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Abstract

The incumbent physical security system on smartphones is known to dissatisfy

users. It comprises explicit authentication (e.g., passcode), which imposes high

time and cognitive overhead, and all-or-nothing authorization, which limits flex-

ibility. Consequently, an estimated 20% of users have decided to forgo physical

security entirely.

In response, alternative solutions have been proposed by researchers. These

include implicit authentication (IA) solutions, which harnesses behavioural data for

user identification, and finer-grain (e.g., app-level) authorization solutions, which

are more accurate. However, several important aspects of these alternatives are

understudied.

Firstly, it is unclear how widely users would adopt IA, and whether they can

understand its semantics well enough to avoid dangerous security errors when us-

ing it. Secondly, it is unknown how well can the proposed authorization schemes

balance usability with security. These unknowns bring into question whether the

alternatives can, in fact, improve the user experience (UX) or, conversely, disser-

vice users by providing a false sense of security.

This dissertation contributes insights from several studies that aim at bridging

these knowledge gaps. Regarding IA, we took Smart Lock (SL)—currently the

most-widely-available solution—as a case. We conducted cognitive walkthroughs,

think-aloud sessions, and online surveys to understand how users perceive and un-

derstand SL. Regarding authorization, we conducted a longitudinal diary study to

obtain a detailed view on users’ needs and how well existing solutions meet them.

Results show that SL is not widely adopted, which correlates to its perceived

lack of usefulness and security. Regarding semantics, we found users often con-
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fused about IA’s capabilities and the nature of the data it harnesses. To avoid these

issues, we provide UX design recommendations for better communication of the

value and intricacies of IA.

Regarding authorization, we found app-level schemes to outperform other solu-

tions; hence we argue for wider deployment of them. However, we also found that

users’ needs vary significantly based on individual preferences and the functional-

ity being protected; hence we argue for adaptable granularity in authorization.

Overall, our studies demonstrate the inadequacy of the incumbent system, show

how current deployment of alternatives potentially disserves users, and provide

recommendations for improved deployment in the future.
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Lay Summary

The current phone unlocking systems, such as PIN, are known to take too much

time and effort to use, leading 20% of users to forgo enabling them entirely. Im-

plicit Authentication (IA) has been proposed as an alternative, which uses be-

havioural traits (e.g., gait) for unlocking. However, it is not known how well users

perceive IA or understand its workings, and also if other phone systems need to

change in accordance with IA, to improve security. This dissertation makes first

steps towards addressing these gaps by finding that a perceived lack of utility and

security deters most users from IA; the capabilities of IA cause frequent confu-

sions for users; and the authorization system on phones need to change as well, as

it interrupts the users unnecessarily too often.
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This research was the product of a fruitful collaboration between myself (the au-

thor of the dissertation) and the following people: Konstantin Beznosov (supervi-
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participated in discussions of the results. Prior to conducting the studies, I obtained

approval from the Behavioural Research Ethics Board (BREB) at UBC (Ethics ID

H18-01370).

The above study showed, notably, that the users’ (mis)understanding of the

Smart Lock semantics could contribute significantly to their hesitation to adopt the
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more detail the users’ understanding of Smart Lock semantics. This study, pre-

sented in Chapter 3 and partly discussed in Chapter 6, is based on the following

publication:

M. Mehrabi Koushki, B. Obada-Obieh, J. Ho Huh, and K. Beznosov.

“On Smartphone Users’ Difficulty with Understanding Implicit Au-
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2021, Pages 1-14.

For this project, I was responsible for the design and administration of the

survey study, as well as analysis of the quantitative data. A re-analysis of the qual-

itative data from the previous cognitive walkthrough and think-aloud sessions was

done jointly by me and Borke Obada-Obieh, to reduce personal bias. I was also

responsible for writing the paper. Jun Ho Huh and Konstantin Beznosov provided

feedback on the design of the study and discussion of the results. Prior to conduct-

ing the study, I obtained approval from the Behavioural Research Ethics Board

(BREB) at UBC (Ethics ID H18-01370).

From the results of the above two studies, I realized that there is a need to study

the access control systems of smartphones as well, to investigate how they cloud

affect the user experience with smartphone physical security overall. As such, I

next conducted a longitudinal diary study to investigate users’ access control needs,

and how well existing solutions can meet them. This study, presented in Chapter 4

and partly discussed in Chapter 6, is based on the following publication:

M. Mehrabi Koushki, Y. Huang, J. Rubin, and K. Beznosov. “Neither

Access nor Control: A Longitudinal Investigation of the Efficacy of
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there is currently no practical solution for fine-grained task-based access control

on smartphones, which was found in our diary study to be a necessity for meeting

the needs of certain users. Hence, as the last project, I implemented such solution

and estimated its efficacy using the data collected in the diary study. This en-

deavour, presented in Chapter 5 and partly discussed in Chapter 6 is based on the

following manuscript (currently being prepared to be submitted to an international

peer-reviewed conference):

M. Mehrabi Koushki, J. Rubin, and K. Beznosov. “GUS: A Grad-

ual Access Control System to Complement Implicit Authentication on
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Chapter 1

Introduction

Strong security is a necessity for smartphones nowadays. The continued improve-

ments in phone capabilities have enabled their use for a wide range of applica-

tions, leading to users storing and accessing highly sensitive data and services on

the devices [75]. Phones, for example, are now regularly used to access govern-

ment services, such as tax filings, or store private data, such as health informa-

tion [33, 75]. This has increased the cost for users of any unauthorized access to

their phones [75, 76], which, in turn, has highlighted the importance of apt security

protections.

In specific cases where potential attackers have physical access to a phone, so-

lutions dubbed “physical security” are employed to prevent any unauthorized ac-

cess. Generally, such solutions consist of two components: (1) the authentication

subsystem, which confirms the user’s identity; and (2) the access-control (i.e., au-

thorization) subsystem, which ensures that the authenticated user can access only

allowed functionalities [55].

Currently, phones have an authentication system designed around the something-

you-know-or-you-are model. This model entails a user either providing a pass-

code or a valid biometric to gain access to the phone (e.g., a fingerprint, a face

scan) [14, 74, 95]. Simultaneously, the phones’ access-control system is based on

the all-or-nothing screen locking model; the phone is either fully unlocked (where

the user can utilize all of its functionalities) or fully locked (where virtually all

functionality is unavailable), without any in-between state [54, 78].
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While simple in implementation, these current designs are known to often dis-

satisfy users. On the authentication side, users find the design too cumbersome.

Studies have shown that users unlock their phones more than 30 times a day on

average [74, 95], and each unlocking attempt usually takes two to three seconds

to perform [74]. Cumulatively, users might spend up to 80% of their phone us-

age time with unlocking alone [74]. This excessive and often unnecessary effort

increases the cognitive and physical overhead of using phones, which creates an

incentive for users to weaken or even disable authentication altogether [54, 98].

Moreover, the secret-based unlocking schemes (e.g., a PIN or password) are

known to have usability [81] and memorability [56] issues. Biometric schemes

are shown to impose negative externalities, like the awkwardness of holding the

device in front of one’s face [29], as well as reliability and security problems [29].

Consequently, studies estimate that between 10%–35% of phone users do not use

any user authentication mechanism on their devices, posing a significant security

risk to their sensitive data [33, 51, 52, 82].

Similarly, the all-or-nothing access-control system is shown to be increasingly

insufficient for the needs of modern phone users in two key areas: (1) sensitivity to

task security requirements [26, 33, 62] and (2) support for phone sharing [54, 60].

Firstly, even though tasks performed on smartphones have different levels of

sensitivity [26, 33, 54], the access-control system treats all of them the same. For

example, whether a user wants to simply read a book or, conversely, perform a

financially sensitive operation (e.g., online shopping), the phone requires the same

level of unlocking [6]. Studies suggest that users perceive this model of protection

as sometimes unnecessary (e.g., for reading the book) and sometimes insufficient

(e.g., for banking) and are dissatisfied with it [60, 62, 98].

Secondly, the all-or-nothing system also lacks support for phone sharing, even

though the practice is known to be prevalent [58]. Phone owners share their devices

with others for a variety of reasons, such as financial necessity or technical help [50,

54, 60, 77]. Yet current phones are designed to be single user.1 This has resulted in

the insecure practice of primary users sharing their Passcodes with others or adding

the biometrics of secondary users to their phones [77], which limits the ability of

1This is evident from Apple’s iOS, which does not allow creating more than one user account on
a phone [6]. While Android does have multi-user support, it is only fully enabled on tablets [34].

2



primary users to control what secondary users can do/access on their phones. This,

in turn, leads to unauthorized access and user dissatisfaction [50, 60, 75–77, 85].

In summarily, it is evident the current authentication and authorization sys-

tems suffer major inadequacies. Naturally, therefore, researchers have proposed

alternative solutions to address these issues. Regarding authentication, one of the

main proposed solutions is implicit authentication (IA). IA proposes the use of

behavioural biometrics (e.g., gait patterns) and contextual data (e.g., location) to

identify users continuously and unobtrusively [27, 36, 37, 62]. Since this type of

authentication does not require explicit action from the users for each phone access,

it can alleviate the unlocking burden to a great extent [63]. Phone manufacturers

have also tried to make authentication more convenient, through commercial de-

ployments of IA solutions that automatically unlock phones at certain locations, or

when close to certain Bluetooth devices [41].

Regarding access control, several alternatives have also been proposed and/or

implemented. For example, to facilitate ad hoc phone sharing, both Android and

iOS have solutions to lock an app on the screen and not allow switching between

apps without the passcode [7, 43]. More recently, phones also allow users to hide

certain apps from their launchers, in order to prevent unauthorized access to them

(or even hide their existence all together), when the phone is being used by a sec-

ondary user. Researchers have also proposed ideas for finer-grain access-control

solutions [72] for deliberate sharing of mobile devices.

As of now, however, several important technical and human aspects of these

proposed alternatives have remained understudied. In the case of IA, for example,

we do not know how (at least in a rather generalizable way) users perceive it (i.e.,

their adoption intentions for IA). We also do not know whether users understand

IA semantics (i.e., how/when it authenticates users) well enough to use it without

making dangerous security errors. Regarding access control, we do not know how

well the proposed solutions can meet the needs of users (e.g., not causing too many

unnecessary interruptions to the users) or what potential trade-offs they come with

(e.g., the required upfront configuration effort). Lastly, there is a lack of techni-

cal solutions as well; currently, no practical approach exists on smartphones for

implementing access control to a more granular degree than at app level.

All of these unknowns make it difficult to judge where we currently stand on
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research and practice in smartphone physical security. We do not know whether IA

is indeed the way forward with authentication. Could it even do users a disservice

by providing them with a false sense of security? We also do not know quantita-

tively how real the need for a new access-control solution is or, if there is indeed a

need for such a solution, which model (e.g., in terms of granularity) future systems

should base their designs on.

In this dissertation, we aim to take a first step toward addressing these knowl-

edge gaps. We provide the first insight into how smartphone users perceive a com-

mercially available IA scheme, Google Smart Lock (SL) for Android [40], and

gauge factors that might correlate with users’ adoption intentions for it. We also

investigate to what degree users understand how SL works and whether that under-

standing is sufficient for them to avoid dangerous security errors. We also evaluate

how various access-control solutions fare in the number of user interruptions they

unnecessarily force or inappropriately miss. Lastly, we propose a solution for finer-

grain task-based access control and implement a prototype of it on Android 10.

We should note that our position in this research is not that every user should

adopt IA. Naturally, as we will discuss in Chapter 2, some users might be perfectly

happy with their current authentication methods (e.g., a fingerprint). Therefore, we

aim to understand how IA technology can be designed to better support a user’s

needs when dissatisfied with the current solutions (and hence has likely left their

phone without security protection). We also aim to understand how the semantics

of this technology can be better conveyed to users to avoid providing them with a

false sense of security. Also, the access-control solution we propose in Chapter 5

is not intended to be the ultimate solution that rectifies all issues with the incum-

bent system. Instead, we only focus on addressing the level of granularity with

smartphone user access control. Much further research is needed to fully address

the issues with the current system discussed above.

1.1 Problem Statement
The overarching problem this research seeks to address is the lack of understand-
ing of the user experience with smartphone physical security solutions, both
incumbent and proposed. This lack of understanding is with regards to efficacy
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and user preference, two important human aspects of the user experience. Regard-

ing authentication, we focus on IA as it is the most heavily researched solution (see

Chapter 2). Regarding authorization, we aim to investigate all available solutions.

We break down this overarching lack of understanding into the following four

subproblems: (1) users’ perception of IA, (2) users’ understanding of IA semantics,

(3) access-control solutions’ efficacy, and (4) task-based access-control.

1.1.1 Lack of Understanding of Smartphone Users’ Perception of IA

An extensive body of research exists that explores the technical feasibility of IA [37,

63, 68]. For instance, Frank et al. [37] showed how a machine learning classi-

fier could continuously authenticate users based on the way they interact with the

touchscreen of a smartphone. However, we observed a lack of understanding in

the literature regarding how widely and why users might actually be interested in

adopting this technology. A few existing studies suggest users might be interested

in adopting this technology [26, 64]. However, the findings of these studies have

limited generalizability, as they involve mostly lab studies or studies with low- to

medium-fidelity prototypes. For example, Khan et al. [64] estimated that 63% of

users might be interested in using IA. However, in their study they only used low-

fidelity prototypes that mostly resembled a “perfect” IA solution. The prototype

did not use real behavioural biometrics. As such, it did not suffer from real world

issues, such as occasional lack of authentication data (e.g., in the case of a gait-

pattern-based scheme, the user might stop walking). Consequently, it is difficult

from existing study results to understand the extent to which factors like reliability

might correlate with a user’s intention to adopt IA.

Our goal, therefore, is to explore IA perception in a more ecologically valid

manner than the existing literature. To this end, we refrain from using prototypes

and instead investigate how Android users perceive a real world IA solution called

“Smart Lock” (SL), which has been available on more than 500 million Android

devices since 2015 [40]. As of the time of writing SL is the only widely available

IA solution on smartphones, which makes it a good candidate for the community

to learn from its successes/failures.

Through a mixed-method study, we estimated the percentage of users actually

5



using SL and their reasons for adopting/rejecting this technology. We used this

insight to provide design recommendations for future systems to be more appealing

to users. We do not claim our results to be generalizable beyond SL. This study is

presented in Chapter 2.

1.1.2 Lack of Understanding of Users’ Understanding of IA
Semantics

One of the main findings of our IA-perception study described in 1.1.1 was that a

perceived lack of security is a major reason for users to reject SL. Subsequently, we

found this perception often stems from an incorrect understanding of SL semantics.

However, we found no prior research investigating how users misunderstand IA se-

mantics and how prevalent such misunderstandings are.

Gaining this insight is important because misunderstanding IA can result in un-

intentionally leaving a smartphone unlocked, undermining the core purpose of IA.

Take, for example, an IA solution that unlocks the user’s phone at certain “trusted”

locations (e.g., home). If the user is unaware of the location detection’s accuracy

(which is an inherent limitation of the GPS-based solutions), they might leave their

phone unsupervised at a semi-public location (e.g., a neighbour’s place) presuming

that it would be locked even though it might not be. This can give opportunistic

attackers (e.g., social insiders) a chance to snoop on the user’s data. While this

lack of accuracy on IA solution’s part might be due to technological limitations

that could be rectified in the future, other limitations might arise. Hence, proper

communication to the user about the existence of such limitations (of which there

might be many others in the future) could help mitigate such misunderstandings,

and, therefore, merit further research. Our study aims to investigate what sort of

communication is necessary in situations like this.

For this second subproblem, we again focused on SL as a case and investigated

how Android users understand its semantics. We identified points that can cause

common confusion for users; we leveraged this insight to recommend the type of

information future IA UX designs should clearly communicate. The mixed-method

study we conducted in this regard is presented in Chapter 3.
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1.1.3 Lack of Understanding of Access-Control Solutions’ Efficacy

As we discussed before, the all-or-nothing access control is already known to fail

at meeting the needs of users. However, our IA-perception study uncovered a new

issue—users blame access-control shortcomings on IA. For example, some users

were concerned that location-based unlocking could lead to social insiders access-

ing their private information, (e.g., spouses if the phone were always unlocked at

home). While this is certainly an authentication deficiency, as the phone unreal-

istically assumes anyone at a trusted location to be an authorized user, the all-or-

nothing access control is also partially to blame. A more granular authorization

system could prevent this issue from occurring by only allowing access to “non-

sensitive” apps when authentication is conducted contextually (e.g., through loca-

tion). Such issues make it clear that authentication and authorization deficiencies

should be studied together to create apt physical security (i.e., one cannot set to

improving one while completely ignoring the other).

A first step toward accomplishing this goal is to have a clear picture of the

status quo of research and practice. Yet we found that currently there is a lack of

understanding in the literature about how well the all-or-nothing system and its al-

ternatives meet the needs of users (e.g., the number of phone activities they fail to

protect due to insufficient granularity). We found this was mainly due to a lack of

detailed data on users’ authorization needs.

Thus, the goal for our third subproblem was to solicit a comprehensive set of

authorization needs from a representative sample of smartphone users and use this

data to gauge the efficacy of different access-control solutions in a quantitative

manner. Based on the results, we provide insight into which type of solution might

perform the best in different scenarios (e.g., in phone sharing settings). To this end,

we conducted a longitudinal diary study, which is presented in Chapter 4.

1.1.4 Lack of Understanding of Customizable Task-Based
Access-Control Solutions

One of the main findings of our longitudinal diary study was that while app-level

granularity for access control could strike the best balance between usability and

security for most users, finer-grain task-level systems are needed for users with
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more complex preferences (e.g., they want only parts of an app to be available to

others). Such system can be used, for example, by a parent to allow their children

to play a game without them being able to purchases items online. Yet currently we

found that there is no practical solution proposed in the literature to perform this

type of access control. By “practical” we mean solutions that provide a machine-

understandable way of distinguishing between users’ tasks.

We should note that many designs other than task-based ones could follow

from our longitudinal study. We decided to focus on task-based design as it would

benefit IA deployment and access control at the same time. In short, deploying IA

in the real world is known to be tricky. Sporadic availability of behavioural data

forces IA to trigger frequent re-authentication prompts, which lock out the user

mid-session and ask them to authenticate explicitly using a PIN or biometrics. If

this happens too often, it can annoy users [2].

Task-based authorization can alleviate this problem by only showing prompts

when a user is performing a sensitive task. As a result, for our final subproblem we

propose a design for such a task-based access-control system. We call the system

the “Gradual Unlocking System (GUS)”. In Chapter 5, we describe the design of

GUS, our implementation of a GUS prototype on Android 10, and our use of the

data from our longitudinal diary study to evaluate its efficacy.

As mentioned before, GUS is not aimed at or positioned to be the solution

to all problems with all-or-nothing. It serves a specific purpose to improve IA

deployment and authorization granularity. It is out of the scope of this research

(and is up to future work) to investigate how GUS can further evolve to address

other issues as well, such as the need for phone sharing.

1.2 Research Summary
Overall, our research found that the current state of smartphone physical secu-
rity is far from optimal. The incumbent solutions fail to meet the needs of users in

most cases, and the proposed alternatives do not seem to improve the situation sig-

nificantly. To explain further, in the following, we give the methodological details

of the research projects we conducted to address each subproblem we described

above.
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1.2.1 Smartphone Users’ Perception of IA

To investigate how Android users’ perceive SL, we first conducted a cognitive-

walkthrough-with-users (CWU) [46, 70, 73] study, comprising two cognitive walk-

through sessions with 10 HCI (Human Computer Interaction)-proficient partici-

pants and 16 individual think-aloud sessions with ordinary smartphone users. We

were interested in understanding how the participants perceive SL after interact-

ing with its UX to perform certain tasks (e.g., enabling some features of it). We

then conducted an online survey with 343 Android users (recruited through Ama-

zon Mechanical Turk (MTurk)) to verify the results of the CWU study, using a

near-representative sample of the US smartphone user population. Subsequently,

we formulated our findings into an extension of the Technology Acceptance Model

(TAM) [28] that aims at reasoning about SL adoption.

Main Findings

• Despite its five year history, Smart Lock is not a widely adopted technology.

Only around 13% of SL-capable participants in our survey reported that they

were using SL. (An SL-capable participant is someone who knows about SL

and has a phone that supports it.)

• Lack of availability is not a major barrier to SL adoption for Android users.

As part of the Google Play Services package, Smart Lock has been deployed

on hundreds of millions of Android devices over the past five years. More

than 91% of our survey participants were using phones that supported SL.

• Lack of awareness is not a major barrier to SL adoption either. Nearly 60%

of our survey participants had some knowledge about SL before participating

in our study.

• Perceived lack of utility is one of the main factors that could deter potential

users from adopting SL. The majority of our SL-novice participants (those

who have not used SL before) indicated they did not see enough value in

adopting SL and thought fingerprint unlocking was more convenient. Our

results are the first to offer insight into such a comparative user perception

between IA and traditional unlocking.
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• Perceived lack of security is another deterrent for SL use. The majority of

SL-novice participants were unwilling to use it because they thought adopt-

ing SL could allow unauthorized access to their phones. Our results are

the first to show the statistical significance of this perceived-insecurity-on-

adoption rate in the context of IA.

1.2.2 Users’ Understanding of IA Semantics

We started by reanalyzing the data from our CWU study with a focus on identifying

aspects of SL that caused confusion for the participants (i.e., any case in which

they answered questions about SL semantics incorrectly). We then conducted a

new online survey with 331 participants (recruited through MTurk) to evaluate the

prevalence of SL misunderstandings. Based on the results, we generated design

recommendations for IA UX on smartphones.

Main Findings

• SL misunderstandings were found to be prevalent. Most of the CWU partic-

ipants (96%) had difficulty understanding the semantics of at least one SL

method. Also, about 80% of the survey participants incorrectly answered at

least one question about SL semantics.

• Misunderstandings, however, were not uniformly distributed across SL fea-

tures. SL features that used contextual (e.g., location) or behavioural (e.g.,

body movement) data caused confusion more frequently.

• Four particular aspects of SL were found to cause the observed confusion:

(1) its capabilities, (2) its modalities (what data it uses for authentication), (3)

the inter-operation between its IA and EA (Explicit Authentication) features,

and (4) its range parameters.

• Depth of smartphone adoption was found to be a significant antecedent of

correct SL understanding; age, computer literacy, and security proficiency

were not.
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1.2.3 Efficacy of Access-Control Solutions

We conducted a longitudinal diary study. We asked a near-representative sample

(N=55, recruited through MTurk) of the US smartphone user population to install

our custom Android app on their personal phones for 30 days. They used it to re-

port the tasks (i.e., fine-grain actions) they performed or shared on their phones and

their access-control preference for each task. We also gathered detailed reports of

the contextual factors (e.g., location, time, and identity of the sharee) surrounding

each phone sharing event. Using this data, we estimated how frequently different

access-control solutions would fail to meet the needs of users by either forcing

unnecessary authentications (i.e., false negatives) or by failing to prevent unautho-

rized users from accessing a task (i.e., false positives). We also estimated the effort

needed for the user to switch to each model by counting the number of configura-

tion operations they would need to perform. Lastly, we evaluated how consistent

the contextual factors of phone sharing are across the reported events. Based on

the results, we discuss the shortcomings of current systems and suggest research

directions for the future.

Main Findings

• A great diversity of functionality and a high complexity of access-control

needs were observed in the reported data. The participants had performed 19

distinct categories of tasks, with nearly 55% of tasks perceived as shareable.

• The all-or-nothing solution was found to be suboptimal in meeting users’

access-control needs. We observed that if no authentication is enabled on

the phone (i.e., the all scenario), all-or-nothing exposes 90.3% of the user’s

tasks to unauthorized users. Conversely, if authentication is enabled (i.e., the

nothing scenario), up to 21.2% of unlocking attempts are unnecessary.

• App-level solutions could potentially reduce the number of exposed tasks to

3.5% while also reducing unnecessary re-authentications to 11.3%.

• Task-level solutions could further reduce unnecessary authentications to 1.7%,

albeit with a 15% increase in required configuration effort.

11



• Overall, app-level solutions were found to strike the best balance between

security/privacy and usability for most users, based on the results above.

Hence we argue for wider deployment of such solutions.

• Amongst solutions that aim to provide phone sharing support, we found pro-

file switching to be suboptimal despite its ubiquity. It would increase the

required configuration effort noticeably (a nearly eightfold increase when

compared to the all-or-nothing model), as it would require specific profile-

app mapping.

• Session-based phone sharing solutions (e.g., those that limit access per ses-

sion as opposed to per resource) were found to provide the best balance

between security and usability compared to all-or-nothing and other alterna-

tives. They showed a 20% reduction in unnecessary interruptions, with a 1%

trade-off in increased configuration effort. Hence we believe greater focus

on this type of access control can be a promising avenue for future research.

• Phone sharing was found to happen in the same context (e.g., with the same

people, at the same location, or for the same set of tasks) up to 75% of the

time, showing high promise for context-based access control in multi-user

scenarios. Our results are the first to provide such quantitative evidence.

1.2.4 Gradual Unlocking for Task-Based Access Control

To provide a practical way of performing task-based access control, we designed

and implemented a solution that allows the user to specify different security re-

quirements for each Android Activity (application screens; see Chapter 5 for more

details). This solution (GUS) considers the level of authentication confidence when

permitting or declining users to launch Android Activities. (“Authentication con-

fidence” is a measure provided by an IA system to indicate the degree to which

the current user’s behaviour matches that of the registered user.) We estimated the

efficacy of our solution using the data from our longitudinal diary study.
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Main Findings

• Android Activities were found to somewhat aptly represent tasks. Roughly

50% of user-defined tasks could unequivocally be represented using Android

Activities, and 25% more could at least be partially represented.

• GUS was able to reduce unnecessary re-authentications noticeably (by 96%),

albeit with a security trade-off (a 1% increase in missed re-authentications).

• Implementing a prototype of GUS on Android is feasible by modifying the

WindowManager service of the operating system.

1.3 Main Contributions
In this section, we outline the main contributions of our research and discuss how

they could impact future research in smartphone physical security.

1.3.1 Shedding Light on What Attracts/Deters Users from IA

Prior to our study, existing literature on users’ perceptions of IA [26, 63] were

of limited ecological validity (i.e., not wholly reflective of the users’ real world

behaviour), as they mostly involved role-playing. One main contribution of our

study, therefore, is providing the first empirical evidence on smartphone users’

perceptions of commercial IA (SL) in a realistic setting. Its results suggest SL is

not widely adopted because it is perceived to be insecure and/or inconvenient. This

sheds lights on the necessity for future research on communicating these aspects to

users effectively through apt UX design.

Another major contribution of this research is proposing and evaluating a new

technology acceptance model (which we dub “SL-TAM”) for reasoning about SL/IA

adoption. The model unveils three distinct factors correlated with SL adoption:

perceived usefulness, perceived ease of use, and perceived security and privacy.

This insight can inform the design of future IA schemes, as it sheds light on users’

requirements/expectations for such systems.
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1.3.2 Insights into How IA Semantics Should Be Communicated to
Users

To the best of our knowledge, no research had been conducted on smartphone

users’ understanding of IA semantics prior to our study. Thus, a main contribution

of this research is providing the first insight into how and with what prevalence

smartphone users’ make mistakes when comprehending IA. It uncovers specific

aspects of SL that can be difficult to understand for the average user (those with-

out a technical computer and security knowledge background). As a result, new

avenues for future research on IA UX design are opened to find ways of communi-

cating these aspects more clearly to users.

Another major contribution of this work is being the first to investigate how

a combination of IA with EA is understood by smartphone users. We provide

insights into the pitfalls of this combination (e.g., how putting all of them under

the same name could lead to misunderstandings about the fundamental differences

between IA and EA) and suggest precautionary measures that should be taken when

using it.

This work also provides evidence that IA misunderstandings have no particular

antecedents (e.g., age, security proficiency) other than depth of smartphone adop-

tion. This demonstrates that the difficulty with comprehending IA is rather univer-

sal, which can inform assumptions about potential users’ background knowledge

during the design of future IA schemes.

1.3.3 Characterizing the Status Quo in Access Control

As mentioned before, while multiple access-control solutions were proposed prior

to this research, they were not compared empirically. Our literature review showed

this was mainly due to a lack of detailed data on users’ access-control needs. Thus,

a first contribution of our work is to provide such data, giving a detailed view of

the tasks smartphone users perform on their phones and their sharing preferences

for each task. This data can be used to evaluate the efficacy of any current or future

access-control solution.

Another major contribution of this work is that by using the collection of tasks,

it quantitatively evaluates how the all-or-nothing model and its alternatives meet
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the access-control needs of users. We show how severely most current solutions

fail and discuss where future research needs to focus in order to propose better

solutions.

This work also sheds light on the contextuality of phone sharing. It demon-

strates that, given the consistency of contextual factors, incorporating them into

access-control decisions could help with a better balance between users’ needs for

privacy and usability. We provide ideas on how this can be accomplished.

1.3.4 Proposing a New Access-Control Solution

This work contributes the first practical task-based access-control solution for smart-

phones by tying users’ ability to launch Android Activities to the confidence of au-

thentication. This solution can improve the usability of IA by reducing the number

of unnecessary re-authentication prompts.

As a minor contribution, we also make available the solution’s source code2

to facilitate future research on IA deployment techniques. The code can help re-

searchers experiment with different UX designs for re-authentication prompts or

different modalities for user identification, without having to deal with complex

operating-system-level code.

We should note our solution comes with a trade-off in the form of increased

user effort for upfront configuration. However, this also opens a new avenue for

future research: investigating methods to predict users’ preferences (e.g., using

matching learning techniques).

2https://github.com/mehrabik/GUS
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Chapter 2

Investigating Smartphone Users’
Perception of Implicit
Authentication

This chapter presents the results of a mix-method study to investigate Android

users’ perception of Smart Lock (SL) and factors that correlate with their intentions

to adopt it. It is a first step to inform the broader investigation of smartphone users’

perception of IA in future research. First, in section 2.1 we provide an overview

of the existing literature on IA, a brief introduction to Smart Lock for Android,

and related papers on technology adoption. Second, in section 2.2, we present

the methodology of our study. In section 2.3, we present our results and discuss

their implications. In section 2.4, based on the results of our study, we propose

an extension of Technology Acceptance Model (TAM), which we call SL-TAM, to

reason about SL adoption. Section 2.5 discusses the limitations of our study, and,

finally, section 2.6 concludes the chapter.
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2.1 Background

2.1.1 Implicit Authentication

Smartphone users’ attitudes toward unlocking their devices have been well-studied,

and research shows that users perceive unlocking to be a burden. This perception

seems to be justified, as it has been estimated that 80% of short phone sessions is

spent unlocking the phone [74].

Implicit authentication (IA)1 is a promising solution to alleviate this unlocking

burden [27, 63]. This is because IA does not require explicit action from the user.

There have been numerous studies examining the feasibility of various modalities

for IA on smartphones. For instance, Frank et al. [37] demonstrated how a machine

learning classifier could continuously authenticate users, based on the way that they

interact with the touchscreen of a smartphone. Other proposed modalities (contex-

tual or behavioural data) for IA include gait patterns [30], body movements [94],

biomedical signals [84], and app usage [38].

When it comes to smartphone users’ perceptions of IA, however, the existing

literature is much more limited. Khan et al. [64] conducted a two-part study, con-

sisting of lab-based experiments and a three-day field study where 37 participants

used IA on their own smartphone. However, for experimental control, both parts

used a low-fidelity IA prototype that simulated re-authentication events manually

(that is, no actual behavioural biometric was used. Rather, the scheme prompted

the user for re-authentication as pre-specified intervals). They reported that 81%

of their participants were satisfied with the level of security that IA provided. They

found that 63% of participants were interested in using IA, but 30% were not sure

whether they would use it, and 7% did not want to use it. Similar work was con-

ducted by Crawford and Renaud [26]. In a lab study, they asked 30 participants

to complete a series of tasks on a smartphone that was protected with a pseudo-IA

scheme (again, one that does not actually use behavioural biometrics). They found

that 90% of their participants indicated that they would consider using IA on their

mobile devices, should it become available.
1We define IA as any solution that can authenticate the user without asking for explicit authenti-

cation input (e.g., a PIN or a fingerprint).
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As discussed, the above studies were either conducted in lab settings or used

low- or medium-fidelity prototypes, which limits their ecological validity (this

refers to the extent to which the experimental conditions of the study are repre-

sentative of real tasks being done by real users in their natural environment [65]).

This methodological choice is understandable given that the goal of these studies

was to gauge the users’ level of interest in IA technology in general, as compared

to the incumbent explicit authentication methods. At the same time, however, since

these studies involve role-playing (i.e., performing a set of predefined tasks with

pre-provided data), it is difficult to judge whether users would behave the same

way in their interest towards IA when their actual sensitive data is at risk (see Soti-

rakopolus et al. [109] on the penitential negative effects of role-playing on usable

security lab studies).

Our studies aim to address this limitations by investigating how users have

acted in response to the opportunity of adopting a real-world IA scheme on their

personal phone. The difference between our study and prior work, therefore, goes

beyond just methodological differences. Fundamentally, we are not trying to ex-

trapolate the future of IA adoption based on current estimates. Rather, we study

users’ historical behaviour (the participants have already decided whether they

would adopt/reject SL before even participating in our study), in order to find

lessons learned from the successes/failures of SL. This insight could help better

design the next iteration of the technology.

2.1.2 Smart Lock for Android

SL is the first, and currently only, widely deployed IA scheme used on smart-

phones. Other commercial IA solutions for smartphones also exist, such as the Uni-

fyID [114] or Kryptowire [67], but due to their centralized design, these schemes

are not suited for smartphone unlocking. SL was first introduced during the keynote

of the 2014 Google I/O conference [40]. In its essence, SL is designed to reduce

the number of times users have to unlock their phones by automatically unlocking

the phone (or at least keeping it unlocked) when the surrounding environment is

deemed “secure.” SL offers the following 5 different methods (three IA and two

EA ones) of unlocking the phone, each of which can be enabled separately:
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• On-Body Detection (BODY) is an IA method that operates based on behav-

ioral traits. It keeps the user’s phone unlocked while it is “on-person” (i.e.,

in movement, like running) by detecting the user’s body movements and gait

patterns. BODY cannot automatically unlock the phone, but will lock it if

no movement is detected.

• Trusted Places (PLACE) is a contextual2 IA method that uses GPS signals

to automatically unlock the phone at specific locations (e.g., home). It will

automatically lock the phone when the device leaves the trusted location.

• Trusted Devices (DEVICE) is a contextual IA method that automatically

unlocks the user’s phone when a designated Bluetooth device is connected to

it. It will also automatically lock the phone when the device is disconnected.

• Trusted Face (FACE) is an EA method. It allows the user to scan their face

to manually unlock the phone. It is not capable of automatically locking or

unlocking the phone.

• Voice Match (VOICE) is another EA method. It allows the user to say“Ok

Google” to manually unlock the phone with their voice. It is not capable of

automatically locking or unlocking the phone.

The EA methods, however, are outside the scope of this study, as we are fo-

cused on users’ perception of IA. We will consider these methods in our next study,

presented in Chapter 3.

SL is considered by Google to be an important part of Android operating sys-

tem, as it is actively advertised on Android devices. For example, whenever a

new Bluetooth device is paired with an SL-capable phone, a notification is shown

encouraging the user to add the device as a trusted for Smart Lock. Other manu-

facturers may opt to either not include SL on their phones, remove some SL meth-

ods (e.g., Samsung phones do not provide FACE), add other methods (e.g., Wear

Recognition on Huawei smartphones), or provide SL as is.

To the best of our knowledge, there are no previous studies that analyzed users’

perception of SL.

2Meaning it operates based on contextual data rather than behavioral data.
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2.1.3 Technology Acceptance

Why people accept or reject new technologies and the factors that affect their de-

cisions have been heavily researched for decades. Numerous theories, such as the

technology acceptance model (TAM) [28], diffusion of innovations theory [99],

unified theory of acceptance, usage of technology [116], have been put forward to

try to explain users’ behavior with technology adoption. Among these theories,

TAM has gained a lot of traction and has been examined, expanded, and applied to

various domains, such as OpenID [111] and online shopping [117].

In TAM, proposed by Davis et al. [28], two main factors are shown to affect

users’ attitudes toward adopting a new technology: perceived usefulness and per-

ceived ease of use. Perceived usefulness is defined as the degree to which an indi-

vidual believes that a particular system would enhance his or her performance [22].

Perceived ease of use is defined as “the degree to which an individual believes that

using a particular system would be free of physical and mental effort” [22].

TAM is frequently used as a tool to explain users’ acceptance or rejection of

new technologies [22]. To expand TAM’s applicability to different domains, nu-

merous extensions to it have been proposed. For example, Venkatesh and Davis [115]

proposed TAM2, which included an additional set of variables (e.g., relevance to

the user’s task, and subjective norm) that could influence users’ technology adop-

tion decisions. Another noteworthy extension was proposed by Vijayasarathy [117],

who used TAM to predict consumer intentions for using online shopping. They in-

troduced several new variables, such as privacy and security, that can potentially

affect users’ adoption intentions.

In this work, we use TAM to give structure to our findings. This allows us to

ground our findings in a theoretical framework that can more cohesively explain

the users’ intention to adopt SL. We discuss this matter further in Section 2.4.1.

2.2 Methodology
Our methodology was designed to answer the following research questions:

1. RQ1: How widely is SL adopted by Android users?

2. RQ2: What factors attract or deter potential users from adopting SL?

20



2.2.1 Qualitative Studies

Since there were no previous studies to inform our investigation, we started by

performing an exploratory qualitative study, to gain preliminary insight into how

smartphone users would perceive SL. We opted to conduct a cognitive walkthrough

with users (CWU) study [46, 70, 73]. The study comprised of cognitive walk-

through (CW) sessions with participants proficient in HCI, and think-aloud ses-

sions with regular smartphone users (not proficient in HCI or usability).

To explain briefly, cognitive walkthroughs involve a group of HCI proficient

participants going over a documented series of actions that an ordinary user would

has to perform to accomplish a task with the user interface (UI) under evalua-

tion [124] (e.g., in the case of SL, enabling one its methods, such as BODY. The

complete set of tasks we used in our study is provided in the Appendix). After

performing each action, the participants would engage in a group discussion as to

whether the UI is clear enough to allow an ordinary user to easily identify what

they need to do next, to achieve the task. If not, they would suggest ways of im-

proving the UI, to increase its learnability. Think-aloud sessions, conversely, are

one-on-one sessions where an ordinary user (not an HCI proficient) would perform

the actions necessary to achieve a given task, while thinking out loud about how

they figure out what the next action they take is [73]. It would usually be per-

formed to verify the results of the cognitive walkthrough. We discuss the details of

the CWU design further in the next Chapter (specifically, Section 3.3).

We preferred CWU over other alternative methodologies (e.g., semi-structured

interviews or quantitative user satisfaction studies) due to its task-oriented nature

and its focus on the learnability of the UI. The focus on learnability, in particular,

was important to us, as we believed that most potential users find out about the

semantics of SL UI through exploratory learning, which is shown to be a primary

method for users to discover new features on smartphones [113]. Further, we chose

to use the CWU method because it addresses the shortcomings of the traditional

cognitive walkthrough (e.g., lack of real user involvement) by adding think-aloud

sessions with users. We combined the results of these two studies to provide more

breadth and depth in usability evaluation [73].

We further refined our study design by introducing a new set of questions to the
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CWU method. We asked the participants about how they thought each SL method

locked or unlocked the phone, what they thought SL was good for, whether they

would consider adopting any SL methods, and the reasons for their decisions. All

materials that we developed for our CWU study (e.g., persona definition, task lists,

etc.) are presented in Section A.1 in the Appendix.

To test the methodology, we recruited 9 participants through word-of-mouth

advertising and conducted two pilot cognitive walkthroughs (five participants in

one session and two in the other) and two pilot think-aloud sessions. Pilot stud-

ies showed that think-aloud participants had less opportunity to explain their SL

adoption attitudes than did the CW participants.3 Therefore, we decided to con-

duct a semi-structured interview with each think-aloud participant to allow them

to explain their SL adoption attitudes in their own words. We included this change

in the consent form, specifying that the study investigators might ask participants

clarification questions about their answers in the reporting form.

For the final study, we used both online (Facebook, Craigslist, and mailing

lists) and offline (word-of-mouth) channels to recruit participants for our CW and

think-aloud sessions. Overall, we recruited 26 participants: 10 for CW and 16 for

think-alouds. We compensated the cognitive walkthrough participants with CAD

20 cash and refreshments, and the think-aloud participants with CAD 30 cash only.

We offered refreshments to CW participants to reduce fatigue, as each CW session

lasted for more than 2 hours (compared to 40-minute-long think-aloud sessions).

We conducted all CW and think-aloud sessions in person between September 2018

and February 2019. We performed data collection and analysis concurrently and

continued until we reached theoretical saturation (no new codes emerged as a result

of the last two data collection sessions).

To analyze the data, we transcribed the audio recordings from all sessions,

then anonymized and analyzed the transcripts. While we conducted CW sessions

before recruiting for and conducting think-aloud sessions, the collected data were

analyzed collectively. The average duration of Cognitive walkthrough sessions

was 2 hours. Think-aloud sessions lasted for 40 minutes, on average. Overall,

we analyzed the transcripts of approximately 14 hours of audio recordings. We

3In the initial design, think-aloud participants submitted written answers to questions about their
adoption attitudes, as part of the handout.
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chose Thematic analysis [15, 48] as our analysis method for these two datasets.

To increase the validity of the results, all of the transcripts were coded by two

researchers, who used an agreed-upon shared codebook. We calculated the inter-

coder reliability and found that it was satisfactory (80%).

2.2.2 Quantitative Study

Based on the findings of our qualitative studies, we developed a series of hypothe-

ses about RQ1 and RQ2 and then conducted a confirmatory online survey to eval-

uate the hypotheses and answer the research questions.

In our survey, participants were first asked a series of demographic questions,

followed by questions about their smartphone usage habits and the screen un-

locking methods that they had enabled on their phones. Afterward, participants

watched an introductory video about SL, prepared by us, which we used to remind

participants about what SL was.4 We carefully crafted the video to use the exact

words that are already used in existing SL set-up UI.5

After the participants watched the video, we asked them questions about how

familiar they were with SL before our study, their experiences of using SL, and

their attitudes toward adopting it. Based on the answers to these questions, partici-

pants were asked to rank, in order of importance to them, a list of potential reasons

for their attitudes toward adopting SL. The list of potential reasons was informed

by the findings of our qualitative studies. Participants could also choose not to rank

a reason, or to add a new reason and rank it.

Afterward, participants were asked to rank the common smartphone unlock-

ing methods (fingerprint, face unlock, and PIN/password) against all SL methods,

based on how convenient they thought each method was. The same procedure was

repeated for the perception of security, and the speed of the unlocking methods

(i.e., we asked participants to rank the methods in order of how secure and how

fast they thought these methods were). The complete list of survey questions is

provided in Section A.2 in the Appendix.

4Based on our experience with our qualitative study participants, we believed that participants
might not necessarily remember what SL was, or that SL might be named differently on their phones.

5The video is publicly available on YouTube through this link:
https://www.youtube.com/watch?v=N-pC6-kWW0c.
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Finally, to calculate an SL adoption rate, we needed to know whether each

participant’s phone supported SL. To do so, we asked our survey participants to

enter the model number of their phone so we could determine if SL was supported

on their device. Since we anticipated that some non-tech-savvy participants might

not know the model number of their device, we suggested them to use their main

mobile phone to visit the study webpage and to enter their assigned participant ID.

This webpage reflected the name of the phone model back to the participant. This

was done by examining the user agent field of the HTTP header of their requests.

Our web server did not store any user data.

To test our design, 7 HCI researchers reviewed our survey questions and pro-

vided feedback. We also conducted a pilot study on MTurk with 10 participants.

Accordingly, we made minor adjustments to the wording of some questions.

We conducted the main survey on MTurk in September 2019. We chose MTurk

as its participants samples are shown to provide meaningful results for the area of

usable security [51]. Our advertisement message mentioned a study about Smart

Lock for Android, but stated that Turkers (MTurk workers) did not need prior ex-

perience with Smart Lock to participate in the study. The survey was only visible

to Turkers living in North America6 and had an approval rating higher than 90%.

Non-Android users were excluded from the study. It took the participants 17 min-

utes on average to complete the survey, and each participant was compensated

with USD 4. Overall we received 407 responses to our survey, but eliminated 64

responses due to either inconsistencies in their answers (39), using IP addresses

outside North America (10), or being flagged as duplicates or bots by our survey

platform (15).

To analyze the participants’ reasons for adopting/rejecting SL, two researchers

cooperatively labelled each reason given by them with one of the five broad cate-

gories we identified in our CWU study. These categories include Utility, Security,

Privacy, Reliability, and Other. Without assuming any particular distribution for

our data, we used chi-squared tests of association and binomial logistic regression

to analyze how our hypothesized factors correlated with our outcome variables. To

analyze our rank-order data (e.g., the average ranking the participants gave to each

6We opted to only include North American participants in our survey because otherwise it would
be difficult for us to account for cultural differences and their potential effects on the results.
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category of reasons), we used Friedman and Durbin-Conover tests. All pair-wise

comparisons were corrected using Bonferroni.

To address RQ1, we reported on the adoption rate of each SL method, based

on the results of the survey study. We defined adoption rate as the ratio of the

number of participants who reported using a particular SL method to the number

of participants who could have been using that method. We referred to the latter

as SL-capable participants. There is a distinction between participants who knew

SL was available on their phones and those who knew about SL but did not know

it was on their phones. In calculating the SL adoption rate, we used the former.7

To get a better understanding of the participants’ overall attitudes toward SL,

we also reported on the rejection rate of each SL method in our survey study. We

defined the rejection rate as the ratio of participants who decided to not use an SL

method to SL-capable participants. Participants who rejected the SL method had

either experimented with the method but decided not to use it, or used the method

for a while but then stopped using it. A high rejection rate would likely indicate

the prevalence of important adoption barriers (deal-breakers) for potential users.

Gaining an estimate of these rates are important because while a high adoption

rate could indicate a high degree of acceptance and adoption of the technology, a

low adoption rate would likely indicate the existence of external barriers to adop-

tion of the technology, or the existence of other factors that deterred potential users

from adopting SL, which could merit further research.

Moreover, we also reported on the interest rate for each SL method in our sur-

vey study. We defined the interest rate as the ratio of SL-capable participants who

were undecided about the SL method but indicated their willingness to adopt it

to the total number of undecided participants. Undecided participants were those

who had neither rejected nor accepted SL. Since interested participants have not

had any real experience with SL, a low interest rate among them could likely indi-

cate the existence of external factors (e.g., a perceived lack of added convenience

when compared to biometric-based phone unlock methods) that deterred them from

7We excluded participants who were not using an SL-enabled phone, or who reported not having
prior knowledge of SL before the study, from the SL adoption/rejection rate calculations. This was
because we believed that the adoption attitude data from such participants (without awareness) would
be of low ecological validity.
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Table 2.1: Participant demographics for our CWU and survey studies.

CWU Study
(N = 26)

Survey Study
(N = 343)

Parameter Property % (#) of
participants

% (#) of
participants

Gender Female 53.8 (14) 58.3 (200)
Male 46.2 (12) 41.4 (142)
Other 0.0 (0) 0.3 (1)

Age 19-24 38.5 (10) 5.8 (20)
25-34 57.7 (15) 46.6 (160)
35-44 3.8 (1) 28.9 (99)
45-54 0.0 (0) 14.3 (49)
55-64 0.0 (0) 3.8 (13)
65-74 0.0 (0) 0.3 (1)
75-84 0.0 (0) 0.3 (1)

Education
Less than high
school

0.0 (0) 0.3 (1)

High school 7.7 (2) 33.2 (114)
University
(bachelor’s)

38.7 (10) 58.3 (200)

Master’s or
PhD

53.4 (14) 8.2 (28)

using SL. This can be a promising avenue for future research to improve adoption.

Finally, to address RQ2, we report on how our survey participants ranked the

reasons for their interest in and adoption of each SL method. Based on the findings

of the CWU study, we placed these reasons into 5 categories: “utility,” “security,”

“privacy,” “reliability,” and “other reasons.”

We should note that UBC Behavioural Research Ethics Board (BREB) ap-

proved the data collection and analysis of all of our studies before any data col-

lection took place.
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2.3 Results

2.3.1 Demographics

Our CWU sample was fairly diverse in terms of participant age, gender, familiarity

with SL, and occupation. Detailed demographics of our CWU participants are pre-

sented in Table 2.1 (occupation was omitted due to the high diversity of responses).

Also, while all CW participants were graduate students, only about one-third of the

participants in the think-aloud sessions were students. As for their familiarity with

SL, 50% of the participants had never heard of SL; 20% had heard of it but had

never used it; 16% previously experimented with it but had never used it; 7% had

previously used it regularly but had stopped since then; and 7% were using SL

regularly at the time of the study.

Our survey sample was also fairly diverse in terms of gender (58% males and

41% females), and age (min = 19, max = 75, mean = 36, median = 34). In terms of

education, 33% of survey participants had high school degrees, 58% had college

education, and 9% had master’s or PhD degrees. Participants were also relatively

diverse in terms of occupation, with computer and mathematical occupations hav-

ing the highest frequency (17%).

To gauge the representativeness of our survey sample, we compared the dis-

tribution of certain demographic factors (age, gender, and education) among our

participants to the smartphone population in the US reported by the Pew Research

Center [91]. Chi-squared tests revealed no significant differences between distribu-

tions of the two samples, in terms of age (p = 0.21), gender (p = 0.19), or education

levels (p = 0.16). Hence, we believe that our sample is fairly representative of the

target population. However, as seen in Table 2.1, age distribution was somewhat

skewed, even if the difference was not statistically significant. We discuss sample

limitations further in Section 2.5.

We should also note that, in alignment with our research goals stated in Chap-

ter 1, we focused on the use of SL on personal devices in this research. Hence, we

did not focus on diversity in terms of context of use (e.g., corporate phone users).

As for personal use of SL, we aimed for diversity in our sample in terms of age,

gender, and education (similar to other studies [33, 95]). We only chose those
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Figure 2.1: Experience with and attitudes toward adopting each SL method,
for survey participants who had SL-capable phones and indicated hav-
ing prior knowledge of SL before the study.

Table 2.2: Adoption, rejection, and interest rates for different SL methods in
our survey study.

SL Method Adoption Rate
(%)

Rejection Rate
(%)

Interest Rate
(%)

BODY 9.1 25.1 39.0
PLACE 17.1 24.6 41.3
DEVICE 15.0 17.6 50.8
Average 13.7 22.4 43.7

factors they have been shown to be correlated with users’ phone authentication be-

haviour [33, 74, 95]. Hence, we anticipated that any differences in the need for

IA would manifest itself in a sample that is diverse along those axis. For example,

since a difference in age has entailed different usage pattern with traditional phone

unlocking solutions [95], we anticipated that recruiting people from different age

ranges would uncover differences in IA need as well. We did not specifically aim

for diversity in more detailed factors (e.g., co-habitation composition).

2.3.2 Adoption, Rejection, and Interest Rates

Overall, we found that 91.3% (N = 313) of our survey participants were using

phones that supported SL. Among those participants, 60% (N = 184) reported hav-

ing had prior knowledge of SL before participating in our study (as depicted in

Figure 2.1), making them SL-capable participants.
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Figure 2.1 shows the number of survey participants who reported that they had

either: (1) been unaware of, (2) adopted, (3) rejected, (4) stated interest in, or (5)

stated no interest in, each SL method. Based on this data, Table 2.2 presents the

adoption, rejection, and interest rates of each SL method. As indicated, the adop-

tion rate for all SL methods is less than 20% and the rejection rate is unanimously

higher than the adoption rate. Also, the interest rate is higher than either the adop-

tion or the rejection rate for all SL methods. These findings suggest the following:

• SL is not a widely adopted technology, with an average adoption rate of

13.7%. In comparison, the PIN, fingerprint, and pattern phone unlocking

methods had adoption rates of 68%, 47%, and 26% respectively8, among the

SL-capable participants.

• SL had a relatively high rejection rate, with an average of 22.5%. This likely

indicates existence of deal-breakers that deter users from adopting it.

• The interest rate in SL among SL-capable participants was 44%. Our ob-

served interest rate is lower than that of the existing IA perception studies,

where more than 60% of their participants indicated a willingness to adopt

IA [26, 64]. We suspect that this is due to the low ecological validity of such

studies, where the participants only experimented with a pseudo-IA scheme

that did not suffer from reliability issues, and where the participants did not

have to put in the effort to set up the solution on their phones.

Hence, to answer RQ1, it seems that with an adoption rate of only 13.7%, SL

is not a widely adopted technology. This finding reiterates the importance of inves-

tigating RQ2, which can help the research community gain insight into possible

real-world barriers to IA adoption.

To answer RQ2, Figure 2.2 depicts the average rank that the adopters/rejecters

or the interested/uninterested participants of each SL method assigned to each cat-

egory of reasons to justify their decisions. Note that the correlation is different

between Adopters/Rejecters. For example, as seen in sub-Figure a, lack of relia-

bility was a major reason for SL rejecters to reject SL, but not a significant reason

8The numbers do not add up to 100% because it is possible for one user to have enabled more
than one unlocking method.
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(a) Average score of rea-
sons for adopting or rejecting
BODY

(b) Average score of rea-
sons for adopting or rejecting
PLACE

(c) Average score of rea-
sons for adopting or rejecting
DEVICE

(d) Average score of rea-
sons for being (un-)interested
in BODY

(e) Average score of rea-
sons for being (un-)interested
in PLACE

(f) Average score of rea-
sons for being (un-)interested
in DEVICE

Figure 2.2: The average importance score that participants assigned to each
category of reasons for adopting, rejecting, or being (un-)interested in
adopting SL methods.

for Adopters to adopt SL.

In sections 2.3.3 to 2.3.7, we examine in detail the role of each category as a

potential barrier to the adoption of SL.

2.3.3 Security

Perceived lack of security has been shown to be a major deterrent for adoption

of new technologies. For example, this has been the case with Apple Pay [57]

and face unlock [29]. In the case of SL, we observed a perceived lack of security

(i.e., the possibility of someone gaining access to the phone without the owner’s
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authorization) to be a major adoption barrier as well.

First, we found evidence of this, first in our qualitative study. Some of the

CWU participants justified their unwillingness to use SL by explicitly citing lack

of security as the reason. For example, when asked whether he would adopt BODY,

one of our think-aloud participants (P-TA-15, male, student) said: “I think [in the

case of] the on-body detection [the answer] is no. Even when you’re not at home,

like you’re at the mall or something like that. It’s still possible [for someone to

unlock the phone].”

Our survey study confirmed this association further. Among our undecided

SL-capable participants, those who indicated an unwillingness to adopt BODY,

PLACE, or DEVICE ranked insecurity as one of the top two highest-ranking reason

(alongside reliability, as depicted in Figures 2.2d, e, and f) as to why they were

unwilling to adopt the SL methods. They ranked it significantly higher than any

other category of reasons (p < 0.05, Durbin-Conover test). This seems to be a

valid concern, as those of our participants who reported having stopped using these

methods also ranked insecurity as one of the top three highest-ranking reasons (as

depicted in 2.2a, b, and c) for their decision to abandon the feature, again ranking

it higher than any other remaining category of reasons (p < 0.05, Friedman test).

As further evidence in support of our hypothesis, when we asked participants to

rank SL methods against PIN and fingerprint phone unlocking methods, we found

that participants who indicated unwillingness to adopt SL ranked fingerprint and

PIN as significantly more secure than SL (p < 0.05, Durbin-Conover test). We

found these results to be in contrast to Khan et al. [64], who reported that 81% of

their participants were more satisfied with the level of security that their pseudo-IA

scheme provided.

As an illustrative case of such concern, most of our think-aloud participants

expressed that SL might allow their family members or co-workers to access their

phones without their permission. One participant (P-TA-13, male, student) ex-

plained: “I don’t think it [DEVICE] is something that I would use at all, because

even if it’s at my home and a friend is over or something, they can just unlock my

phone. It’ll be easy for them to do it. It could be even ... my brother!” Con-

sidering that snooping on mobile devices is known to be both frequent [75] and

antagonizing [76], this reasoning appears to be justified.
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2.3.4 Privacy

Studies have shown that privacy is a major concern for smartphone users when it

comes to authentication [59, 93]. Hence, we hypothesized that privacy concerns

may also be a barrier for adopting SL as well.

Our CWU study study partially supported our hypothesis. Some of our CWU

participants expressed direct privacy concerns with SL. For example, P-TA-3 (fe-

male, health specialist) remarked about SL: “This [SL] is a potential security asset

because if your phone is stolen or lost, your information will not be as easily hacked

as if you use the regular lock. I think that it is a toss-up between having your data

for the smart lock feature recorded by your phone provider versus potential loss of

information.” In general, we observed privacy concerns among our participants to

be about manufacturers’ unauthorized use of user’s data.

Our survey study, however, did not support the role of privacy for SL adop-

tion. Survey participants did not rank privacy as a major reason for abandoning the

technology or being unwilling to adopt it (depicted in Fig 2.2).

Caution needs to be used when drawing conclusions about the role of privacy

in SL adoption, however. Since we used ranking (instead of rating) in our survey to

test the link between security, privacy and SL adoption, security ended up always

being the most important factor, potentially masking the effect of privacy. Studies

are needed to further investigate the correlation between privacy and SL use.

2.3.5 Reliability

The themes of perceived unreliability (i.e., accidental unlocking or locking the user

out) of SL methods and, as a consequence, lack of trust in the technology, kept

reappearing in our collected data. While interrelated with security and privacy,

these themes deserve their own analysis in relation to SL and its users.

Firstly, the participants in our qualitative studies found that SL lacked relia-

bility, precision, and accuracy. For example, several participants expressed their

belief that GPS lacks the precision necessary to be trusted as an unlocking fac-

tor. One of our think-aloud participants (P-TA-16, female, unemployed) expressed

such concern by stating: “I think, for example, if I add my home as a trusted place,

then if I go to a coffee shop downstairs beside my place, it might still think I’m at
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home [and unlock the phone].”

The survey data confirmed unreliability’s role as a major adoption barrier as

well. Among our SL-capable participants, those who indicated an unwillingness

to adopt BODY ranked accidental unlocking as one of the top two (alongside se-

curity) most important reasons for their unwillingness to adopt SL (depicted in

Fig 2.2a), ranking it significantly higher than other reasons (p < 0.05, Durbin-

Conover test). This seems to be a valid concern, as observed unexpected behavior

by BODY and accidental unlocking were the top two highest-ranking reasons that

our BODY abandoners stopped using it too, ranking them higher than any other rea-

son (p < 0.05, Durbin-Conover test). The same trend was observed with PLACE

and DEVICE as well (as depicted in Fig 2.2b and c).

Overall, therefore, our results clearly suggest that a perceived lack of relia-

bility is a deterrent of SL. This, in turn, reaffirms the importance of reliability in

technology adoption, as shown by Butler and Sellbom [19].

2.3.6 Utility

It is known that perceived utility is an important factor when it comes to technology

adoption. Previous studies, such as those by Zhang and Xu [126] and by Huh et

al. [57], have shown that users’ perceptions of the usefulness of a new technology

correlates positively with their intention to adopt it.

In the case of SL, the results of the CWU study suggest that the main utilities

of SL (as perceived by our participants) are:

• Convenience: SL can make it easier to unlock smartphones or keep them un-

locked, at least under certain circumstances, when compared to conventional

explicit smartphone unlocking methods (e.g., PIN or fingerprint).

• Speed: SL can make it faster to unlock smartphones, at least under certain

circumstances, as compared to conventional unlocking methods.

• Redundancy (backup): SL can be used as a backup method to unlock

phones when users cannot unlock their phones (e.g., because they forgot

their PINs or patterns).
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This was corroborated by the survey study, where SL adopters cited conve-

nience and speed as the top reasons for their decision to adopt SL. These two

reasons were ranked significantly higher than any of the other reasons (p < 0.05,

Durbin-Conover test).

However, the results also showed that the majority of the participants were not

convinced of the added benefits of SL. The first evidence of this was observed in the

CWU study, where some participants cited a perceived lack of added convenience

as the reason for their unwillingness to adopt. For example, one of the think-

aloud participants (P-TA-11, male, language teacher) remarked about DEVICE: “I

probably wouldn’t use it, because I can’t think of a use for it. I can play music from

my phone even though it is locked. So I don’t need the trusted device feature.”

The survey data corroborated this finding, where those participants who either

had rejected SL, or were unwilling to use it, ranked a perceived lack of utility as the

most important reason (depicted in Figure 2.2) for their choice (p < 0.05, Durbin-

Conover test).9 In addition, when asked to rank SL against the PIN and fingerprint

methods, in terms of the speed and the convenience of unlocking, these participants

ranked the fingerprint method to be significantly faster and more convenient than

any of the SL methods (p < 0.05, Durbin-Conover test). They also ranked the PIN

method as significantly more convenient, but slower than SL (p < 0.05, Durbin-

Conover test).

In summary, the results suggest that it is difficult for Android users to under-

stand or perceive the utility of SL, especially its convenience or speed advantages

over the fingerprint method. This contributed significantly to the participants’ un-

willingness to adopt SL. We believe that there is a potential usability misconcep-

tion, in that using SL to keep phones unlocked (in trusted places or near trusted

devices) will be faster than having to explicitly touch fingerprint scanners and wait

a moment for phones to become unlocked. Hence, further research is necessary to

determine more effective ways to communicate the usability benefits of SL (and

IA in general) to smartphone users.

9It should be noted that it is probable that the participants put a perceived lack of utility as the
most significant factor for them because they assumed SL was already security, or that they had not
considered security yet. Therefore, our results should not be interpreted as meaning that if the users
found a utility in SL, they would be immediately willing to adopt it.
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2.3.7 Other Adoption Barriers

In addition to the discussed adoption barriers, our participants occasionally ex-

pressed other interesting reasons for not using SL. While these barriers were not

perceived as important by the participants (as evidenced by how they ranked these

reasons for their decision to adopt/reject SL), we believe that some of them are

worth discussing, as they might have higher indirect correlations with the users’

attitudes. These barriers include the following:

I) Semantics: Some of the CWU participants expressed difficulty with understand-

ing the semantics of SL (i.e., how each SL method locked or unlocked the phone).

This made them unable to correctly judge when their phone would be locked. As it

has been shown that a compatibility of mental models between old and new tech-

nologies correlates positively with users’ intention to switch to the latter [126], we

theorize that difficulty with understanding SL semantics might have contributed to

the low adoption rates we observed. However, our survey participants rarely cited

difficult semantics as an important reason for being unwilling to adopt or deciding

to abandon it. This is perhaps because they are unaware of the fact that they have

misunderstood how SL works. Despite this, we still believe it is important that

further studies be conducted to gain insight into how smartphone users understand

the IA semantics. During our CWU study, we observed that a misunderstanding of

semantics can lead to a misjudgment of when the phone would be locked. This can

have dire consequences, as it can lead to unauthorized access to the phone. Yet,

to the best of our knowledge, no study on how smartphone users understand IA

semantics has been reported so far.

II) Use of Unlocking: Some of the CWU participants stated that they were unwill-

ing to adopt SL because they were satisfied with their current unlocking method.

While most of such participants were using fingerprint unlocking, we occasion-

ally observed PIN users to express the same sentiment. As such, we hypothesized

that SL might be more appealing to those who are not locking their phones. Our

survey data, however, did not support this hypothesis: 17.5% (N = 55) of our sur-

vey participants reported not using any locking on their phones. A chi-squared

test of association showed that such participants are not significantly more likely
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to be willing to adopt SL (p > 0.05, chi-squared test). More studies, however, are

needed to fully investigate and compare the usability of SL with existing unlocking

methods, such as fingerprint.

III) Usability of the SL UI: Through the CWU study, we found various usability

issues with the SL UI (e.g., inconsistencies and ambiguities) that caused confusion

for the participants. For example, the UI for PLACE lacked a tutorial screen to

explain to the user how the SL method worked, whereas BODY and DEVICE had

such screens. We found that such usability issues affected participants’ trust in the

technology, which can be a major barrier to its adoption. For example, after experi-

encing the SL UI, one of our CW participants (P-CW-8, male, student) mentioned:

“All these inconsistencies make you wonder if the Android team at Google cares

at all ... I don’t trust this [SL] at all.” While our survey participants rarely cited

the usability of the SL UI as a reason for their decision to reject SL, we observed

that misunderstanding the semantics can lead to users forming inadequate mental

models. However, to the best of our knowledge, there are no guidelines or heuris-

tics reported for designing or evaluating the UI for IA on smartphones. Providing

such guidelines or heuristics can help system designers communicate the semantics

of IA and its capabilities more efficiently, to avoid user frustration and dangerous

errors. We believe this to be an important knowledge gap and a good avenue for

future work.

2.4 Smart Lock Technology Acceptance Model
(SL-TAM)

In the previous sections, we investigated individually factors that correlate with

users’ intention to adopt SL. However, our findings did not lead us to clear pic-

ture of the users’ overall attitude towards adopting SL. To provide such a picture,

we investigated whether there were theoretical frameworks that could explain our

findings in a more structured way. We found that the technology adoption model

(TAM) [28] is often used for such purposes.

Hence, in this section, we rely on TAM to structure all of our findings into a

framework for reasoning about smartphone users’ SL adoption decision. Providing
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Figure 2.3: Smart Lock technology acceptance model.

such a framework is valuable because while the existing literature, e.g., TAM [28],

could be used for predicting SL adoption, resulting conclusions would not be sup-

ported by existing empirical data. Also, due to the abstract definition of predictors

in TAM, it would be difficult to interpret what they entail in the context of IA. As

explained below, TAM would also miss the link between security and SL adoption.

To devise the framework, we first investigated how our CWU findings con-

formed with TAM [22, 28] and how TAM needed to be extended for the case of

SL. This is presented in Section 2.4.1. Then, in Section 2.4.2, we use our survey

data to test the extended TAM model.

We should note, however, that we did not use TAM in advance to inform the

design of our survey study, and instead relied on the results of our qualitative study

to do so. This was to prevent introducing confirmation bias into our results (i.e.,

trying to confirm what TAM conjectures about SL adoption, rather than confirming

our own observations in the qualitative CWU study).

2.4.1 Devising SL-TAM with CWU Findings

As discussed in Section 2.1.3, TAM introduces two factors that influence adoption

attitudes toward a new technology: perceived usefulness and perceived ease of use.

In the following, we examined how these factors manifested themselves in our
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CWU study and how they affected participants’ adoption decision:

1. Perceived usefulness: TAM theorizes that to adopt a new technology, poten-

tial users must find it useful. Our CWU results (discussed in Section 2.3.6)

showed us that the usefulness of SL translates to whether users think it

can make unlocking easier or faster, or can be used as a backup unlocking

method. Subsequently, as TAM would predict, we found that users’ percep-

tion of these SL benefits directly correlates with their willingness to adopt it.

Based on this observation, we hypothesize that perceived usefulness indeed

is linked to the intention to use SL, and it is determined by the unlocking

convenience, speed, and backup use of SL (depicted as H1 in Figure 2.3).

As discussed before, we found another deterrent keeping our CWU participants

from adopting SL to be security and sometimes privacy concerns. Such concerns,

however, did not seem to be strictly related to either usefulness or ease of use. We

discovered that a similar observation has been made by other studies that applied

TAM to specific domains, such as Sun et al. [111] who applied it to OpenID, or

Vijayasarathy [117], who applied it to online shopping. In case of SL, it could

be argued that security and privacy concerns are related to the usefulness of the

technology (after all, SL is designed to improve security). However, the significant

prominence of security and privacy concerns in our findings prompted us to con-

sider them as a separate factor, to fully capture their importance. As it is evident in

the results presented so far, the usefulness factors we discussed before mostly deal

with pragmatical hurdles of setting-up SL and/or dealing with its errors, rather that

whether it is achieving its core purpose (which is what the security and privacy

factor is aiming to capture).

To address this problem, we expanded our SL-TAM to include a new predictor

called “perceived security and privacy” (depicted as H3 in Figure 2.3), which is

determined by the following factors:

1. Security: As we discussed in Section 2.3.3, some of our CWU participants

explicitly cited insecurity as the reason they were unwilling to adopt SL.

2. Privacy: As discussed in Section 2.3.4, some (but not all) CWU participants

cited lack of privacy as a potential drawback of SL.
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Table 2.3: Results of the binomial logistic regression (BLR) tests to validate
the correlation between SL-TAM predictors and survey participants’ in-
tention to adopt SL.

SL-TAM
Predictor Dependent Variable

(Independent
Variable) BODY PLACE DEVICE

Perceived
Usefulness

p-value = 0.001
OR = 7.16

p-value = 0.001
OR = 3.27

p-value = 0.001
OR = 9.40

Perceived Ease
of Use

p-value = 0.016
OR = 9.82

p-value = 0.275
OR = 3.27

p-value = 0.090
OR = 3.29

Perceived
Security and
Privacy

p-value = 0.744
OR = 1.09

p-value = 0.001
OR = 5.22

p-value = 0.019
OR = 2.34

3. Semantics: As discussed in Section 2.3.7, we observed that (in-)correct un-

derstanding of SL semantics can lead to misconceptions about SL security.

The final SL-TAM is depicted in Figure 2.3.

2.4.2 Testing SL-TAM with Survey Data

We tested SL-TAM by evaluating how our survey data conforms with it, for each

SL methods separately. Specifically, we evaluated how our hypothesized factors

(“perceived usefulness,” “perceived ease of use,” and “perceived security and pri-

vacy”) correlate with SL-experienced participants’ decision to either use SL or

abandon it (to preserve ecological validity, we focus on this group of participants

alone).

First, Figure 2.2 depicts the average importance score that the participants as-

signed to each group of reasons for their decision to adopt or reject SL. We used

these scores in the following way to test SL-TAM: the utility score was used to

represent “perceived usefulness,” (as it is an aggregated score of perceived conve-

nience, speed, and backup use of SL); the reliability score was used to represent

“ease of use,” (our survey is not capable of evaluating “set-up effort”); and the sum

of the security and privacy and semantics scores was used to represent “perceived

security and privacy.”
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To evaluate how these predictors correlated with SL adoption decisions, we

report the results of three binomial logistic regression (BLR) tests (one for each

method). In each test, the decision to adopt the SL method is the dichotomous

dependent variable, and the hypothesized factors are the predictors. To ensure the

validity of the tests, we checked for multicollinearity between variables but found

that this was not an issue (1.0 < V IF < 1.2). Also, the model fit measures were

satisfactory for all three BLR tests (R2 = 0.505 for BODY, R2 = 0.561 for PLACE,

and R2 = 0.571 for DEVICE).

Table 2.3 presents the results of the BLR tests. They show the following:

• Testing H1: Perceived usefulness is a statistically significant predictor for

BODY, PLACE and DEVICE adoption (p < 0.01 in all three tests). The high

odds ratios (OR) further demonstrates the high strength of this correlation.

With BODY, for example, one unit increase in the “usefulness” ranking (e.g.,

by improving the unlocking speed of SL methods) increased the chances of

adoption nearly sevenfold.

• Testing H2: Perceived ease of use is a significant predictor of BODY and

DEVICE adoption (p < 0.01 in the corresponding BLR tests). The ORs fur-

ther affirm that the observed correlations are strong. In case of DEVICE, for

example, a one-unit increase in the “ease of use” ranking resulted in a 3.29

times higher chance of adoption. In the case of PLACE, while the correlation

is not statistically significant, the OR still shows a strong association.

• Testing H3: Perceived security and privacy is a significant predictor of

PLACE and DEVICE adoption (p < 0.05 in the corresponding BLR tests).

Furthermore, ORs show the correlations to be strong. For example, in the

case of PLACE, a one-unit increase in “security and privacy” ranking in-

creased the chances of adoption by 5.22 times. In case of BODY, “perceived

security and privacy” was not a statistically significant predictor of adoption

(p > 0.05 in BD BLR test). As discussed in Section 2.3, the main deter-

rent for BODY is reliability (accidental unlocks), which is reflected in the

“perceived ease of use” predictor.

In conclusion, BLR testing shows that our survey data conforms highly with the
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SL-TAM model. We hope that this model can inform the design of future SL-like

authentication schemes by shedding light on the important factors that can attract

or deter smartphone users from IA-based unlocking.

2.5 Limitations
Any generalization of our findings needs to be made carefully, due to the following

study limitations:

1. We mentioned “Smart Lock” in the study advertisement, and therefore our

sample might have been skewed toward participants who are using or inter-

ested in SL. This bias could have potentially caused an overestimation of

SL adoption and awareness rate. However, even with the adoption rate be-

ing overestimated, the results (14%) still suggest that SL is far from being

widely adopted.

2. The cross-sectional design of our qualitative study might have prevented us

from investigating the effects of prolonged use of SL on participants’ per-

ceptions of it. We believe, however, that directly surveying SL adopters

addressed this possible weakness to some extent.

3. The limited size and diversity of our sample might have prevented us from

uncovering all potential factors that correlate with smartphone users’ percep-

tions of SL. We aimed for diversity in certain demographics that were known

to be correlated with smartphone authentication perception. However, there

is no guarantee that our sample has covered all possible combinations of

the purpose of use of phones. This limitation could have caused us to over-

estimate the adoption rate of SL (as some missed contexts of use that we

missed might be more privacy-sensitive, leading to lower SL adoption rate).

But an over-estimation would not affect our conclusions, as our estimated

rate is already low (14%). More importantly, however, this limitation could

have caused us to under-estimate the adoption rate of SL, as certain contexts

of use might not require strict authentication. Such under-estimation could

entail the existence of SL adoption intention factors that are missing from

SL-TAM. For example, we did not aim for studying the use of SL in phone
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sharing settings because, as we discussed in Chapter 1, current physical secu-

rity solutions are not designed for sharing. At the same time, however, phone

sharing might actually benefit from SL (e.g., when sharing happens at home,

PLACE could be an apt solution to balance security and convenience of au-

thentication). Therefore, further research is required to investigate the use of

SL in phone sharing settings, and investigate whether that would lead to a

further extension of SL-TAM (most likely with regards to the antecedents of

the “usefulness” factor).

4. Even though SL appeared the logical choice for an IA case study at the time

of writing (as it was the first and only widely deployed IA scheme), it is

difficult to determine the extent to which users’ perceptions of SL can be ex-

trapolated to their perceptions of IA in general. Some SL concerns could be

logically applicable to any other IA scheme. For example, security and pri-

vacy concerns could be one such case as they most likely correlate with the

sensitivity of the data stored on the phone (see Chapter 1 for a detailed dis-

cussion), rather than the specific SL implementation. However, some others

might be specific to SL (e.g., the difficult semantics as SL is a special case

that combines IA and EA). With regards to semantics, a special case, for ex-

ample, can be a hypothetical “perfect” IA solution that does not suffer from

any authentication false positive or negatives. Would correct understanding

of semantics be as important in the context of that system? Or can the users

simply be oblivious to the semantics and always assume that the system will

“do the right thing?” We can only speculate based on our results that se-

mantics might not be as important then, as confusions in our study often

happened when the system behaved differently than how it was described

in the user interface (e.g., the discrepancy between the word “Smart Lock”

and its ability to lock the phone). However, since SL is currently the only

widely-deployed IA solution (and, hence, no comparison between different

solutions is possible), it is hard to gauge what factors of adoption intention

might be specific to SL (rather than IA in general). Perhaps once more IA

schemes become widely-available, comparative studies can be conducted to

uncover factors that are specific to this implementation (that is SL). As of
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now, however, we cannot claim that our results are generalizable beyond SL.

5. Our participants self-reported their prior awareness of, and experiences with,

SL. As is common with self-reported data, it is possible that the partici-

pants’ answers might not be completely reflective of their real-world behav-

ior. While we eliminated those responses that showed clear inconsistencies

in the data (See section 2.2.2), there is still the chance that some partici-

pants might not have answered truthfully. This might limit the external and

ecological validity of our results.

6. There are known limitations with MTurk, in regards to the diversity of the

samples it can provide (e.g., in terms of tech-savviness of the participants).

Such limitations limit the genralizabilty of our results beyond the the original

sample. We will discuss these limitations further in Chapter 4, as we use

MTurk for all of our studies.

2.6 Conclusion
Smart Lock is the first massively deployed and commercialized IA solution that

allows smartphones to be automatically unlocked using a combination of contex-

tual (e.g., location) and behavioral (e.g., body movement) authentication factors.

To understand how this first widely deployed IA method is perceived by Android

users, we conducted a multi-method qualitative study with 27 participants. It com-

posed of cognitive walkthroughs, think-aloud sessions, and interviews, followed

by an online survey on Amazon Mechanical Turk involving 343 Android-using

participants.

The results suggest that perceived lack of reliability, utility, and security nega-

tively correlate with Android users’ intention to adopt SL, leading to a low (14%)

adoption rate. Reliability-wise, participants were concerned that SL could lead to

frequent accidental unlocks and pocket dialing. Utility-wise, SL was perceived as

not being of enough value as it could not increase the unlocking convenience (the

required physical and cognitive effort) or speed, or be used as a backup unlock-

ing method. Finally, as far as security was concerned, participants were worried

that adopting SL could lead to unauthorized access to their phone, by their family
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members or co-workers, for example.

To provide a framework for reasoning about SL adoption intentions, we struc-

tured our findings into an SL-specific extension of technology acceptable model

(TAM). Our SL-TAM theorizes that there are three main factors affecting users’

intention to adopt SL: “perceived usefulness,” ”perceived ease of use,” and ”per-

ceived security and privacy.” “Perceived usefulness” is determined by the conve-

nience and speed of unlocking with SL and whether it is possible to using it as a

backup unlocking method. “Perceived ease of use” is determined by the amount

of effort it takes to set up SL, and its reliability, and “Perceived security and pri-

vacy” is determined by the actual security and privacy of SL and how difficult its

semantics are for users to grasp. We tested SL-TAM using our survey data, which

showed high predictive power.

Based on the findings, we recommend that, to improve how smartphone users

perceive an IA scheme like SL, its added value (in terms of speed or convenience

of unlocking) needs to be communicated to users in a clear and accessible way.

The scheme also needs to be reliable and trusted by the users, and the chances of

malfunction (e.g., failure to lock the phone automatically) should be minimized and

disclosed. In addition, to help users develop and maintain adequate mental models

of the technology, the semantics of any IA scheme should be clearly communicated

to users, so that they can become comfortable with it, learn how to use it effectively,

and avoid dangerous errors.
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Chapter 3

Investigating Smartphone Users’
Difficulty with Understanding
Implicit Authentication
Semantics

This chapter presents the results of a mix-method study to investigate Android

users’ understanding of Smart Lock (SL) semantics. It is a first step towards gain-

ing insight into smartphone users’ perception of IA semantics in general. First, in

section 3.1 we provide an overview of the existing literature on users’ understand-

ing of computer security semantics. Then, in section 3.2, we describe the design

of our research and the studies that it comprises. Subsequently, we discuss the

methodology and results of our qualitative study, in section 3.3, and those of of

our quantitative study, in Section 3.4. In Section 3.5, we discuss the implications

of our findings and provide design recommendations for future IA UX on smart-

phones. Section 3.6 discusses the limitations of our study, and, finally, Section 3.7

concludes the chapter.
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3.1 Related Work
It has been well established that correct understanding of computer security se-

mantics is of utmost importance. Firstly, a number of studies have shown how

misunderstandings can lead to dangerous security errors. For example, Raja et

al. [96] demonstrated that users’ incorrect understanding of how the Windows fire-

wall operates can lead to dangerous misconfigurations, potentially exposing users’

PCs to remote attacks. Similarly, Chiasson et al. [20] investigated the importance

of semantics comprehension when it comes to using password managers, observ-

ing that incorrect understandings lead to misconceptions about password security.

Secondly, a separate line of work has demonstrated that incorrect understanding of

semantics can hinder effective risk communication. It was shown that security ex-

perts and non-experts have different understandings of common security risks [8],

and risk communication based on experts’ understanding might be ineffective [71].

Users’ understanding of smartphone security features has also been studied.

For instance, Felt et al. [35] investigated smartphone users’ understanding of An-

droid permissions. They found that users have misconceptions about how the per-

missions work, causing them to be unable to comprehend the risks associated with

installing apps. Similarly, Lin et al. [69] observed that users’ decisions regarding

granting permissions to Android apps depends on their understanding of mobile

privacy, which is not uniform. Another example is from the secure messaging

domain, where Schroder et al. [103] observed that misunderstanding encryption

semantics often prevents the users of SIGNAL [106] from correctly verifying the

authenticity of end-to-end encryption keys.

However, there have been no studies investigating users’ comprehension of IA.

To gain such insight, we use the same qualitative dataset as in the previous chapter

and the same methodology for analyzing it. However, the focus of analysis is vastly

different here, due to differences in research questions. Whereas in the previous

chapter we investigated why users adopt or reject SL, this chapter evaluates how

users understand SL semantics and what aspects of it can be confusing for them.

This chapter also uses a completely different quantitative dataset (we conducted

separate online surveys with different questions and participants).
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3.2 Study Design
Our research study was designed to answer the following two research questions:

• RQ1: How well do Android users understand the semantics of SL? Particu-

larly, what aspects of SL can cause confusion for them?

• RQ2: What factors (such as demographics or depth of smartphone adoption)

are linked to Android users’ understanding of SL?

To answer these questions, we first conducted a qualitative cognitive walk-

through with users study (also previously reported in Chapter 2). This study, which

we describe in detail in Section 3.3, informed us about how well smartphone users

understand SL, and what particular aspects of it might be misunderstood. We used

this insight to design our second study, which was an online survey, presented in

Section 3.4. The aim of the survey was to verify and expand upon the qualita-

tive findings, leveraging a relatively representative sample of the smartphone user

population. All of our data collection and analysis procedures were reviewed and

approved by UBC BREB.

3.3 Qualitative Study: Expert Reviews and Think-Aloud
Sessions

3.3.1 Methodology

Our first study was the cognitive walkthrough with users (CWU) [46, 70, 73] that

we previously reported in Chapter 2. However, now we describe specific aspects

of it that are more relevant to SL understanding, rather than SL perception. The

study consisted of two separate parts:

Part I) Cognitive Walkthroughs: To evaluate the learnability of SL (and its

UI), we conducted two cognitive walkthrough sessions [124] involving 10 HCI-

proficient participants. To qualify as HCI proficient, participants had to have at

least 4 months of formal HCI coursework.

In each session, a group of participants (6 in the first session, 4 in the second)
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walked through the SL UI1 screen by screen, emulating the actions an SL user

would perform to achieve a desired task (e.g., enabling BODY) and discussing any

aspects of it could cause confusion.

To make sure HCI-proficient users would emulate the actions of an SL user re-

alistically, we created a list of common tasks that an SL user might want to do with

the UI, with the sequence of actions that they would perform to achieve each task.

To compile a comprehensive task list, two researchers used SL on their phones for

a period of two weeks. They then collaboratively composed a list of SL UI task

affordances and the action sequences for each task. We compared the resulting

list with official SL documentation [41], which showed conformance. For presen-

tation to participants, we chose a wording for each task that reflected the goal of

the task (e.g., “Enable On-Body Detection”). The full list of tasks is provided in

Section A.1 in the Appendix.

During the sessions, we also asked the participants to give written answers to

questions about how each SL method locks or unlocks the phone. These questions

were added to the handout (available in Section A.1) that we provided to them as

part of the cognitive walkthrough protocol.

We should note that we tested our methodology design before conducting the

main 2 cognitive walkthrough sessions described above. The pilot sessions (dis-

cussed in Section 2.2) showed that our study design was effective, as it identified

several confusing aspects of SL that were later confirmed by our main studies.

Part II) Think-Alouds: To strengthen our understanding of how smartphone users

comprehend SL, we conducted 16 think-aloud sessions with ordinary smartphone

users. We did so because, as commonly cited in the literature [73, 124], cognitive

walkthroughs lack real user involvement which reduces the ecological validity. We

addressed this shortcoming by combining our the cognitive walkthrough findings

with the results of think-aloud sessions with ordinary (non-expert) users. We chose

this method because think-aloud protocol is found to be a good tool for evaluating

comprehension [118, 125].

In each session, a participant was instructed to perform tasks (the same as the

ones we used for cognitive walkthroughs) while thinking out loud about their ex-

1Section A.4 in the Appendix provides screenshots of the main UI screens of each method
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Table 3.1: Demographics of the study participants.

Parameter Property % (#) of participants
CWU
(N = 26)

Survey
(N = 331)

Gender Female 53.8 (14) 35.3 (117)
Male 46.2 (12) 64.0 (212)
Other 0.0 (0) 0.7 (2)

Age 19-24 38.5 (10) 9.7 (32)
25-34 57.7 (15) 42.6 (141)
35-44 3.8 (1) 29.6 (98)
45-54 0.0 (0) 10.0 (33)
55-64 0.0 (0) 6.9 (23)
65-74 0.0 (0) 1.2 (4)

Education < High School 0.0 (0) 0.3 (1)
High School 7.7 (2) 39.0 (129)
Bachelor’s 38.7 (10) 51.1 (169)
≥Master’s 53.4 (14) 9.6 (32)

Ethnicity White N/A 77.3 (256)
Black N/A 8.0 (26)
Hispanic N/A 6.0 (20)
Asian N/A 6.0 (20)
Other N/A 2.7 (9)

perience and understanding of SL (we were particularly interested in whether any-

thing confused them about SL). The participants were also given a handout and

asked to submit written answers to questions about SL semantics. The sessions

were audio recorded and transcribed to accurately capture participants’ verbally

expressed thoughts. Additionally, while the participant was thinking out loud, two

researchers were taking notes about whatever caused confusion.

To test our think-aloud methodology, we conducted 2 pilot think-aloud sessions

(previously described in Section 2.2). While the results showed our approach to be

effective in evaluating SL understanding, we occasionally observed “search-and-

click” behavior from the participants (they blindly followed instructions without

trying to explore and understand SL). To mitigate this issue, we consulted literature

on think-aloud protocol [118, 125] and made the following adjustments to the study

design:
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1. We would inform participants at the beginning that we would ask them de-

tailed questions about SL semantics. We believed this would motivate them

to understand SL.

2. We would remove the step-by-step task guidance (action sequences) from

the handouts and provide participants with the goal of each task only. Note

that we retained the step-by-step guidance for cognitive walkthrough (ex-

pert) participants to facilitate discussion among experts, as recommend by

literature [70, 73].

3. We would remind participants to think aloud and clarify the reason for their

actions, every time they went silent during the sessions.

4. We would conduct exit interviews with the participants, asking them to ver-

bally clarify their written answers to the SL semantics questions in the hand-

outs, to further gauge their level of SL understanding.

We then conducted two additional pilot sessions. These showed our modifica-

tions are effective, as we observed very few instances of “search-and-click.”

Data Analysis: The data collected from our CWU study included the transcribed

audio recordings of all sessions, participants’ written answers to the questions in

the handouts, and researchers’ field notes. To analyze this data, we used a The-

matic Analysis (TA) approach. We chose TA because it is shown to help examine

emerging themes from textual data in a transparent and credible way [15, 47, 48].

We followed the steps described in Braun et al. [15]:

First, two researchers coded all the data. To do so, they examined whether

a participant’s understanding of SL (expressed through either written answers in

handouts or verbally expressed thoughts) deviated in some aspect from the ground

truth of SL semantics (which we obtained from official SL documentation and

verified by our own internal testing)2. If it did, the researchers coded the text with

a label that reflected the aspect of SL that was misunderstood.

2To simplify the study design, we count any deviation from the official SL documentation to be
a misunderstanding. However, we acknowledge that this might not always be the case. As we will
discuss later, reliability issues might interfere with a user’s correct understanding of SL (i.e., the user
knows the “correct” semantics of SL given in its documentation. However, their answer semantics
questions based on their own experience with SL, which could contradict the documentations)
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Table 3.2: Number of CWU participants who correctly understood the
un(locking) semantics of each SL method.

Semantics % (#) participants
BODY PLACE DEVICE FACE VOICE

Locking 76.9 (20) 73.1 (19) 57.7 (15) 34.6 (9) 30.8 (8)

Unlocking 30.8 (8) 76.9 (20) 73.1 (19) 88.5 (23) 80.8 (21)

Second, the researchers resolved differences in coding through in-person meet-

ings. Differences happened mostly when there were discrepancies between our

sources (e.g., between a participant’s written and oral answers). In such cases,

the researchers present at the CWU session decided which source reflected partic-

ipants’ understanding of SL the best and retained only the codes associated with

that source. This process was done iteratively and continued until inter-rater relia-

bility reached a satisfactory 85% (i.e., the coders agreed on which code to use for

85% of the words in the dataset).

Third, each researcher studied all the codes, merging them to draft themes of

SL confusion and its antecedents. They then discussed and agreed upon the themes

and drafted the results.

3.3.2 Results

We found SL misunderstandings to be prevalent and specific. Most of the CWU

participants had difficulty understanding the semantics of at least some SL meth-

ods, as Table 3.2 shows.

Misunderstandings, however, were not uniformly distributed across the SL

methods. As evidenced by Table 3.2, we found that PLACE and DEVICE were

generally easier to understand, due to most participants having prior experience

with Bluetooth and GPS. On the contrary, the unlocking semantics of BODY and

the locking semantics of FACE and VOICE were the most confusing. Overall, by

thematically analyzing all instances of participants being confused, we identified 4

different categories of SL misunderstanding:
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Capabilities of SL

The participants were unsure what SL and its methods were capable of, in terms of

locking or unlocking the phone.

Firstly, just the name “Smart Lock” was already confusing. Some participants

interpreted it as the ability of the phone to lock itself when the surrounding envi-

ronment is deemed insecure. However, after interacting with the UI, most of them

concluded that SL was rather mostly about unlocking.

The potential for this misinterpretation was first brought up by one of the HCI-

proficient participants (code-named P-CW-3) who stated:

“... it’s called Smart Lock. But it’s really more like Smart Unlock

because it’s not really locking your phone ... it’s not as clear about

when it actually locks things ... it’s more clear about when it unlocks

things.”

A think-aloud participant, P-TA-2 (female, 36, software engineer), voiced the

same concern by explaining:

“... the description [of the SL UI] is really confusing to me ... because

it says it keeps your device unlocked when it’s safe with you ... [but]

I feel like if it’s keeping it unlocked, it should be called Smart Unlock,

as opposed to Smart Lock. Because when I think Smart Lock, I think

it knows when to lock itself. But, the first thing it [SL UI] is talking

about is it knows when to keep itself unlocked.”

Interestingly, we observed this misinterpretation to be actually made by some

think-aloud participants. P-TA-4 (female, 40, personal trainer) who was non-tech-

savvy, believed none of the SL methods could automatically unlock the phone

(even after performing all the tasks), citing this naming convention as the reason.

While this was rather a rare example in our data, our findings suggest that

overall naming can have implications on users’ understanding of IA. The exam-

ples above shows that the term “Lock” in “Smart Lock” might give some users

the impression that the feature cannot automatically unlock the phone (because

they believe it is engineered to lock the phone, not unlock it), which could lead to

dangerous errors by users.
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Apart from the SL naming, however, we found the discrepancy between the

capabilities of SL methods to be even more confusing. The fact that BODY can-

not unlock the phone automatically while PLACE and DEVICE can was startling,

even to the HCI-proficient participants. Some of them incorrectly believed BODY

could both lock and unlock the phone, such as P-CW-2, who stated:

“when there is someone carrying it, it [BODY] will unlock [the phone]

automatically.”

or P-CW-4 who believed:

“When I am walking, moving or the phone is in motion [, the phone

will unlock].”

Unsurprisingly, we saw the think-aloud participants make the mistake as well.

For example, both P-TA-12 (male, 28, flight attendant) and P-TA-3 (female, 27,

unemployed) incorrectly believed that BODY could automatically unlock:

• P-TA-12: “[BODY] unlocks the phone when you are in movement, like hold-

ing the phone.”

• P-TA-15: “[BODY] unlocks the phone while the sensor is on your body and

detects motion.”

Therefore, it seems that inconsistency in capabilities is a clear detriment to

users’ understanding of SL. There might be technological reasons for this incon-

sistency (e.g., limited accuracy of movement detection). However, as far as the

users are concerned, any discrepancy between capabilities causes confusion that

could lead to dangerous security errors (e.g., misjudging whether BODY would

unlock the phone).

Finally, we found another capabilities-related confusion to be the mixture of

IA and EA. Among our participants, this mixture often created unmet expectations

about the capabilities of EA methods (FACE and VOICE), which are not capable

of automatic (un)locking. Evidently, nearly 70% of our think-aloud participants

mistakenly believed FACE and VOICE could also automatically lock the phone.

For example, when interviewed about FACE semantics, P-TA-1 (male, 31, unem-

ployed) remarked:
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“[It locks the phone] when someone that’s not me looks in the cam-

era.”

Similarly, when asked how VOICE locks the phone, P-TA-9 (female, 22, re-

search assistant) stated:

“[It locks the phone] When it doesn’t recognize my voice.”

Our further probing with these participants showed that such understandings

are caused by VOICE and FACE (which are EA methods) being packaged together

with other IA methods in SL. This leads the participants to assume that since DE-

VICE and PLACE can automatically lock the phone, FACE and VOICE should be

capable of it too. Subsequently, participants like P-TA-1 and P-TA-9 try to justify

their understanding by coming up with incorrect explanations like the ones above.

The Modalities (Authentication Factors) of SL

Most participants did not fully understand what kind of data SL used to identify

them. As such, they were unsure what they had to do to make SL (un)lock the

phone.

In case of BODY, the culprit was the ambiguity of the term “motion.” The text

presented in the BODY UI describes the feature as being able to keep the phone un-

locked for as long as it is in “motion.” However, what exactly constitutes “motion”

is not clearly communicated. An HCI-proficient participant (P-CW-7) voiced this

concern by stating:

“... but also ‘motion’ seems to be the key and I don’t understand what

kind of motion? ... like when I’m running?”

Another cognitive walkthrough participant (P-CW-6) similarly stated:

“The text [description of ‘motion’ on [the BODY UI] is not fully clear

to me what it means. It says it will be unlocked by the user holding or

carrying the device. So, does it mean if I put it in my pocket and [am]

moving ... it’ll be unlocked?”

P-CW-6 was specially concerned with this scenario because she believed it could

potentially lead to pocket dialing and the related privacy issues.
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Another concern regarding “motion” was brought up by P-CW-4. He was won-

dering whether the “motion” required by BODY needed to be body specific (as the

method is named “on-body detection”). He explained:

“I’m not sure if [BODY] will unlock with motion without being on

body. It’s vague as to whether the phone needs to be on the body or

just in motion.”

Overall, we found the concerns with the definition of “motion” valid, as we

observed think-aloud participants to exhibit such confusions. As an example, when

P-TA-14 (male, 19, student) tried to make the phone lock after setting up BODY, he

put it on a nearby desk, but the phone did not lock. He then voiced his frustration

by stating:

“I expected [the phone] to [lock] if it’s not in my hand ... how would

it not lock if it’s far away?”

By probing further, we found that what was unclear to the participant was how

BODY detects “motion,” what the intensity of the motion should be, and how long

the phone takes to detect it. Having this knowledge is important for the participant

to make a correct judgement about the state of the phone’s security.

Ultimately, as explained by several participants, why “motion” is confusing be-

comes clearer when we compare BODY to a conventional unlocking method, such

as fingerprint. Using fingerprint is fairly straightforward—you put your finger on

the sensor and the phone unlocks (and there is no automatic locking). In compari-

son, it is not very clear how the phone needs to be moved, with what intensity, and

for how long, and whether the movement needs to resemble body movement to

make BODY function. It’s too nuanced. As we saw in the example with P-TA-14,

this leads to confusion and frustration.

Lastly, we should note that “motion” was not the only confusing SL modal-

ity. DEVICE semantics was also found difficult to fathom. Some non-tech-savvy

think-aloud participants lacked the knowledge to understand how Bluetooth de-

vices are authenticated to each other, concluding that if there is an untrusted device

around, the phone will lock. As an example, when we interviewed P-TA-3 (female,

27, unemployed) about when DEVICE would lock the phone, she answered:
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“... it will lock the phone when you are near a device you have not

added as a trusted device.”

When we asked why she thought so, the participant explained that this was

simply what she expected from DEVICE, based on what she saw on the UI. She

clarified that she had no prior understanding of Bluetooth, and this is what the SL

UI led her to believe about DEVICE capabilities. This case showed us that correct

understanding of IA methods may sometimes require deeper technical knowledge

(e.g., how Bluetooth authentication works) than most ordinary users have.

The Interoperation of SL Methods

How the SL methods interoperate with each other was confusing for the partici-

pants. They did not know when the phone would be (un)locked if more than one

method was enabled at the same time.

This problem was brought up by several cognitive walkthrough participants,

such as P-CW-6 who stated:

“Will there be setting conflicts [with SL]? For example, no trusted

device [is connected] to my phone, but I’m still at a trusted place; will

the phone get locked?”

Similarly, P-CW-2 remarked:

“I [as a user] am kind of confused about how these function[s] work

together? Are they independent or overlapped in some ways?”

This was shown to be a valid concern, as we found SL interoperation to be

unclear to most think-aloud participants. P-TA-5 (32, female, health instructor),

for example, said the following about PLACE capabilities and its interaction with

BODY:

“I would guess that when I leave the trusted place, it [the phone] locks.

But, I’m not sure how this [PLACE] interacts with on-body detection.”

Interoperation was specially confusing when it was about the interactions be-

tween IA and EA methods. As mentioned before, EA methods are not capable of
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automatically locking the phone. However, when asked when FACE and VOICE

lock the phone, some participants thought of SL as a coherent entity and tied the

locking capabilities of these EA methods to the IA ones. For example, when asked

about how FACE would lock the phone, P-TA-3 stated:

“When I am not in motion, the phone would ask me to lock the phone

by taking an image of my face.”

Similarly, when we asked P-TA-10 (male, 33, financial consultant) about how

VOICE would lock the phone, he answered:

“When you set it [the phone] down, as in there is no motion.”

Overall, such observations seem to suggest that interoperation of SL methods

is not a matter that is easily understandable. Misunderstandings about this can

lead to dangerous security errors, such as leaving the house assuming the phone

will be locked, whereas it may not be because of another method like DEVICE.

Surprisingly, the SL UI does not specifically address how SL methods interoperate

at all, leaving it as a guessing game for its users.

The Range Parameters of SL

Understanding when the phone would be (un)locked by PLACE and DEVICE re-

quired knowledge of their range parameters, which most of the participants lacked.

Our interviews with the think-aloud participants showed that most did not recall the

80-meter operational range of PLACE or the 100-meter one of DEVICE (shown on

the setup screens for each method). For example, when we asked P-TA-10 (male,

33, financial consultant) about when DEVICE locks the phone, he stated:

“When you take it away from the added trusted device. But how far?

Nobody knows!!”

His exclamation specifically mentioned his lack of knowledge of the range

parameter. This knowledge gap may seem insignificant at first. However, it can be

essential for correct IA comprehension. This is because these parameters specify

the boundaries of security for users. For example, if one user does not know the

80-meter range of PLACE, they might assume that their phone would be locked
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when not inside their house, where, in actuality, it may not be, when left in their

car parked out front.

Interestingly, even if participants knew about the range, PLACE reliability is-

sues sometimes interfered with their correct understanding. It sometimes happened

during our study sessions that PLACE failed to function as expected.3 Such issues

caused some participants to doubt their correct understanding of PLACE seman-

tics. For example, when asked how PLACE unlocks the phone, P-TA-14 (male, 19,

student) responded:

“I don’t know. It didn’t work and didn’t unlock the phone at current lo-

cation. I expect it to unlock in the room [where study was conducted].”

Therefore, the data suggests that unreliability is a potential source of confusion.

Evidently, even if the semantics of an IA method are clearly conveyed to the user,

intermittent operational failures can cause users to doubt their correct understand-

ing, leading to possible dangerous errors (e.g., in case of P-TA-14, the assumption

that PLACE cannot automatically unlock the phone).

Regarding range parameters of SL, several of our cognitive walkthrough partic-

ipants argued that the issue might be the way range parameters are communicated

to the user by the SL UI. We discuss this matter further in Section 3.5.

In the end, to summarize our qualitative findings, our study suggests that SL

misunderstandings are common. We found that for users to understand SL cor-

rectly, they need to know what each SL method is capable of, what data it uses for

authentication, and what its operational parameters are. They also need to know

how SL methods interoperate in case more than one is enabled at the same time.

3.4 Quantitative Study: Online Survey

3.4.1 Methodology

To verify and expand our qualitative findings, we conducted a survey on Amazon

Mechanical Turk (MTurk) between August and September 2019. The aim was to

3We kept the conditions of the study as similar as possible for all participants. We believe PLACE
malfunctions were mainly due to poor GPS signal.
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leverage a relatively representative sample of the smartphone user population to

evaluate the overall prevalence of SL misunderstandings among smartphone users

(especially among SL users, RQ1) and the potential antecedents of these misun-

derstandings (RQ2). We chose MTurk because it is known to provide quality data

for research in usable privacy and security [53, 90, 97].

To recruit participants, we advertised on MTurk, inviting participants with an

Android phone to partake in a study about “Smart Lock for Android.” We men-

tioned that participants did not need experience with SL to be eligible for the study

(this was because recruiting “SL-novice” participants was necessary for verifying

our hypotheses about antecedents of SL understanding, which we discuss later in

this section). The survey was only visible to MTurk users who lived in North Amer-

ica4 and had an approval rating higher than 90%. All those who took the survey

were compensated with USD 4 (this amount was decided by assuming a minimum

wage of $12 and the survey taking 15 minutes to complete, on average).

In the survey, we first asked participants about the following:

1. Demographics: Including age, ethnicity, level of education, and computer

background.

2. Phone Usage: How much time they spent using their phones each day, how

frequently they unlocked their phones, and the unlocking methods that they

had enabled on their devices.

3. Privacy-Sensitive App Adoption: Consisting of 10 Likert-scale questions

aimed at evaluating how often participants used privacy-sensitive apps (e.g.,

social networking) on their phones. The total sum of the scores was used

to measure the participants’ depth of smartphone adoption5 Literature, how-

ever, suggest such cases should be rate [75]. This approach was inspired

by Marques et al. [75] (our scale, which is provided in Section A.3, was a

slightly simplified version of theirs).

4This is a limitation of our study which we will discuss in Section 3.6.
5It should be noted that, in this study, we are assuming that privacy-app adoption is correlated

with app adoption in general, meaning a higher degree of privacy-app adoption could entail a higher
degree of phone usage in general. However, it is theoretically plausible for a user to only use their
smartphone for sensitive apps and nothing else. In such cases, the correlation between privacy-app
adoption might not be as strong.
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Next, we provided participants with a quick video introduction to SL. This was

done for two reasons: (1) SL is named differently by different phone manufacturers

(e.g., it is called Smart Unlock on Huawei phones). The video made it clear to

participants what we refer to as SL. (2) To investigate how prior experience with SL

correlates with SL understanding (i.e., whether using SL for a period of time helps

users understand it better), we intended to contrast SL-experienced participants

with SL novices. To this end, we used the video to introduce SL to novices6. To

avoid inadvertently priming them, however, we carefully crafted the video to limit

the amount of information it communicates and make it align with the SL UI.7

Afterward, we asked participants whether they knew about SL before partici-

pating in our study and, if so, if they were using any of the SL methods.

Finally, we gauged participants’ understanding of SL semantics. We asked

them what they thought each SL method was capable of, and how they thought

SL methods interoperate (i.e., whether there is an “AND” or “OR” condition for

locking or unlocking phones). We did not ask them about range parameters or

modalities. This was because our CWU study, as well as our pilot surveys (ex-

plained below), showed that this quantitative cross-sectional survey could not suf-

ficiently capture participants’ understandings of these aspects, and would not lead

to concrete results. The list of all survey questions is provided in Section A.3.

To increase the quality of our data, we introduced attention and consistency

checks to our survey. These included putting cues in the SL introduction video and

asking about them later in the survey (e.g., the video showed participants a word

that they needed to input into a text box afterward), checking for inconsistencies in

the phone usage answers (e.g., someone claiming to use pattern lock on an iPhone),

and checking the response times to see if they deviated significantly from our pilot-

based estimate of 15 minutes.

To assess the quality of our design, we consulted 7 HCI experts from our uni-

versity’s HCI research cluster. While most aspects of the design were well received,

some experts were concerned that the video might introduce bias to the results, as

6The video was shown to all participants regardless, but the intent was for SL-novices to get
familiarized with SL.

7The video is publicly available on YouTube through this link: https://www.youtube.com/watch?
v=N-pC6-kWW0c
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Table 3.3: Results of chi-squared tests of association between having experi-
ence with an SL method and answering the corresponding capabilities-
related semantics question correctly. V refers to Cramer’s V, reflecting
the strength of the association.

BODY PLACE DEVICE FACE VOICE

Experience p = 0.227
V = 0.106

p = 0.465
V = 0.063

p = 0.067
V = 0.160

p = 0.626
V = 0.043

p = 0.228
V = 0.105

the quality of the video content might influence how SL novices understood SL

semantics. To address this internal validity risk, we did the following:

Firstly, as mentioned before, we crafted the video solely based on SL UI, so it

would not communicate any extra semantic information.

Secondly, we developed an alternative SL introduction medium—a text docu-

ment8 augmented with screenshots of the SL UI.

Thirdly, we conducted a pilot study with 10 participants on MTurk using the

two introduction mediums (the video and the text document). Results showed that

the participants’ comprehension of SL semantics was broadly similar to that of

CWU participants who experienced the SL UI directly.

Finally, for the main survey, we randomly assigned survey takers to one of the

two mediums and compared SL comprehension among the two groups. A chi-

squared test of association revealed no statistically significant differences between

the groups (p > 0.05).

Overall, the steps we took showed that our SL introduction mediums are fairly

representative of the SL UI, in terms of the SL semantics information they com-

municate. As such, we believe we sufficiently mitigated the risk of the quality and

content of the video influencing the outcome of the survey (our consultants agreed).

To test the final design, we asked the 10 pilot participants mentioned above to

answer all the survey questions and provide written feedback to us. Based on their

responses, we made only minor modifications to the wording of some questions.

Finally, we published the final survey on MTurk and received 382 responses.

We eliminated 51 answers due to failing the data quality checks mentioned before

8The documentation was drafted based on Google’s help page for SL. Small modifications were
made to make the presentation coherent.
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(a) all participants (N = 331) (b) SL-aware participants (N = 131)

Figure 3.1: Distribution of survey participants’ answers to SL capabilities
questions.

(10 responses), using IP addresses outside of north America (3), using a VPN or

VPS (10), or being flagged as a duplicate or bot by our survey platform Qualtrics

(28). The average completion time was 12 minutes. As presented in Table 3.1, our

sample was fairly diverse in age, gender, and education. We also observed diver-

sity in occupation (not included in Table 3.1 due to great variation). Furthermore,

chi-squared tests showed that the distribution of demographics (age, gender, and

education) among our participants was not significantly different than that of the

US smartphone user population [91]. Hence, we believe our sample to be fairly

representative of that population. However, as Table 3.1 shows, the ethnicity dis-

tribution in our sample was significantly skewed toward white individuals. This is

a limitation of our study that we discuss in Section 3.6.

Data Analysis: To evaluate the prevalence of SL misunderstandings (and answer

RQ1), we used mostly descriptive statistics, which we present in Section 3.4.2. To

identify antecedents of SL understanding (RQ2), we used chi-squared tests of asso-

ciation, as we did not assume any particular distribution for the data. The tests were

performed for each SL method separately. For each test, correct understanding of

the semantics of the SL method (i.e., whether the participant’s answer conformed

with our established ground truth explained before) was the dichotomous column

variable, while each hypothesized antecedent (all of which were categorical) was

the row variable. We used Bonferroni correction to mitigate the p-value inflation

caused by multiple comparisons. The results are presented in Section 3.4.2.
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Table 3.4: Results of chi-squared tests of association between SL understand-
ing and our anticipated antecedents of it. Significant p-values are un-
derscored (assuming α = 0.05). V refers to Cramer’s V, reflecting the
strength of the association.

BODY PLACE DEVICE FACE VOICE

Age p = 0.756
V = 0.076

p = 0.103
V = 0.153

p = 0.705
V = 0.081

p = 0.485
V = 0.102

p = 0.527
V = 0.099

Computer
Literacy

p = 0.245
V = 0.064

p = 0.390
V = 0.047

p = 0.133
V = 0.082

p = 0.642
V = 0.026

p = 0.724
V = 0.019

Privacy App
Adoption

p = 0.380
V = 0.076

p = 0.017
V = 0.156

p = 0.035
V = 0.142

p = 0.356
V = 0.079

p = 0.066
V = 0.128

Security
Proficiency

p = 0.122
V = 0.113

p = 0.250
V = 0.091

p = 0.379
V = 0.076

p = 0.494
V = 0.065

p = 0.171
V = 0.103

3.4.2 Results

Prevalence of SL Misunderstandings

We found SL misunderstandings prevalent, as predicted by our qualitative study.

Figure 3.1a presents how many of the survey participants incorrectly answered the

questions about the (un)locking capabilities of each SL method. About 80% of

the participants incorrectly answered the questions about the capabilities of FACE,

VOICE, and BODY. Based on our CWU findings, we predicted that the majority

would be confused about these methods, due to the IA-EA mixture. The survey

clearly confirmed this prediction.

Interestingly, our data also suggests that SL-aware participants (those who re-

ported having known about SL before participating in our study) were not more

likely to answer the questions correctly. As Figure 3.1 shows, the distribution of

correct vs incorrect answers were nearly identical between the SL-aware subgroup

and the overall sample. Furthermore, as presented in Table 3.3, chi-squared tests

showed no statistically significant (p− values > 0.05) correlation between a par-

ticipant reporting experience with an SL method and answering the corresponding

semantics question correctly. This was an extension to our CWU results, as we did
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not have enough SL-experienced participants in our qualitative study to make such

observations. This new finding suggests that SL misunderstandings are prevalent

even among experienced users.

For BODY, FACE, and VOICE (where most participants answered incorrectly),

the common mistake among participants was believing that these methods could

unlock the phone automatically (meaning it does not prompt for explicit input for

authentication).9 This is in line with our CWU findings. As we discussed in Sec-

tion 3.3.2, the confusion seems to be the mixture of IA and EA creating unmet

expectations about FACE and VOICE capabilities, and the discrepancy between

the capabilities of BODY and other IA methods.

As for PLACE and DEVICE, we see in Figure 3.1 that the majority (nearly

60%) answered the semantics questions correctly. This was again in line with the

CWU findings (see Table 3.2), as those methods were found easier to understand.

However, a new observation was that the prominent mistake among the minority

was believing PLACE and DEVICE could not lock the phone automatically. Based

on our CWU results, we conjecture this to be due to the participants extending

their understanding of traditional unlocking methods (e.g., PIN or fingerprint) to

IA, believing SL could not lock the phone. However, further studies are needed to

firmly confirm this conjecture.

Finally, for the interoperation of the SL methods, we found that only 9.7%

(N=32) of participants answered the corresponding semantics question incorrectly.

The other 74% (N=245) correctly assumed an OR logical relationship, even though

it was never communicated to them. This observation seems to suggest that OR is

what the participants expect by default, which is, evidently, what SL provides.

However, even though the survey data shows that interoperation misunderstand-

ings are not highly prevalent, we still believe that the semantics should be clearly

communicated by the UI. As our CWU findings show, misunderstandings can lead

to various dangerous errors by the users.

To answer RQ1 then, our survey results suggest that misunderstandings about

SL are prevalent. They are mostly regarding the capabilities of SL methods, with

occasional confusions about SL interoperation as well.

9What “automatically (un)lock” means was explained in the introductory video, which was based
on how it is explained on SL UI.
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Antecedents of SL Understanding

Per RQ2, we were interested to see if pre-existing factors (e.g., demographics)

were linked to correct SL understanding. We collected a multitude of such data in

our survey. However, to avoid a fishing expedition, we only examined the effect of

factors that were referred to by the related work.

We should note that our list of antecedents is not comprehensive, not that we

intended for it to be. We only studied how our research aligns with some notable

related work from authors who investigated the antecedents of the understanding

of conventional unlocking methods. While our study provides a first insight into

this topic, future studies are needed to study the matter further.

Furthermore, we should also note that since we did not observe any signifi-

cant differences in SL comprehension between novice and experience users, we

included all participants in the following analysis. Had we found any differences,

we would have included SL-aware participants only.

To start with, we examined whether age was a factor that was linked to SL

understanding. Age is shown to be associated with smartphone users’ perception of

conventional phone unlocking methods [95]. As such, we were interested to see if it

had a similar correlation with SL understanding, as well. On the contrary, our data

analysis revealed no significant association between age and correct understanding

of SL capabilities (See Table 3.4) or SL Interoperation (p = 0.595, Cramer’s V =

0.092). This observation suggests that correct SL comprehension is not dependent

solely on cognitive capability which could potentially give younger individuals an

advantage.

Next, we examined the link between depth of smartphone adoption and SL

comprehension. Previously, Marques et al. [75] showed that power phone users

(those who use their phones for a more diverse range of applications) usually have

better understandings of phone security features. We were interested to see if this

was the case with SL, as well. Our analysis showed that it is, in fact, so. We ob-

served statistically significant associations between privacy app adoption score and

correct understanding of PLACE and DEVICE capabilities (see Table 3.4). How-

ever, no similar association was detected for BODY, FACE, or VOICE capabilities

(Table 3.4) or SL interoperation (p = 0.339, V = 0.081). This was in line with
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our previous findings. Evidently, correct comprehension of PLACE and DEVICE

requires deeper Bluetooth and GPS knowledge, which power phone users tend to

possess.

Thirdly, we investigated the link between computer literacy and SL understand-

ing. In particular, we examined whether those who had a computer-related occupa-

tion were less likely to exhibit the confusions we discussed in the previous section.

We did this examination because such correlations have been observed by other

studies [8, 69]. Our results, however, did not suggest any such association (see Ta-

ble 3.4). As such, in confirmation of our CWU findings, it seems that SL semantics

require specific types of knowledge that goes beyond typical computer literacy.

Lastly, we should note that we did not observe any association between medium

of introduction to SL, and SL comprehension. As discussed before, we added a sec-

ond SL introduction medium (a textual presentation) to our study, to make sure the

video does not bias the results. Chi-squared test revealed no association between

the medium of introduction and correct answers to any of the SL semantics ques-

tions (p = 0.735, V = 0.018). As such, the video seemed to had not caused any

significant bias in the data.

In summary then, to answer RQ2, our survey data suggests that, in agreement

with the related work, depth of smartphone adoption is a significant antecedent

of SL understanding. However, contrary to the related work, we did not find any

association between age or computer literacy with SL comprehension.

3.5 Discussion
Research suggests that IA is a promising technology for providing better physical

security protection on smartphones: Not only can it make unlocking more con-

venient [27, 64], but it does so with only minor sacrifices to security [63]. Even

more, users are actually willing to adopt this new technology, provided that it is

implemented well [26, 64, 80].

However, it is becoming clear that hitting the sweet spot could be very tricky.

Not only must IA schemes address numerous security challenges (e.g., resistance

to mimicry attacks and minimal authentication delay) [63], but they also need to

resolve the issue of intermittently available data (i.e., when to switch to explicit
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authentication) [64], which can adversely affect the user experience. To add to

these challenges, this research discovers a new challenge for IA to overcome, which

is to efficiently communicate its semantics to users. Our SL case study vividly

demonstrates how important this issue is for a successful IA deployment, yet how

difficult it is to address.

We found that complex SL semantics confuse users. There are a multitude

of aspects to SL that can cause misunderstandings and dangerous security errors.

Firstly, the users might misunderstand what type of data SL uses to authenticate

them (e.g., how is motion detected by BODY?, see Section 3.3.2). Secondly, they

might not know what each SL method is capable of (e.g., can BODY automati-

cally unlock the phone?, see Section 3.3.2). Thirdly, they might not be aware of

how SL methods work together (e.g., what happens if both PLACE and BODY are

enabled?, see Section 3.3.2). Lastly, users probably won’t have knowledge of the

parameters of the SL methods (e.g., how far should the user be from their home,

for PLACE to lock their phone?, see Section 3.3.2). Any of these misunderstand-

ings can lead users to misjudge when their phone would be (un)locked, potentially

leading to unauthorized access to their sensitive data.

These misunderstandings are more than hypothetical. They are prevalent. Nearly

80% of our 331 survey participants overestimated the capabilities of some SL

methods, namely BODY, FACE, and VOICE (see Section 3.4.2). They incorrectly

believed that these methods could automatically unlock the phone. Similarly, as

also discussed in Section 3.4.2, a considerable number of the participants (40%)

incorrectly believed that PLACE and DEVICE could not lock the phone automati-

cally, expecting these unlocking methods to behave like traditional ones (e.g., PIN

or fingerprint). Lastly, several participants (10%) misunderstood how SL methods

would interoperate, as there was no explicit indication in SL UI.

SL misunderstandings are also universal. We could not identify any demo-

graphic group of users who would understood SL better (see Section 3.4.2). We

found that younger and older adults misunderstood SL alike. We also found that

computer literacy did not necessarily translate to better SL comprehension. The

only factor that we found correlating with SL understanding was depth of smart-

phone adoption, which suggests that only those who have specific knowledge are

more likely to understand SL correctly.
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Our findings suggest that the SL UI is partially responsible for these confu-

sions. It is vague about the capabilities of each method (see Section 3.3.2), it

does not clearly define what “motion” entails in the context of BODY (see Sec-

tion 3.3.2), and it is not clear about why it is communicating the range parameters

of DEVICE and PLACE (see Section 3.3.2). Worse, it does not communicate at all

how SL methods interoperate (see Section 3.3.2). These deficiencies require partic-

ipants to manually explore and experiment with SL, in order to gauge the validity

of their initial impressions, which our survey showed to be error-prone (as dis-

cussed in Section 3.4.2, having experience with an SL method made no difference

in understanding its semantics correctly). To mitigate these misunderstandings, we

rely on our findings to offer the following recommendations for IA UX design on

smartphones:

1) COMMUNICATE CLEARLY WHAT DATA EACH IA METHOD USES
AND HOW: We recommend that the type of data each IA method uses for authen-

tication purposes should be clearly communicated to users. In this regard, no deep

technical knowledge should be assumed on the users’ part.

Taking BODY as an example, we believe how it detects motion, how big the

movement should be, and how long should this movement last are essential to con-

vey in some way, even though these specificities might not seem important at first.

For example, our results (Section 3.3.2) suggest that the lack of this understanding

can result in users leaving their phone unprotected because they might not know

whether being in a moving car counts as motion or not.

Another example is DEVICE, where we believe that the UI should specifically

address how it would identify the trusted device (e.g., based on some hardware

serial number). One might think that this information is common knowledge and

need no explicit explanation. However, we found (in Section 3.3.2) this to be not

the case, as some participants lacked this knowledge.

While it is out of scope of this dissertation to explore how to effectively com-

municate this information, the way the SL UI does it seems to be suboptimal, to

say the least. In the case of BODY, for example, the main UI lacks any of the

information that we suggest to communicate to the user. A help page accessible

through an obscure button (that only 2 of our CWU participants clicked on) is the
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only place that explains how BODY works.

One efficient way of conveying the semantics could be animations, as they

have been shown to be effective in communicating meaning [12], specifically in

information security [9]. Animations were also suggested by some of our CWU

participants (both, HCI-proficient and ordinary smartphone users), e.g.,

“I think for me, it would be better to have animations to show how it

[BODY] works ... this graphic [still image on BD UI] doesn’t tell me

much as to how Smart Lock on-body detection works.” [P-TA-9]

2) CLEARLY STATE THE CAPABILITIES OF IA: We recommend that the

unlocking capabilities of each IA method (i.e., whether it can automatically lock

or unlock the phone) should be clearly communicated to the user by the UI.

As we saw with the case of SL, this is particularly important when IA and

EA methods are mixed together (see Section 3.3.2 and 3.4.2). Evidently, most

participants incorrectly believed that FACE or VOICE are capable of automatically

locking the phone. As discussed in Section 3.3.2, we believe that the interplay of

FACE and VOICE (EA methods) with BODY, PLACE, and DEVICE (IA methods)

resulted in this incorrect understanding of EA capabilities.

The current SL UI does not communicate the capabilities of each method ex-

plicitly. The user has to deduce it from the descriptions in the UI (see Screenshots

in the Appendix). Fortunately, it is rather easy to communicate whether an IA

method is capable of locking or unlocking or both. Exactly how this information

can be communicated effectively is of course out of scope of this research. How-

ever, a suggestion by some of our HCI-proficient participants was to name the IA

methods in a manner that clearly distinguishes them from the EA ones. P-CW-2,

for example, stated:

“I think that the names like Trusted Face and Trusted devices are sim-

ilar, [even though] they function differently. So maybe you can change

the name of one?”

3) MAKE INTEROPERATION SEMANTICS CLEAR: We recommend that

the UI communicate clearly how each IA scheme interoperates with other IA or

EA schemes on the phone (i.e., whether this is an AND or OR logical relationship
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between them). Otherwise, users might mistakenly assume that one authentication

method takes precedence over the other, resulting in dangerous errors.

The results of our survey study (see Section 3.4.2) showed that most users

expect an OR condition by default, which is evidently what SL provides. However,

the SL UI never communicates this matter explicitly, leading some users (at least

10% according to our findings in Section 3.4.2) to incorrectly assume an AND

relationship, which can lead to security errors.

Additionally, the fact that 10% of survey participants expected an AND rela-

tionship suggests that the matter of how SL methods should interoperate may be

subjective, and therefore should be left to the user as a configuration option. This

was also suggested by some of our HCI-proficient participants. In either case, our

data clearly shows that the UI cannot remain silent on this matter and should ad-

dress it explicitly.

4) PROVIDE ACCURATE AND RELIABLE VALUES FOR PARAMETERS:

The operational parameters of IA methods (e.g., the range of Bluetooth or GPS

connections) should be clearly communicated by the UI. As discussed in Sec-

tion 3.3.2, knowledge of these parameters is important for users to make sound

security judgements.

However, our CWU study suggests that mere presence of these parameters in

the UI is not an optimal way of communicating them. In the SL UI, this informa-

tion is presented through several screens and warning messages (see screenshots in

Sections A.4 and A.5), which most of our participants were either confused by or

dismissed as unimportant.

As a case in point, the range parameter in DEVICE UI is communicated through

a note (see Sub-figure d in Figure A.1 in the Appendix) without any context as to

why this information is presented. We believe that this is why our participants

often dismissed it as unimportant (Section 3.3.2).

Our findings in this regard seem to align somewhat with the case of privacy

policy communications, which have been studied extensively. It has been shown

that most users ignore text-based policy statements because they find them irrel-

evant or difficult to understand [25, 31]. Subsequently, several approaches have

been proposed to improve privacy policy statements. The most notable [49, 66]
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provides context (e.g., how the data will be used) and appears to be somewhat suc-

cessful [31]. Interestingly, we saw in our CWU study that the example use cases

provided by DEVICE UI (e.g., that you can use it with your car’s Bluetooth sys-

tem) were well received by our participants. Therefore, providing example use

cases might be a promising way to communicate range parameters.

And, lastly, we should note that, as discussed in Section 3.3.2, unreliable oper-

ation (e.g., inconsistent range of GPS) can cause users to doubt their understanding

of the semantics, even when it is correct. Therefore, the UI needs to be wary of this

fact as well and provide the necessary warnings to the user.

3.6 Limitations
Any generalizations of our findings need to be performed carefully due to the fol-

lowing study limitations:

• The cross-sectional design of our CWU study prevented us from fully in-

vestigating the effect of prolonged SL usage on participants’ understating of

its semantics. It is possible that continued exposure to SL can cause certain

misconceptions that our CWU study was unable to capture. Our survey data

bridged this gap somewhat (we surveyed long-term SL adopters). However,

more longitudinal studies (e.g., diary studies) are needed to further investi-

gate this matter.

• similar to other studies on smartphone usage [21, 29, 51, 57], our survey

sample was not fully representative of the smartphone user population. It is

shown that cultural factors affect smartphone users’ unlocking behavior and

attitude [53]. However, due to limited resources, we only included North

American (NA) participants in our studies. Therefore, our results are only

generalizable to NA smartphone users. Similarly, the ethnicity distribution

among our participants was heavily skewed toward whites, which is a com-

mon limitation of MTurk studies [21, 29, 51, 57, 90, 97]. Finally, the lim-

ited size of our sample as well as the skewed age distribution might have

prevented us from finding statistically significant correlations between age

and SL understanding. Such limitations threaten the generalizability of our
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results. However, we still believe that our findings are valuable, as a first

insight into smartphone users’ understanding of IA.

• Our participants self-reported their prior experiences with SL. Thus, as is

common with self-reported data, it is possible that the participants’ answers

were not completely reflective of their reality [39]. While we eliminated

those responses that showed clear inconsistencies, it is still possible that self-

reporting has affected the quality or our data, and hence the results.

• As of Android 10 (released after data collection for this study took place),

Smart Lock can no longer automatically unlock the phone (any of its meth-

ods), due to changes in underlying Android APIs. This could make the capa-

bilities of SL rather easier for users to understand, as they all have the same

set of capabilities now. However, follow up studies are required to verify this

conjecture.

• Similar to how it was discussed in Section 2.5, one implicit assumption of

our recommendations for IA UX design is that future IA systems will not be

perfect (i.e., they will incur some failures in misidentifying a user as some-

one else (a false positive), or in not identifying the user at all (a false nega-

tive)). If an scheme is perfect, then the user could trust that it would always

“work”. Thus, they might need to know about the capabilities or modalities

of such IA scheme (because they would not need to make sense or be wary

of of potential false positive or negatives). However, the feasibility of such

perfect solution seems remote, based on what we discuss later in Chapter 5

about the availability of authentication data.

3.7 Conclusion
While implicit authentication (IA) is becoming a widely-researched approach for

protecting smartphone physical security, no studies has been done in investigating

users’ understanding of this technology. To address this knowledge gap, we used

Smart Lock as a case study and evaluated how its semantics are understood by

Android users. We found SL misunderstandings to be prevalent, universal, and
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mostly due to insufficient communications by the SL UI. We identified four aspects

of SL that have the most potential for being confusing, namely the authentication

modalities, the capabilities of IA, inter-operation of IA and EA, and the operating

parameters of IA. Based on the findings, we provided a set of recommendations on

how to improve users’ understanding of these aspects.
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Chapter 4

Investigating the Efficacy of
Access-Control Solutions

This chapter presents the results of a longitudinal diary study to investigate smart-

phone users’ access control needs, and the efficacy of the existing solutions. First,

in section 4.1 we provide an overview of the existing literature and a summary of

the solutions. Then, in section 4.2, we describe the methodology of our study. We

present our findings in Section 4.3, and, in Section 4.4, we discuss the implications

of them. Lastly, in Section 4.5, we discuss the limitations of our study, and, in

Section 4.6, we conclude the chapter.

4.1 Related Work

4.1.1 Smartphone Users’ Access-Control Needs

Several studies have qualitatively investigated users’ needs. For example, Mazurek

et al. [78] interviewed 33 smartphone users. They found that users’ ideal access-

control policies could not be easily defined in standard role-based terms and de-

pended on factors such as location and presence of certain individuals. They also

found that, as incumbent solutions cannot uphold such complex policies, users

resort to constructing ad hoc solutions, such as hiding files. Based on such ob-

servations, the authors argued that users require reactive policy creation and finer-
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Table 4.1: Summary of proposed/deployed user access control solutions on
smartphones.

Category Approach Proposed/Deployed Solutions

Task-sensitivity

All-or-
nothing

(Un)authorized user can
access none/all
functionalities of the phone

Incumbent solution on
current phones

Lock-screen-
access

Identical to all-or-nothing,
except allowing access to
few apps without unlocking

Deployed on most
phones [44]

App-level-
access

Grant/deny access to each
app individually

Progressive
Authentication [98],
TreasurePhone [104],
ConXsense [83],
CRePE [23], Secure
Folder [101]

Phone-sharing

All-or-
nothing

Allow secondary users full
access to the phone

State of practice for most
users [77]

Profile-
switching

Each secondary user has a
separate profile with
isolated apps and data

Deployed on Android
phones [42]

Resource-
based

Deny secondary users
access to “sensitive” phone
resources (WiFi, Bluetooth)

DiffUser [86]

Session-based

Specify individually what
apps the secondary user can
access in each shared
session

xShare [72],
App-pinning [7]
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grain access control than an all-or-nothing model. Similarly, Hayashi et al. [54]

interviewed 20 users and found that their needs go beyond all-or-nothing. Their

participants wanted at least one of their apps to be protected by a lock, half to be

without protection, and 20% to be split (only parts of them locked). Hence, the

authors found that users’ authorization needs are even finer-grain than app-level.

To understand users’ authorization needs in phone-sharing settings, Karlson et

al. [60] interviewed 12 users to explore why they shared phones, with whom, and

the concerns they had when sharing. They found that participants expressed strong

preferences about which data and functionality should be available to each guest

user. The authors also found that sharing preferences might be location dependent.

Later, Hang et al. [50] conducted focus groups with 25 participants and found

sharing to be often impromptu. They also found sharing preferences to be strongly

app and data dependent.

Jacobs et al. [58] reported a similar study on couples’ practices with single-user

device access. They conducted 20 interviews and an 8-day diary study. They found

that sharing preferences often depended on content type, making the all-or-nothing

model impractical.

Lastly, Matthews et al. [77] investigated sharing across multiple devices. They

conducted a survey with 99 households and a 21-day diary study. They found de-

vice and account sharing to be common. They also identified six different types of

sharing, ranging from borrowing devices to getting technical help. They suggested

that access control could be designed differently for each sharing type. They also

found that sharing often happened in the sharer’s presence.

4.1.2 Alternatives to All-or-Nothing

Several solutions have been proposed to alleviate the deficiencies of the all-or-

nothing model.

The first set of solutions provides task sensitivity (requiring authentication only

when the app/task being used requires it). Commercially, both Android and iOS

allow lock screen access to some apps [44]. This solution keeps the all-or-nothing

model mostly intact but allows the user to launch certain nonsensitive apps (e.g.,

camera, calculator) without unlocking the phone. Alternatively, Riva et al. propose
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a more elaborate solution called progressive authentication [98]. It determines

a level of confidence in the user’s authenticity and only prompts for authentica-

tion when a launched app requires high confidence. There have also been several

context-based solutions that allow access to certain apps in specific contexts (e.g.,

location) without authentication [23, 83, 104].

Another set of solutions aims to provide better phone-sharing support. Com-

mercially, profile switching [42] is the incumbent solution on Android. It allows

the device owner to create separate profiles for secondary users. However, re-

search has shown that users often do not utilize profiles even when set up, due to

high physical and cognitive overhead [17, 32]. Android and iOS also now support

app pinning [7, 43]. It allows the owner to limit sharing to a single app by fixing

the app on the screen and preventing the switching of apps.

Researchers have proposed more elaborate solutions. Ni et al. [86] propose

DiffUser, which implements a role-based model of access control. Secondary users

are assigned to a role: administrator, normal user, or guest. Each role has restricted

access to certain resources (e.g., normal users can access SMS and contacts but

cannot install or uninstall apps). Liu et al. [72] propose xShare, which allows the

sharer to quickly put the phone in a restricted mode before handing it to a sharee.

The sharer must respecify what apps are available in this mode every time they

enable it.

To summarize, Table 4.1 provides an overview of the existing solutions, cate-

gorizing them based on their approach to access control. We should note that in this

dissertation we were focused on solutions that control a human operator’s access

to a phone. Therefore, OS-level solutions that control apps’ or processes’ access to

system resources, such as FlaskDroid [18] and others [10, 11, 112, 120], were out

of our scope.

4.1.3 Gaps in the Literature

Overall, we identified several gaps in the literature, which this dissertation aims to

address. Firstly, while prior studies demonstrated the existence of issues with all-

or-nothing, they did not offer insights into the prevalence of the issues. For exam-

ple, while all-or-nothing’s obliviousness to task sensitivity is suboptimal [50, 54], it
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remained to be investigated what proportion of users’ tasks are actually sensitive or

how sensitivity varies by functionality and across users. Such investigations would

help researchers and developers to understand how dire these issues really are and

whether there is an actual need for the other solutions. Only when the variance of

task sensitivity among users is high can one argue for solutions that increase au-

thorization granularity. Otherwise, the high configuration effort required for such

solutions makes them unattractive for most users.

Furthermore, even if a need for new solutions is determined, the literature [50,

58, 60, 77] did not offer quantitative measurements of users’ needs. As such, there

could not have been (and was not) any attempt to evaluate and compare the efficacy

of all-or-nothing and its alternatives. This left it unclear whether the proposed al-

ternatives would succeed in addressing the issues with all-or-nothing and if/where

there would be a need for further research.

Last but not least, while the existing literature showed that users’ access-control

preferences for phone sharing indeed depended on contextual factors (e.g., loca-

tion [78] and content [54, 58, 77]), the consistency of such factors had not been

demonstrated. To determine the prospects of improving access-control decisions

by incorporating these factors, it is important to understand how consistent they

are.

4.2 Methodology
Our study was designed to answer the following research questions:

• RQ1: What tasks do smartphone users perform on their phones? What are

their sharing preferences for the tasks?

• RQ2: To what extent, in terms of false positive rate and false negative rate,

do all-or-nothing and the alternative solutions meet the users’ needs? How

do they compare in configuration size?

• RQ3: How consistent are contextual factors across phone-sharing events?

We conducted a diary study with 55 participants to answer these questions. The

study involved participants installing our custom Android app on their phones and
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using it to report the following data every day: (1) the tasks they performed with

each of their apps, and whom (else) they would allow to perform each task, as well

as (2) the details (e.g., time, location) of any instances of sharing their phone with

others.

Inspired by the method used by Hayashi et al. [54], we used tasks as the means

to collect users’ authorization needs. Conceptually, we define a task as a distinct

series of actions that could be performed with a mobile app, and are distinguishable

in terms of purpose and sharing preferences. Technically, they comprise the func-

tionality affordances of a mobile app, similar to affordances of real world objects

or User Interfaces (UIs) [87]. For example, the app GMail, affords two separate

tasks: “Sending email” and “Receiving/Reading email,” according to our study

participants.

To solicit tasks, we asked our participants to declare what they had used the

app for (e.g., sending email) while separating actions that have different purposes.

We also asked them to further break down a task if there were parts of it that they

were not willing to share with others. For example, if they used the SMS app to

both send and receive texts, they were asked to declare sending and receiving as

separate tasks, if they were willing to let others do one (e.g., the sending) but not

the other (the reading). Otherwise, they could just declare “sending and receiving

sms” as the task.

We used a longitudinal design mostly in order to accommodate known lim-

itations of human memory [16, 92]. Firstly, a cross-sectional (non-longitudinal)

design [119] would have required participants to remember at once all the tasks

they perform. Secondly, the participants would also have needed to remember all

the instances of sharing their phone with others over a long period of time. These

unrealistic expectations would have limited the internal and external validity of our

results.

In the following, we will discuss in more detail our data collection tool, data

analysis methodology, and a breakdown of the demographic composition of our

participant sample.
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4.2.1 Data Collection

Our app kept track of the participants’ daily app usage and invited them every night

to fill out a diary. Using an Android app, instead of paper- or web-based diaries,

allowed us to avoid asking participants repetitive questions (e.g., asking them to

list all the apps they had used) and to also ask detailed questions about app usage

context, as explained below.

The diary questions were fully structured. First, the participant was asked if

they had shared their phone during the day. If so, they were shown a list of apps

launched on the phone that day and were asked to indicate which apps were shared.

Next, our app would select five apps (either shared or used by the participant

themselves) to probe further about. We chose five because pilot studies (described

later in this section) showed that it took ten minutes on average to complete a diary

with this number of apps; taking any more time daily would result in lower data

quality and higher chances of skipping diary questions or even dropping out of the

study.

The five apps were selected using the following protocol (a flowchart is pro-

vided in Figure A.3):

• Priority 1: Newly-shared apps: We first selected apps that the participant

reported sharing on that day for the first time in the study, as we anticipated

them to be rarer. If there were more than five such apps, we prioritized

selecting those with higher usage time (i.e., those that had more time in the

foreground, based on Android’s “Usage Stats” service [5]).

• Priority 2: Newly-used apps: If there were fewer than five newly-shared

apps, we selected apps that the participant used for the first time on that day.

We also prioritized selecting those with higher usage time.

• Priority 3: Random selection: If the two priorities above did not fill the

quota, we would fill it by randomly select apps that the participant used.

Once the apps were selected, the participant was asked the following questions

about each app:

• For both shared and non-shared apps: They were asked to declare a list of

tasks that were performed with it (either they performed themselves or they
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believed a sharee did while in possession of the phone). They could create

new tasks or select from the ones declared previously (see Figure A.4e).

Next, they were asked to specify their sharing preferences for each task, by

selecting whom (else) they would allow to access it. The options included:

(1) No-one, (2) Any-one or (3) Specific People. If they chose specific People,

they were asked to provide a list of individuals (see Figure A.4f).

• Specific to shared apps: Participant was shown a list of times the app was

launched on the phone, and were asked to specify whom (either themselves

or a sharee) used the app at each time (see Figure A.4b). To specify a

user/sharee, the participants needed to give them a nickname (to use for

any subsequent reporting of sharing with the same person) and to declare

their relationship with sharee (e.g., spouse). Afterwards, for each time the

app was reported to have been used by a sharee, the participant was asked

to specify the location where the sharing happened, and whether they were

present there (see Figure A.4d).

4.2.2 Pilot Studies

We performed three pilot studies to test our methodology and app design. The

first study involved lab testing sessions and qualitative interviews to evaluate the

usability of our app. We used UBC paid participant mailing list to recruit partici-

pants. They performed a series of tasks with our app (e.g., filling a daily diary), as

we observed if they encountered any difficulties. We also interviewed them about

their impressions of the app. Overall, 6 individuals (3 of them male) participated

in this pilot, with their ages ranging from 26 to 65 and with education levels from

high school to master’s degree. We recruited participants one at a time and imple-

ment changes in the app to improve usability in-between the sessions. Based on the

results, we improved the app set-up process, improved the clarity of our consent

form and the wordings of some diary questions, and fixed a few bugs.

The second pilot study was a test run of the main study. We used the same

mailing list again to recruit 7 participants (5 of them females, age from 27 to 37,

education from high school to master’s) who installed the app on their personal

phones and used it to fill diaries for two weeks. Then, in the end, we interviewed
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them about their experience. Based on the results, we found that it would be opti-

mal if the diaries would not take more than 10 minutes per day. We also improved

the wordings of some questions and fixed some bugs. More importantly, we found

a lot of duplication of task declarations which took unnecessary time from partici-

pants. To reduce fatigue, therefore, we decided to implement a system where each

participant could see, anonymously, what tasks others had declared for each app.

This way, they could either select one of those tasks or, if need be, declare a new

one.

Lastly, interviews showed that some participants might have privacy concerns

with installing our app on their devices. They suggested that we could provide

more clarity on what exact type of data our app collects and for what purpose. We

heeded this recommendation, as privacy concerns could skew any future sample

towards less security-conscious smartphone users. For our main study, the study

advertisement and consent form assured participants that the app would not collect

any personal data, such as precise GPS location, files, and login credentials. We

also invited them to ask any questions they might have about the app or the purpose

of the study, and let them know that they can withdraw from the study at any time,

without repercussions, if they felt uncomfortable. As a result of these changes, we

observed, in our screening surveys, that very few potential participants of our main

study to declare privacy concerns as a reason to be not willing to join the study.

Our third pilot study was aimed at evaluating the efficacy of our intended re-

cruitment channel for the main study, that is Amazon Mechanical Turk (MTurk). It

was also to evaluate the effects of changes we made amid the second pilot results.

Specifically, we were interested to see if showing tasks defined by one participant

to others would result in hive minding, reduced diversity of declared tasks, and

eventually bias in the results. We recruited 8 participants from MTurk (4 of them

female, age ranged from 21 to 44) and asked them to install and use the app for

two to three weeks. We found MTurk to be able to provide us with sufficiently

diverse samples. We also observed that we were already near theoretical satura-

tion for task declarations after three weeks (i.e., very few new tasks were being

declared towards the end), hence we decided on the length of the main study at 1

month. Lastly, results showed no signs of hive minding as we observed an even

more diverse set of tasks being defined, when compared to the second pilot.
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Table 4.2: Demographics of the study participants.

Variable Category % (#) of
participants

Gender Female 47.3 (26)
Male 52.7 (29)

Age 18-29 9.1 (5)
30-49 67.3 (37)
50-64 20 (11)
65 and higher 3.6 (2)

Education High School 27.3 (15)
Associate 18.2 (10)
Bachelor 45.5 (25)
Graduate degree 9.1 (5)

Annual income (in
$1,000s) Less than 10 5.5 (3)

10-29 10.9 (6)
30-60 30.9 (17)
60-100 40.0 (22)
100-150 5.5 (3)
More than 150 7.3 (4)

4.2.3 Sampling

We recruited 55 participants through MTurk. We published a screening survey on

the platform, inviting interested participants to complete it for a $1 compensation.

The ad was only visible to Turkers who were located in North America (according

to MTurk) and had an approval rate of at least 85%. We received 408 responses to

the survey, and invited 226 of the respondents to install our app (The number was

determined by power analysis, assuming 85% confidence level, 5% margin of error,

and a target population size of 330 million for the US). We excluded those who did

not have an Android phone (67 entries) or showed clear signs of duplicate or low-

quality (e.g., claiming to use FaceID on an Android phone) data (20 entries). We

also selected randomly from those who had a surplus of demographic quota in our

sample (e.g., younger age ranges). Out of those invited, 65 installed the app, and

55 eventually completed the study. Data collection took place between May and

August 2021. In the end, participants were compensated with $20 USD plus $2
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for every diary they completed, paid as a gift card. This compensation model was

inspired by similar longitudinal studies [24, 61, 108], and was designed to reduce

the probability of early dropout.

Our final sample was fairly representative of the US smartphone-user popula-

tion, which is where all of the participants were located. As Table 4.2 shows, the

sample was diverse in terms of age, gender, education, and income groups. We

also performed chi-square tests. They showed no statistically significant differ-

ences (p− values > 0.05), in terms of the distribution of the above demographics,

between our sample and the general US smartphone users as of 2019, as reported

by the Pew Research Center [91]. However, our sample was not very diverse in

terms of ethnicity. Age distribution was also skewed, even if the difference was not

statistically significant. We discuss sample limitations further in Section 4.5.

4.2.4 Ethics

Data collection was conducted according to the policies and regulations of the

University of British Columbia (UBC) and Canada. All study procedures were

reviewed and approved by UBC’s Behavioural Research Ethics Board (Certificate

ID H20-03155). All types of data that the study app would collect and the pur-

pose for that collection were disclosed, and participants consented to its collection.

To preserve participants’ privacy, four measures were employed: (1) the app was

not programmed to collect any data outside the scope of the study; (2) the col-

lected data was uploaded on a daily basis through an SSL-encrypted connection

to a server hosted in Canada, deleted from the phone after upload, and stored on

an encrypted disk; (3) personally identifiable information (e.g., contact email) was

collected as part of the web-based screening survey but not through the study app;

and (4) once the study ended, the app automatically disabled itself and prompted

the users to uninstall it.

4.2.5 Data Analysis

RQ1 [Tasks]: To create a cohesive list of tasks, two researchers aggregated the

tasks reported by the participants to merge functionally duplicate ones. They did

so by performing qualitative inductive coding [13]. Every day, each researcher
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Figure 4.1: Theoretical saturation in task declaration by study participants.

mapped each newly declared task to one of the existing ones in our codebook.

A mapping meant that the researcher believed the new task was the same as the

previously declared one. The criteria for mapping tasks was that (1) they would

either be phrased identically or were similar in functionality, and (2) the researcher

could not envision a scenario in which they would require different security, based

on the participant’s prior data. If a new task could not be mapped to an existing

one, it was added to the codebook as is. The researchers met once a week to resolve

any differences (disagreement rate was 4.5%). All disagreements were resolved; if

the researchers could not agree on an aggregation, both of the declared tasks would

enter the codebook.

We should note that, as Figure 4.1 shows, we reached near saturation by the end

of the study, as very few new tasks were being declared (most participants reported

performing tasks they had already declared before). Hence, we believe our task set

to be fairly representative of the participants’ needs.

Once the task codebook was finalized, the two researchers performed catego-

rization of the tasks based on functionality. The aim was to use this categorization

to investigate the correlation between functionality and task sensitivity.

To perform the categorization, each researcher labelled each task with one of
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the 32 functionality categories the Google Play store uses for apps [45]. The re-

searcher used Google Play’s guidelines [45] to decide which category would be

used for a hypothetical app only affording that task. The guidelines provide broad

examples of what apps should fit in each category (e.g., for the category “Enter-

tainment,” the examples read “Streaming video,” “Movies,” “TV,” and “Interactive

entertainment.”) Next, the researchers met and resolved all differences in label-

ing, of which there were 69 instances. Resolutions were achieved through either

agreeing on one category or merging categories that had all overlapping apps.

RQ2 [Comparing Access Control Solutions]: We compared three metrics for

each evaluated solution:

• False Positive Rate (FPR), also known Fraud Rate, was calculated as the

ratio of the number of tasks a solution would mistakenly make available to

unauthorized users (i.e., would not perform authentication before granting

access), by the total number of tasks. It would directly impact the security

of a solution, as higher FPR would indicate higher chances of unauthorized

access to tasks.1

• False Negative Rate (FNR), also known as Insult Rate, was calculated as

the ratio of the number of tasks that a solution would mistakenly deny access

to authorized users (i.e., would ask for unnecessary authentication before it)

by the total number of tasks. This measure would directly impact the us-

ability of a solution, as it would signify how frequently the solution imposes

unnecessary unlocking overhead on users.

• Configuration Size Rate (CSR) was calculated as the ratio of the number of

access control preferences (e.g., indicating that an app should be available

before unlocking) each user would have to explicitly specify for a solution,

by the total number of the user’s preferences (in our study, we assume this

to be their total number of tasks). We used CSR as a basic estimate of the

amount of effort it would take a user to configure a solution, without assum-

ing any particular design for the User Experience (UX), which cloud vary
1To accurately take into account inconsistencies in the participants’ labeling of tasks (e.g., a

participant labeling a task once as being shareable with “No-One” and another time as being with
“Anyone”), we treat different labels of a task as different tasks.
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by phone manufacturer or academic proposal. For example, a CSR = 100%

would mean that the solution expects the user to explicitly specify their shar-

ing preference for all their tasks, where as CSR = 1% would require only

1/100 of the effort.

The metrics were calculated separately for each participant and then averaged

over all participants. It should be noted that we calculated both the FPR and FNR

by counting the number of tasks, not the number of times a task was performed by

a participant. In the scenarios (described below), we also did not differentiate be-

tween when an unlocked phone is shared and when the passcode is shared. While

these choices could make the calculated FNR less reflective of the actual user expe-

rience (e.g., the user might face more interruptions from frequently done tasks), we

made them to limit the impact on the FPR by frequently done nonsensitive tasks,

which could make a solution look unrealistically secure. For example, an unautho-

rized execution of a highly sensitive task, such as banking, could be masked by the

many authorized executions of a trivial task, such as checking the weather.

Additionally, due to our methodology design, we assume that all false positives

and negatives have the same weight, when computing FPR and FNR. This causes

our results to be a “best case” scenario of the performance of each solution.2. We

discuss this limitation further in Section 4.5. Also, aligned with our research ob-

jectives, we only consider physical (un)authorized access to each Task. This means

that we assume that when a user performs a Task, no unauthorized operation is

done by the phone, other than what necessary for accomplishing the task (for ex-

ample, such operations might be injected by a malware into the app’s code). As

such, remote attacks (such as malware) is not considered in our evaluations.

For task sensitivity, we calculated the metrics in seven scenarios, each corre-

sponding to one type of solution:

• ALL: This scenario corresponds to one possible case of the all-or-nothing

model. It represented a case where the user would not enable locking. Hence,

anyone could perform any task with the phone. In such a case then, any task

2This is because even though some solutions might be more prone to granting unauthorized access
to sensitive tasks than non-sensitive ones, we only consider the number of tasks that each solution
grant such access to, rather than considering the sensitivity of each individual Task
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that the user would label as either shareable with “No-one” or with “Specific

People” would count as a false positive (i.e., fraud)3, increasing the FPR.

FNR would be zero, as there would be no unlocking. CSR would also be

zero, as there would be no need for the user to either set up authentication,

or specify any access control preferences. This scenario was important to

consider, as it was reported in 2020 to represent the state of practice for 10%

of users [80].

• NOTHING: This was another possible case for the all-or-nothing model. In

this case, it was assumed that the user would enable authentication. There-

fore, the phone would always be locked, and no tasks could be performed

before unlocking it. In such a case, any task labelled as either shareable

with “Anyone” or with “Specific People” would count as a false negative,

increasing FNR4. FPR would be zero because authentication would always

be performed. The CSR would be zero as well, as the user would only need

to set up authentication once, and would not specify any authorization pref-

erences. This scenario was also important to consider, as it represented the

state of practice for nearly 90% of phone users [80].

• LOCK SCREEN ACCESS: This scenario corresponds to the lock screen

app access available on most phones. Here, we assumed that all tasks by

Camera, Calculator and Flashlight apps were available before unlocking.

Everything else was similar to NOTHING.

• APP CONSERVATIVE: This represented a case where users were able

to choose to lock apps individually, but not specific tasks within them. It

was representative of how Progressive Authentication [98] or other app-level

task-sensitivity solutions (see Table 4.1) perform. Calculating FPR and FNR

for it, however, required resolving conflicts in the participant’s labelling of

app’s tasks. In this “conservative” scenario, we assumed that the user would

want to lock an app, if they labelled any of its tasks as “No-one”.

3This is because the tasks would be exposed to unauthorized users, even if not necessarily per-
formed by them.

4We are assuming there is no PIN sharing with the sharee.
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• APP MAXIMAL: Similar to the APP CONSERVATIVE scenario, but used

a different strategy for conflict resolution. In this case, the model would

assign access to an app based on the majority vote of the user’s labelling of

its tasks.

• TASK CONSERVATIVE: In this conceptual scenario, we assumed that the

system has perfect knowledge of the user’s sharing preferences. We devised

this scenario to gauge an upper bound for the efficacy of task-based access

control. However, to measure FPR and FNR, similar to conflict resolution

for app-level locking, in this “conservative” task-level case, we assumed that

the user would prefer the most restrictive of their provided labels for each

task. For example, if they would label a task once as being shareable with

“No-one” and another time as being shareable with “Specific people”, this

model would select “No-one” as the final label. By doing so, any labels that

are lower than the most conservative one would count as a false negative,

due to unnecessary authentication.

• TASK MAXIMAL: This was similar to TASK CONSERVATIVE, but we as-

sumed that the user would prefer to have tasks protected according to the

majority vote of their labels. For example, if the user had labelled a task

twice as being shareable with “No-one” and once as shareable with “Spe-

cific People”, the system would select “No-one” as the final label. As such,

any instance of a task being labelled with something other than the decided

final label would count as either a false positive (in case the final label was

less restrictive than the current labeling), or false negative (in case of the

opposite).

For phone-sharing solutions, we considered four scenarios:

• ALL OR NOTHING: We assume that the participant either has not enabled

unlocking, or has enabled it but has shared their passcode with the sharee.

Hence, we calculate FPR and FNR by assuming that the sharee has access to

all tasks on the phone. This scenario represents the state of practice amongst

most users [77].
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• PROFILE SWITCHING: We assumed a case where the participant had cre-

ated a separate profile for each sharee, and has allowed them to install their

own version of each app. Therefore, FPR and FNR were calculated assuming

that the sharee cannot access any of the tasks not shared with them.

• DIFF USER: We assumed that the participants assigns all sharees to the

“guest” group. Then, we calculate FPR and FNR by determining whether

the sharee can perform a task, based on what resources (e.g., WiFi) they

have access to, according to DiffUser’s rules [86].

• X SHARE: We assumed that the participant would put the phone in re-

stricted mode, before sharing it. We also assumed that they would only al-

low access to the apps they had reported sharing in that session. Therefore,

FPR and FNR was computed holding that sharee can perform any tasks with

shared apps, but none with others. In addition to xShare [72], this scenario

also represents how session-based solution would perform (see Table 4.1),

as (un)pinning apps mid-session can achieve the same effect.

RQ3 [Phone-Sharing Contextuality]: For each participant, we examined the vari-

ations of the following factors in all their reported cases of phone sharing: location,

participant’s presence, their relationship with the sharee, and functionality category

of the shared tasks. We focus on these factors only, as they were reported by prior

qualitative work to be correlated with sharing needs of users (see Section 4.1). Our

goal was to corroborate such correlations quantitatively.

4.3 Results

4.3.1 RQ1: Performed Tasks

Overall, the participants reported performing a large and functionally-diverse set

of tasks. Collectively, they declared 1,149 distinct tasks in total (after aggregation,

as described in Section 4.2), for 571 distinct apps. On average, each participant

reported performing 74 tasks (min = 24, max = 142), using 48 apps (min = 12, max

= 103). In terms of functionality, we identified 19 separate categories, and observed
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that the tasks are distributed relatively evenly amongst them, as demonstrated in

Figure 4.2.
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Figure 4.2: Distribution of participants’ declared tasks across functionality
categories.
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Figure 4.3: Distribution of participants’ “Specific people” tasks across rela-
tionship groups.

Examining the participants’ access control preferences for the tasks, we found

them to be highly complex. The participants indicated to be willing to share a

large portion (nearly 43%) of their tasks with others. Specifically, 23.7% of the
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Figure 4.4: Distribution of the sharing preferences of performed tasks for
each study participant.

tasks were labelled as being shareable with “Specific People,” whereas 19.4% were

shareable with “Anyone”. 5 These “Specific People”, however, was not limited to

a narrow group of people, confirming the conjecture of Karlson et al. [60] and

others [77, 78]. Spouses and boy/girl-friends comprised the largest groups of pre-

ferred sharees (64.6% of the tasks shareable with “Specific People”). There were

a myriad of other sharee groups as well, such as parents (13.7% of tasks), children

(13.1%), friends (3.6%), and others (see Figure 4.3 for a more detailed breakdown).

Adding more complexity to the matter, we found the access control preferences

to vary significantly in-between participants, as Figure 4.4 illustrates. About 22%

of the participants were unwilling to share any tasks with anyone (e.g., participants

with IDs P1, P2, and P4). We refer to them in this dissertation as “Private” users.

A small fraction, 5% , (“Public” users) wanted to share everything with certain

people (e.g., P24, P26). Unsurprisingly, the majority (73%) (e.g., P40 and P7) was

in between these extremes. We refer to them as “Semi-Private” users. Obviously,

for “Public“ or ”Private” users, an all-or-nothing model of access control would

suffice. However, as our data shows, a more complex system is needed for Semi-

Private Users. We will discuss this matter further in Section 4.3.2.

Moreover, we found the above-mentioned groups to be not easily distinguish-

able using demographic or phone usage factors. We tested the association between

access control categorization (i.e., whether a participant is a “Private”, ”Public”

or “Semi-Private” user) and several demographic and phone usage factors. These

included age (which was suggested by Qiu et al. [95]), education level, hours of

phone usage per day, depth of smartphone adoption (as measured by the privacy

5Note that labeling a task as either “Specific People” or “Anyone” does not indicate that the
participant actually shared that task. We discuss actual sharing in Section 4.3.3
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Table 4.3: Results of chi-squared tests of association between participants’
access control categorization and whether the reported sharing their
phones, with our anticipated antecedents of them. Significant p-values
are underscored (assuming α = 0.05).

Access Control
Categorization

(Public, Private,
Semi-Private)

Whether They Share
Phone

Age p = 0.002, V = 0.433 p = 0.048, V = 0.379

Education p = 0.293, V = 0.258 p = 0.367, V = 0.240

Hours of Phone Usage
Per Day

p = 0.350, V = 0.201 p = 0.967, V = 0.035

Privacy App Adoption p = 0.654, V = 0.149 p = 0.279, V = 0.215

Living with Others p = 0.577, V = 0.141 p = 0.158, V = 0.190
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Figure 4.5: Distribution of sharing preferences across task functionality
groups.

app adoption questionnaire proposed by Marques et al. [75] and modified by us

as described in Chapter 2), and whether the participant lived with someone else or

shared their phones with them (as we anticipated it would lead to different sharing

habits). However, apart from age, none of the test results (presented in Table 4.3)

were statistically significant (p− values > 0.05) or strong (Cramer′sV < 0.5). For

age, while the link was statistically significant, it was not strong.

Finally, the non-uniformity of access control preferences was also observed

in-between the categories of tasks. Specifically, we found that different function-
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alities have different access control needs. As Figure 4.5 illustrates, while some

categories of tasks were off-limits to others (e.g., Personalization and Dating),

other categories (e.g., Food and Drink, and Weather) were more often labelled as

shareable, either with “Specific People” or with “Any-one.”

Next, we examined the data with higher granularity, to compare participants’

task and app-level preferences (the latter was previously examined by Hayashi et

al. [54]). Firstly, we found that apps often afforded tasks with conflicting function-

ality. Our participants declared 2 different tasks per app on average, which were

often from different categories. For example, “Business” apps sometimes afforded

tasks from Communication, Productivity, Education, or Personalization categories

(see Figure 4.5).

Secondly, in terms of sharability, we also found apps to be in-cohesive. We

observed that, for each participant, apps generally fell into one of the following

categories when it came to the shareability of the tasks they afford:

• Public apps: These were apps that afford exclusively tasks shareable with

“Any-one”. Hence, conceptually, these apps would require no form of au-

thentication or authorization performed before access.

• Private apps: In direct contrast to public apps, private apps afford exclu-

sively “No-one” tasks. Therefore, they would practically always require au-

thorization before access.

• Shareable apps: These apps afford exclusively tasks that were shareable

with specific people. Hence, they would require authorization support for

different users.

• Split apps: These apps include tasks with different levels of shareability

and, as such, do not fit in the above categories.

Obviously, for “Public” and “Private” users, all apps fell either in the Public or

the Private category. However, for the majority of the participants (73%), the distri-

bution of apps was not just between these two categories, as Figure 4.6 illustrates.

The majority of the participants used Split apps, which requires a fine-grained

model of access control. This result also confirms the conjectures of Hayashi et
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Figure 4.6: Distribution of shareability categories amongst “Semi-private”
study participants.

al. [54] that smartphone users consider a significant number of apps they use as

“Split”, demonstrating that the all-or-nothing model lacks important sensitivity to

the sharebility of individual tasks in the apps.

Lastly, we found that the perception of the shareability of an app is not consis-

tent across study participants. Amongst the 206 apps that were used by more than 1

participant, 137 (66.5%) were categorized differently by their users. For example,

for the “Amazon” shopping app, 65% of its users categorized it as “Private”, 29%

as “Split”, 3% as “Shareable”, and the rest as “Public”.

In summary, and to answer RQ1, we found users to perform a large (1,149)

and functionally-diverse set of tasks (19 different categories) with their phones.

We also found their access control preferences for the tasks to be highly-complex

and varied by sharee (see Figure 4.4 and functionality (see Figure 4.5). Lastly, in

agreement with previous work, we found apps to be incoherent units in terms of

access control needs, with significant variance in functionality and shareability of

tasks they afford (see Figure 4.6).

4.3.2 RQ2: Comparison of Solutions

We unsurprisingly found the granularity of the incumbent all-or-nothing solution

to be inadequate. As Figure 4.7 clearly illustrates, in the ALL scenario, the FPR

was estimated at 90.3%, meaning that nearly 90% of the users’ tasks would be

exposed to unauthorized users. This result clearly demonstrates the high risk asso-

ciated with this scenario, even though 10% of users choose it anyways [80]. This

acceptance of risk, however, becomes somewhat justifiable when we consider the

NOTHING scenario. As the figure shows, while NOTHING exposes no tasks to
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Figure 4.7: Comparison of FPR, FNR and CSR amongst solutions that aim
to provide task-sensitive access control on smartphones.

unauthorized users (FPR = 0%), a 21.2% FNR would be incurred, meaning that up

to 20% of the users’ unlockings could be unnecessary.6

We found the current commercial solution (lock screen access) to not offer

much improvement, either. Obviously, the ultimate goal of a task-sensitive solu-

tion would be to reduce the FNR compared to the incumbent NOTHING model,

without increasing CSR or FPR substantially. Yet, as Figure 4.7 shows, the LOCK

SCREEN ACCESS solution fails to do so. It reduces FPR only by 1%, but with no

change to the other metrics. This is unsurprising given the limited number of tasks

afforded by the common lock screen apps (Camera, calculator, etc).

What seems to be effective, however, is increasing the granularity of access

control. As the figure shows, app-level models of access control (represented by

APP CONSERVATIVE and APP MAXIMAL) reduce FPR by 7% with only slight

increases in CSR and FNR (0.5% and 5.5%, respectively). This was the case for

both the CONSERVATIVE and MAXIMAL scenarios, which suggests that the in-

creased granularity is beneficial, even app-level decisions are made based on most-

restrictive tasks (which is the CONSERVATIVE case). It is out of the scope of

this dissertation to gauge which scenario would be preferable to the end users (as

it would require us to assume a particular UX). However, on a conceptual level,

6FNR of ALL and FPR of NOTHING do not necessarily add up to 100%, as “Specific People”
tasks would incur False Negatives but not Positives, as we assume users do not share passcodes.
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it is clear from our data that app-level control can achieve the ultimate goal stated

above.

Lastly, increasing the access control granularity to task-level was found to be

even more beneficial, albeit with a more noticeable trade-off. As Figure 4.7 shows,

TASK CONSERVATIVE and TASK MAXIMAL could further reduce the FPR to

as low as 1.7%, but with an 18.1% increase in CSR. This increase could be man-

ageable, however. Considering our earlier finding that users perform on average

74 tasks on their phones, this CSR value would mean that users would need to

specify as few as 13 sharing preferences, to configure such a system. However, in

contrast, configuring the NOTHING model would only require a one-time set-up

of unlocking, which could still be a noticeable trade-off based on user preference.

Figure 4.8: Comparison of FPR, FNR and CSR among solutions that aim to
provide phone sharing support on smartphones.

As for support for phone sharing, we again found the all-or-nothing model

to be inefficient. As Figure 4.8 depicts, the ALL OR NOTHING scenario would

lead to sharees not facing any unnecessary restrictions (FNR = 0%, because we

assume the PIN is shared with the sharee). However, more than 20% of the sharer’s

task would be exposed to unauthorized users as well, increasing the potential for

frequent security/privacy violations that other studies have reported [75, 76].

In comparison, profile switching might appear to be the ideal solution. Natu-

rally (and in direct opposition to task-sensitivity), the ultimate goal for any phone

sharing solution would be to reduce the FPR compared to the ALL OR NOTHING

model, without a substantial increase in FNR or CSR. Profile switching, as shown

in Figure 4.8 seems to be achieving this goal, as it would zero FPR and FNR. How-
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ever, the scheme comes with a substantial increase in CSR as well, which seems to

explain why users are reluctant to use it [17, 32].

Resource-based solution, DIFF USER, does not seem to offer much improve-

ment either. While it can reduce FPR by 5%, it also increases FNR and CSR by

0.1% and 1.7%, respectively, which diminishes its FPR gains. This is unsurpris-

ing, given our previous finding regarding the multi-faceted nature of current apps,

in terms of functionality and task shareability (see Section 4.3.1).

Finally, X SHARE appears to provide the best balance between usability and

security. As seen in Figure 4.8, it eliminates most of unauthorized accesses (FPR =

1.4%), while not increasing the FNR at all, and CSR by only 1.3%. Thus, amongst

all the models, it seems that the session-based models could perform the best.

It should be noted that CSR calculations does include the effort needed to

put the phone into sharing mode, each time the phone is shared. Still, the CSR

for X SHARE is substantially lower than PROFILE SWITCHING because while

X SHARE only allows for one type of restricted sharing session (hence the user is

only required to specify the apps that should be available in such sessions once),

PROFILE SWITCHING requires the primary user to not only create a separate

profile for each secondary user (at least those that have different Tasks shareable

with them) but also specify which apps should be available for each user. This

create a much higher initial configuration burden (as seen in Figure 4.8), while

providing not as substantial improvement in FPR and FNR. However, we should

still note that the increase in FPR and FNR by using X SHARE might not be ac-

ceptable to all users, and, ultimately, which solution is the best depends on the

individual.

In summary, and to answer RQ2, our results demonstrate the inefficacy of the

incumbent all-or-nothing model. They also offer evidence that the current commer-

cial solutions (i.e., LOCK SCREEN ACCESS) do not offer much improvement.

Furthermore, the findings show that more granular access control models (app- or

task-level) might be the best trade-off in order to support task sensitivity. Session-

based control appears to offer a better balance between security and usability for

phone sharing.

98



4.3.3 RQ3: Contextuality of Phone Sharing

Firstly, we found actual sharing of phones (as opposed to willingness to share tasks,

which was the basis of the results presented in Sections 4.3.1 and 4.3.2) to be not

as prevalent as reported by previous studies. Among our participants, only 16

(29%) reported sharing their phones with others. In total, 58 sharing events were

reported over the course of the study. In contrast, Jacobs et al. [58] estimated

that nearly 50% of users would share phones. Mathews et al. [77] reported 14

sharing instances per participant (N=25) over 21 days. Although it is out of our

scope to investigate, we anticipate the decline in sharing to be due to the increase

in smartphone penetration of the consumer markets [110] since the time of those

studies (2016), and the effects of the COVID-19 pandemic [88] (which we will

discuss in Section 4.5).

However, similar to willingness to share, we also found the tendency to actually

share phones to not to be easily distinguishable using demographic factors. As

Table 4.3 shows, nearly none of our anticipated antecedents were correlated with

someone reporting at least one instance of sharing (p > 0.05, Chi-square test).

Interestingly, the practice of sharing does not seem to be strictly aligned with

access control preferences either. Evidently, amongst the participants who reported

sharing, one was a Private user, one was Public and the rest (14) were Semi-

Private. This means that, even though at least one participant (“Private” user)

reported not be willing to share any of their tasks with anyone, they reported shar-

ing their phones on one occasion anyways. Hence, it seems that sharing can indeed

be impromptu sometimes, as suggested by Matthews et al. [77].

As for the conjectured contextual factors of phone sharing (the main focus

of RQ3), we found them to be fairly consistent. We first examined the effect of

content on sharing preferences. Previous qualitative studies of non-representative

samples [54, 58, 78] conjectured that sharing preferences depend on the content be-

ing shared. Our results confirm this quantitatively. We observed that only specific

functionality categories of tasks were reported to be shared by our participants. As

Figure 4.9 shows, most of such tasks were from a few specific categories (e.g.,

Food and Drink, Entertainment), while tasks in some other categories (e.g., Per-

sonalization) were never not shared. Overall, 11 (58%) of all categories had at
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Figure 4.9: Distribution of categories of tasks that the participants reported
sharing.

least one reported case of sharing, with nearly 70% all shared tasks being from

three specific categories: Entertainment, Communication, and Maps and Naviga-

tion. Whereas tasks in 8 (42%) of categories were not shared at all. This aligns

well with the participants’ reported willingness to share tasks (see Figure 4.4).

Next, we found sharer’s presence to be also a determinant factor of sharing.

This was previously suggested by Mathews et al. [77]. Our data confirmed that,

as the majority (96.6%, 56/58 instances) of sharing events (at least those known

to the sharer, as our our study relies on self-reported data) were reported to have

happened in the presence of the sharer.

We also found the relationship between the phone owner and the sharee to be a

significant factor. It was suggested previously [17, 60, 78] that users’ sharing pref-

erences depend significantly on who the phone is being shared with. We found that

to be the case, too, as a majority of sharing events were with people that the owner

was familiar with. As Figure 4.10 depicts, more than half (52%) of all sharing

happened with romantic partners, while sharing with children and parents were the

next most frequent, at 21% and 16% respectively. Overall, we estimate that 89%

of sharing instances happened with the immediate family of the phone owner. This

finding also aligns well with the preferences reported by the participants, discussed

in Section 4.3.1.
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With whom they reported sharing phones with.
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Figure 4.11: Distribution of locations in which the participants reported shar-
ing with others.

Lastly, we found the location to also be fairly consistent across sharing events.

As Figure 4.11 shows, 66% of all sharing events happened at the sharer’s home,

with the homes of parents and romantic partners being the next most frequent, at

10% each. Only 5% of the events happened at other locations, such as schools or

public places.

In summary, and to answer RQ3, sharing is rather universal, and the contextual
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factors of phone sharing are highly consistent. Even though we found sharing to be

not as prevalent as previously reported, we found phones to be shared often with

family members and partners, at familiar locations, in the presence of the sharer,

and to perform a few certain categories of tasks.

4.4 Discussion
Putting all of our results together, it is clear that modern smartphone users have di-

verse and complex access-control needs. They perform a functionally diverse set of

tasks with a large number of apps, and they prefer to share several (sometimes even

partially overlapping) subsets of tasks with different individuals (see Section 4.3.1)

and in varying contexts (discussed in Section 4.3.3).

Making matters more complex, authorization needs vary significantly by task

functionality (see Figure 4.4) and per user (see Figure 4.6), and it is difficult to

predict users’ preferences based on their demographic or phone-usage factors (see

Section 4.3.1). Also, no functionality categories dominate the users’ tasks to there-

fore limit the scope of access control to certain activities on the phone (see Sec-

tion 4.3.1).

All these circumstances reduce the chance that any ad hoc solution (e.g., lock

screen access) catering only to specific tasks or groups of users could achieve ad-

equate efficacy. Hence, the need for robust and general-purpose access control on

smartphones is now clearer than ever.

Yet the incumbent all-or-nothing solution falls short of this ideal. Firstly, it fails

to provide timely and secure access to tasks, as its assumption that all tasks require

the same level of protection is invalid. Our findings (Section 4.3.2) suggest that it

could mistakenly expose more than 90% of the users’ private tasks to unauthorized

individuals or, conversely, unnecessarily hinder the users’ access to 21% of their

tasks.

Secondly, the solution fails to assert adequate control when users share their

phones. We found that it could expose up to 20% of the users’ private tasks to

unauthorized sharees, as it forces the users to share passcodes (Section 4.3.2). This

is especially important considering the clear distinction the users make between

“Anyone” and “Specific people” tasks (Section 4.3.1). To them, a shared task is
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not necessarily a public one. So, even if they are willing to share a task, it is

important to control with whom that task is shared.

As such, the dilemma users face when using the incumbent system is clearer

now. They have to either (1) enable authentication and face the overhead of 20%

unnecessary authentications or (2) disable unlocking altogether for more conve-

nience and risk 90% of their tasks being available to unauthorized users (as 10%

of users actually do [80]).

Making the situation direr, most of the proposed/implemented alternative so-

lutions do not seem to provide much improvement. The lock screen access solu-

tion only provides an insignificant improvement to the FNR (0.7%), and phone-

sharing solutions, such as DiffUser, rely on restricting access to system resources

to assert control, which nearly doubles the CSR in exchange for reducing the FPR

marginally (see Section 4.3.2).

Profile switching presents more of a conflicted situation. Even though our re-

sults show it could theoretically eliminate FPs altogether, its high CSR explains

why most users decide not to adopt it [17, 32]. Moreover, we found evidence for

the need to support impromptu phone sharing (see Section 4.3.3). However, pro-

file switching does not easily support impromptu sharing, since it would require

creating profiles on the spot.7

It seems, therefore, that users are left with neither timely access to their tasks

nor proper control over whom performs them. But hope exists.

We found designs that could lead to better access control. To support task

sensitivity, we found increased granularity a good starting point. The app-level

models we examined were found to have nearly half the FNR of the widely used all-

or-nothing system (11% vs. 21%) but with only modest increases in the CSR and

FPR (see Section 4.3.2). However, the app-level model seems to be the sweet spot

of granularity; creating even finer-grain task-level solutions would halve the FNR

once more, while imposing a substantial increase in the CSR (18%). Thus, overall,

our data supports wider adoption of app-locking solutions, which are currently only

deployed on some Android phones [101].

For deliberate phone sharing, our results endorse session-based solutions. Ap-

7This creation would only be needed if the shared tasks were for “Specific people.” Otherwise a
“Guest” profile would suffice.
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proaches such as xShare [72] and app pinning, which allow users to quickly se-

lect which apps to share in each session, showed substantial reduction in the FNR

(20%), only a modest increase in the CSR (1%), and no increase at all in the FPR

(Section 4.3.3).

Finally, our data also shows promise for context-based phone-sharing solu-

tions. We found several contextual factors to be highly consistent (see Section 4.3.3),

which could be incorporated into future solutions:

• Content. Only certain categories of tasks were shared by our participants.

Thus, future access-control schemes could further reduce the FPR with a

default denial of access to task categories universally perceived as private.

• Presence of the sharer. Deliberate sharing often happens in this situation (see

Section 4.3.3). Thus, detecting the owner’s presence (e.g., through smart-

watches or other wearables) seems to be a promising approach to detect

unauthorized access.

• The sharee. Phone sharing often happened with the same group of people

(see Figure 4.10). Thus, an a priori policy definition and user isolation so-

lutions (e.g., profile switching) could indeed work but, as discussed before,

need to be made more convenient. The high proportion of close family mem-

bers in the sharee distributions suggests automatic user identification (e.g.,

through behavioral biometrics [84]) could be one way of achieving this goal

and poses a promising avenue of future research.

• Location. Most of the reported sharing events happened at familiar places,

such as at home (see Figure 4.11). As such, location detection (e.g., us-

ing Wi-Fi or GPS as done by Google Smart Lock for Android [41]) could

provide better access control by limiting unauthorized access in unfamiliar

locations.

In the end, we should note that our findings also demonstrate the need for flex-

ibility in access control, as any one-size-fits-all solution would have unjustifiable

trade-offs for some users. For example, if all users were forced to a highly granular

task level, some users could benefit. But this level of access control would also im-

pose a high CSR on semiprivate users, with no improvements in the FPR or FNR
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for them (e.g., P03 in Figure 4.6 who has few public apps and no split apps). For

such users, an app-level system would be a better fit. Hence, it is important to con-

sider solutions that increase granularity only when needed or only for those users

who need it. This could certainly be achieved manually (e.g., by asking users di-

rectly to use a task-level system). However, as observed with profile switching (see

Section 4.3.2), the increased cognitive load makes adoption an issue. An avenue

for future research, therefore, can be to investigate the feasibility of automating this

process (possibly like our implicit identification suggestion for profile switching).

4.5 Limitations
Firstly, similar to other studies on smartphone usage [29, 51, 57], our sample was

not representative of the global smartphone user population. For example, it has

been shown that cultural factors affect users’ unlocking behavior [53] and privacy

attitudes [100]. However, due to limited resources we only included US partici-

pants in our study; as a result, one cannot generalize the results to non-US users.

Also, our sample is not fully representative of the US smartphone user popu-

lation either. While MTurk is shown to provide quality data for research in usable

security [97], its known limitations (e.g., lack of diversity, tech savviness) [90]

apply to our study too (for example, our participants are more than 80% white).

Lack of diversity is a common limitation of smartphone studies [29, 54, 77]. How-

ever, we believe that our findings are still valuable, as they provide the very first

quantitative insight into users’ access-control needs.

Secondly, due to technical limitations we only included Android users in our

study. Recent evidence suggests there are no significant differences in security/pri-

vacy attitudes between iOS and Android users [1]. However, cross-platform studies

are required to investigate this matter further.

Thirdly, our results are based on self-reported data from the participants. Thus,

as a general limitation of such studies, our data might sometimes be of lower eco-

logical validity and not perfectly reflective of the users’ true behavior [39, 80].

Also, the reported sharing events might be affected by the users’ prolonged use of

the all-or-nothing system. For example, the type of tasks they shared might have

been influenced by what they felt comfortable sharing given the limitations of the
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incumbent system. Also, all-or-nothing might have caused participants to misinter-

pret the diary questions and believe that “Whom you’d generally allow to perform

the task” meant only when they were physically presiding over the sharing. To

mitigate this risk, we conducted several pilot studies (see Section 4.2) and did not

find evidence of such varying misinterpretations. But they are still a possibility and

could have caused us to underestimate the number of “Anyone” tasks. Having more

such tasks, however, could only strengthen our argument that the incumbent system

is suboptimal, as these tasks increase its FPR (already over 20%) even further.

Fourthly, in order to limit the amount of time required for the participants to fill

a daily diary, we did not collect data about the perceived sensitivity of each individ-

ual Task (e.g., on a Likest scale). As such, one implicit assumption of our findings

is that all false positive or false negatives are at the same level of importance (i.e.,

they degrade security/usability to the same degree). This, however, might not al-

ways be the case. For example, unauthorized access to a banking Task might have

far worse consequences for a user, compared to such access to a gaming-related

one. So, theoretically at least, the former should be assigned a higher weight in

FPR or FNR calculations. However, our data collection design did not allow us to

do this. As a result, while our results are beneficial in proving a first detailed look

into the users’ needs, they do not provide the whole picture of users’ access control

needs. More detailed studies are needed to fully capture the effect of individual

Task sensitivity on the efficacy of existing systems.

Lastly, as discussed in Section 4.3.3, our results might have been affected by

the COVID-19 pandemic. For example, work-from-home orders might have influ-

enced users’ security/privacy preferences for their personal devices, as they might

now contain work-related information [88]. Also, the consistency of location in

phone-sharing events might have been due to stay-at-home orders, and, generally,

the users might have shared their phones less frequently than normal, due to not

being around others.

4.6 Conclusion
Smartphones, nowadays, require strong physical security, as they host an ever-

increasing array of data and services. Yet, most of the research and development
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so far have been towards their “authentication” subsystem. Their “access control”

has remained largely unchanged, still using the all-or-nothing model. In this study,

we solicited detailed task data from users, and quantified just how inefficiently this

model serves the users. We found that most proposed/implemented alternatives

do not provide much improvement, either. Instead, we found that increasing the

granularity of access (up to a point) and session- and context-based control might

be promising avenues to design future systems that better support the users’ needs.
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Chapter 5

Proposing Gradual Unlocking as
a Solution for Task-Based Access
Control on Smartphones

This chapter presents the design, implementation and evaluation of a solution for

performing task-based access control on smartphones. The solution can also help

with reducing unnecessary user interruptions when performing implicit authenti-

cation. First, in Section 5.1 we provide the necessary background on those parts

of the Android Operating System (AOS) that are required to describe our solution.

Next, in section 2.1 we provide an overview of the existing literature on how to

mitigate the IA re-authentication issue. Section 5.3 describes the architecture of

our solution and how we implemented a prototype of it on Android Open Source

Project (AOSP) 10. In Section 5.4, we provide the results of the evaluation of our

system, using data from the longitudinal diary study described in Chapter 4. Sec-

tion 5.5 discusses the implications of our results. Lastly, Section 5.6 discusses the

limitations of our evaluation and Section 5.7 concludes this chapter.
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5.1 Background: Android Overview

5.1.1 Activities in Android Apps

Activities are one the four basic building blocks of Android applications, along

with Services, Content Providers, and Broadcast Receivers [4]. As described by

the Android Developer Guide: “An activity is the entry point for interacting with

the user” [4]. Each activity roughly corresponds to a screen the user sees; it en-

compasses the functionality and presents the visual design of a single user interface

page. Activities are independent entities, and each one often implements a different

aspect of the app’s functionality [4]. As an example, a gaming app might have one

Activity for representing the game-play screen and a different one for representing

its settings.

5.1.2 SELinux on Android

SELinux is a an kernel extension that provides Mandatory Access Control (MAC)

and Role-Based Access Control (RBAC) on Android [3]. MAC is a type of Access

Control (AC) system in which both users and objects (e.g., files, documents) are

assigned security levels. A user is only allowed to access an object if they have the

necessary security level [102]. In RBAC, permissions are not directly assigned to

users. Instead, they are associated with roles and, to acquire a certain permission,

users have to be made members of the appropriate role [89].

5.2 Related Work

5.2.1 Task-Based Access Control

In the previous chapter, we used a conceptual task-level model of access control to

gauge the upper limit of efficacy amongst the evaluated solutions. However, we did

not discuss how such solution could be implemented or whether it was technically

feasible at all. To the best of our knowledge, there exists no practical solution for

performing such task-level authorization, currently. Crawford et al. [27] proposed

a conceptual framework. However, as we will discuss later in this chapter, they do
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not provide a practical implementation.

In this chapter, we aim to propose such solution. However, we should acknowl-

edge that, as we discussed in the previous Chapter, such solution is only necessary

for certain groups of users that have highly complex access control needs. For the

majority of users, an app-level model could suffice.

5.2.2 IA Re-authentication Problem

The potential efficacy of IA has been demonstrated in lab studies. For example,

Crawford et al., [26] observed that their low-fidelity IA prototype resulted in their

participants performing 67% fewer authentications, compared to explicit methods,

such as PIN. Khan et al. [63, 64] also evaluated several proposed IA solutions

for smartphones and found several to provide “acceptable” security, usability, and

performance. Empirical data also suggests that there is interest in IA adoption

among smartphone users, as found by our findings in Chapter 2, as well as existing

literature [26, 64].

However, deploying IA in real-world has shown tricky. One of the main chal-

lenges is that IA often triggers uncalled-for re-authentication prompts when the

authentication data stops being available, e.g., in case of gait-based authentication,

when the user stops walking1. In such cases, to preserve security, the phone locks

the user out mid-session and asks them to authenticate explicitly using PIN or bio-

metrics. This results in IA behaving in an unpredictable and hectic manner, often

interrupting user’s tasks and causing “annoyance” [2].

Two general solutions have been proposed to solve the IA re-authentication

problem. The first is to simply improve User eXperience (UX) when re-authenticate

prompts are inevitability presented to the users. Agarwal et al. [2], for example, ex-

plored several strategies for how to present the prompts to the users. Each strategy

involved a different visual transparency level for the prompt and a different time

delay to show it. Their user study with 30 participants showed that the introduc-

tion of the time delay reduced users’ “annoyance” by allowing them to finish their

current task first.

Similarly, Mecke et al. [79] explored the idea of using visual cues to warn the

1In such case, it is reasonable to lock the phone because the situation might actually have been
than an attacker has pickpocketted the phone owner as they were walking.
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users of an imminent re-authentication prompt. They found that having indicators

of upcoming prompts is better than no indication, as there will be less surprise for

the users. However, they also discovered that, generally, the security sensitivity of

the task being performed has a strong impact on user “annoyance”, and needs to

be taken into account by future systems.

Overall, UX-based solutions, such as above, are only useful if the number of

prompts is not too excessive. Hence, a second solution has been explored by several

papers, which is to try to reduce the number of unnecessary re-authentications

altogether.

Khan et al. [62], for example, proposed Itus, a framework that allows develop-

ers to designate certain Android Activities of their app as sensitive. An Itus-enabled

phone then only prompts the user for re-authentication if a sensitive Activity is in

the foreground at the time. The Itus authors showed that the framework is capable

of improving usability by allowing IA to be implemented in an app-specific man-

ner. The authors also demonstrated how this approach can be deployed with mini-

mal performance overhead on the phone. However, deploying Itus in a large-scale

requires involvement of developers to update their apps to include the framework,

which is not ideal. Also, since the modifications made to the app by Itus cannot be

customized per user (they are directly integrated into the code), a task is forced to

be at the same level of sensitivity for all users, which is unrealistic, as we discussed

in Chapter 4.

Earlier, Crawford et al. [27] proposed a conceptual framework for deploying

IA which does not require modification to apps. This framework allows users to

specify an authentication confidence threshold for each task. Re-authentication

then only happens if the confidence is below the threshold, when user attempts the

task. The framework, however, does not specify what exactly constitutes a “task”

and how they can be distinguished amongst practically. Also, the authors do not

explore how such a system can technically be implemented on the current mobile

Operating Systems (OS).

Lastly, Riva et al. [98] proposed a solution called Progressive Authentication.

It determines a level of confidence in the users’ authenticity, and only prompts for

authentication when the app being launched requites high confidence. As opposed

to Itus, however, this solution works on an app level, and does not consider tasks.
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Figure 5.1: Architecture of the Gradual Unlocking System: the Components
and Their Interactions.

In this chapter, we too aim at reducing the number of re-authentication prompts.

However, unlike previous work, our solution does not assume a task to be at the

same level of sensitivity for all users, does not require developer involvement, and

provides a practical way of defining and differentiating between tasks on the phone.

Like Crawford et al. [27], our solution, which we dub the Gradual Unlocking Sys-

tem (GUS), controls access to each task based on the confidence of authentication,

However, unlike Crawford et al. [27], GUS uses the practical notion of Android

Activities to represent tasks. Also, unlike Itus, the rules that determine who can

access which task and under what authentication confidence are completely cus-

tomizable by the user in GUS, and is not embedded in the app code. We will

discuss how GUS operates in detail in Section 5.3.

5.3 System Design
In this section, we first provide an overview of how GUS operates. We then discuss

in detail the architecture of GUS, including its components and how they intercon-

nect.
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5.3.1 Overview

GUS operates based on user-to-device authentication2 and eliminates unnecessary

re-authentication prompts by requiring different authentication conditions for dif-

ferent Tasks (this is as opposed to the all-or-nothing solution where there is only

one authentication confidence threshold for the whole device, and the app-level

systems where there is only one per app.) This makes it so unnecessary prompts

are eliminated, when authentication data is lost but the task being performed is not

sensitive (as designated by the user). For example, GUS allows a non-sensitive

Task, such as checking the news, to be performed even if no authentication data is

available at all. However, it denies performing sensitive Tasks, such as banking,

unless the IA system is highly confident that the current user is authorized.3

To describe this approach in more detail, we formally define three concepts:

Tasks, Intentions, and Rules.

Tasks: Conceptually, we define a Task as a distinct series of actions that could

be performed with a mobile app, that are distinguishable in terms of purpose and

access preferences. Technically, they comprise the functionality affordances of the

app, similar to affordances of real world objects or User Interfaces (UIs) [87].

GUS provides a practical way of distinguishing between Tasks, which is through

Android Activities. This means that GUS “sees” a Task as a series of Activities that

launch on the phone. As a simple example, in case of GMail, sending email is done

through the ”ConversationListActivityGmail” Activity, whereas receiving email is

done by another Activity called ”ComposeActivityGmail”.

Using Activities to represent Tasks entails that we assume performing different

Tasks cause the launch of distinct Activities on the phone. We discuss how the

results of our user study demonstrates this conjecture to be valid, in Section 5.4.

2That is, the user is authenticated to the phone as a whole, not to each app or task individually.
Hence, the phone decides which apps/tasks to make available to the current user, taking that burden
away from apps. If any app, such a banking one, decides that the level of authentication achieved by
the device is not sufficient for they purpose, they can still perform their own in-app authentication,
such as asking for a password.

3Note that a task-level access control system still has limitations in terms of distinguishing be-
tween sensitive and non-sensitive tasks. For example, shopping can be both sensitive and non-
sensitive, depending on who is present. We discuss later in this chapter how our system deals with
these situations.
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Intentions: They are security preferences that the users have in mind about how

sensitive each Task is. They are a mapping between Tasks and three sensitivity

levels defined in GUS:

• Public: Tasks that the users perceives to not be sensitive at all.

• Semi-private: Tasks that users wants only themselves or some other desig-

nated secondary users to be able to perform.

• Private: Tasks that users want only themselves (and no other secondary

users) to be able to perform.

To configure GUS entails that the user makes their Intentions clear for each

Task, by assigning a sensitivity level to it. They could do so based on the conse-

quences of an unauthorized Task execution. As an example, consider a hypothetical

mobile game. The owner of the phone can label the “Game Activity” as Public,

and the “In-App Purchases Activity” as Private. In this case, any user (e.g, the

user’s children) can play the game with low authentication confidence, which pro-

vides better IA usability. However, GUS prevents financial purchases unless a high

authentication confidence for the primary user can be achieved.

Rules: Rules are formal descriptions of the users’ Intentions, via a machine-parseable

language. They encompass conditions under which an Android Activity (which

is assumed to be representative of a Task) can be accessed. The conditions that

GUS can enforce include: confidence of authentication, the source of authentica-

tion (i.e., whether the user is authenticated using IA or other explicit authentication

methods), and the identified user. An example Rule can be to “Deny launching any

Activity of the banking app if the identified user is not the primary user or the user

is identified through IA and the authentication confidence is below 99%.”

Using the three concepts described above, GUS is designed to enforce Rules

that preserve the users’ Intentions for their Tasks. Specifically, once the user makes

their Intentions clear through a UX, GUS will translate those preferences to Rules,

which are then enforced at run-time on the phone to control access to Tasks. While

designing such UX is out of the scope of this dissertation, we envision a simple

UI that allows the user to assign sensitivity levels to Activities an app includes.
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The list of Activities can be accompanied by short descriptions (provided by the

developer) about what the supported functionalities of each are. Doing so seems

practical as Android already allows the developer to add descriptions about how

and why each requested Permission is used by the app [4].

5.3.2 Architecture

To enforce the user’s Rules, GUS takes advantage of a compartmentalized architec-

ture, shown in Figure 5.1. This design is inspired by SELinux [105], the FLASK

architecture [107], and FLASKDroid [18]. The inspiration is in the way the Rules

are defined, and the separation between the entities that enforce the Rules (we

call these entities Policy Enforcers), the entity that store the Rules (called Secu-

rity Policy Database), and the entity that authenticates the user (called the Context

Provider). This design allows for (1) easy addition of extra IA schemes (e.g., in

case one wants to deploy a new one on the phone); (2) increased system stability,

in case of failure of one of the IA methods to authenticate the user (when there

are multiple IA methods deployed); and (3) ease of defining a new way of distin-

guishing between Tasks in the future (e.g., through Android Permissions, instead

of Activities).

To explain how GUS components interact, let us take an earlier example where

an authorized user (e.g., a child) wants to make in-app purchase in a Gaming app.

GUS access control process starts when the App (Box B1 in Figure 5.1) tries to

access/launch the purchasing Activity (B3). This request is intercepted by a Policy

Enforcer (B2) which consults Security Manager (B6) to see if the access is allowed.

To reach a decision about whether to authorize this Task, Security Manager (B6)

first queries the Context Provider (B5) to identify the current user and calculate

the confidence of authentication. Context Provider, in turn, queries all IA schemes

deployed on the phone (B4 boxes) and calculates an aggregated confidence level

for each user and reports them back (let us assume the confidence is at 80% for

the owner). Upon receiving this data, Security Manager (B6) contacts the Security

Policy Database (B7) to see if there is a Rule that matches the current conditions

(app, resource, user, confidence). If there is a rule to deny the access (in this exam-

ple, suppose there is one that denies the access below 99% confidence), Security
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Manager (B6) will respond to the Policy Enforcer (B2) to reject the access and then

will contact Re-Authenticator (B8) to initiate a re-authentication prompt. If there

is no rule to reject the access (or there is one, but it is masked by another rule that

allows the access), Security Manager (B6) allows the access to proceed.

We now explain the details of each GUS component corresponding to boxes

B2, B5-B8 in Figure 5.1:

1) Security Policy Database (SPD, B7): This component houses the SecurityPol-

icy, which consists of a set of Rules defined to protect the Tasks. To define each

Rule, a Policy Definition Language (PDL) is needed. We designed a PDL (inspired

by SELinux) that defines each rule as a tuple (Actioni, Operationi, Domaini, Typei,

Rolei, Modalityi, Confidencei).

To explain what each rule component is, consider this example: the rule to deny

our example gaming app access to the purchasing Activity when the phone owner is

authenticated with less than 99% of confidence can be expressed as (DENY, Activ-

ityLaunch, GamingApp, com.example.gamingapp.purchasing activity, PrimaryUser,

IA, 99%). We colloquially read this rule as ”DENY any Activity launch attempt

made by the GamingApp to the Purchasing Activity if the user is not the Prima-

ryUser or it is but he/she is authenticated through IA with less than 99% confi-

dence”. In general, for each rule, we have the following components:

1. Actioni specifies what GUS will do (either ALLOW or DENY the Task) if the

conditions of this security Rule (user, confidence) are met. In the example

rule, the Action is DENY.

2. Operationi specifies the type of Task this Rule protects, Currently, GUS only

recognizes Tasks as Activity launches. Therefore, the value will always be

ActivityLaunch. However, the inclusion of this field allows the system to

be expanded in the future, to explore other ways of representing Tasks (e.g.,

through Android Permissions).

3. Domaini specifies the app targeted by the Rule. In our example, the Domain

is GamingApp. This field also allows to specify a group of apps as targets, to

facilitate easier Rule development. We refer to a single app as Subject, and

to a group of apps as Domain.
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4. Typei is the resource (the Activity that is representative of a Task) targeted by

this Rule. In our example, the Type is com.example.gamingapp.purchasing activity.

This filed also allows for grouping of resources. We refer to a single resource

as Object, and a group of resources as Type.

5. Rolei indicates the user this Rule applies to (e.g., either the phone owner or

a secondary user). This field also allows for user grouping through imple-

menting RBAC (explained in Section 5.1.2). In our example, the Role is

PrimaryUser.

6. Modalityi indicates the scheme by which the current user was authenticated.

Its value can either be IA or EA. Using this field, allows performing Tasks

with EA (when authentication confidence does not apply).

7. Confidencei is a threshold for authentication confidence, any value below

which will result in the Rule being triggered (i.e., the Action will be per-

formed).

2) Policy Enforcers (PE, Box B2): This component is in charge of enforcing the

Action in each rule. Currently, GUS has only one PE–the ActivityLocker–which

can prevent Activities from being launched, depending on the state of authentica-

tion.

3) Security Manager (SM, B6): This is the policy decision point of GUS, which

combines the results of other components, to make a final decision as to what Tasks

are allowed/denied in the current state of authentication.

4) Context Provider (CP, B5): This component provides a registry which allows

IA schemes to provide it their confidence scores for each user. With this design,

we treat IA schemes as external entities which can freely register or un-register

themselves with the CP, given they are already approved to be secure by the sys-

tem (e.g., their code is signed by the cryptographic public key of the phone man-

ufacturer). This allows for easy deployment of extra schemes at any point, for

research-purposes, for example.
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5) Re-Authenticator (RA, B8): This component provides the ReAuth API which,

when called, prompts the user for re-authentication (i.e., pops up the UX for it).

The separation of RA from other components allows for easy modification of the

re-authentication UX, facilitating further research in this area, by eliminating the

need for user researchers to deal with low level OS APIs.

5.3.3 Prototype Implementation

We implemented a prototype of GUS on top of Android Open Source Project

(AOSP) version 10. In this section, we describe the details of how we did so.

Its source code can be accessed via Github4.

1) Security Policy Database: We implemented this component by extending the

Android Framework with a new Search API for our Security Policy Database. To

provide the back-end implementation of the API, we developed a new system-level

app, called SPD, which registers a service supporting the API with ServiceMan-

ager—an entity responsible for managing backend services on Android. We had

to implement SDP as system-level app as it uses protected system calls which can-

not be implemented in normal apps. This approach is identical to how most system

services are implemented on Android, e.g., the PackageManager service which

controls the (un)installation of apps.

We also designed an XML schema for our Policy Definition Language. The

SecurityPolicy is stored in an XML file that uses this schema (an example file is

provided in the source code). When the SPD app first starts, it parses this file and

loads it into an in-memory SQLite database, used for fast lookup of Rules.

2) Policy Enforcers: To implement ActivityLocker, we have modified Android’s

WindowManager, which is a system service responsible for managing the visibility

of Activities. Our modifications call the Security Manager every time an Activity

is about to be made visible, to make sure showing the Activity under the current

authentication state do not violate user’s SecurityPolicy.

3) Other Components: Security Manager (SM), Context Provider (CP), and Re-

Authenticator (RA) were implemented in a similar approach to SPD. In short, for

4https://github.com/mehrabik/GUS
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each component, we added the corresponding API to Android Framework and then

created a new system app that registered a back-end service for the API, with Ser-

viceManager.

4) Dummy IA Scheme: To allow accurate evaluation of the usability/security of

any future solutions (which might use GUS as a basis for their deployment), we

have implemented and included a dummy IA scheme in our code. It allows re-

searchers to specify and change the authentication confidence for each user manu-

ally, through a simple UI.

5.4 Evaluation
To estimate the efficacy of GUS, we sought to answer the following research ques-

tions:

• RQ1 [To gain detailed data on users’ authorization needs]: What are

the Tasks that smartphone users perform on their phones, and what are their

Intentions for the tasks?

• RQ2 [To evaluate/compare the efficacy of GUS]: Given the users’ Tasks

and Intentions, how does the IA deployment solutions compare, in terms of

conforming to the users’ Intentions?

5.4.1 Methodology

To address RQ1, we use the tasks and access control needs data from the longitu-

dinal diary study we described in Chapter 4. We treat the access control needs as

Intentions, where we map “No-one,” ”Specific People,” and ”Any-one,” labels to

Public, Semi-private, and Private Intention designations in GUS, respectively.

To estimate the efficacy of different solutions for RQ2, we assume a scenario

in which the IA data (e.g., gait data) has become unavailable mid-session. We then

count for how many the user’s Tasks, a solution would show/miss (un)necessary

re-authentication prompts. We use the user’s Intentions to decide which prompts

are (un)necessary. For example, since the all-or-nothing solution always shows the

re-authentication prompt (no matter what Task is being performed), the user would
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incur unnecessary prompts for any “Anyone” Tasks. However, they would not miss

any necessary prompts, since the prompts are always shown.

Formally, we calculated two rates per solution:

• False Positive Rate (FPR), also known Fraud Rate, was calculated as the

ratio of the number of Tasks the solution would mistakenly make available

to unauthorized users (i.e., misses to show a necessary prompt for), by the

total number of the participant’s Tasks. It would directly impact the security

of a solution, as higher FPR would indicate higher chances of unauthorized

access.

• False Negative Rate (FNR), also known as Insult Rate, was calculated as the

ratio of the number of Tasks that the solution would mistakenly deny access

to to authorized users (i.e., would show an unnecessary prompt for) by the

total number of the participant’s Tasks.

The rates are calculated per participant and then averaged over all participants.

Also, we also calculated the rates in two different subscenarios: CONSERVATIVE

and MAXIMAL. Each scenario constituted a different way of aggregating the par-

ticipants’ Intentions for solutions that are less granular than Task. We will discuss

in more detail what this entails, later in this section.

We should note that there is a major difference between how the rates are calcu-

lated in this chapter, compared to how they were in Chapter 4. There, we calculated

separate rates for the task-sensitivity and phone sharing scenarios. Here, we con-

sider both scenarios together. When applicable, we assume that the primary user

has shared their PIN with the secondary users, so they have access to all tasks on

the phone.

To calculate the rates for the solutions that operate based on Android Activities

(i.e., Itus and GUS), we needed to map Tasks to Activities (that is, to know what

Activities are launched when each Task is performed). Specifically, we needed to

know what Tasks cannot be distinguished using Activities. To obtain this, for each

instance of a participant p reporting to perform a particular Task t on d-th day of the

study, we created a set (denoted Ad
p(t)) that included all Activities launched in the

app that offers the Task t, on that day. For example, if the i-th participant reported
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to ”Send email” using the GMail app on the 12th day of the study, we would create

a set (A12
1 (sendmail)) which includes all Activities launched with GMail on the

12th day, on the i-th participant’s phone.

Once such sets were obtained for all tasks, days and participants, we calculated

the intersect of all the sets corresponding to each Task t, which we denote as A(t):

A(t) =
dinD⋂
pinP

Ad
p(t) (5.1)

Here, P represents the set of all participants and D represents the set of all study

days. The set A(t) represents the set of all Activities that would always be launched

if the Task t were performed. Hence, we use A(t) as a representative of the Task t.

We took note of any Tasks with A(t) = /0, as they could not be distinguished

using Activities. Additionally, depending on how the app is programmed, there

might be cases that for two different Tasks t1 and t2, the Activity sets are the same

(i.e., A(t1) = A(t2)). In such cases, the Tasks could not be distinguished using

Activities either. So, we recorded all instances of such Tasks, as well.

Armed with this data, we calculated FPR and FNR of each solution in the

following way:

• Itus treats each Task to be at the same sensitivity for all participants. Hence,

we needed to aggregate all participants’ Intentions to have one Intention per

Task. We also needed to aggregate Intentions in-between Tasks that are in-

distinguishable using Activities. In the CONSERVATIVE scenario, we as-

signed to each Task the most conservative of the participants’ Intentions for

it and all other Tasks that have the same A(t). For example, if at least once

participant labelled the Task ”Sending email” as Private, it would be treated

as Private for all participants. In the MAXIMAL scenario, majority voting

was used to assign Intentions to Tasks.

To compute the rates, any discrepancy between a participant’s individual

Intentions for a Task, and the consensus Intention for it would count towards

FPR or FNR, depending on whether the consensus was more restrictive than

the individual Intention or vice versa.
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• ProgAuth represents the Progressive Authentication solution proposed by

Riva et al. [98]. Since it works on an app-level, we needed to aggregate

each participants’ Intentions, to have one Intention per app per participant.

In the CONSERVATIVE scenario, we took the most conservative of the par-

ticipant’s Intentions for all Tasks in an app. In the MAXIMAL scenario, we

took majority of the Intentions for the app’s Tasks. Any discrepancy between

a Task’s Intentions and that of the app that offers then would count towards

FPR and FNR.

• GUS allows separate Intentions for each Task. Therefore, there would be no

need for Intention aggregation, in general. However, there might be cases

where two Tasks cannot be distinguished using Activities. In such cases, an

aggregation will be performed amongst the Intentions of the Tasks that have

the same A(t), either in a conservative or majority voting manner. Discrepan-

cies between individual Intentions for a Task and the aggregated one, would

then count towards FPR and FNR.

• PerfectTask represents a hypothetical system that could perfectly distin-

guish between the users’ Tasks. It is included as a lower bound of FP and

FN (i.e., a hypothetical “perfect solution”), against which all other solutions

will be compared. Note that the FPR and FNR of this solution are not zero

because the participants sometimes provide inconsistent Intentions for the

same Task (i.e., when asked multiple times, they label it once as Private and

another time as Semi-private). In such cases, an aggregation would be per-

formed, according to the scenario (CONSERVATIVE or MAXIMAL), and

discrepancies between the aggregate and individual Intentions count towards

FPR and FNR. Note that such discrepancies affect all other solutions as well.

• All-or-nothing always shows the prompt, and does not take Tasks into ac-

count. Hence, there would be no missed necessary prompts (i.e., FPR = 0).

However, any Public or Semi-private Task would count towards the FNR.

In summary, our evaluation estimates how often the solutions fail to meet the
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Figure 5.2: Comparison of FPR and FNR of the solutions in the CONSER-
VATIVE scenario.

users’ Intentions, by either showing a re-authentication prompt when it is unneces-

sary (i.e., a False Negative), or not showing one when it should (a False Positive).

For Activity-based solutions, failure happen when the solutions cannot distinguish

between Tasks using Activities. For ProgAuth, failures happen when apps offer

Tasks with different sensitivity levels. For all-or-nothing, any Task non-Private

Task would be a failure.

5.4.2 Results

RQ1: As discussed in detail in Chapter 4, in total, the participants reported per-

forming 1,149 distinct Tasks on their phones, using 571 distinct apps. On average,

each participant reported performing 74 distinct Tasks (min = 24, max = 142), us-

ing 48 apps (min = 12, max = 103). The average number of Tasks performed by

each app was 2. As for the Intentions, the participants indicated to be willing to

share a large portion (43%) of their tasks with others. Specifically, 23.7% of the

Tasks were labelled as Semi-private, whereas 19.3% were labelled as Public. The

rest were labelled as Private. Also, each participant had conflicting Intentions for

6 of their apps on average, meaning the Tasks in these apps had different Inten-

tions (e.g., some were Private, while others were Public). Moreover, 4 of the each
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Figure 5.3: Comparison of FPR and FNR of the solutions in the MAXIMAL
scenario.

participants’ app had all Public Tasks, on average.

Additionally, our data showed that Itus’s underlying design assumption (that

Tasks are the same level of sensitivity for all users) does not hold5. Amongst the

1,149 Tasks that the participants reported performing, 618 (53.8%) were performed

by more than one participant. Across these tasks, we observed that in 21% of the

times (meaning 21% of the reported instances of the participants performing one

of these Tasks), there were disagreements on the sensitivity of the Task. For ex-

ample, for the Task ”Browsing/reading received emails,” with the GMail app, 76%

of the participants who performed it labelled it as Private, whereas 10% labelled it

as Semi-private, and the rest labelled it as Public. Hence, our data clearly demon-

strated that not all users are willing to share the same Task with the same set of

people. We will demonstrate in the next section how this negatively affects the

efficacy of Itus.

RQ2: Firstly, regarding mapping Tasks to Activities, we found Activities to be able

to successfully represent the majority of the participants’ Tasks. In total, 655 (57%)

of the reported Tasks caused the launch of a unique set of Activities (no overlapping

A(t)s), allowing Activity-based solutions to differentiate between them unequivo-

5Although not explicitly acknowledged by the authors of Itus, this assumption is implicit in the
design of the system, due to the hard-coded nature of the modifications made to the apps.
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cally. Additionally, 207 (18%) of the Tasks caused the launch of a some Activities,

but their Activity set (A(t)) was shared with another task. Finally, 287 (25%) of the

Tasks did not cause the launch of any specific Activities and are indistinguishable

to GUS or Itus.

As for how the solutions compare, we first discuss the CONSERVATIVE sce-

nario. The FPR and FNR of each solution in this scenario is depicted in Figure 5.2.

Naturally, the FPR of all solutions is zero, as the most restrictive Intentions are

always applied. However, this elimination of unauthorized accesses, comes with a

noticeable trade-off–any discrepancy in Intentions manifests itself as a rise in FNR,

instead.

Unsurprisingly, all-or-nothing provides the worst, as it is the least granular. It

has an FNR of 21.2%, which entails an estimated 21% of the re-authentication

prompts it invokes are unnecessary (in case the users want to have the lowest

chance of unauthorized access, as represented by the CONSERVATIVE scenario).

This clearly justifies why Agarwal et al. [2] found their participants to perceive the

all-or-nothing implementation of IA as “annoying.” It disrupts them frequently.

Moving to its alternatives, Itus seems to not provide any significant improve-

ment, due to its disregard for individual sensitivity preferences. Before, we dis-

cussed how there is often disagreement between participants as to how sensitive a

Task is. Here, we can clearly see how extensively these disagreements affect its

efficacy. Evidently, 19% of the prompts it invokes are unnecessary, because even

if one single person perceives a Task as Private, the app developer would need to

lock it behind re-authentication for all users. Our results clearly show how this can

cause frequent unnecessary interruptions.

ProgAuth, conversely, seems to actually provide a noticeable improvement.

Even though it is less granular than Itus, its user customizability allows it to achieve

a nearly 5% lower FNR than Itus, as we see in Figure 5.2. This observation clearly

suggests that increased granularity needs to be accompanied with a respect to indi-

vidual preference, as well. Otherwise, the benefits of more granular control could

quickly diminish. This is exactly why GUS furthers the improvements of Pro-

gAuth. It combines the high granularity level of Itus with the user customizability

of ProgAuth. As a result, it is able to reduce FNR to 6.7% (less than half of the

other two), as the figure shows. Comparing GUS to PerfectTask, we can see that
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GUS gets very close to the absolute best case scenario as well, with only a 1%

higher FNR.

Moving to the MAXIMAL scenario, which is depicted in Figure 5.3, we can

see different trade-offs between FNR and FPR. While the all-or-nothing rates does

not change (as there is no Intention aggregation), majority voting unanimously

leads to lower FNR for other solutions, albeit with small increases in FPR. In case

of GUS, for example, FNR is approximately halved (From 6.69% to 3.23%), with

only a 1.31% FPR trade-off. This entails that GUS is able to eliminate 97% of the

unnecessary re-authentication prompts, while only eliminating 1% of the necessary

ones, as well. It is out of scope of this research to evaluate which aggregation

model (CONSERVATIVE or MAXIMAL) the end users actually prefer. However,

our data clear shows that, if a user accepts a slightly higher risk of unauthorized

access (specially for Semi-private tasks, which are not as sensitive as Private ones)

MAXIMAL can lead to noticeably fewer re-authentication interruptions.

In spite of the FPR-FNR trade-off changes, however, the order of efficacy be-

tween solutions is the same as in the MAXIMAL scenario. As Figure 5.3 shows,

All-or-nothing still provides the worse FNR, with Itus, ProgAuth, GUS and Per-

fectTask each providing improvement over the other. Interestingly, it can be seen

that the difference between GUS and PerfectTask is even smaller in the MAXI-

MAL scenario. There is only a 0.3% difference in FPR and a 0.2% difference in

FNR. So, it seems that Activity-locking can indeed provide an apt implementation

of the Task-based unlocking model.

In summary, and to answer RQ2, our results show that, while all-or-nothing

provides the worst FPR in both scenarios, Itus does not provide much improvement

either. ProgAuth can provide substantial improvement. However, GUS outper-

forms it noticeably. Lastly, we found that GUS gets very close to the performance

of a hypothetical “perfect” Task-locking system.

5.5 Discussion and Future Work
Nowadays, smartphone users perform many different tasks on their phones, with

varying privacy-sensitivity levels. Based on the results of our study, each user

performs 74 distinct tasks using 48 different apps, on average (see Section 5.4.2).
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While 50% of these tasks are considered private (meaning the users do not want

anyone else to be able to preform these tasks on their phones), 20% of the tasks

are considered public (meaning the users are willing to have them available even

if no authentication is performed). Additionally, 30% of the tasks are considered

shareable with some specific people, such as spouses, but not the public.

This complex mixture of sensitivity levels makes providing apt physical secu-

rity on smartphones challenging. On the one hand, the high proportion of private

tasks (e.g., banking) makes user authentication and access control an absolute ne-

cessity. On the other hand, the high number of public tasks makes manual unlock-

ing an unnecessary burden for performing the many insensitive tasks.

Implicit authentication (IA) solutions can be used to address this dichotomy.

Instead of forcing the users to provide explicit inputs every time they want to per-

form any task, these solutions use behavioural or contextual data (e.g., biomedical

signals [84]) to authenticate the users unobtrusively. This allows them to alleviate

the cognitive and physical overhead of explicit authentication. We found that, even

in the worst case scenario, any IA solution can eliminate 80% of the unnecessary

unlocking attempts (see Figure 5.2).

In reality, however, these unnecessary attempts can be “annoying” [2]. So,

several solutions have been proposed to eliminate them. Itus [62] is one of the

most prominent such solutions, which operates based on Android Activities. It

assumes that tasks can be represented by Activities, which our study showed to

be valid. Evidently, we found that 57% of the users’ tasks can unequivocally be

distinguished using Activities, while a further 25% of them could potentially be

distinguished, as well (see RQ2 in Section 5.4.2).

However, Itus also unrealistically assumes that each task is at the same sensi-

tivity level for all users, which our study found to not be the case. We found that in

at least 25% of cases, our participants disagreed on whether a task was Public, Pri-

vate or Semi-private (see RQ1 in Section 5.4.2). Because of this, we found that Itus

does not provide much improvement over the all-or-nothing model, and between

17% to 19% of its prompts is still unnecessary (see Figures 5.2 and 5.3).

Progressive Authentication [98] is another proposed solution which operates on

an app level. Even though this solution has not been directly proposed for the IA

re-authentication solution, it can be easily adopted for this purpose. Our estimation
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showed that even though it is less granular than Itus, it can eliminate between 5% to

7% more of the unnecessary re-authentication prompts, because it heeds individual

users’ sensitivity preferences.

Due to the limitations of the existing solutions, we proposed our own approach

as well, which we dubbed the Gradual Unlocking System (GUS). GUS gradually

lets the user to perform more tasks, as the confidence of authentication increases.

Like Itus, we use Android Activities as the mean of distinguishing tasks. Unlike

it, however, GUS allows the user to customize the sensitivity levels of tasks. Our

study estimated that GUS can improve IA usability significantly, when compared

to the other solutions. We found that it can eliminate between 94% to 97% of the

unnecessary user interruptions. We also found GUS to get very close to the efficacy

of a hypothetical “perfect” task-locking solution (see Section 5.4.2).

One drawback of GUS, however, is in the amount of effort the user needs to

put into configuring it. While the all-or-nothing model requires no knowledge of

the users’ sensitivity preferences for their tasks, GUS requires perfect knowledge

of them. We estimated that each user performs 74 tasks on their phones, with

nearly 50% of them being Private. Assuming a default Private policy for the tasks,

this means that a user need to make 37 configuration adjustments to make their

sensitivity preferences clear to GUS, which might be prohibitive. In comparison,

the users would need to make their intentions clear for 10 of their apps on average,

as these apps have either conflicting or all Public tasks (See RQ1 in Section 5.4.2).

Additionally, the user might also want to specify their preferred authentication

confidence threshold for each category of Tasks (e.g., No-one or specific people

ones). Designing the UX for such case could also require careful consideration.

Simply allowing the users to specify thresholds in terms of percentages might not

be very comprehensible to them, which could lead to dangerous security errors

(e.g., too low values being selected). Instead, one possible solution could be to

use some safe defaults for the thresholds and asks users occasionally whether they

are facing too many unnecessary prompts or missing too many necessary ones.

Based on the received feedback then, the system can adjust the threshold values

accordingly. Further studies, however, are required to evaluate the usability of this

approach empirically or explore other alternative UX designs.

Based on the above revelation, it seems that the best approach for deploying
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IA might be a a hybrid deployment between GUS and ProgAuth. Users can start

with ProgAuth, as it requires the least effort. Afterwards, only if they find that an

app is suffering from too many unnecessary re-authentications (as it has tasks with

conflicting preferences), they can enable GUS for that particular app and assign

sensitivity labels to each task in it, individually. Fortunately, GUS is designed

in a way that allows for app-level control of access, as well (see Security Policy

Database in Section 5.3).

Exploring ways of easing it for users to provide their Intentions for GUS can

also be an avenue for future research. One possible solution is to include with GUS

a default set of Rules with default sensitivity labels for common apps. The user can

then customize the defaults based on their own needs. The Rules provided with

our prototype implementation (see Section 5.3.3) can serve as examples of such

defaults. They include default Intentions for popular apps on Google Play Store.

An additional possible solution is to allow developers to include app-specific Rule

files with their apps. These will provide default Intentions for tasks the apps offers.

Lastly, since studies have demonstrated how some of smartphone users’ privacy

and security decisions can be predictable [121–123], we believe it might be feasible

for a trained machine learning classifier to learn and generate user-specific Rules

automatically. This might be possible to do by only asking only a few questions

from the user [122].

In the end, we should also note that another drawback of the more granular

access control solutions, such as GUS, is the added complexity of conveying their

semantics to users effectively through apt UX design (as we saw the case with IA

in Chapter 3). While all-or-nothing has straight-forward operating logic (i.e., the

phone is either fully locked or fully unlocked), GUS and other granular solutions

have nuances about what apps are accessible to the user at any point in time. It is

out of the scope of this work to investigate how such UX can be designed. Further

research is needed to address this gap.

5.6 Limitations
In addition to the limitations discussed in Section 5.4, any limitations of the lon-

gitudinal user study discussed in Section 4.5 is applicable to our findings in this
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chapter as well. Also, since our solution requires modifying Android OS, its wide-

spread adoption could be hindered by requiring manufacturer involvement.

5.7 Conclusion
To solve the IA re-authentication problem, and also to propose a practical solution

for enabling task-based access control on smartphones, we explored the idea of

gradual unlocking. The intuition was that tasks performed on a phone have dif-

ferent levels of sensitivity, and it might not be necessary to prompt the user for

re-authentication if they are performing a non-sensitive task. We designed a sys-

tem that enables such granular re-authentication prompting, by locking Android

Activities to authentication confidences. We implemented a prototype of it on

top of AOSP 10. We used data from our longitudinal user study to estimate the

efficacy of GUS (i.e., the number of (un)necessary re-authentication prompts it

shows/misses). Results showed it could eliminate up to 97% of the unnecessary

interruptions, while only missing 1% of the necessary ones. We found our solu-

tion to out-perform other state-of-the-art solutions, albeit with a trade-off in the

required configuration effort. We proposed several ideas for future work to reduce

the configuration effort of the system. In the end, we hope our framework can pave

the way for more usable IA deployment on smartphones, and improve its chances

of adoption by users.
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Chapter 6

Discussion and Conclusion

In this research, we aimed to better understand the user experience with smart-

phone physical security. The goal was to put forward a clearer picture of the state

of research and practice, and provide suggestions for improving existing physical

security solutions. We discussed the implications of the results of each of our stud-

ies in their respective chapters. Here, we focus on the overall takeaway messages.

Takeaway 1) We argue that, even though our results agree with the literature in

that the current physical security solutions are sub-optimal, they also demonstrate

the inefficacy of the existing solutions to be more nuanced than what the literature

depicts. To explain why, let us discuss what the literature posits about the state of

practice:

1. For authentication, the literature demonstrates qualitatively that the current

knowledge- or biometric-based authentication systems are cumbersome and

awkward. For example, they found that current solutions might force users to

spend more time unlocking the phone, than actually using it, in short phone

sessions [74]. They also found that biometric-based solutions (e.g., Face

Unlock) impose negative externalities, such as the awkwardness of holding

the phone in front of one’s face [29]. As such, there were estimates that

nearly 35% of users might completely forgo authentication[33, 51, 52, 82].

2. For access control, the literature shows that the current all-or-nothing access-

control model is too simplistic to aptly meet users’ needs. It lacks sensitivity
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to task security requirements [33, 54], forcing users to unlock phones for

even mundane activities, such as checking the weather. The system also does

not enable users to assert apt control when sharing phones, despite the high

prevalence of the practice [50, 54, 60, 77], which could lead to unauthorized

access [75, 76].

As we can see, existing studies are mostly qualitative in both domains (au-

thentication and access control). This prevents one from drawing any conclusion

about the nuances that pertain to the prevalence or the severity of the issues. For

example, while the literature provides evidence that all-or-nothing lacks the autho-

rization sensitivity that “some” users require [54], it provides no statistics about

what percentage of users’ tasks might actually be sensitive and require authenti-

cation. This makes it difficult to judge whether this lack of sensitivity is truly a

wide-spread problem, or rather it is relegated to corner-cases faced by only the

most peculiar of users.

We, on the other hand, provide such statistics. Put simply, we re-evaluate the

literature’s findings in more detail:

1. For authentication, we found that, the incumbent solutions indeed fail users.

However, in contrast to the literature, we found that the percentage of users

adopting authentication is actually higher than previous estimates: We found

nearly 90% of our participants to have adopted authentication, compared to

much lower estimates of 65% before [33, 51, 52, 82]. Comparing our re-

sults to the literature (discussed in Chapter 1), there seems to be an overall

trend that with the advent of better biometric unlocking solutions, such as

FaceID and TouchID, more and more users are willing to adopt authentica-

tion. Hence, the adoption issue might not be as dire as it once seemed.

Also, as discussed in Chapter 3, we identified, for the first time, specific

aspects of IA that could cause users to misunderstand its semantics, lead-

ing to incorrect security perceptions, dangerous security errors, and lack of

adoption. Such aspects ranged from simple information, such as range pa-

rameters (e.g., how long the range of a Bluetooth connection is), to more

complex concepts, such as the logical relationship between the outcome of

IA and explicit authentication systems (i.e., if there is a discrepancy between
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the authentication systems’ decisions about the authenticity of the user, how

would the phone behave?). We also found that the struggle with compre-

hending IA semantics is rather universal, as no group of users seems to have

a significantly more accurate understanding.

2. For access control, our results agreed with the literature that all-or-nothing

lacks sufficient task sensitivity and phone sharing. However, we measured

the extend of this issue quantitatively and found some nuance. For example,

we found that while 57% of the users tasks do indeed require authentication

all the time, 24% are more nuanced and should be open to sharing, and 19%

do not require any authentication. Overall, we found that for a considerable

number of users, all-or-nothing might work just fine, and even those with

more complex needs might be able to find a nice balance between usability

and security by switching to an app-level model, relegating task-level access

control to be more appropriate for only a minority of users.

Takeaway 2) We argue that the proposed alternative solutions for physical security

are not as effective as the literature paints them to be. The literature advocates for

implicit authentication (IA) [63] and more granular access control [72, 98]. How-

ever, to the best of our knowledge, there has never been an independent evaluation

of these alternatives, to objectively investigate their merits. We set out to perform

such evaluation, and we found our results to sometimes agree with and sometimes

contradict the literature:

1. Regarding authentication, when we studied how users perceive and under-

stand IA, we found many adoption hindrances that prior work failed to no-

tice. Actually, contrary to the literature [26, 62] (as discussed in detail in

Chapter 2), we observed a very low adoption rate for IA. That is, we observed

how a widely deployed commercial solution (Smart Lock for Android) has

failed to conjure any meaningful following (less than 14% adoption rate), af-

ter being available on more than 500 million phones for over five years [41].

We further explain this low adoption rate by proposing a new extension (SL-

TAM) to the technology acceptance model. The model demonstrated strong

correlations between the users’ perception of usefulness, ease of use, and
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security and privacy of SL, and their intention to adopt it.

We, therefore, argue that the the adoption of IA might not be for everybody,

and that IA should not be viewed as a one-size-fits-all solution. This is con-

trary to two general beliefs in the literature [27, 62]: (1) the added value of

IA will be immediately obvious to users, and (2) the reliability of current

solutions are good enough for wide deployment (as done by Smart Lock). In

place of these beliefs, we contribute to the community SL-TAM, a model that

allows them to gauge what could potentially make an IA scheme appealing

to a certain group of users, in a certain circumstance.

2. Regarding access control, we found that going more and more granular with

access control might not be the best of ideas. We found that the app-level

access-control systems (that some researchers have proposed before) could

actually be a sweet-spot of sorts, and be the best way forward (at least con-

ceptually). These app-level solutions could potentially reduce the percentage

of the users’ tasks that are exposed to unauthorized access to 3.5%, while

also reducing the unnecessary explicit re-authentications by 11.3%. In con-

trast, w found that the task-level models could further reduce unnecessary

authentications to 1.7%, but with a noticeably higher 15% increase in the

required amount of configuration (which the users need to handle). This

makes us advocate, overall, for wider deployment of app-level access con-

trol on smartphones, rather than task-level models or all-or-nothing ones.

This increase in configuration effort also provided evidence why users might

be unwilling to switch to such granular systems. Whereas the all-or-nothing

system requires a one-time unlocking set-up, the app- and task-level solu-

tions require detailed and lengthy configurations.

Takeaway 3) We argue that one cannot try to “fix” the authentication and access-

control systems individually. They must be considered together. As discussed in

Chapter 5, if one tries to switch the authentication system to IA while still pre-

serving the all-or-nothing access-control model, it might lead to excessive user

interruptions due to intermittent availability of data. In fact, it was this revelation,

in addition to a lack of practical solutions for performing task-based access control
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(which was discussed in Chapter 4), that made us decide to propose a new ac-

cess control solution in this dissertation. Dubbed the “Gradual Unlocking System”

(GUS), the solution tries to facilitate IA deployment by tying the user’s ability

to perform tasks to the confidence of authentication. As discussed in Chapter 5,

our evaluation results showed that GUS can reduce unnecessary re-authentications

significantly (by 96%) with a modest security trade-off (a 1% increase in missed

necessary re-authentications). However, we should note that our solution is not

designed (or positioned to be) the be-all and end-all solution. It only focuses on

solving the granularity issue in access control. There are many other issues with the

incumbent all-or-nothing system (e.g., lack of phone sharing support) that require

new ideas and further research.

Takeaway 4) We argue that access control on smartphones is quite different than

on other systems, thus, it merits its own research. For example, one could have

argued that instead of proposing a new access control solution, why not adopt a

solution designed for other domains (e.g., personal computers), which might have

years of research spent on them. We argue that it is not so straight-forward to do

so. Our studies (discussed in Chapters 4 and 5), as well as existing literature [77]

show that sharing habits are different per device type (e.g., even amongst tables and

phones). This makes access control design requirements different per different de-

vice type. For example, the username and password based system of authentication

and access control on computers has already been shown to be too cumbersome to

use on smartphones, as sharing on smartphones does not happen for the same pur-

poses as the computers (we discussed this in Chapter 4. As such, a system designed

for a stationary computer might not be suitable for phones.

Takeaway 5) Based on our results, we propose the following avenues for future

research or deployment in physical security on smartphones:

1. We recommend IA solution designers to pay attention to our recommenda-

tions in Chapter 3, and improve their UX to better communicate the utility

and semantics of their solution to users. Otherwise they might be doing users

a disservice by making their phones less secure (as discussed in Chapter 2).

2. For researchers, we provide, in Chapters 2 and 3, several ideas on how to

135



improve IA in both technical and non-technical ways. On the technical side,

future researchers can focus on proposing solutions that would improve the

speed of authentication in IA solutions, which would improve the perceived

usefulness of the technology for users, as argued by SL-TAM. They can also

focus on evaluating alternative designs for IA UX, to better convey IA utility

and semantics to users. Based on SL-TAM, this could lead to improvements

in perceived security and privacy.

3. For access control, we provide ideas, in Chapters 4 and 5, that future research

can explore to automate the configuration process (e.g., through machine-

learning-based approaches). Overall, we recommend that future researchers

focus on improving the UX for access control, as well as facilitate better de-

veloper integration. For example, future researchers can focus on proposing

and evaluating alternative designs for the UX of app- and task-based access

control, in order to maximize user satisfaction. They can also work on in-

tegrating task-definition APIs1 as well as default sensitivity levels for each

Task. Doing so could reduce the configuration burden on users, by providing

them with safe defaults (which they could customize if needed).

To summarize, we believe our studies clearly show the broken state of smart-

phone physical security. They show that the incumbent systems are insufficient

and the alternatives are not yet mature enough to take over (We should acknowl-

edge, however, that there could be a myriad of other factors—social, economic,

or otherwise—that have lead to the current stagnancy of the incumbent system,

which are beyond the scope of this work.) To improve this state, based on our

findings we advocate for a future when authentication is done implicitly for those

who need it, while its utility and semantics are clearly communicated to the user

through apt UX design. This authentication would also be done in conjunction

with task-level access control and an app-level default policy. That is, the phone

would be able to lock tasks individually, satisfying even the most complex access-

control needs; however, to reduce the required configuration effort it would ask for

app-level access-control preferences from the user by default.

1That is, an API that allows app developers to specify what tasks their app affords.
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In the end, we should also call attention to the many limitations of our studies

and ask for carefulness when generalizing the findings beyond our original studies.

Our participant samples are not fully representative of the global smartphone user

population, especially regarding culture and ethnicity. Hence one should not as-

sume the same trend of behaviour we observed with regards to IA and granular ac-

cess control to apply anywhere in the world. Our data are also mostly self-reported,

which make them lack 100% reliability all the time. As such, the actual need for

IA and access control might not be fully reflected in our results. We should also

note that we only focused on one implementation of IA, which is SL. We did so

because it was the only widely deployed IA solution on smartphones at the time

of the study. In the future, comparative studies should be conducted to investi-

gate users’ perceptions of other possible implementations and provide a more clear

picture of their needs and preferences.
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Appendix A

Supporting Materials

A.1 Cognitive Walkthrough With Users Material

A.1.1 Persona, Task and Action Sequence Definitions

• User Profile: It is important to define the profile correctly because any un-

reasonable assumption about the abilities of the user can negatively influence

the CW findings to be unrealistic, and not representative of the interaction

between a user and the UI in reality. In case of SL, based on Google’s de-

scription of the technology, we assumed that the UI caters for users that have

some experience with a smartphone but no particular knowledge or training

in SL authentication, or any other aspect of computer security or privacy.

Therefore, throughout the course of the CW sessions, we asked our HCI-

proficient participants to put themselves in the shoes of a computer-science-

illiterate regular smartphone user.

• Task List: We chose those tasks that are more likely to be performed by

a first-time SL user. The tasks included enabling/disabling on-body detec-

tion, adding/removing a new trusted place, adding/removing a trusted device,

adding/removing a new trusted face, setting up/removing a voice model for

Voice Match.

• Action Sequences: To the best of our ability, we designed the action se-
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quences to be as simple as possible and to resemble real usage. When pos-

sible, we also used steps outlined in the SL help page to design the action

sequences.

• CW Problem Reporting Form: We designed a form that allowed each par-

ticipant to answer typical CW Yes/No questions, in addition to providing

space for them to write down their comments about each step in the action

sequence and each task in general. The handouts also include all the tasks

we defined and (in case of CW) the action sequence for each task.

• UI Representation: For participants in the group sessions, we projected in

real-time the UI of an Android phone (Google Nexus 6P) on a large TV

screen using a Google Chromecast. This was done so that all the partici-

pants can see on the screen the task being carried out and the corresponding

UI. For think-aloud sessions, we handed the same Android smartphone to

participants.

A.1.2 Cognitive Walkthrough Handout

Consent: Please read the consent form carefully and sign it before starting with

the study. Feel free to ask any questions you might have.

Task scenario: You just heard about Android’s Smart lock feature, you want

to explore it and set it up for use on your mobile device.

Instructions: For each Action Sequence below:

• Look at the UI on the TV and pretend to do the action and ask yourselves

Q1-Q4; write down Yes/No

• If answer is No for any question:

– Write down the problem (Possible solutions if you have ideas)

– Then assume it’s fixed; go on to next step

Answer these question after you’ve gone through all the action sequences:

• What do you think Smart Lock is supposed to do? What is it good for?
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• How do you think each of the smart lock methods (On-body detection, Trusted

devices, Trusted places, Trusted face and Voice match) function?

In the end, please write any comments or suggestions you have regarding this study,

the Smart Lock functionality or the UI.

Questions:

• Q1: Will the user try to achieve the right action? (Does the user know what

to do?)

• Q2: Will the user notice that the correct action is available? (Is the action

e.g menu/button/... visible to the user?)

• Q3: Will the user associate the correct action with the effect that the user is

trying to achieve? (Does the action have good labeling and suitable signi-

fiers?)

• Q4: If the correct action is performed, will the user see that progress is being

made toward solution of the task? (Will the user understand the system’s

response? Is the feedback understandable? And will the interpretation be

correct?)

Action sequence for opening Smart Lock settings:

1. Click on “Settings” on your smart phone

2. Click on “Lock screen and security”

3. Click on “Smart Lock”

4. Draw the current security pattern

Action sequence for enabling On-Body Detection:

1. Open Smart Lock settings

2. Click on “On-body detection”

3. Slide the slider to “On” for Task 1 or to “Off” for Task 2
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4. Click on “Continue” (Only for Task 1)

5. Click on the “Back arrow”

6. Click the “Home” button

Action sequence for adding a new trusted place:

1. Open Smart Lock settings

2. Click on “Trusted Places”

3. Click on “Add Trusted Place”

4. Select a location

5. Click on the “Back arrow”

6. Click the “Home” button

Action sequence for deleting a previously added trusted place:

1. Open Smart Lock settings

2. Click on “Trusted Places”

3. From the list of locations, click on the one you want to delete

4. Click on “Delete”

5. Click on the “Back arrow”

6. Click the “Home” button

Action sequence for adding a new trusted device:

1. Open Smart Lock settings

2. Click on “Trusted Devices”

3. Click on “Add Trusted Device”

4. Choose a device
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5. Click on the “Back arrow”

6. Click the “Home” button

Action sequence for deleting a previously added trusted device:

1. Open Smart Lock settings

2. Click on “Trusted Devices”

3. From the list of devices, click on the one you want to delete

4. Click on “Remove Trusted Device”

5. Click on the “Back arrow”

6. Click the “Home” button

Action sequence for adding trusted face:

1. Open Smart Lock settings

2. Click on “Trusted Face”

3. Click on “Setup”

4. Click on “Next”

5. Hold your face inside the circle drawn on screen

6. Click on “Done”

7. Click on the “Back arrow”

8. Click the “Home” button

Action sequence for improving trusted face detection:

1. Open Smart Lock settings

2. Click on “Trusted Face”

3. Click on “Improve face-matching”
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4. Click on “Next”

5. Hold your face inside the circle drawn on screen

6. Click on the “Back arrow”

7. Click the “Home” button

Action sequence for deleting trusted face:

1. Open Smart Lock settings

2. Click on “Trusted Face”

3. Click on “Remove trusted face”

4. Click on “Remove”

5. Click the “Home” button

Action sequence for enabling Voice Match:

1. Open Smart Lock settings

2. Click on “Voice Match”

3. Slide the slider for “Say ‘Ok Google’ any time”

4. Click on “Next”

5. Say “Ok Google” three times

6. Click on “Yes, I’m in”

7. Draw the security pattern

8. Click on the “Back arrow”

9. Click the “Home” button

Action sequence for deleting voice match:

1. Open Smart Lock settings
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2. Click on “Voice Match”

3. Click on “Delete voice model”

4. Click on “Ok”

5. Click on the “Back arrow”

6. Click the “Home” button

Followup Questions:

1. What do you think Smart Lock is supposed to do? What is it good for?

2. How do you think each of the smart lock methods (On-body detection, Trusted

devices, Trusted places, Trusted face and Voice match) authenticate you?

3. Please write any comments or suggestions you have regarding this study, the

Smart Lock functionality or the UI.

A.1.3 Think-aloud Handout

Consent: Please read the consent form carefully and sign it before starting with

the study. Feel free to ask any questions you might have.

Task scenario: Imagine that you just heard about Android’s Smart lock fea-

ture, you want to explore it and set it up for use on your mobile device. Note that

the we are evaluating the system, not you. As such, there is no right or wrong

answer for any of the questions asked. Follow your intuition whenever you are in

doubt.

Instructions:

• For each task:

1. Perform each task using the phone that is temporarily handed out to

you.

2. Speak your thoughts about the functionality, look and feel, difficulties,

possible changes to improve the user interface, or any other aspect of

the experience out loud as you are interacting with the phone.
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3. Remember to return to phone’s home screen after you finish each task.

• Answer additional questions presented after each set of tasks.

• After going through all the tasks, answer the follow-up questions on the last

page of the handout.

On-body detection tasks:

1. Open “Smart Lock” settings.

2. Enable “On-Body detection”.

On-body detection questions:

1. In general, when does “On-Body detection” unlock your phone?

2. In general, when does “On-Body detection” lock your phone?

Trusted places tasks:

1. Add current location as a “Trusted place”.

2. Remove current location as a “Trusted place”.

Trusted places questions:

1. In general, when does “Trusted places” unlock your phone?

2. In general, when does “Trusted places” lock your phone?

Trusted devices tasks:

1. Add “Mi Band 2” as a trusted device to unlock the phone.

2. Remove “Mi Band 2” as a “Trusted device” to unlock the phone.

Trusted devices questions:

1. In general, when does “Trusted devices” unlock your phone?

2. In general, when does “Trusted devices” lock your phone?
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Trusted face tasks:

1. Add your face as the “Trusted face” to unlock the phone.

2. Improve the accuracy of face detection.

3. Remove your face as the “Trusted face” to unlock the phone.

Trusted face questions:

1. In general, when does “Trusted face” unlock your phone?

2. In general, when does “Trusted face” lock your phone?

Voice Match tasks:

1. Add your voice as the trusted voice to unlock the phone.

2. Remove your voice as the trusted voice.

Voice Match questions:

1. In general, when does “Voice Match” unlock your phone?

2. In general, when does “Voice Match” lock your phone?

Followup Questions:

1. In 2-3 sentences, tell us what you think Smart Lock feature it good for.

2. Would you consider using any of the following Smart Lock methods on a

regular basis? Please explain in 1-2 sentences.

3. Please write down any comments or suggestions you have regarding this

study, the Smart Lock functionality or the Smart Lock UI.

A.2 SL Perception Survey Questions
Demographics

1. What is your age?
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2. What is your gender?

3. What is the highest level of education you completed?

4. What is your current occupation?

5. What is your ethnicity?

Smartphone Usage:

1. What is the model number of your phone?

2. On average, how many hours do you spend on your phone each day?

3. Which of the following unlocking methods do you use on your phone?

• PIN / Password

• Fingerprint

• Face detection

• Iris scanning

• None

4. On average, how frequently do you unlock your phone?

Smart Lock Intro:

1. Please watch the video below about“Smart Lock for Android.”

Smart Lock Familiarity

1. Prior to taking part in this study, how familiar were you with Smart Lock for

Android?

• I had no idea what Smart Lock was and how it worked.

• I knew what Smart Lock was, but didn’t know how it worked.

• I knew what Smart Lock was, and had some idea as to how it worked.
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• I knew what Smart Lock was, and had a good understanding of how it

worked.

2. If you knew about Smart Lock prior to this study, how did you learn about

the existence of Smart Lock?

• I didn’t know about Smart Lock before this study.

• Through notification about Smart Lock on my phone.

• Through browsing in the settings menu on my phone.

• On the internet.

• Through friends and family.

• Other (please specify).

3. For each Smart Lock method (On-body Detection, Trusted Places, Trusted

Devices, Trusted Face, and Voice Match), please select an option which best

describes your past or potential experience with Smart Lock:

• Never used it, and would not use even if it were available on my phone.

• Never used it, but would use if it were available on my phone.

• Experimented with it, but never fully set it up and used it.

• Used it for a while, but stopped using it.

• Am currently using it.

• I don’t know what this means.

On-Body Detection:

1. (Only if willing to use or are using) Previously, you answered that either

you are using or would use On-Body Detection. Why did you choose so?

Rank the options below in order of importance to you (with 1 being the most

important):

• It is secure.

• It makes unlocking the phone easier for me.
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• It provides an additional way of unlocking my phone.

• It makes unlocking the phone faster.

• Other [can add reason].

2. (Only if not willing to use or experimented but did not set up) Based on your

previous answers, you decided not to use On-Body Detection. Why did you

choose so? Rank the options below in order of importance to you (with 1

being the most important):

• It is not secure (a.k.a., can be tricked into unlocking the phone).

• It might cause accidental unlocks and pocket dialling.

• I don’t think it makes unlocking easier for me.

• I don’t understand how it works.

• Other [can add reason].

3. (Only if were using before but stopped) Based on your previous answers,

you were using On-Body Detection before, but have stopped. Why did you

choose so? Rank the options below in order of importance to you (with 1

being the most important):

• It was not secure (a.k.a., could be tricked into unlocking the phone).

• It caused accidental unlocks and pocket dialling.

• I didn’t make unlocking easier for me (a.k.a., wasn’t useful).

• I didn’t understand how it worked.

• I found my phone to be locked when I expected it to be unlocked or

vice versa.

• I changed phones.

• Other [can add reason].

4. (Only if were using before but stopped) For how long were you using On-

Body Detection before stopping?

5. (Only if were using before but stopped) When did you stop using On-Body

Detection?
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6. (Only if using) For how long have you been using On-Body Detection?

Trusted Places:

1. (Only if willing to use or are using) Previously, you answered that either you

are using or would use Trusted Places. Why did you choose so? Rank the

options below in order of importance to you (with 1 being the most impor-

tant):

• It is secure.

• It makes unlocking the phone easier for me.

• It provides an additional way of unlocking my phone.

• It makes it easier for me to share my phone with others.

• It makes unlocking the phone faster.

• Other [can add reason].

2. (Only if not willing to use or experimented but did not set up) Based on

your previous answers, you decided not to use Trusted Places. Why did you

choose so? Rank the options below in order of importance to you (with 1

being the most important):

• It is not secure (a.k.a., can be tricked into unlocking the phone).

• It might allow my family members or co-workers to access my private

information.

• It might cause accidental unlocks and pocket dialling.

• I don’t understand how it works.

• I don’t think it can make unlocking the phone easier for me.

• I can’t think of a place to add as a trusted place.

• Other [can add reason].

3. (Only if were using before but stopped) Based on your previous answers, you

were using Trusted Places before, but have stopped. Why did you choose so?

Rank the options below in order of importance to you (with 1 being the most

important):
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• It was not secure (a.k.a., could be tricked into unlocking the phone).

• It caused accidental unlocks and pocket dialling.

• I didn’t make unlocking easier for me (a.k.a., wasn’t useful).

• I didn’t understand how it worked.

• I found my phone to be locked when I expected it to be unlocked or

vice versa.

• I changed phones.

• Other [can add reason].

4. (Only if were using before but stopped) For how long were you using Trusted

Places before stopping?

5. (Only if were using before but stopped) When did you stop using Trusted

Places?

6. (Only if using) For how long have you been using Trusted Places?

Trusted Devices:

1. (Only if willing to use or are using) Previously, you answered that either you

are using or would use Trusted Devices. Why did you choose so? Rank the

options below in order of importance to you (with 1 being the most impor-

tant):

• It is secure.

• It makes unlocking the phone easier for me.

• I provides an additional way of unlocking my phone.

• It makes it easier for me to share my phone with others.

• Other [can add reason].

2. (Only if not willing to use or experimented but did not set up) Based on your

previous answers, you decided not to use Trusted Devices. Why did you

choose so? Rank the options below in order of importance to you (with 1

being the most important):
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• It is not secure (a.k.a., can be tricked into unlocking the phone).

• It might allow my family members or co-workers to access my private

information.

• It might cause accidental unlocks and pocket dialling.

• I don’t understand how it works.

• I don’t think it can make unlocking the phone easier for me.

• I can’t think of a Bluetooth device to add as a trusted device.

• Other [can add reason].

3. (Only if were using before but stopped) Based on your previous answers, you

were using Trusted Devices before, but have stopped. Why did you choose

so? Rank the options below in order of importance to you (with 1 being the

most important):

• It was not secure (a.k.a., could be tricked into unlocking the phone).

• It caused accidental unlocks and pocket dialling.

• I didn’t make unlocking easier for me (a.k.a., wasn’t useful).

• I didn’t understand how it worked.

• I found my phone to be locked when I expected it to be unlocked or

vice versa.

• I changed phones.

• Other [can add reason].

4. (Only if were using before but stopped) For how long were you using Trusted

Devices before stopping?

5. (Only if were using before but stopped) When did you stop using Trusted

Devices?

6. (Only if using) For how long have you been using Trusted Devices?
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Smartphone Unlocking Convenience, Speed and Security:

1. Please rank the following screen unlocking methods in order of how conve-

nient you think they make smartphone unlocking: (With 1 being the most

convenient)

• PIN / Password / Pattern Unlock

• Fingerprint

• On-Body Detection

• Trusted Places

• Trusted Devices

• Trusted Face

• Voice Match

2. Please rank the following screen unlocking methods in order of how fast you

think they make smartphone unlocking: (With 1 being the fastest)

• PIN / Password / Pattern Unlock

• Fingerprint

• On-Body Detection

• Trusted Places

• Trusted Devices

• Trusted Face

• Voice Match

3. Please rank the following screen unlocking methods in order of how secure

you think they make smartphone unlocking: (With 1 being the most secure)

• PIN / Password / Pattern Unlock

• Fingerprint

• On-Body Detection

• Trusted Places
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• Trusted Devices

• Trusted Face

• Voice Match

A.3 SL Understanding Survey Questions
Demographics

1. What is your age?

2. What is your gender?

3. What is the highest level of education you completed?

4. What is your current occupation?

5. What is your ethnicity?

Smartphone Usage:

1. What is the model number of your phone?

2. On average, how many hours do you spend on your phone each day?

3. Which of the following unlocking methods do you use on your phone?

• PIN/Password

• Pattern unlock

• Fingerprint

• Face detection

• Iris scanning

• Other

• None

4. On average, how frequently do you unlock your phone?

167



Smartphone Security and Privacy:

1. For each statement, please select one of the options that best describes your

smartphone usage habit (from never to daily):

• I use my smartphone to check my personal email account.

• I use my smartphone to take pictures of myself or people close to me.

• I use my smartphone to go on social networks.

• I use my smartphone to exchange instant messages.

• I use my smartphone to look up information about health conditions.

• I use my smartphone to do online banking.

• I use my smartphone to look up jobs or submit job applications.

• I use my smartphone to look up government services and information.

• I use my smartphone to look up direction to places.

• I use my smartphone to organize personal affairs.

2. On smartphones, a simple passcode is the default 4- or 6-digit number that

is used to lock the screen of the phone. Do you know how to enable longer

or alphanumeric passcodes on your phone?

3. On your phone, do you know how to turn off an app’s access to the camera

in the settings?

Smart Lock Intro:

1. Please watch the video/read the text below about “Smart Lock for Android.”

Smart Lock Familiarity

1. Prior to taking part in this study, how familiar were you with Smart Lock for

Android?

• I had no idea what Smart Lock was and how it worked.

• I knew what Smart Lock was, but didn’t know how it worked.
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• I knew what Smart Lock was, and had some idea as to how it worked.

• I knew what Smart Lock was, and had a good understanding of how it

worked.

2. If you knew about Smart Lock prior to this study, how did you learn about

the existence of Smart Lock?

• I didn’t know about Smart Lock before this study.

• Through notification about Smart Lock on my phone.

• Through browsing in the settings menu on my phone.

• On the internet.

• Through friends and family.

• Other (please specify).

3. For each Smart Lock method (On-body Detection, Trusted Places, Trusted

Devices, Trusted Face, and Voice Match), please select an option which best

describes your past or potential experience with Smart Lock:

• Never used it, and would not use even if it were available on my phone.

• Never used it, but would use if it were available on my phone.

• Experimented with it, but never fully set it up and used it.

• Used it for a while, but stopped using it.

• Am currently using it.

• I don’t know what this means.

Smart Lock Semantics

1. For each Smart Lock method, select one option that best describes what you

think that method is capable of:

• Can automatically lock the phone but not unlock it.

• Can automatically unlock the phone but not lock it.

• Can automatically lock and unlock the phone.
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• Cannot lock or unlock the phone automatically.

• I have no idea.

• I didn’t understand the question.

2. How do you think Smart Lock behaves if multiple methods (e.g., Trusted

Places and Trusted Devices) are enabled at the same time?

• Smart Lock locks/unlocks the phone when any one of the enabled

methods (e.g., Trusted Devices, On-Body Detection) tell it to.

• Smart Lock locks/unlocks the phone only when all of the enabled meth-

ods tell it to.

• I have no idea.

• I didn’t understand the question.
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A.4 Screenshots of SL UI

(a) Main SL Screen (b) On-Body Detection
(BODY)

(c) Trusted Places
(PLACE)

(d) Trusted Devices (DE-
VICE)

(e) Trusted Face (FACE) (f) Voice Match (VOICE)

Figure A.1: UI of SL methods as presented to the user on a Google Nexus 6P
Smartphone.
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A.5 Screenshots of the Warning Messages by SL UI

(a) On-Body Detection
(BODY)

(b) Trusted Devices (DE-
VICE)

(c) Trusted Face (FACE)

(d) Voice Match (VOICE)

Figure A.2: SL warning screens as presented to the user on a Google Nexus
6P.
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A.6 Materials for the Longitudinal Diary Study

Figure A.3: Flowchart of the algorithm used to select apps for inclusion in
the diaries.
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(a) Selecting shared
apps

(b) Shared times (c) Add sharee

(d) Sharing context (e) Shared tasks (f) Sharing prefer-
ences

Figure A.4: Screenshots of the study app.
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