
What Makes Security-Related Code Examples Different

Azadeh Mokhberi
University of British Columbia

Tiffany Quon
University of British Columbia

Konstantin Beznosov
University of British Columbia

Abstract
Developers relying on code examples (CEs) in software
engineering can impact code security. We conducted semi-
structured interviews with seven professional developers to
investigate developers’ habits, challenges, and strategies in the
life cycle of using security-related code examples (SRCEs),
with a focus on exploring the differences between security-
and non-security-related CEs. Results indicate that a lack of
adequately differentiating between SRCEs and non-security-
related code examples (NSRCEs) is a reason for introducing
vulnerabilities into the code. We found that developers had a
habit of reusing vulnerable code from their previous projects.
This code reuse unintentionally introduced the same vulnera-
bility into new projects, while that vulnerability had already
been fixed in later iterations of the original resource the CE
had been taken from. Our results highlight that professional
developers need the same number of such CEs even as they
gain experience over time, while this may not be the case for
NSRCEs.

1 Introduction

Though code examples (CEs) assist developers in learning and
improving efficiency in software development, they can intro-
duce vulnerabilities. According to Symantec Internet Security,
76% of websites scanned in 2016 had software vulnerabili-
ties, with 9% of those vulnerabilities classified as critical [12].
Another report showed that around 97% of Java applications
have at least one known vulnerability in one of their compo-
nents [30]. The reuse of CEs may be a reason that contributes

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2021.
August 8–10, 2021, Virtual Conference.

to the introduction of such security vulnerabilities, according
to the recent findings that CEs in Q&A platforms may con-
tain security vulnerabilities [1, 3, 9, 13]. A CE refers to code
intended to be reused by developers via copying and pasting,
albeit with various adaptations to the “borrowed” code. De-
velopers use CEs for different tasks, including security, with
the aim of seeking help [13], learning [6,7,17,24,26,28], and
improving development efficiency [34]. Also, CEs may give
developers confidence about their code’s security [18].

Due to the complex nature of security, there are, however,
several caveats to consider about code security. Vulnerabil-
ities in software have an enormous impact on its users [4].
Recent studies suggest that developers have difficulties with
understanding and using CEs provided in security-related doc-
uments [2, 19, 21, 27, 32]. Also, one of the biggest challenges
in learning APIs is a lack of proper examples of how to use
them [16, 23, 24]. As a result, developers turn to CEs found
on public forums and other sources that often include vulner-
able code [2, 3, 5, 13]. Finally, reusing security-related code
snippets necessitates caution and expertise [13]. While all of
these studies emphasize the significance of taking precautions
when using SRCEs, there is a lack of research investigating
how these SRCEs differ from NSRCEs from the developer’s
perspective.

We explored the main differences between SRCEs and
NSRCEs to better understand how the use of SRCEs prop-
agates vulnerabilities in developers’ code. The abovemen-
tioned findings encouraged us to investigate how develop-
ers differentiate between security-related and non-security-
related CEs and if these two are different in terms of usage
and harmful influence in developing secure software. Previ-
ous research in software engineering has identified qualities
of good CEs [20, 29] in general. Specific to secure software
engineering, researchers investigated why and how insecure
code from Stack Overflow propagates to developers’ code [5].
We built on these studies to investigate the following research
questions:

RQ1: How are security-related and non-security-related
CEs different from developers’ point of view?



RQ2: What factors are linked to the value of CEs in the
context of secure software engineering?

We define an SRCE as any code that contributes toward
completing a task that is directly tied to security, such as
encryption, authentication, authorization, hashes, certificates,
SSL/TLS, etc. We conducted seven semi-structured interviews
and used thematic analysis [8] to explore how SRCEs are
different from non-security-related code examples (NSRCEs)
for developers.

By building on previous research, this work makes two
main contributions. First, we focused on comparing SRCEs
and NSRCEs and our novel findings related to the main dif-
ferences between SRCEs and NSRCEs. Second, we identi-
fied developers’ challenges in the process of using SRCEs
from the beginning to the end, the factors linked to the value
of CEs, and developers’ strategies to assess the security of
SRCEs. Our results highlighted differentiating characteris-
tics of SRCEs by demonstrating that professional developers
require the same number of such CEs even as they gain expe-
rience over time, while this may not be the case for NSRCEs.
In addition, our results showed that the stakes can be higher
when using SRCEs, as developers’ habits of using CEs from
their previous projects can lead to the persistence of code
vulnerabilities in software development.

2 Related Work

2.1 CEs in Software Engineering

While prior work has identified qualities of good CEs, these
qualities do not guarantee a CE’s correctness. Good CEs are
concise and contextual, highlight important elements, pro-
vide step-by-step explanations, provide links to additional
resources, and are ready to copy and paste directly into the
developer’s code [20, 29]. However, a trade-off between con-
ciseness and robustness has been identified: while simple
examples may be easier to understand, they may be less ro-
bust for different usage scenarios [25, 35].

Developers encounter challenges when reusing code, and
some developers also modify CEs before using them. It has
been found that developers seek out reusable CEs to improve
personal efficiency [34] and that code reuse varies with team
size and a developer’s level of experience [1]. Xia et al. [34]
discovered that finding reusable CEs online was challenging
due to a lack of good search engine support, the difficulty
of expressing intent in a search query, low levels of qual-
ity and reusability, and the difficulty of trusting CEs. Wu et
al. [33] found that the majority of developers preferred to
re-implement code rather than directly paste it from Stack
Overflow, and that 31.5% of developers who used Stack Over-
flow code changed the code in some way before using it.

2.2 CEs in Developer-Centered Security

CEs play a critical role in secure coding. Using CEs may
give developers confidence about the security of their code.
Mindermann et al. [18] found that participants who used a CE
to assist with their task were more confident in their solution’s
security. It has been found that factors contributing to secure
API usage include useful examples in documentation [19], a
focus on secure CEs in documentation [2], and contextual,
actionable security advice [15].

Past studies have found that Stack Overflow CEs can con-
tain security vulnerabilities. Acar et al. [3] found that the ex-
amples in API documentation, while harder to use, were more
secure than those found on Stack Overflow. Other studies
have also found insecure code on Stack Overflow [1, 3, 9, 13].

The number of views, comments, and favorites that Stack
Overflow answers receive do not necessarily indicate their
security. Answers containing insecure CEs were found to
receive more views than secure answers [9,35]. Chen et al. [9]
found that insecure answers, on average, received “higher
scores, more comments, [and] more favorites,” and that 45%
of “accepted” answers were insecure.

We designed our study based on the findings mentioned
above. Perhaps the closest paper to our work is the study
by Bai et al. [5]. The authors investigated the reasons why
and how insecure code from Stack Overflow propagates to
developers’ code. With a broader approach, we considered
all CEs resources, including Stack Overflow, to understand
how SRCEs are different from NSRCEs, factors that affect
developers’ security-related decisions, and what developers
need in SRCEs.

3 Methods

3.1 User Study Procedure

Beyond completing the qualification questionnaire and con-
sent form, there were two main parts to the user study. First,
prior to the interview, participants were asked to share two
screenshots of SRCEs: one that they liked and one that they
did not like (See Figures 1 and 2 for samples). The terms
“liked” and “did not like” were intentionally left open-ended
for the participants to interpret for themselves. Second, partici-
pants were asked to participate in an hour-long interview. Dur-
ing each interview, we asked participants about the two code
samples they shared, what they liked or disliked about them,
and how they used those CEs. Participants were then asked
how they use SRCEs and NSRCEs in their work. We con-
ducted semi-structured interviews to provide an opportunity
for interviewees to share their thoughts with more freedom
and in their own terms [11].



3.2 Data Collection and Participants
We used Reddit, Prolific, LinkedIn, and snowballing sampling
to recruit participants. To be eligible to participate in this
study, participants had to be 18 or older, currently live in the
USA or Canada, have more than six months of professional
software development experience (excluding internship/co-op
experience), be currently employed in a software development
role, have some professional experience developing code for
cybersecurity-related tasks, and have experience using CEs
for security-related tasks. After study adjustments based on
the outcomes of two pilot studies, we recruited seven profes-
sional developers (illustrated in Table 1). All interviews were
conducted using Zoom video calls. Participants interviewed
in this study were compensated with $50 CAD. All data was
collected during November and December of 2020. Before
any data collection, this study was approved by the University
of British Columbia’s Behavioural Research Ethics Board
(ID: H20-03253).

3.3 Data Analysis
The main researcher transcribed and two researchers coded
audio recordings of all seven interview sessions, each around
one hour long. Thematic analysis [8] was used for data anal-
ysis. Transcribed interviews were segmented and coded by
two researchers to develop the code book. We followed the
six phases of analysis outlined by Braun and Clarke [8].

4 Results

In this section, we present the findings that are related to how
SRCEs are different from NSRCEs in forming the intent to
find CEs, finding, assessing, and finally, implementing the CEs
in the developer’s code. Our results are organized according
to the abovementioned phases were identified during analysis.
In this study, we refer to participants by using the prefix “P”
along with their ID. We use “CE” to refer to any type of code
example, including SRCE and NSRCE.

4.1 Evolution of Usage Over Time
While the use of NSRCEs decreased or evolved as developers
gained experience, the use of SRCEs remained similar. P2 and
P5 (web application developers) used CEs more when they
did not have much experience at the beginning of their ca-
reers. As they got more experienced, they tended to copy and
paste NSRCEs less often than before. However, P2 noted that,
for big projects, CEs were still needed. P2 and P5 still used
SRCEs as often as when they started their professional career.
This was because security was not part of their everyday tasks
at work.

CE usage was also impacted by the increase in their per-
ceived trustworthiness over time. While for some participants,

such as P2 and P5, NSRCE usage decreased as they gained
experience, for P3, a mobile application developer, CE usage
increased in part from an increase in CEs’ perceived trustwor-
thiness: “I can tell you nowadays [in comparison to the past]
I use more examples because I think today [they have become]
more available, more trustable. Yeah, I’m using more than [at
the] time that [I] started programming.”

4.2 Reuse Challenges

Reusing SRCEs from previous projects had the potential to
introduce vulnerabilities into code. One important difference
between security- and non-security-related code had to do
with reusing CEs. We found that, on one hand, participants
used CEs from online resources. On the other hand, CEs could
also be sourced from participants’ own previous project(s)
rather than the CE’s original source. In this case, even if orig-
inal security bugs were already fixed at the CE’s source, the
participants’ copying and pasting of the old, vulnerable code
from their own previous projects reintroduced the same vul-
nerabilities into their new projects. For instance, P3 explained
his experience, observing: “the example I sent to you, the
in-app purchase [which had vulnerabilities, Figure 1], I used
it in the five other applications. Yeah. And just did the same
mistake . . . I used the code from the last project I wrote. I just
copy-pasted them to other projects . . . , I did not just refer to
the original documentation . . . . After a while, they changed
their API and the documentation on the in-app purchases.”

Developers faced a lack of SRCEs in online resources,
which impacted their ability to find CEs for usage and cross-
reference purposes (Similar to the findings of previous re-
search (e.g., [2, 19]). Participants mentioned that the number
of available SRCEs was limited in comparison to the avail-
ability of NSRCEs. P2 stated that “There are not that much
resources as opposed to other area[s]. I can tell like in web
development and front-end development, there are so many
resources, but in security, [there] is not that much available
. . . . I’m assuming it’s because it’s [security is] more diffi-
cult and involves mathematics and people they don’t have the
expertise to develop stuff like that.” Even when there were
available SRCEs, there may not have been enough for cross-
referencing or having multiple trustworthy options to choose
from. Furthermore, one area that SRCEs were needed in was
for secure coding practices that are new to the field of security.
However, there were not enough CEs for new concepts (e.g.,
content security policy). P1 remarked: “there is not enough
information on the original website. You should search the
net and most of the time, because it’s new and maybe people
are not facing this problem, we cannot find enough informa-
tion, you cannot find your solution, even if you find something
it’s not secure! . . . There are no experienced people who can
share their knowledge with others.”



4.3 Factors Linked to the Value of CEs

In this section we present our findings related to the factors
that linked to the value of CEs to be selected for use. We found
the value of a CE depends on its content, qualities of the CE
itself, and its context, qualities beyond the CE’s content that
support and enhance the CE. We found that some factors were
common to both SRCEs and NSRCEs, whereas other factors
were specifically important for SRCEs.

Content
SRCEs should be understandable and comprehensive.

While these qualities are important for all CEs, SRCEs with-
out these qualities could lead to code vulnerabilities. Under-
standable CEs are written in such a way that, even without
enough prior knowledge, developers can understand the CE.
Three participants noted that SRCEs were more understand-
able when the code’s functionality was broken down for ex-
planation purposes. It was essential to understand the code
to be able to find vulnerabilities in the CE. Otherwise, the
code may introduce security bugs. For instance, P3 added a
vulnerability to his source code because he did not understand
the functionality of the code (discussed in Section 4.5). Next,
SRCEs should also be comprehensive, meaning that the CE
includes everything needed to be able to use the CE. This is
important due to developers’ lack of security knowledge. For
instance, P5 explained that he encountered a CE shared in a
Q&A platform with a missing symbol inside the code. The
missing symbol made the CE vulnerable.

Context
As previous work shows that documentation of SRCEs is

challenging for developers to understand [2, 3, 5, 15, 19], a
similar finding in our study is discussed here.

Pop-up notifications on platforms containing SRCEs could
warn developers to use the code with more caution. P5 shared
one of his experiences where he received a warning to be more
careful about evaluating the SRCE he were reviewing and
said “I think it might have been on Stack Overflow . . . or on
GitHub . . . there was a little pop up that said ‘You’re looking
at code that has a security vulnerability. So, don’t copy and
paste it.’ ”

Specifically related to SRCEs in API documentation, it was
critical to have a section that explained threats and risks. P3
noted that having a specific documentation section related to
threats and risks was very helpful, and this section was prefer-
ably at the very beginning of such a document. P3 referred
to the sample code he shared, which was from Google Play
Developer API, and said: “The Google Play [documentation]
has a section for vulnerability and fraud. And I think it’s re-
ally important . . . the other one [another CE shared with the
researcher](Figure 1) I use doesn’t have [those] things and
I think that was the key point, which caused me that trouble.
Because they didn’t mention anything about ‘you need to care
about security!’ ”

Material that aids in conceptual understanding was another

critical requirement that should be included in the context
of an SRCE. This is specifically important for SRCEs in
using proper code to prevent attacks. The sample CE that P5
shared showed someone on a Q&A forum asking for a specific
SRCE. P5 pointed out one of his shared CEs (Figure 4) and
said: “It doesn’t just give a huge block of code, it kind of
goes through and says, here’s an encoded HTML because you
need to actually get this information into HTML, you need to
replace things to make it HTML, so that a cross-site scripting
attack won’t actually work, which is the end goal . . . . So, it’s
kind of like concept, concept, and then an example down here,
which I think is nice.”

Another critical point, related to Q&A platforms, was the
importance of reading comments related to the CE. Some-
times the CE was not complete and the author corrected their
mistakes in the comment section, so that it was essential for
developers to read those comments. In the sample code that
P5 shared with the researcher, he explained that this sample
might or might not be vulnerable. It all depended on whether
the developer read the comment section.

4.4 Assessment Strategies

To assess the security of an SRCE, participants looked through
the code, evaluated the security of the CE source, and relied
on experts to assess the security of the SRCE. Main strategies
included: (1) Trying to understand and compare the code to
other similar CEs, which developed confidence about the se-
curity of the code. Developers gained confidence whenever
they understood the CE and compared it to relevant API doc-
umentation. (2) Evaluating the quality of the code by seeing
if it was clear, up-to-date, etc. (3) Assessing the source of the
CE and selecting resources that they believed were more trust-
worthy. (4) Based on their own personal experience, deciding
whether to trust the CE platform (e.g., Stack Overflow). (5)
Evaluating the age of the CE based on the assumption that
older CEs are more likely to be revised and fixed over time. (6)
Relying on tests and reviews by colleagues before putting the
code into the production environment. (7) Consulting with ex-
perts in their own organization or experts in an online forum.
(8) Making decisions whether to trust obtained crowdsourced
information while taking into account the aforementioned
factors. Strategies 2, 4, 6, 7, and 8 are similar to [5].

Trusted experts were particularly helpful for junior devel-
opers and for those who had previously introduced vulnerabil-
ities into their code. Participants sought help from experts for
evaluating CEs specifically on two occasions: (1) at the begin-
ning of their professional career, and (2) after experiencing
a security breach by using a CE from an API documentation
website. After this experience, consultations with expert devel-
opers via online forums became a new strategy for preventing
vulnerabilities.

Security-related CEs were more scrutinized by developers.
Participants were more lenient when searching for, assessing,



and using NSRCEs. For example, P3 said:“[For a] problem
which [is] not related to security, I prefer [to] just select the
first thing I see because I want to just save time and I think
it’s not really [an] important task.” Compared to SRCEs,
participants scrutinized NSRCEs less before copying and
pasting the CEs. Additionally, reviews of security-related
code were done with more care. Furthermore, trustworthiness
of the CE source was more important in the case of SRCEs.

4.5 Challenges in Implementation

Understanding CEs
Challenges with understanding SRCEs can be categorized

as challenges related to: lack of security-related knowledge,
difficulties with understanding SRCEs’ concepts, and miss-
ing or unclear context beside SRCEs. Previous work found
that lack of security knowledge prevented some developers
from evaluating and fixing vulnerabilities in SRCEs from
online resources [5]). We also found evidence of this trend.
The pre-existing knowledge the authors of CEs may assume
that developers have, and security not being a part of a de-
veloper’s day-to-day job were main reasons that made some
challenges more significant for SRCEs. For instance, some
SRCEs required pre-existing knowledge to understand the
CE. P5 pointed out a specific part of the sample he shared
and said: “You could come in here and copy and paste this
without knowing what a regex is like . . . it doesn’t give any
explanation of anything like that. I mean, at some point, that’s
assumed knowledge.”

Developers, even more experienced ones, had difficulties
with understanding new security-related concepts in CEs. As
security measures change over time, new security code con-
cepts need to be explained. P2, who develops security-related
code about half of the time for his job, remarked that there
were difficulties with understanding new security concepts.
He said: “You might not be able even to get it [the concept
of the CE] . . . . If I want to give an example, public and pri-
vate key encryption is one of those things that is [a] really
important concept in certificates and digital signatures. So,
the basic idea, I can understand that. But there has been a
new method called elliptic curve that has a new way of doing
the public-key cryptography, but that was too difficult for me
to understand.”

The information beyond the CE could be confusing with-
out adequate explanation. Similar to the findings of previous
research (e.g., [2, 3]), we also found that information around
SRCEs is challenging. Extra information around an SRCE
could be confusing when participants did not have a good
enough understanding of security-related topics. Furthermore,
a lack of documentation, improper documentation, or lack
of security-related information (e.g., in API documentation)
made it hard for developers to assess the vulnerability of CEs.
For instance, P3 explained how the sample he shared led to
a security vulnerability in his app. He explained his expe-

rience dealing with fraud caused by using a CE from API
documentation and being misled by the documentation

Using CEs
A lack of security knowledge led some developers to not

modify CEs and to naively rely on others. A lack of knowl-
edge about how a CE worked caused developers to have diffi-
culties modifying CEs for the task at hand. Some participants
found security-related code hard to understand, they some-
times used and wrote code that they did not fully understand,
as long as the code worked; the code would be considered
“opaque.” Also, a shortage of security-related knowledge led
developers to rely on others’ knowledge. P4: “it’s [security
is] a very distant field that I don’t deal with day-to-day, so
I would take others’ word for that than my own and others’
experience .” Similarly, P4 noted that if an SRCE would be
complex due to lack of knowledge, she was less confident in
making any changes to the code, and would instead use the
code without any changes and rely on others’ knowledge.

A shortage of security knowledge required developers to in-
vest more time and effort to understand SRCEs. Using SRCEs
was more time consuming for participants whose day-to-day
work typically did not involve security-related code. As P2
noted: “Encryption is not an easy concept that you can get
in one day. You have to study that and see how it works in
detail, you need to read some tutorials. . . . it’s not really easy
to comprehend.” Particularly with complex CEs, which need
extra time and energy, developers gave up and turned to try
other alternatives.

5 Discussion

Distinctions between SRCEs and NSRCEs are significant
because they shed light on how developers’ mindsets and be-
haviors in the use of SRCEs can increase the vulnerability of
their code. In this section we discuss why knowing similarities
and differences between SRCEs and NSRCEs is significant
and how such knowledge could help future research.

5.1 General Discussion
Understanding differences between SRCEs and NSRCEs may
help researchers and practitioners to better understand the
needs of SRCE users. We found gaining more job experience
does not necessarily reduce the need to use SRCEs, which
means developers with different levels of experience still need
and count on SRCEs, unlike NSRCEs. Such knowledge about
the users of SRCEs would help the community to consider the
needs of different users in the design of APIs, platforms, and
educational materials. For instance, previous research sug-
gested in-spot or nudging education [5, 14]. Our study would
inform the design of such education by making clear the tar-
get user groups of such education. As a result, more informed
decisions could be made about what level of explanation is
needed in educational materials over time.



Another important outcome of our findings is to consider
the critical role of awareness and education related to SRCEs.
In terms of awareness, there is a need to raise developers’
awareness around how to treat SRCEs differently. For in-
stance, developers should be aware that they should not reuse
SRCEs from their previous projects for two main reasons.
First, the SRCEs they used may have vulnerabilities that were
eventually fixed in the original sources of the SRCEs. Second,
security measures change over time and developers need to
use up-to-date secure coding practices. In this light, thinking
about how we might raise developers’ awareness about the
differences between SRCEs and NSRCEs is another future
avenue for this research.

Finally, developers face difficulties finding new and secure
SRCEs for new security-related coding practices. A scarcity
of SRCEs for new security-related coding practices may push
developers to use insecure code or code that they do not
fully understand. There are constant changes in the realm of
security. As such, developers need understandable SRCEs
(as discussed in 4.4) particularly for learning purposes when
something new is introduced (discussed in 4.1 and identified
by other researchers [6, 7, 17, 24, 26, 28]). Knowing this need
could help practitioners, the makers of APIs, and online portal
providers support developers when new security practices are
introduced.

5.2 Implications for Future Research

Future research could shed light on how SRCEs could support
the needs of developers with a wide range of job experience.
As our participants gained more job experience, they needed
fewer NSRCEs, similar to the findings of Abdalkareem et
al. [1]. However, for SRCEs, we observed that increases in job
experience did not appear to reduce SRCE usage. These find-
ings could help to improve the design of platforms that house
SRCEs. One promising avenue for future research could be
to understand how online resources for SRCEs, such as Stack
Overflow, can cater to inexperienced developers and experi-
enced developers. Considering the job experience of devel-
opers seems important as it potentially affects how they see
their abilities in general. However, in terms of security, they
could be at the level of inexperienced developers. For instance,
Bai et al.’s [5] findings imply that developers often use code
without consulting external resources or formally verifying
the code, in part because they are confident in their abilities.
However, Bai et al. also identified a spread of insecure code
from public forums to other code sources, which may indicate
that this confidence does not guarantee code security. There-
fore, more investigation is needed to better understand how
to design platforms and SRCEs for developers with more job
experience, especially when security is not part of their core,
day-to-day work.

Mitigating a lack of knowledge requires on-the-spot train-
ing in online platforms. A shortage of security knowledge may

prevent developers from the proper use of SRCEs. Similar to
previous works (e.g., [10,31]), we found that when developers
had less security knowledge, they tended to use more SRCEs,
face difficulties in understanding security concepts in SRCEs,
require more time and effort to understand SRCEs, be discour-
aged from modifying SRCEs, and naively trust the knowledge
of online resource contributors, e.g., those who post on Stack
Overflow. It does not seem feasible to expect developers to
continuously update their security knowledge or to educate all
developers. Instead, online platforms can create new features
and policies to reduce the dissemination of vulnerable CEs
from the start (e.g., applying nudges [14]). Further work is
needed to investigate on-the-spot security training features
that can help educate developers at the points where they
need it. With the consideration of developers’ different levels
of knowledge and experience, on-the-spot learning features
should be designed in a way such that various developers can
use them. For instance, they can adjust the amount of extra
information they require beside each CE based on their knowl-
edge. In addition to creating mechanisms for linking posts on
Stack Overflow to relevant educational materials, a measure
suggested by Bai et al. [5], we suggest that information (e.g.,
about potential attacks) should be provided in CEs to warn
developers about potential code vulnerabilities.

Reusing SRCEs from older projects has a higher risk of
introducing vulnerabilities into code. Based on Rahman et
al.’s [22] categorization of Stack Overflow comments, we
found that comments related to bugs, errors, warnings, con-
cerns, question clarification, code documentation, and tips and
complementary information play an important role in help-
ing developers identify vulnerabilities in SRCEs from such
Q&A platforms. A critical point, related to Q&A platforms
as shown in (4.4), is the importance of reading comments
related to the CE. Additionally, we found that some devel-
opers have habits of reusing SRCEs from older source code,
which might result in old code vulnerabilities “leaking” into
the source code of new projects. One significant difference
between SRCEs and NSRCEs had to do with reusing them.
We found that when a developer reuses a vulnerable SRCE
from an older project, they propagate vulnerabilities that may
later be corrected in the original source.

A promising avenue for future research could be investi-
gating ways to reduce the likelihood of developers reusing an
SRCE from old source code that is now considered vulnerable.
One option could be providing developers with new educa-
tional materials to teach them how to use online resources
for SRCEs specifically, and what to consider when evaluating
SRCEs. For example, developers could be provided with tool
support for “linking” SRCEs in the project source code back
to the online sources from which they were adapted. This
way, those developers who are about to reuse an SRCE from
an old project could easily find an updated version of the CE
at the original source.



Acknowledgments

This research has been supported by the Huawei-UBC Soft-
ware Engineering Technology Research Program. We would
like to thank members of the Laboratory for Education and
Research in Secure Systems Engineering, who provided their
feedback on the reported research. Our anonymous reviewers
provided important feedback and suggestions to improve the
paper. Stylistic and copy editing by Eva van Emden helped to
improve readability of this paper.

References

[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling.
On code reuse from stackoverflow: An exploratory study
on android apps. Information and Software Technology,
88:148–158, 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L.
Garfinkel, Doowon Kim, Michelle L. Mazurek, and
Christian Stransky. Comparing the usability of cryp-
tographic apis. In IEEE Symposium on Security and Pri-
vacy, pages 154–171, San Jose, CA, 2017. IEEE Com-
puter Society.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L. Mazurek, and Christian Stransky. You
get where you’re looking for: The impact of information
sources on code security. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 289–305, San Jose,
CA, 2016. IEEE Press.

[4] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek.
You are not your developer, either: A research agenda for
usable security and privacy research beyond end users.
In 2016 IEEE Cybersecurity Development (SecDev),
pages 3–8. IEEE, 2016.

[5] Wei Bai, Omer Akgul, and Michelle L. Mazurek. A
qualitative investigation of insecure code propagation
from online forums. In 2019 IEEE Cybersecurity De-
velopment (SecDev), pages 34–48, McLean, VA, 2019.
IEEE Press.

[6] Ohad Barzilay, Amiram Yehudai, and Orit Hazzan. De-
velopers attentiveness to example usage. In Human As-
pects of Software Engineering, HAoSE ’10, New York,
NY, USA, 2010. Association for Computing Machinery.

[7] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. Two studies of oppor-
tunistic programming: Interleaving web foraging, learn-
ing, and writing code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’09, page 1589–1598, New York, NY, USA, 2009.
Association for Computing Machinery.

[8] Virginia Braun and Victoria Clarke. Using thematic anal-
ysis in psychology. Qualitative research in psychology,
3(2):77–101, 2006.

[9] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang,
and Jens Grossklags. How reliable is the crowdsourced
knowledge of security implementation? In Proceedings
of the 41st International Conference on Software Engi-
neering, ICSE ’19, page 536–547. IEEE Press, 2019.

[10] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Min-
hui Xue, Yang Liu, and Lihua Xu. Are mobile banking
apps secure? what can be improved? In Proceedings
of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2018,
page 797–802, New York, NY, USA, 2018. Association
for Computing Machinery.

[11] Deborah Cohen and Benjamin Crabtree. Qualitative
research guidelines project, 2006.

[12] Symantec Corporation. Symantec internet security
threat report. https://docs.broadcom.com/doc/
istr-22-2017-en, publisher=Broadcom Inc. Ac-
cessed: 2021-05-03.

[13] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and
Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 121–136. IEEE, 2017.

[14] Felix Fischer, Huang Xiao, Ching-Yu Kao, Yannick
Stachelscheid, Benjamin Johnson, Danial Razar, Paul
Fawkesley, Nat Buckley, Konstantin Böttinger, Paul
Muntean, and Jens Grossklags. Stack overflow con-
sidered helpful! deep learning security nudges towards
stronger cryptography. In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 339–356, Santa
Clara, CA, August 2019. USENIX Association.

[15] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Möller, Yasemin Acar, and
Sascha Fahl. Developers deserve security warnings,
too: On the effect of integrated security advice on cryp-
tographic API misuse. In Fourteenth Symposium on
Usable Privacy and Security (SOUPS 2018), pages 265–
281, Baltimore, MD, August 2018. USENIX Associa-
tion.

[16] Samuel G. McLellan, Alvin W. Roesler, Joseph T. Tem-
pest, and Clay I. Spinuzzi. Building more usable apis.
IEEE Softw., 15(3):78–86, May 1998.

https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en


[17] Michael Meng, Stephanie Steinhardt, and Andreas Schu-
bert. How developers use api documentation: An obser-
vation study. Commun. Des. Q. Rev, 7(2):40–49, August
2019.

[18] Kai Mindermann, Philipp Keck, and Stefan Wagner.
How usable are rust cryptography apis? In 2018 IEEE
International Conference on Software Quality, Reliabil-
ity and Security (QRS), pages 143–154, 2018.

[19] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bod-
den. Jumping through hoops: Why do java developers
struggle with cryptography apis? In Proceedings of the
38th International Conference on Software Engineering,
ICSE ’16, page 935–946, New York, NY, USA, 2016.
Association for Computing Machinery.

[20] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer,
and Chris Burns. What makes a good code example?:
A study of programming q a in stackoverflow. In 2012
28th IEEE International Conference on Software Main-
tenance (ICSM), pages 25–34, 2012.

[21] Marten Oltrogge, Yasemin Acar, Sergej Dechand,
Matthew Smith, and Sascha Fahl. To pin or not to
pin—helping app developers bullet proof their TLS
connections. In 24th USENIX Security Symposium
(USENIX Security 15), pages 239–254, Washington,
D.C., August 2015. USENIX Association.

[22] Mohammad Masudur Rahman, Chanchal K Roy, and
Iman Keivanloo. Recommending insightful comments
for source code using crowdsourced knowledge. In 2015
IEEE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 81–90.
IEEE, 2015.

[23] Martin P. Robillard. What makes apis hard to learn?
answers from developers. IEEE Software, 26(6):27–34,
2009.

[24] Martin P. Robillard and Robert Deline. A field study
of api learning obstacles. Empirical Softw. Engg.,
16(6):703–732, December 2011.

[25] Mary Beth Rosson and John M. Carroll. The reuse of
uses in smalltalk programming. ACM Trans. Comput.-
Hum. Interact., 3(3):219–253, September 1996.

[26] Forrest Shull, Filippo Lanubile, and Victor R Basili. In-
vestigating reading techniques for object-oriented frame-
work learning. IEEE Transactions on Software Engi-
neering, 26(11):1101–1118, 2000.

[27] Justin Smith, Lisa Nguyen Quang Do, and Emerson
Murphy-Hill. Why can’t johnny fix vulnerabilities: A
usability evaluation of static analysis tools for security.
In Sixteenth Symposium on Usable Privacy and Security
({SOUPS} 2020), pages 221–238, 2020.

[28] Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and
Brad A Myers. Improving api documentation using api
usage information. In 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC),
pages 119–126. IEEE, 2009.

[29] Dirk van der Linden, Emma Williams, Joseph Hallett,
and Awais Rashid. The impact of surface features on
choice of (in)secure answers by stackoverflow readers.
IEEE Transactions on Software Engineering, pages 1–1,
2020.

[30] veracode. State of software secu-
rity. https://www.veracode.com/sites/
default/files\/Resources/Reports/
state-of-software-securityvolume-7\
-veracode-report.pdf, publisher=Veracode. Ac-
cessed: 2021-05-03.

[31] Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks.
Understanding security mistakes developers make: Qual-
itative analysis from build it, break it, fix it. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 109–126. USENIX Association, August 2020.

[32] Chamila Wijayarathna and Nalin A. G. Arachchilage.
Why johnny can’t store passwords securely? a usabil-
ity evaluation of bouncycastle password hashing. In
Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering
2018, EASE’18, page 205–210, New York, NY, USA,
2018. Association for Computing Machinery.

[33] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Kat-
suro Inoue. How do developers utilize source code from
stack overflow? Empirical Softw. Engg., 24(2):637–673,
April 2019.

[34] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh
Kochhar, Ahmed E. Hassan, and Zhenchang Xing. What
do developers search for on the web? Empirical Softw.
Engg., 22(6):3149–3185, December 2017.

[35] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and
M. Kim. Are code examples on an online q a forum reli-
able?: A study of api misuse on stack overflow. In 2018
IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 886–896, 2018.

https://www.veracode.com/sites/default/files\/Resources/Reports/state-of-software-security volume-7\ -veracode-report.pdf
https://www.veracode.com/sites/default/files\/Resources/Reports/state-of-software-security volume-7\ -veracode-report.pdf
https://www.veracode.com/sites/default/files\/Resources/Reports/state-of-software-security volume-7\ -veracode-report.pdf
https://www.veracode.com/sites/default/files\/Resources/Reports/state-of-software-security volume-7\ -veracode-report.pdf


Appendices

Gender Country Years of exp. Type of software Developing SRC Type of job Company size
P1 Female Canada 10 Web Apps Half the time Full time 1,000 or more
P2 Male Canada 5 Web Apps Half the time Full time 1,000 or more
P3 Male Canada 6 Mobile Apps Half the time Freelancer –
P4 Female Canada 2 Web Apps Sometimes Full time 1,000 or more
P5 Male US 2 Web Apps Sometimes Full time 1–249
P6 Male Canada 3 Web Apps Sometimes Full time 250–999
P7 Male Canada 4 Web Apps Sometimes Full time 1,000 or more

Table 1: Demographic information of all participants.

Figure 1: A code example that a participant did not like.



Figure 2: A code example that a participant liked.



Figure 3: A code example that includes separated sections for explanation.



Figure 4: A code example that includes concept explanation.


	Introduction
	Related Work
	CEs in Software Engineering
	CEs in Developer-Centered Security

	Methods
	User Study Procedure
	Data Collection and Participants
	Data Analysis

	Results
	Evolution of Usage Over Time
	Reuse Challenges
	Factors Linked to the Value of CEs
	Assessment Strategies
	Challenges in Implementation

	Discussion
	General Discussion
	Implications for Future Research


