynamicAttributeServiceContex
follows a Strategy pattern; the mechanisms used to obtain the principal’s security attributes applicab
an authorization decision are implemented by an object of type DynamicAttributeServiceStrategy. This is
because the nature of security attributes and the means to manipulate and retrieve them can cha
one organization to another.

When the ADO computes an authorization decision, it contacts the DAS (using the 
get_dynamic_attributes operation), and passes to the DAS a list of security attributes, a resource n
an operation name (step 4, Algorithm 1). These three values are then passed to the object impleme
strategy interface (_strategy relation, Figure 12) which eventually returns a list of security attributes
cable to the authorization decision to the ADO. An implementation of DAS is free to add, remo
replace security attributes from the original list [20]. Furthermore, the security attribute list return
DAS can change from one authorization decision to another. This dynamic nature of DAS influ
implementations of the DynamicAttributeServiceStrategy interface.

RAD prototype includes one such implementation, the EchoingDynamicAttributeService object (Figure
12). The function of EchoingDynamicAttributeService is to return the same security attribute list it receiv
from the ADO. This implementation can be used to model the situation when there are no dy
attributes (or when they are not needed) to obtain a authorization decision. Other implementat
DynamicAttributeServiceStrategy are possible which may follow a design using Template pattern (Figure
7).

Figure 11: Implementation of PolicyEvaluatorLocator
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4.5. Decision Combinator

Compared to the other RAD components, DecisionCombinator (DC) has the simplest design. In the
RAD prototype, DC does not have an administrative interface, nor does it have an administrative extension
interface as the DAS component. A DecisionCombinatorContext class implements DecisionCombinator
IDL interface using Tie approach (Figure 13). Although it would be simpler to use inheritance for the
implementation of the DecisionCombinatorContext class, its tie-based design would ease the addition of
an administrative interface if there is a need for it.

DC encapsulates the policy that dictates how to combine decisions results from multiple PolicyEvalua-
tors (PE) into a single authorization decision [12][20]. This “decision combination” logic is delegated to a
object implementing DecisionCombinatorStrategy interface. The RAD server prototype includes an obj
implementing this interface, AbstractAndOrCombinator. This class implements a logical AND on decisio
results obtained from multiple PE components. AbstractAndOrCombinator is further refined (using Tem-
plate pattern) with OpenWorldAndOrCombinationPolicy and ClosedWorldCombinationPolicy classes
(Figure 13). 

In RAD prototype, OpenWorldAndOrCombinationPolicy returns “YES” (access granted) if all PE
objects return “YES” or “DON’T KNOW”. On the other hand, ClosedWorldAndOrCombinationPolicy
implements a stricter policy: grant access only if all PE objects return “YES”. AbstractAndOrCombina-
tionPolicy is only one example of how DecisionCombinatorStrategy can be implemented. Other example
of implementations are strategy classes using majority votes or hierarchies of PE’s where the d
result of one PE can override the decision results of other PE’s.

4.6. Policy Evaluator

The function of a PE is to evaluate one or more encapsulated access policies to obtain an acc
sion on a resource given a list of principal’s security attributes and an operation name [12][20]. In th
totype, PolicyEvaluator (PE) has the most complex design of all. As with most RAD components, i
run-time and administrative interfaces with respective extensions. Based on Tie Approach, PolicyEvalua-
torContext implements both run-time and administrative interfaces. The design of PolicyEvaluatorCo
uses Strategy pattern as it relies on PolicyEvaluatorStrategy interface for evaluation of policies (Figure
14). 

Figure 12: Dynamic Attribute Service
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RAD prototype has an implementation of PolicyEvaluatorStrategy interface, AlwaysGrantDenyAb-
stractEvaluator which serves as a template for AlwaysDenyEvaluator and AlwaysGrantEvaluator. As their
names imply, AlwaysDenyEvaluator always denies access to any resource whereas AlwaysGrantEvaluator
always grants access.1 More complex implementations of PolicyEvaluatorStrategy are possible; examples
of these are filesystem permissions and role-based access control (RBAC)2 evaluators (see Figure 14).
How such evaluators can be implemented is outside the scope of this report, and are left as part of future
refinements of RAD prototype.

To know what access policies to evaluate given input parameters (from DC), a PolicyEvaluatorContext
must maintain relationships between access policies and resource names. The implementation of these
associations is based on Strategy pattern.That is, PolicyEvaluatorContext delegates the implementation of
such associations to a class implementing the PoliciesByResourceNameMap interface (see Figure 14). By
using this interface, developers can implement associations using any form of storage suitable to their
needs independently of the implementation of PolicyEvaluatorStrategy. 

RAD prototype provides a default implementation of PoliciesByResourceNameMap, NullPoliciesByRe-
sourceNameMap (see Figure 14). This implementation follows what is known as Null Object Pattern [13].
NullPoliciesByResourceNameMap implements a do-nothing version of PolicyByResourceNameMap inter-
face. Such object relieves PolicyEvaluatorContext from testing for null values before accessing the meth-
ods of PolicyByResourceNameMap [13].

5. SUMMARY

CORBA Security service provides general-purpose infrastructure with which to build secured object-
oriented distributed systems. However, complex application domain specific authorization decision logic
are difficult, if not impossible to de-couple from application logic using only CORBA Security service. To
overcome this limitation, at the time this report was written (2000), OMG adopted a Resource Access
Decision (RAD) facility as a pre-final standard. By using RAD facility, developers can implement systems
with authorization logic decoupled from application-specific logic and decentralized evaluation and
administration of the access policies. The RAD facility complements CORBA Security access model, and
allow developers to implement access control mechanisms of arbitrary granularity.

A prototype of the RAD server has been implemented to study the validity of the framework, to con-
duct experiments in the research of distributed access control and reason about properties of application
systems using the prototype and of the prototype itself. Also, the RAD prototype provides simple, default
algorithms for policy evaluation, decision combination, and acquisition of dynamic attributes. Since the
design of the prototype is heavily influenced by design patterns, the prototype can easily be maintained and
augmented with more complex access control mechanisms.

1. Since the decision result of a PE is a ternary value [20], another possible implementation would be a policy evaluator 
strategy that always returns “don’t know”.
2. Access control disciplines are explained in [22]. For more information on role-based access controls in particular, 
please refer to [23].
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Figure 13: DecisionCombinator

Figure 14: PolicyEvaluator
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