
Copyright © 2004-2005 Konstantin Beznosov

Design

Secure Application Development
Modules 12, 13

Konstantin Beznosov

2

What Do you Already Know?

 What principles of designing secure
systems do you already know?

 What anti-principles do you know?

3

Outline

 Overview
 Principles of designing secure systems
 Principles of designing usable security

Copyright © 2004-2005 Konstantin Beznosov

Principles of Designing
Secure Systems

5

Design Principles Outline

 Overview
 Principles

1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Privilege
7. Least Common Mechanism
8. Psychological Acceptability
9. Defense in Depth
10. Question Assumptions

J. Saltzer and M. Schroeder
"The Protection of

Information in Computer
Systems” 1975

6

Introductory Example: Sendmail

Editor

Config.
 Text

Sendmail
compiler

Config.
 binary

7

Overarching Goals

 Simplicity
• Less to go wrong
• Fewer possible inconsistencies
• Easy to understand

 Restriction
• Minimize access

• “need to know” policy

• Inhibit communication to minimize abuse of
the channels

8

Example 1:
Privileges in Operating Systems

 Until Windows NT, all privileges for
everybody

 Separate admin (a.k.a., root) account on
Windows and Unix
• Ways to switch between accounts

9

Example 2: RBAC

Differentiation
between assigned
and activated roles

Administrator

Employee

Engineer

Senior
Engineer

Senior
Administrator

Manager

10

Principle 1: Least Privilege

Every program and every user of the
system should operate using the least set
of privileges necessary to complete the job

• Rights added as needed, discarded after use

• Limits the possible damage
• Unintentional, unwanted, or improper uses of

privilege are less likely to occur
• Guides design of protection domains

11

Example 3: Temporary Upgrade of
the Priveleges in MacOS

 sudo command on MacOS
 admin account authentication

12

Principle 2: Fail-Safe Defaults

Base access decisions on permission rather
than exclusion.

suggested by E. Glaser in 1965

 Default action is to deny access

 If action fails, system as secure as when
action began

13

Principle 3: Economy of Mechanism

Keep the design as simple and small as
possible.

 KISS Principle

 Rationale?
 Essential for analysis
 Simpler means less can go wrong

• And when errors occur, they are easier to
understand and fix

14

Example 4: .rhosts mechanism
abused by 1988 Internet Worm

Access to one account opened unchecked
access to other accounts on different hosts

15

Principle 4: Complete Mediation

Every access to every object must be
checked for authority.

 If permissions change after, may get
unauthorized access

16

Example 5:
Multiple reads after one check

 Process rights checked at file opening
 No checks are done at each read/write

operation
 Time-of-check to time-of-use

17

Kerckhoff’s Principle

“The security of a cryptosystem must not
depend on keeping secret the crypto-
algorithm. The security depends only on
keeping secret the key”

Auguste Kerckhoff von Nieuwenhof
Dutch linguist

1883

18

Principle 5: Open Design

Security should not depend on secrecy of
design or implementation

P. Baran, 1965
 “Security through obscurity”
 Does not apply to information such as

passwords or cryptographic keys

19

Example 6:
Content Scrambling System

 DVD content
• SecretEcrypt(Movie,KT)
• SecretEcrypt(KT,KD)
• Hash(KD)
• SecretEcrypt(KD,Kp1)
• …
• SecretEcrypt(KD,Kpn)

 1999
• Norwegian group derived SecretKey by using KPi

• Plaintiff’s lawyers included CSS source code in the
filed declaration

• The declaration got out on the internet

20

Example 7:
Getting root Access in BSD Unix

Two-conditions for getting root access
 Knowledge of root password
 Group wheel membership

21

Principle 6: Separation of Privilege

Require multiple conditions to grant permission
R. Needham, 1973

 Similar to separation of duty

 Another example:

• Two-factor authentication

22

Principle 7:
Least Common Mechanism
Mechanisms should not be shared

 Information can flow along shared
channels in uncontrollable way

 Covert channels
 Isolation

• Virtual machines
• Sandboxes

23

Example 8:
Switching between user accounts

 Windows NT -- pain in a neck
 Windows 2000/XP -- “Run as …”
 Unix -- “su” or “sudo”

24

Principle 8:
Psychological Acceptability

Security mechanisms should not add to
difficulty of accessing resource

• Hide complexity introduced by security
mechanisms

• Ease of installation, configuration, use
• Human factors critical here

25

Example 9: Windows Server 2003

Potential problem Mechanism Practice

Buffer overflow defensive programming check preconditions

Even if it were vulnerable IIS 6.0 is not up by default no extra function-ty

Even if IIS were running default URL length 16 KB conservative limits

Even if the buffer were large the process crashes fail-safe

Even if the vulnerability were expl. Low privileged account least privileged

26

Principle 9: Defense in Depth

Layer your defenses

27

Example 10:
Assumtpions, Assumptions, …

 ident
 finger protocol

28

Example 11: Assuming Honest Client

 Web server application
requires browser to
validate input

 Attack plan:

• Remove the client from
the communications
loop and talk directly to
the server

• Leverage incorrect trust
model, trusting the client

29

Principle 10:
Question Assumptions

Frequently re-examine all the assumptions
about the threat agents, assets, and

especially the environment of the system

30

Summary

 Overarching Goals
 Principles

1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Privilege
7. Least Common Mechanism
8. Psychological Acceptability
9. Defense in depth
10. Question assumptions

Copyright © 2004-2005 Konstantin Beznosov

Principles of Designing
Usable Security

32

Food for Thought
"Humans are incapable of securely storing high-quality

cryptographic keys, and they have unacceptable speed
and accuracy when performing cryptographic
operations.

(They are also large, expensive to maintain, difficult to
manage, and they pollute the environment.

It is astonishing that these devices continue to be
manufactured and deployed.

But they are sufficiently pervasive that we must design our
protocols around their limitations.)"

Charlie Kaufman, Radia Perlman, Mike Speciner in "Network
Security: Private Communication in a Public World"

33

What’s More Important:

The correctness of security

functions/mechanisms,

or

the correct use of them?

34

Outline

 Principles of secure interaction design
 Five lessons about usable security

35

Usability and Security Tradeoffs

 A computer is secure from a particular
user’s perspective if the user can depend on
it and its software to behave as the user
expects.

 Acceptable security is a requirement for usability.

 Acceptable usability is a requirement for security.

36

37

Principle 1:
Path of Least Resistance

To the greatest extent possible,
the natural way to do a task should be

the secure way.

38

Example 1: Least resistance



39

Principle 2:
Appropriate Boundaries

The interface should expose, and the system
should enforce, distinctions between objects
and between actions that matter to the user.

I.e., any boundary that could have meaningful security implications to
the user should be visible, and those that do not should not be
visible.

40

Example 2: Bad boundaries

 A real dialog window in Internet Explorer:

 User is forced
to make an
all-or-nothing choice!

41

Principle 3: Explicit Authorization

A user’s authorities must only be provided
to other actors as a result of an explicit

action that is understood to imply
granting.

 Conflicts with Least Resistance?
 Authorizes the increase of privileges
 Combining designation with authorization

42

Example 3: When do we ask?

43

Example 3: When do we ask?

44

Principle 4: Visibility

The interface should allow the user to easily
review any active authorizations that

would affect security-relevant decisions.

45

Example 4: What do we show?

 7:09am up 117 days, 6:02, 1 user, load average: 0.17, 0.23, 0.23
110 processes: 109 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 7.6% user, 4.5% system, 0.0% nice, 87.8% idle
Mem: 512888K av, 496952K used, 15936K free, 60K shrd, 29728K buff
Swap: 1052216K av, 146360K used, 905856K free 181484K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
24733 root 18 0 2556 2556 488 S 6.0 0.4 1:42 chargen
25184 ping 16 0 996 996 748 R 3.9 0.1 0:01 top
24276 root 9 0 1888 1864 1484 S 0.7 0.3 0:04 sshd
23519 apache 10 0 21792 13M 8080 S 0.1 2.6 0:23 httpd
23520 apache 10 0 21456 12M 8076 S 0.1 2.5 0:20 httpd
 1 root 8 0 188 148 148 S 0.0 0.0 0:25 init
 2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
 3 root 9 0 0 0 0 SW 0.0 0.0 0:00 kapm-idled
 4 root 19 19 0 0 0 SWN 0.0 0.0 0:33 ksoftirqd_CPU0
 5 root 9 0 0 0 0 SW 0.0 0.0 94:12 kswapd
 6 root 9 0 0 0 0 SW 0.0 0.0 0:02 kreclaimd
 7 root 9 0 0 0 0 SW 0.0 0.0 0:08 bdflush
 8 root 9 0 0 0 0 SW 0.0 0.0 0:15 kupdated
 9 root -1 -20 0 0 0 SW< 0.0 0.0 0:00 mdrecoveryd
 654 root 9 0 348 288 288 S 0.0 0.0 2:41 syslogd
 659 root 9 0 852 120 120 S 0.0 0.0 0:06 klogd
 744 root 9 0 1988 1988 1728 S 0.0 0.3 0:07 ntpd
 757 daemon 9 0 172 116 116 S 0.0 0.0 0:00 atd
 786 root 9 0 360 232 200 S 0.0 0.0 0:03 sshd
 807 root 8 0 476 336 292 S 0.0 0.0 0:56 xinetd
 866 root 8 0 396 332 312 S 0.0 0.0 0:34 crond
 915 root 9 0 2076 476 476 S 0.0 0.0 0:25 miniserv.pl
 919 root 9 0 108 48 48 S 0.0 0.0 0:00 mingetty
 920 root 9 0 108 48 48 S 0.0 0.0 0:00 mingetty

Not this:

46

Example 4: What do we show?

47

Principle 5: Identifiability

The interface should enforce that distinct objects and
distinct actions have unspoofably identifiable and

distinguishable representations.

two aspects
• Continuity: the same thing should appear the same
• Discriminability: different things should appear different

 perceived vs. be different/same

48

Example 5: Violating identifiability

49

Example 5: Fixing identifiability

50

Principle 6: Clarity

The effect of any security-relevant action
must be apparent before the action is taken.

51

Example 6: Violating Clarity

What program? What source?
What privileges? What purpose?
How long? How to revoke?
Remember this decision? What decision?

Might as well click “Yes”: it’s the default.

52

Principle 7: Expressiveness

In order for the security policy enforced by
the system to be useful, we must be able
to express a safe policy, and we must be

able to express the policy we want.

53

Example 7: Unix File Permissions

54

Usable Security Principles Summary

In order to use a system safely, a user needs to have confidence in all of the
following statements:

1. Things don't become unsafe all by themselves. (Explicit Authorization)
2. I can know whether things are safe. (Visibility)
3. I can make things safer. (Revocability)
4. I don't choose to make things unsafe. (Path of Least Resistance)
5. I know what I can do within the system. (Expected Ability)
6. I can distinguish the things that matter to me. (Appropriate Boundaries)
7. I can tell the system what I want. (Expressiveness)
8. I know what I'm telling the system to do. (Clarity)
9. The system protects me from being fooled. (Identifiability, Trusted Path)

55

Lessons learned about usable security
1. You cannot retrofit usable security

 Adding explanatory dialogs to a confusing system makes it
more confusing

2. Tools are not solutions
 They are just Lego™ blocks

3. Mind the upper layers
 Application-level security design allows intentional, implicit,

application-specific security

4. Keep your users satisfied
 Put your users’ needs first
 Evaluate your solution on the target audience

5. Think locally, act locally
 Don’t assume support from global infrastructure (e.g., PKI)
 If a generic security tool can be used independently of

application, the user(s) must deal with it directly

