
SoK: Human, Organizational, and Technological Dimensions of
Developers’ Challenges in Engineering Secure Software

Azadeh Mokhberi
University of British Columbia

Vancouver, Canada
mokhberi@ece.ubc.ca

Konstantin Beznosov
University of British Columbia

Vancouver, Canada
beznosov@ece.ubc.ca

ABSTRACT
Despite all attempts to improve software security, vulnerabilities are
still propagated within software. A growing body of research is look-
ing into why developers are unable to develop secure software from
the beginning. However, despite this attention, research efforts on
developer challenges lack a coherent framework. We present a sys-
tematization of existing knowledge on the factors that make secure
software development challenging for developers. We evaluated 126
papers to develop a framework of challenges that includes 17 areas
of challenges in three dimensions of Human, Organizational, and
Technological. These areas appear to influence each other directly
and indirectly. Our work highlights the interplay of these areas and
their consequences for secure software development. We discussed
lessons learned from the framework, shed light on its role in assisting
practitioners, and proposed directions for future research.

ACM Reference Format:
Azadeh Mokhberi and Konstantin Beznosov. 2021. SoK: Human, Orga-
nizational, and Technological Dimensions of Developers’ Challenges in
Engineering Secure Software. In European Symposium on Usable Security
(EuroUSEC ’21), October 11–12, 2021, Online. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3481357.3481522

1 INTRODUCTION
Given that source code security vulnerabilities are the cause of many
security problems [25, 49, 80, 82], developers can help prevent secu-
rity vulnerabilities by writing more secure code. Developers are often
blamed or considered “the weakest link”, however Green and Smith
state that “Developers are not the enemy" [40]. Developers play a
critical role in security because bad decision-making and errors in
coding have a huge impact on end-users and all those who rely on the
developers’ work [5, 40]. However, recent studies investigating the
root causes leading to the vulnerabilities rather than blaming the de-
velopers have shown that developers face a variety of challenges that
hinder them in engineering secure software. Researchers are now
calling for more developer-centered approaches [5, 40, 66, 103] to-
ward SSE to understand why developers are unable to develop more
secure software. More importantly, we are facing a shift in devel-
opers’ demographics. Software development used to be a niche for
specially trained experts, but now everyone can be a developer [66]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroUSEC ’21, October 11–12, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8423-0/21/10.
https://doi.org/10.1145/3481357.3481522

and make software available for millions of people. More than ever,
we need more human-centered1 [37] and user-centered approaches
to research2 to understand developers’ needs.

The absence of a comprehensive framework of developers’ chal-
lenges has motivated us to systematize knowledge around SSE. To
the best of our knowledge, our research is the first of its kind to at-
tempt to create a comprehensive picture of such challenges. The most
relevant work is a survey of 49 papers by Tahaei and Vaniea [54],
which focused on developer-centered security and classified method-
ologies and discussed themes emerging from the literature. Our
paper presents the results of 126 papers and provides a framework
of developers’ challenges. Our paper reports a distinctive set of
themes extracted from the studies not included in the previous sur-
vey paper (e.g., the role of developer personality). Another relevant
work is a survey by Hamm et al. [41] that addresses methodological
approaches in user studies in computer security.

Our paper was developed using classification, systematization,
and organization. We evaluated the findings of 126 papers from 2007
to 2020 and classified developers’ challenges and problems. We used
the grounded theory [98] as the main method (§2) and then organized
findings by using an affinity diagram [26]. The developed framework
is shown in Fig 1. We built a framework of 17 areas of challenges that
show the multiple dimensions of developers’ problems in Human,
Organizational, and Technological sections. These sections, directly
and indirectly, influence each other. Some of these factors are more
important than others because they affect many other factors (e.g., the
role of managers, organizational culture, and attitudes and mindsets).
In addition, our findings suggest that some qualities of SSE make
SSE distinct from other types of software engineering.

Our paper contributes to current research in the following ways:
(1) Performing the first systematization of knowledge on developers’
challenges. (2) Identifying 17 developer-centered areas of challenges.
These areas of challenges are the role of personality, attitudes and
perceptions, deterrents, knowledge, experience, learning strategies,
security culture, requirements and policies, support and strategies,
structure and size, people in organization, interactions, APIs/libraries
and protocols, analysis tools, updates and upgrades, online platforms,
and languages. (3) Identifying the interplay among these challenge
areas. (4) Discussing how having a framework of problems can assist
practitioners and providing recommendations for how to use them.
(5) Discussing avenues of future research.

1“Human-centered design is a group of methods and principles aimed at supporting the
design of useful, usable, pleasurable and meaningful products or services for people” [81,
p. 2].
2The main difference that distinguishes human-centered design and user-centered design
from each other is the way they look at their target groups. In a user-centered approach,
only users are the subject of study, whereas in human-centered design (e.g., participatory
design, co-design, and co-creation) users are collaborators in research [74].

https://doi.org/10.1145/3481357.3481522
https://doi.org/10.1145/3481357.3481522


EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

2 METHODOLOGY
With the help of literature reviews guidelines [83], this SoK (Sys-
tematization of Knowledge) paper systematically [61] organized
published research papers. This systematization has been done based
on grounded theory for review of the literature [98]. The process
started with defining research criteria, determining resources, and
searching publication repositories, as well as using a snowball ap-
proach [45] (illustrated in Fig. 1 in §7). Our search queries found
2846 papers in SSE, and we selected 126 papers published between
2007 and 2020, based on our exclusion criteria.

Inclusion and Exclusion Criteria: We included papers that met
the following criteria: (1) must be a peer-reviewed journal article
or conference paper; (2) must be about SSE; (3) must discuss de-
velopers’ challenges in SSE; (4) could carry out user studies related
to developers’ studies related to SSE; (5) could discuss SSE about
other stakeholders and present developer-related challenges (i.e.,
managers, testers, white-hat hackers, designers, security audits); and
(6) could investigate developers’ behavior (e.g., papers analyzing
developer behavior on Stack Overflow). We excluded papers with the
following characteristics: (1) no discussion about security aspects
of technology; (2) no discussion of developers’ challenges; (3) does
not investigate security-related technology, (4) position papers and
extended abstracts (we were only interested in original research);
and (5) privacy-related papers.

Analysis: One researcher with expertise in UX research read all
of the papers and extracted each paper’s findings as direct codes.
We qualitatively analyzed data from papers and used an affinity dia-
gram [26], which is a powerful tool for identifying, analyzing, and
acting on complex problems and large datasets. It is effective to visu-
alize the emerged core categories [75]. This process identified three
main categories. Next, together with a researcher who specializes in
developer-centric security, the diagram was discussed and evaluated
qualitatively. The affinity diagram results were further discussed
with three other researchers. For any disagreement, authors listened
to everyone’s reasons and came to a consensus. Finally, three main
themes with sub-themes were identified as the main developers’
challenges in SSE (see table §8).

3 RESULTS
Based on our systematization, we developed a framework of 17 areas
of challenges that can affect the development of secure software in
three main dimensions of Human, Organizational, and Technological.
The framework shows how human, organizational, and technological
elements interact (Fig 1). A summary of our analysis is provided
in table §8. This table indicates papers cited in each category of
challenges.

3.1 Human
3.1.1 Role of Personality. Both extremely high and low confi-
dence3 levels are linked to more vulnerable software. Developers
who had never identified a vulnerability or consulted with a security
expert had less confidence in their ability to develop secure soft-
ware [84]. Unsurprisingly, less confident developers underestimated

3Confidence: The quality or state of being certain [51] in one’s knowledge or ability
about developing secure software.

their ability to find vulnerabilities [86]. What is more, overcon-
fidence led to developers’ inability to protect themselves against
further attacks or critically evaluate their own decisions [36]. Fi-
nally, confidence in the ability to detect security issues in Stack
Overflow snippets was sometimes misplaced, which prevented de-
velopers from referring to external resources or formally validating
the code [16].

Studies suggest an association between open-mindedness4 and the
abilities to spot and fix vulnerabilities and use security tools. It seems
lack of open-mindedness can prevent developers from developing
secure software. The results of a study based on a tabletop cyber-
security game [36] suggested that open-mindedness, together with
adaptability to the game inputs, could make up for insufficient secu-
rity experience. As such, those non-security experts who criticized
themselves and their approaches frequently earned higher scores in
the game [36]. Some developers tended to trust code blindly if it
was from a reputable source like API documentation [62]. However,
when subjects were open-minded, they were less likely to get trapped
in API “blindspots”5 where potential vulnerabilities can arise [63].
Also, in [96] researchers found a positive correlation between de-
velopers’ inquisitiveness about security tools and their tendency to
adopt such tools.

3.1.2 Attitudes and Perceptions. Decisions and activities in orga-
nizations are guided by mindsets6 surrounding security. Security can
be seen as “a quality issue, a business value, a compliance obstacle,
a technical challenge, a liability problem, a technical feature, or a
sales pitch” [67, p. 2501], among other things. Such mindsets steer
decisions on the selection and implementation of security activities
and the ways security practices are incorporated into the routines of
development teams in organizations [67].

Developers’ security-related beliefs, mental biases, and percep-
tions could open doors for attackers. Some developers believed that
they do not need to use security tools because they rely on “reviews
or testing” by others in the same company [100]. Some developers
believed that their code was secure, while researchers found vulnera-
bilities in it. The researchers noted that the worst-case scenario could
happen when developers unintentionally released vulnerable code
with confidence [6]. Also, some developers had an optimistic bias
that could hinder SSE [9] (e.g., they thought that their applications
were not an attractive target for attackers [9, 10]).

Developers find security hard to grasp. Developers considered
security to be a complex concern [48, 102], as some information
about it is “vague, contradictory, and sparse” [48, p. 37]. Also, there
was no clear way to assess where there was “enough security” [47].
Developers believed that while their code had room for improvement,
it was secure enough.

Although there are wide extremes7 of security prioritization
across all phases of the development process [9], the majority of
the reported research points to security being at best a secondary

4Open-mindedness: “Openness relates to intellectual curiosity and the ability to use
one’s imagination” [63, p. 323].
5“An API security blindspot is a misconception, misunderstanding, or oversight on the
part of the developer when using an API function, which leads to a violation of the
recommended API usage protocol with possible introduction of security vulnerabili-
ties” [63, p. 315].
6A mental attitude or inclination [53].
7We concentrate on developer challenges; therefore discussing when security was a top
priority is out of the scope of this paper.



SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

concern. Security was not a first-order concern in the eyes of devel-
opers [16, 90], not a priority in the developers’ mindset [59, 62], and
even remained a low priority among students (soon-to-be develop-
ers) [94]. Developers treated security as a secondary concern during
design decision-making [4] and code development [62]. Security
remains a secondary concern because of organizational factors. With
tight deadlines [28, 102], limited budget [102], and the absence of
value, reward, or monetary incentives [62] for SSE, developers did
not invest much time and effort into security [94]. Also, the friction
caused by other activities that developers usually engage in dis-
tracted them [67] and hindered the mental effort needed for security
thinking [62]. Developers believed that both the security work and its
connection with business goals was invisible [67]. Also, developers
perceived that security efforts could interfere with business logic or
complicate the software [65, 102].

Developers have perceptions toward security responsibilities that
could be linked to less security effort, such as security being: (1) not
their responsibility [16, 102]; (2) a shared responsibility [80, 100];
(3) the responsibility of all developers [10, 67]; (4) the responsibility
of team members or of the organization as a whole [47]; and (5) a
responsibility going even beyond the organization [47] (e.g., users
or third-party security companies [23]). When some developers had
a mindset that security was not a high priority or their responsibility,
they did not use their security knowledge [9].

3.1.3 Deterrents. Deterrents8 to engineering secure software are
a human type of challenge that resulted from different factors from
human, organizational, and technological dimensions. This section
provides all such factors, showing how negatively these three dimen-
sions interplay and influence human factors. A lack of motivation
prevented developers from working on security. Not all develop-
ers had intrinsic motivation for security because it often fails to
pique developers’ interest in and of itself [67]. Some possible root
causes include optimistic bias, the inability to identify any perceived
loss [8, 10], and ambiguity as to whether effort spent on security, as
part of a company routine, could result in concrete value [67].

In terms of human dimensions, personal attitudes, interests, or per-
ceptions could deter developers from SSE. Some such deterrents at
a personal level were seeing security as irrelevant to the developer’s
job [8, 10] or as others’ responsibility, lack of interest in security,
failure to see its value [8, 10], or a perceived conflict between proper
and secure coding [8, 10]. Additionally, developer’s perceptions,
mentioned in the last paragraph in section 3.1.2, acted as a deterrent.

In organizational dimensions, a lack of planning and support,
resource shortages, and a lack of knowledge can lead to developer
discouragement. The first group of deterrents in organizations in-
cludes “competing priorities and no plan,” lack of organizational
support [8–10], and lack of rules provided by government regula-
tions and organizational policies [102]. The second group includes
resource shortages such as budget, time, and staff [8–10]. The third
group includes a lack of expertise [8–10] and awareness about se-
curity tool availability [8, 10]. The absence of formal security plans
and unfamiliarity with code analysis tools are the first and second
most frequently occurring deterrents among developers in organiza-
tions of various sizes [10]. However, the first and third groups were
more frequent in smaller companies [10].

8“Deterrent: serving to discourage, prevent, or inhibit” [52].

In terms of technological dimensions, security tools’ poor us-
ability, high complexity, lack of integration with the development
environment, and high false-positive rates turn developers away from
automating security analysis of their code. Too many false positives
were very discouraging for some developers [96], who might stop
using analysis tools [44, 80]. Other deterrents that demotivated devel-
opers from using static analysis tools were “disjoint process”: having
to go outside of a code development environment to use a tool or see
the tool’s results [44], tools’ interface complexity [96], perceived
uselessness of tools, and lack of awareness of the tools [10]. Also,
the ways warnings were presented dissatisfied developers [44] (see
section 3.3).

3.1.4 Knowledge. Developers’ knowledge and willingness to seek
knowledge are important factors for SSE. Security knowledge is
linked to the developers’ mindset and behavior. Insufficient security
knowledge is correlated with the inability of developers to apply
security measures, implement these measures, and understand the
security implications of their choices. Developers’ unwillingness
to learn [90] and keep their knowledge up-to-date [58] were issues
when it comes to promoting security awareness. Also, many devel-
opers had no security-related education and sought more knowledge
when they faced security issues at work [17]. In [59], having security
knowledge by participants did not mean that this knowledge was
applied. Participants with little or no security understanding, on the
other hand, were able to come up with secure implementations.

In many small companies, insufficient security knowledge among
developers is linked to their inability to engineer secure software. In
the wide spectrum of developers’ knowledge, some developers did
not have new or updated knowledge [50] and, in some companies,
there were no expectations for developers to have security knowl-
edge [9]. Those who worked in small companies tended to have less
knowledge about secure coding than their counterparts in medium
to large companies [100]. Due to not having enough security knowl-
edge, developers were unable to implement security measures [23]
or, worse, cases of misunderstanding had far more impact on making
code less secure than simple mistakes [85], and developers could
not reliably engineer secure software [9].

A lack of security knowledge can also adversely influence de-
velopers’ mindsets, behaviors, and actions. Lack of knowledge and
false confidence were reasons for some developers mistakenly be-
lieving that their code was secure and being unable to recognize
vulnerabilities in it [95]. Even if developers were able to implement
some security measures, they failed to understand the threats [93],
disregarded the value of implementing security measures [8], or em-
ployed “lax security practices”9 [9]. When developers were unable
to understand the security implications of different implementation
and design options, they got frustrated and chose easy but insecure
actions [50]. Finally, developers’ lack of security knowledge pre-
vented them from properly evaluating security-related code snippets
from Stack Overflow [16].

Knowledge of security and security analysis tools is correlated
with their usage. Developers had different levels of awareness of

9“Security is not considered in the design stage, Security is not a priority during
implementation, Developers do not test for security, and Security is not considered
during code review” [9, p. 291].



EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

analysis tools. Some developers used them without a complete un-
derstanding of tool functionality [9]. Developers’ lack of security
knowledge could result in tool misuse, which led to insecure solu-
tions [95]. The number of times program analysis tools were used
was significantly correlated with developers’ familiarity with them
as well as their amount of focus on security [24], which means better
understanding of analysis tools led to higher adoption rates and trust
in the tools’ abilities to find bugs and vice versa [24].

3.1.5 Experience. The correlation between years of work and cod-
ing experience and SSE is still unclear. In [31, 63], the amount of
programming experience a developer had does not correlate with
improved accuracy or efficacy when it came to discovering security
vulnerabilities in code. Another study found that professional devel-
opers wrote code that was, while more functional, not necessarily
more secure than code produced by (less experienced) students [4].
However, the samples of these studies were not representative for
generalization, so this finding requires more investigation (see §4).
The appearance of different types of security vulnerabilities did not
seem to correlate significantly with either developers’ experience in
years or in completed security training [63, 85].

Although experience seems not to correlate with tool usage, spe-
cific experience with tools showed a positive correlation with de-
veloping secure software. While a research team reported a link
between the amount of experience in software development and
the adoption of security tools after their qualitative study [96], they
could not confirm the correlation in a follow-up survey [97]. They
found that experienced and inexperienced developers did not differ
in terms of using security tools [97]. For achieving the best outcomes
of a static analysis tool (SAT), it seems essential to have experience
with tools besides general security experience [15].

Having security experience could increase self-efficacy, long-term
awareness about security, and use of security tools. More experi-
ence with finding vulnerabilities or working with security experts
led to increased “secure-development self-efficacy” among develop-
ers [84]. Experiencing real security issues, e.g., a security breach,
increased developers’ awareness and concerns about security in the
long run [10]. Also, experiences of having their systems hacked
pointed developers toward using security tools [100].

The correlation between experience with programming and the
ability to write secure code remains unclear. On one hand, a survey
of 307 GitHub users [6] found that when security background was
not a significant factor, years of experience in programming Python
was a significant factor in producing more secure code. On the other
hand, in a mixed-methods field study with 43 freelancers [58] and a
replication of it [27], the difference in the years of Java experience
was not a significant factor.

3.1.6 Learning Strategies. Developers can take various paths to
obtain security knowledge, but can struggle to make connections be-
tween learned knowledge and the current security problems they face.
While a traditional way to learn about security is taking security-
related courses [17, 57, 62], this path does not appear to be the most
common. Out-of-class education might include reading research
papers [42], attending conferences [17], attending corporate train-
ing [17, 57], or certification [17]. Specifically for learning about
cryptography, educational approaches include being involved in
crypto standards groups [42], taking Coursera courses [56], and

reading books [56]. When developers have formal security training,
they were more likely to spot security-related issues in the code
(known as “blindspots”) [62]. Nevertheless, it was difficult for devel-
opers to find correlations between theorized vulnerabilities learned
about in school and the security problem at hand [62]. Additionally,
in [59] even when developers intended to save passwords securely,
they usually did it insecurely due to outdated methods they learned.
Despite the fact that security is a rapidly changing field, participants
did not keep their knowledge up to date.

3.2 Organizational
3.2.1 Security Culture. Security culture10 in an organization can
contribute to SSE. in a study of three large companies,11 the com-
panies ranged from those with a “security first” corporate culture to
others where security wasn’t always the primary priority for each
business unit [20]. One of the most important deciding factors in
encouraging security in development and motivating developers to
use new security tools was determined to be the company’s secu-
rity culture [97, 100, 102]. Mature, strong cultures around security
led to more thorough SSE and testing processes [42]. Moreover,
such a culture was linked to shifting developers’ attitudes toward
considering security to be a shared responsibility [9]. However, the
culture in some companies discouraged developers from buying new
security tools via a lengthy authorization process [100]. In [9], the
security-inattentive group,12 had a company culture that typically did
not include security, and as a result, developers frequently assigned
security responsibility to a single person or team.

Developing a security culture requires internal and external mo-
tivations. The internal motivations include beliefs about the impor-
tance of security [42], and the external motivations include gaining a
larger market share or requirements from the customer [42]. Having
security-related workshops [7, 46, 67, 88] can built such motivations.
However, as long as security practices are not part of the “ostensive
and performative aspects of organizations,”13 workshops’ effects
could be short-term and not lead to security practices becoming
routines at the organization [67].

3.2.2 Requirements and Policies. Lack of clear security-related
task descriptions could lead to less security work. For some develop-
ers, when responsibilities and roles defined in the teams had conflicts
with applying security, they did not follow best practices [9]. Devel-
opers paid attention to security only if asked to do so [101, 102] by
either the design requirements [101], their clientele [18, 57, 58, 101],
their superiors’ expectations [97], or regulations [101]. Developers
in [28] reported that they faced lack of general security guidelines
and nobody in the company was in charge of ensuring that these
security requirements were followed.

While some factors help developers to see security needs, devel-
opers reported a lack of visibility. Security is a quality requirement,

10“The beliefs and social norms surrounding security and security tools in a com-
pany” [100, p. 1100]
1114,000 and 300,000 employees
12“The group who barely considered security or did not consider it at all” [9, p. 283]
13“The ostensive aspect of a routine embodies what we typically think of as the structure.
The performative aspect embodies the specific actions, by specific people, at specific
times and places, that bring the routine to life. [34, p. 94]



SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

which makes it invisible in agreements between managers and devel-
opers. Elements such as external triggers (e.g., customer feedback)
made security more visible [67]. Developers, regardless of their
knowledge about security, were reluctant to apply their knowledge
when security was invisible; therefore, it is required to explicitly
request security [59]. Assal et. al, [9] suggested that security needs
to be included in company culture and policies, and promoted from
the higher echelons of the organization. Seeing a higher need for
security was a reason developers showed a tendency to use more
security assurance and run updates more often [89].

Code can be made more secure through company policies. Adopt-
ing concrete security policies increased code security [27] as shown
also in [100]. Security tools were employed by all participants who
were required to use them. Policies such as limiting tool training to a
specific group in the team negatively affected developers’ mindsets
because it made them feel less responsible for secure software [100].
In addition, developers reported “security standards are informal,
verbal ‘best practices’ [100, p. 1099]” in their organization. For in-
stance, in some organizations there were no official policies on using
security tools or reviewing warnings in a timely manner [13].

3.2.3 Support and Strategies. Lack of organizational necessary
resources plays a crucial role in preventing developers from SSE.
Examples of resources included budget [9], external penetration
testers [9], knowledgeable security experts [9, 80], and security
tools [100]. Another required support was budgeting time to do
proper security development and testing while not delaying the
product’s release date [42]. Lack of such support could lead to
violating best practices and increasing the security team’s burden
significantly. As a result, there would be more chances of security
vulnerabilities as well as the loss of valuable employees on the
security team [9]. Furthermore, lack of resources might be the reason
developers thought their applications were vulnerable in spite of
satisfaction with their practices [10].

Security work is different in each development stage. In the secu-
rity development life cycle, more security-related work is done in
the implementation stage in comparison with analysis, test, review,
and post-development test phases. Also, more security work is done
in the design stage compared to analysis and review ones [10]. In
the design phase, there is a shortage of security experts [21]. Secu-
rity considerations in the design stage can be ad hoc, as developers
(non-security experts) are responsible for them, and if they fail to
pick security-sensitive features, they might be ignored [9, 21].

3.2.4 Structure and Size. Integrating security into the organiza-
tional structure is a useful strategy in SSE. If security is not built
into the structure of the organization, it could fail to be integrated
into organizational routines [67]. The success of integrating security
work in organizational routines depended entirely on the perceptions
that people in an organization held toward security [67]. Organi-
zational structure affected whether developers felt responsible for
security, with developers who knew there were experts in their or-
ganization specifically responsible for software security having a
relaxed attitude toward security [102].

Security implementation motivation appears to be linked to the
size of the company. Company size correlated with developers’ mo-
tivations [10]. In smaller companies, developers were less motivated
to implement security because they were not prepared for security

work and lacked a plan to strike a balance between different prior-
ities [10]. In addition, developers in smaller companies relied on
social networks and search engines to look up information related to
developing secure software, whereas in larger companies developers
could seek answers from security experts at their company [17].
During the software development life cycle, the team context might
have an impact on the code review process [28].

3.2.5 Role of Individuals in Organization . Individuals play a
role in influencing the routines and activities inside the company.

Managers’ mindsets, behaviors, and decisions correlated with
developers’ behavior and decision-making. Managerial roles were
important for several reasons: (1) Their decisions affected the final
product, because they could exercise discretion to approve a release
despite the presence of security vulnerabilities [80]. (2) What was
eventually built is what managers told developers to build, even if
developers had an interest in putting more effort into security [9].
For instance, economic considerations around product development
could result in security flaws being sometimes intentionally added
and/or overlooked to satisfy stakeholder requirements [65], or some-
times, managers cared about security aspects when “negative public-
ity [arose] from an application compromise” [99]. (3) Developers
looked at what their managers expected them to do, sharing their
mindset about security [67]. For instance, security is a non-functional
requirement that managers still considered an implicit quality along
with usability and maintainability—a mindset imitated by develop-
ers [67]. Without explicitly mentioning security, managers expected
development teams to build secure software [67]. (4) They helped
form a security culture and policies to foster such a culture (e.g.,
encouraged developers and security experts to collaborate, or offered
security-related classes [100]).

Peers, experts, and champions influence code security. Recom-
mendations of new software tools by peers and managers were more
effective and trustworthy than other information sources [97]. Also,
security expert or champion involvement in project teams resulted
in a greater number of crypto API defects, likely due to teams using
more cryptography [89]. The number of these issues is not a result
of security requirements or assurance technique usage [89]. The
involvement of security experts/champions is a reason developers
used more security assurance and ran updates more frequently [89].

3.2.6 Interactions. Developers face challenges in interacting and
communicating with others in the organization. For instance, there
is a lack of effective communication between different stakeholders
in product teams responsible for designing security features, which
could lead to more tension [21].

Developer and security expert interaction could affect the former’s
attitudes, tool adoption, and decision-making. Fixing vulnerabilities
was not just a matter of having security knowledge or working harder
on the part of developers. Instead, new ways of collaboration be-
tween developers and security experts were needed [65]. Interactions
with security experts (1) caused developers to feel more responsi-
ble for the security aspects of their work [97, 100] due to more
social pressure from the security team as the latter reviewed and
audited their code [100], (2) increased developers’ interest in using
security tools [97], and (3) facilitated decision-making around secu-
rity with regards to costs, tools, and time, among other things [90].



EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

However, these interactions were challenging and needed to be facil-
itated [80, 92].

Interactions in organizations are associated with many conflicts
and coordination challenges. Conflicts between auditors and devel-
opers could result in leaving vulnerabilities in the software [80].
When fixing vulnerabilities required the approval of several teams
of stakeholders like developers, managers, etc., (e.g., convincing
developers to see the real harms and serious vulnerabilities in the
software) [80], the teams’ diverging interests could lead to vulner-
ability fixes being delayed. Communication with developers about
detected vulnerabilities in their code was challenging due to dif-
ferent findings: (1) security directors or consultants needed to find
effective means of communication to motivate developers to firstly
acknowledge and secondly fix vulnerabilities [80], (2) security ex-
perts needed to be mindful of developers’ feelings when pointing
out security vulnerabilities in their code [80], (3) hackers and testers
thought they should be open-minded and adopt a respectful tone
with developers to prevent them from becoming defensive [86].

3.3 Technological
3.3.1 Security APIs/Libraries and Protocols. APIs/libraries14 in-
crease developer efficiency and promote code reuse. However, the
misuse of such tools can decrease the security of software (e.g., mis-
use in crypto APIs is a main cause of leaving Android applications
vulnerable [32]).

The complexity of crypto APIs could lead to their misuse, and
this challenge was compounded by poor API documentation. The
complexity of such APIs (e.g., absence of guidance for selecting
parameter values) sometimes made them too hard for developers
to learn and use [95]. For instance, APIs’ ambiguous underlying
implementations hindered developers’ ability to use the “sequence of
method calls & parameters” in the correct order [56] and assign val-
ues to parameters to use APIs [95]. Developers had difficulties iden-
tifying what API to use and setting up the environment [56], faced
inappropriate levels of API abstraction (e.g., too low-level) [56], and
encountered poor documentation [2, 56]. Developers faced a lack
of guidance to prevent API misuse (e.g., use of a constant string as
the “salt”) [95], missing code examples [2], poorly designed APIs
(e.g., misleading defaults and difficult debugging) [56], and a lack
of auxiliary features (e.g., secure key storage) [2]. The difficulties
mentioned above pushed developers to use potentially unreliable
online resources such as Stack Overflow or blogs [2]; these resources
often suggest insecure workarounds [2, 50]. We must consider that
developers tend to choose more usable APIs even if they are less
secure [95].

Developers’ difficulties with TLS result in security issues. De-
velopers sometimes customized apps by deviating from the default
TLS certificate validation policies that are secure by default, which
resulted in a significant reduction of security [33]. Many developers
did not realize the dangers around insecure TLS connections. The
root causes seemed to be a lack of understanding of how and what
functions a TLS serves, a lack of usable TLS warning messages, and
poor support for self-signed certificates [33].

14“API” and “library” are often used interchangeably for the purpose of this discussion.

3.3.2 Analysis Tools. Assistive tools facilitate finding security
vulnerabilities by saving time and effort in comparison with man-
ually looking for bugs [44]. Most users of security tools are from
large companies [100]. Google [12, 13, 71, 72], Microsoft [24], and
Facebook [30] use static analysis tools (SATs) in the various stages
of software/app development. SATs, which are most often used to
find security issues [24], are associated with many difficulties for
developers.

Poor learnability and high complexity of SATs hinder their adop-
tion by developers. Developers deemed security tools to be too
complex [96, 97] and suitable only for people who have security
expertise [79, 96]. Poor learnability of a security analysis tool affects
its adoption [96]. For instance, the biggest pain point for participants
in an study [24] was the mismatch between default settings and
developer needs.

Developers have difficulties finding a proper tool or incorporat-
ing it into their own workflow. Those who worked with dynamic
languages believed there were no good analysis tools for such lan-
guages [96]. In addition, it was difficult to find tools with support
for all relevant languages and frameworks being used in an organiza-
tion [80]. Moreover, using tools required a “disjoint process” which
did not fit into developers’ routine coding behaviors [24, 44, 76]. A
lack of support for progress tracking and batch processing interfered
with developers’ workflows [76].

Other challenges with using analysis tools are high cognitive de-
mand, insufficient provided details, and a lack of trust in the tools. To
fix vulnerabilities detected by the SATs, developers had to perform
large numbers of cognitively demanding tasks [77]. Besides that,
developers needed more information regarding potential vulnera-
bilities [76, 77] or else they had difficulty believing that reported
vulnerabilities were real, exploitable problems [77]. Even more,
some developers did not trust analysis tools with locating security
issues [9] or did not think such tools could find complicated issues,
such as reliability-related ones [24]. Developers need to receive
quicker feedback in real time [101] as long as this does not disturb
development workflow [44].

Analysis tools often require too much time, effort, knowledge, or
resources, which frustrates developers. Such tools were often viewed
as too costly [96], slow [24, 96] (e.g., slow performance in large
applications in modern static and dynamic analysis tools) [80], or
time-consuming [13, 79] (during installation, configuration, running,
and reading output [96]). Reviewing warnings, especially when
running a SAT for the first time, used too much time and effort [11,
13].

Warning messages from SATs assist developers in identifying and
addressing vulnerabilities, especially when the warnings are ranked
and prioritized by the SATs. Many developers fixed high-priority,
severe, new, and correctness-related warnings [12, 13]). But the
relevancy of low-priority warnings depended on the users’ context.
In addition, some elements such as project and/or organizational
characteristics (e.g., the amount of time they would prefer to in-
vest) affected developers’ likelihood of reviewing and fixing flagged
issues. Another pain point for developers was the lack of proper
ranking of warnings [24] or a lack of vulnerability severity and pri-
ority score information [76]. Developers needed to give priority to
warnings about security and best practices [24], and it was important



SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

for them to have the ability to suppress [24, 28, 44] or filter some
warnings [43].

The prevalence of false positives appears to be the most important
usability pain point. SATs’ false-positive warnings were widely cited
as the main challenge for developers [9, 24, 43, 44, 80, 96]. There-
fore, reducing false positives [43], along with excessive warnings,
appears to be the main avenue for increasing SAT adoption.

Poor quality and usability issues of SAT warnings also frustrate
developers. Developers considered warnings in analysis tools to
be poor in quality [24, 43, 44, 77]. This could be the result of (1)
weak visualizations and complexity of user interfaces [24], (2) poor
interface scalability in showing vulnerability sorting, vulnerabilities’
overlap, and visualization issues for large amounts of calls [76], (3)
overloading of IDE interfaces [28], (4) lack of adequate affordances
for assisting developers in navigating and managing reported issues,
(5) inaccurate analysis [76], and (6) irrelevance [9]. A recent study
showed that due to developer heterogeneity, there is no one warning
type that is preferable for all developers [28]. For instance, pop-ups
were disliked by participants with more programming experience,
but they were liked by those with less programming experience.

Developers have difficulties understanding, interpreting, and ad-
dressing warnings from analysis tools. Although some developers
tended to follow fix suggestions [77], tools did not provide enough
information about the nature of the issue [44, 76], the reason behind
it [44, 76], and how it could be fixed [24, 44, 76]. Tool outputs were
hard to read even for more experienced developers [15]. In addition
to having problems with understanding the results [96], the way
SATs described an issue might differ from how developers perceived
it. When provided with a better explanation, however, developers
could better understand the problem [43]. Moreover, developers
found it difficult to locate resources and documentation even when
links to outside material were provided, whether because the latter
had not been described adequately or the developers did not have
confidence in the material [76, 77]. Lastly, mismatched examples
and line numbers confused developers about the results and finding
the vulnerabilities [76].

3.3.3 Online Platforms. Previous studies showed that online plat-
forms are being used widely by developers. However, recent findings
showed that code examples in Q&A platforms may contain secu-
rity vulnerabilities [1, 3, 22, 35]. Therefore, it is vital to understand
challenges developers face in using such technologies.

Developers turn to online platforms when facing problems. They
spend time reading online resources [56] and looking for online
advice [17] (e.g., OWASP was listed as a trustworthy platform for
security tasks [90]). An international community of developers has
formed as a result of Q&A15 platforms, and such interactions have
had a visible impact on software development practices around the
world [48]. Stack Overflow [64] and search engines were two major
resources for developers to find solutions for security-related prob-
lems [3]. Developers copied and pasted code from external resources,
of which Stack Overflow is the most common [35]. The fact that
Google, as the most popular search engine, put online resources
like Stack Overflow before official documentation encouraged de-
velopers to review unofficial documents before official ones [95].

15question and answer

However, it is not straightforward to determine whether Stack Over-
flow causes more harm than good, since tracing vulnerable code to
Stack Overflow is not a surefire thing [35].

On the negative side, Stack Overflow contains many insecure
solutions that can impact SSE. Although it seems developers do
not accept all the provided information on Stack Overflow without
question [48], it can still introduce vulnerabilities into developers’
code. Some posts on Stack Overflow contain incorrect information
and cause errors in the code developers borrow from it, which could
negatively impact SSE [3, 35, 50]. App developers who used Stack
Overflow as an information resource produced significantly less
secure code in comparison to those who used other sources (e.g.,
books and official documentation). However, developers who used
Android documentation had much less functional code in compari-
son with developers who used Stack Overflow [3]. Also, on Stack
Overflow, while security-related questions were popular among de-
velopers, the Stack Overflow community often failed to provide
satisfying answers for programmers [69] in this area. Specifically,
in [35], the authors found that applications that used code snippets
from Stack Overflow contained, at the minimum, one vulnerable
code snippet. Another study showed that more than one-sixth of the
apps analyzed used code from Stack Overflow, of which the majority
included at least one insecure snippet [35]. Seekers could be directed
to and influenced by wrong answers simply because some posts from
popular responders receive more attention than others [50]. Finally,
many Stack Overflow code examples reviewed in [104] assumed a
level of knowledge and lacked complete explanation of the problem
(particularly for novice developers).

3.3.4 Updates and Upgrades. Using third-party libraries could
impact the security of the developed software [73]. Updates and
upgrades of these libraries play an important role in keeping software
secure. While finding security bugs acted as a motive for developers
to update their products [29, 73], they found it challenging to perform
updates of third-party cryptographic libraries [42].

Developers’ concerns prevent them from keeping up with up-
dates. Reasons for not updating or upgrading libraries included (1) a
cost-benefit trade-off, (2) a lack of incentive when the app already
worked as intended [29], (3) the fear of breaking an already-working
app [73], (4) the fear of triggering Federal Information Processing
Standards Publication recertification [29, 42], (5) unfamiliarity with
advantages that updates bring [29], and (6) the belief that as long as
developers or users do not experience any problems, changes are not
needed [73]. Additionally, developers mentioned that there was a
lack of clarity on whose responsibility it was to upgrade the product
after the release [90].

3.3.5 Languages. More research is needed to better understand
the challenges that developers have with languages in SSE. The
result of a contest with 116 teams [70] showed that the best submitted
works used C/C++. Statically typed language submissions were less
likely to have security problems, and teams using a diverse range of
programming languages wrote code that was more secure. In another
contest [68], no definitive connection could be established between a
particular language (Java, PHP, Perl) and the security of the resulting
code; rather, the way a platform was used trumped the nature of
the platform itself [68]. Nonetheless, a later study found a higher
injection rate of vulnerabilities in applications written in PHP than



EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

in other programming languages [19]. In another study, researchers
could not find a meaningful difference between the use of Spring or
JSF as a framework to develop more secure software [27, 58].

4 DISCUSSION
4.1 Limitations
It is important to note that even though our intention has been to
take as many developer problems into consideration as possible, we
do not claim we have not missed some. We remind the reader again
that the set we have presented here should be viewed as a beginning
for a new comprehensive way of thinking about systematization of
knowledge in developer centered security to be perfected by future
researchers. Additionally, we have not provided our assessment
of the generalizability of the results of the cited studies given the
demographics of the samples.

4.2 Developed Framework
In Fig 1, we depicted a comprehensive picture of challenges and their
interrelationships. By systematizing the current literature, we have
found that SSE is affected by many factors that can be categorized
into Human, Organizational, and Technological. These factors ap-
pear to influence each other directly and indirectly. According to our
systematization, organizational dimensions have the most interplay
with other areas (see the arrows in Fig 1). Among areas of challenges,
this figure shows that analysis tools, attitude and perceptions, knowl-
edge, and deterrents, respectively, are the top challenges affected
by other challenges. It seems that role of individuals, requirements
and policies, knowledge, attitudes, and organizational culture, in
that order, have the greatest influence on the other challenges. This
Fig 1 is the current landscape of challenges found by researchers.
Although this does not mean that the relationships not drawn do not
exist (e.g., Discussed in [38] about APIs’ interactions with other
technological factors).

This framework would help to find some patterns for future re-
search directions. We found that some areas of challenges play a
more important role because they have effects on many other fac-
tors. To illustrate: (1) managers play important roles by forming
organizational culture, enforcing policies, influencing developers’
mindsets by sharing their mindset and decision-making, and setting
priorities (section 3.2.5, section 3.1.2); (2) organizations’ culture,
developers’ knowledge, and experience influence developers’ atti-
tudes and perceptions (section 3.1.5, section 3.2.1, section 3.1.2); (3)
attitudes and perceptions act as motives or deterrents for developers
(section 3.1.3); (4) knowledge of security and tools is associated
with the use of code analysis tools (section 3.1.5, section 3.3.2); (5)
organizational factors, such as policies and culture, are linked to
developers’ knowledge, tool adoption, and attitudes toward secure
software development (section 3.2.2, section 3.2.1).

This framework would help to find potential spots where devel-
opers could be hindered by challenges. The framework shows some
interactions between different areas, which represent interesting find-
ings that need future work. For instance, there is a loop between
online platforms, learning strategies, and knowledge,16 as discussed

16A loop occurs when relationships between challenges (visible in Fig 2 as arrows
between nodes) form a cycle.

in section 3.1.6 concerning the learning strategies that influence
developers’ knowledge. Also, the knowledge correlates with how
developers use online platforms. As noted in section 3.3.3, develop-
ers used online platforms to gain knowledge. Observing such loops
(Fig 2) could explain why some measures are not effective when
developers are trapped in such loops, the security of the software
could decrease; on the other hand, this could be an opportunity to
help developers to improve the security of their software.

Soon after we finished our review, we found a couple of new
research expanding developers challenges (e.g., [55, 78, 87]) that
discussed new challenges in this area. Therefore, future studies can
focus on the following: (1) Challenges that had not been identified at
the time of writing this paper. (2) New interplays between challenge
areas, such as learning strategies and the role of personalities. (3)
Loops in challenges and how they can help with developing secure
software and how they influence developers’ security-related tasks.

Building an integrated framework of challenges would benefit
academics in a variety of ways. Our findings suggest that some qual-
ities of SSE make this area distinct from other areas in software
engineering. These qualities include security being invisible, having
a lower priority than functionality, and potentially requiring more
motivations. Additionally, there are more obstacles due to constant
changes in the security landscape and threats [91], lack of access
to security expertise [89], and a lack of documentation or informa-
tion section 3.3 in comparison to functional coding. The developed
framework in this SoK aids researchers in identifying potential areas
for further research. Based on 17 identified factors and their interplay
in the previous section, we provide some examples of possible di-
rections and recommendations to practitioners and suggest research
directions for academic researchers.

Practitioners would benefit from this systematization of knowl-
edge in two ways: (1) To gain a better understanding of the multi-
dimensional challenges that developers face while designing secure
software, as well as how these aspects interact. (2) To assist practi-
tioners in understanding the big picture of difficulties while develop-
ing new policies and strategies to improve software security. The list
below outlines a theoretically ideal state to strive for according to
the best effort principle. All of these are suggestions and could be
research questions for future work.

4.3 Recommendations for Practitioners
Visibility of secure coding: Make security a visible aspect of the
software to encourage developers’ use of knowledge and sense of
responsibility. By visibility we mean measures such as making it
an obligatory part of the development process, transparently dis-
cussing the need for security, budgeting enough time for the work,
clearly assigning developers to security-related tasks, and calling for
security-related meetings. Regardless of their knowledge of security,
developers are reluctant to apply their knowledge when security
is “invisible” (section 3.2.2, section 3.1.2). Therefore, developers
should be provided with more visible incentives for SSE. Another
problem created by the lack of visibility is having outdated software
due to a lack of clarity on who is responsible for upgrading the prod-
uct (section 3.3.4). Therefore, more visibility is needed about who is
responsible for upgrading the product after release. Finally, shortage
of time is an obstacle for developers, acting as a deterrent for SSE



SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

(section 3.1.2, section 3.1.3, section 3.2.3). More visibility is needed
for explicitly allocating time in project budgets for engineering more
secure software.
Policy/Culture/Strategies: To have secure software, organizational
policy, culture, and strategies can assist developers. Favorable or-
ganizational structure, policies, and culture, and concrete plans for
security have been shown to assist developers in SSE (section 3.1.3,
section 3.2). Organizations need to consider SSE in designing each
of these aspects of the organization. Lack of sense of responsibility
for software security correlates with less SSE, whereas profession-
ally responsible developers are motivated to increase their expertise,
awareness, and completion of security-related tasks (section 3.2.4,
section 3.1.3, section 3.1.2). It should be made clear to develop-
ers that security is their responsibility even if they have dedicated

“security experts” in their team or organization.
Communication and collaborations with other stakeholders in an

organization can lead to more SSE. Poor communication between
developers and security directors, consultants, or experts can delay
fixing vulnerabilities (section 3.2.6). Therefore, promote a culture
in which developers feel safe acknowledging, reporting, and fixing
security vulnerabilities in their code. Additionally, according to
the literature, the support provided by other people or interactions
with them in the chain of SSE is associated with the promotion of
security mindsets, increases in developers’ self-efficacy, learning
about vulnerabilities, improvements in developers’ understanding
of vulnerabilities, more skilled use of tools, more motivation, and
overall more secure code (section 3.2.6, section 3.2.5, section 3.1.3,
section 3.1.6). Organizational strategies can facilitate collaborations
and interactions between developers and security experts.

Capitalize on specific personality traits. Research suggests that
people with a high degree of curiosity or open-mindedness tend to
outperform others in secure software development (section 3.1.1).
Therefore, paying attention to these traits when recruiting software
developers will amplify efforts to improve software security. Also,
open-mindedness can make up for insufficient security experience
and would help to avoid being trapped in APIs’ blindspots (sec-
tion 3.2.6, section 3.1.1). Cultures could be promoted in which de-
velopers practice or engage in open-mindedness activities to think
critically about their work and be open to vulnerabilities reported
by others.

Employ organizational factors to support human factors in im-
proving SSE. Attitudes, mindsets, and perceptions steer developers’
decision-making and actions toward engineering more secure soft-
ware (section 3.1.2, section 3.1.3). To this end, organizations can
develop strategies to facilitate the cultivation of security mindsets
among developers through training, culture, policies, etc. Moreover,
motivations and deterrents count as important factors that influence
other factors, such as attitudes and mindsets, use of tools, and form-
ing security culture. In this realm, intrinsic motivations seem to have
the upper hand in swaying developers toward SSE (section 3.1.3, sec-
tion 3.2.1). It is in the hands of the organizations to promote and/or
facilitate the development of intrinsic motives toward security (e.g.,
enjoying doing security-related tasks).

Finally, research suggests that a better understanding of analysis
tools leads to higher adoption rates and trust in the tools’ abilities
to find bugs. Considering all benefits of using analysis tools, such

as facilitating finding security vulnerabilities, security-centered poli-
cies could reduce the barriers caused by such tools (section 3.3.2,
section 3.1.5, section 3.2.2). Companies should design policies that
make developers more familiar with analysis tools and encourage
more usage. For example, companies can make tools available for
all developers, regardless of their professional expertise, or reward
developers who help others in using these tools.
Knowledge and learning: Encourage developers to improve their
knowledge and experience. Having security knowledge correlates
with tool adoption. Shortage of knowledge with the inability to imple-
ment security measures, mistakenly believing the code is secure, and
lack of understanding of threats finally make developers frustrated
so that they may choose easy but insecure options, e.g., copying
and pasting insecure code from Stack Overflow (section 3.1.5, sec-
tion 3.3.3). If the organization hires developers without security
knowledge, developers should be provided with opportunities and in-
centives to gain, maintain, and apply such knowledge. Another way
of learning is through experience. Learning from experience counted
as a way developers, hackers, and testers learned about security vul-
nerabilities (section 3.1.6). Companies should help developers gain
experience with vulnerabilities and investigate security incidents,
for instance, by assigning new developers to investigations of vul-
nerabilities of the developed software and related security incidents,
or motivating developers to learn about others’ experiences with
vulnerabilities.
Support: Support developers by providing them with adequate tools
and human resources. Developers need to have sufficient expertise
to use SATs. Also, they face many challenges that require help in
using tools. A reason developers use Stack Overflow to find solutions
for security-related problems is that they receive quick responses
without negative social judgment (section 3.3.2, section 3.3.3). De-
velopers should be supported when using analysis tools by providing
access to experts to ask their questions about the tools or whenever
they need guidance in using them. Expert support needs to be easily
available, quick, and without any criticism. Furthermore, consider-
ing developers’ needs in different projects and development phases,
they need different levels of warnings and information in SATs.
Organizations can provide resources (section 3.3.2, section 3.2.3).
Organizations should choose analysis tools that support different
levels of detail and speed, have customization options, and have
user-friendly interfaces or outputs.

4.4 Avenues for Academic Research
Our literature analysis sheds light on the landscape of developers’
challenges and offers the academic community future avenues of
research. While there is a long list of potential research, we focus
here on the existing need for research that, if investigated, would
contribute the most to the state of the art and practice in SSE.
Experience: The role of experience in SSE must be explored further.
Research suggests that overconfidence could lead to vulnerabilities
(section 3.1.1 & section 3.1.2). More research is needed to under-
stand the link between the amount of developers’ work experience
and overconfidence, as well as how it can be reduced. More impor-
tantly, due to the lack of clarity about the role of experience (sec-
tion 3.1.5), more investigation of the relationship between different



EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

types of experience (e.g., work, tool use, language, etc.) and the abil-
ity to engineer secure software is necessary. Also, as some research
suggests, security training is not a significant factor in preventing
vulnerabilities (section 3.1.5); more investigation is necessary to
understand why education is not working and how developers’ ed-
ucation can be adjusted or even reformed to increase the positive
impact on the security of engineered software.
Learning strategies: More research is needed to determine the most
effective learning strategies for SSE. As the demography of develop-
ers is shifting toward developers with a wide variety of educational
backgrounds [66], we need to know which learning strategies could
be more effective for such demographics. To bridge this gap, the
academic community needs to consider findings related to: (1) the
common practice of using unofficial resources such as Stack Over-
flow (section 3.3.3), (2) how developers who used official resources
were able to develop more secure code than those who used unof-
ficial resources(section 3.3.3), (3) how developers have difficulties
in finding a correlation between theorized vulnerabilities that they
had learned about in school and the security problem at hand (sec-
tion 3.1.6). Therefore, more research is needed to understand how
teaching “on the spot” needs to be provided.
Code examples in tools: With the use of code examples from diverse
sources, more studies are needed to determine how developers use
these examples. Code examples appear to play an important role in
SSE (section 3.3.1, section 3.3.2). Developers might greatly benefit
from usable, effective, and secure code examples in the documenta-
tion of APIs and protocols, as well as in the notifications produced
by analysis tools in particular. Developers usually use code exam-
ples from online sources, and many of those examples could have
vulnerabilities (section 3.3.3). Some of the most promising questions
to investigate in the context of SSE are: What code examples are
useful? How are developers using code examples? And what are
developers’ challenges with using them?
Focus on demographics: It seems that comparing developers to ei-
ther end users or students in studies on software security can be
counterproductive. One position paper provided a research agenda
for developer studies by considering lessons learned from usable
security for end users [5]. This is a good starting point for developer-
centered studies, but this type of comparison is associated with limi-
tations [66]. To understand these limitations, Gorski et al. [39] drew
the attention of API developers to the fact that, from the developers’
point of view, “end-user centered security warning guidelines cannot
be applied directly” for designing warnings for developers. Applying
findings about end-users to the context of developer-centered secu-
rity could cause researchers to miss some important aspects such as
organizational factors (section 3.2), motivations (section 3.1.3), tool
availability, and requirements related to tools (section 3.3), etc., re-
sulting in them not fully understanding the situations that developers
find themselves in. For this reason, students cannot be used in stud-
ies that aim to fully understand professional developers’ challenges
in SSE, which is one of the major concerns related to developer
studies [5, 27, 57–60]. As shown in Fig 1, organizational dimen-
sions (e.g., culture, policies ) have significant influence on SSE for
professional developers, which is not the case for students.

While some studies have suggested using students instead of
professional developers, due to the access difficulties, several find-
ings (section 3.1.5, section 3.2.2, section 3.1.6, section 3.1.3, sec-
tion 3.3.2) suggest that differences between these two demographics
undercut the argument in favor of their similarity as subjects. Finally,
we would like to echo the finding of Naiakshina et al. [57] as they
discovered that company developers could develop more secure soft-
ware than students, which could be a result of the company context
as a possible key factor. Therefore, further research is needed to
examine the differences between students and developers.

ACKNOWLEDGMENTS
Many thanks to Mohammad Tahaei, Artemij Voskobojnikov, Borke
Obada, Masoud Mehrabi Koushki, Yue Huang, and Tiffany Quon
for their input and feedback. Stylistic and copy editing by Eva van
Emden helped to improve readability of this paper. This research has
been supported by the Huawei-UBC Software Engineering Technol-
ogy Research Program.

REFERENCES
[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. On code reuse

from stackoverflow: An exploratory study on android apps. Information and
Software Technology 88 (2017), 148–158.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L. Garfinkel, Doowon Kim,
Michelle L. Mazurek, and Christian Stransky. 2017. Comparing the Usability
of Cryptographic APIs.. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, San Jose, CA, 154–171. http://dblp.uni-trier.de/db/conf/sp/
sp2017.html#Acar0FGKMS17

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek,
and Christian Stransky. 2016. You Get Where You’re Looking for: The Impact
of Information Sources on Code Security. In 2016 IEEE Symposium on Security
and Privacy (SP). IEEE Press, San Jose, CA, 289–305. https://doi.org/10.1109/
SP.2016.25

[4] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. 2017. How internet resources might be helping you
develop faster but less securely. IEEE Security & Privacy 15, 2 (2017), 50–60.

[5] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. 2016. You are not your
developer, either: A research agenda for usable security and privacy research
beyond end users. In 2016 IEEE Cybersecurity Development (SecDev). IEEE,
3–8.

[6] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L. Mazurek, and
Sascha Fahl. 2017. Security Developer Studies with GitHub Users: Exploring a
Convenience Sample. In Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). USENIX Association, Santa Clara, CA, 81–95. https://www.
usenix.org/conference/soups2017/technical-sessions/presentation/acar

[7] Debi Ashenden and Darren Lawrence. 2016. Security dialogues: Building better
relationships between security and business. IEEE Security & Privacy 14, 3
(2016), 82–87.

[8] Hala Assal and Sonia Chiasson. 2018. Motivations and amotivations for software
security. In SOUPS Workshop on Security Information Workers (WSIW). USENIX
Association. Baltimore, MD, USA, 1–4.

[9] Hala Assal and Sonia Chiasson. 2018. Security in the Software Development
Lifecycle. In Fourteenth Symposium on Usable Privacy and Security (SOUPS
2018). USENIX Association, Baltimore, MD, 281–296. https://www.usenix.
org/conference/soups2018/presentation/assal

[10] Hala Assal and Sonia Chiasson. 2019. <i>’Think Secure from the Beginning’</i>:
A Survey with Software Developers. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300519

[11] Nathaniel Ayewah and William Pugh. 2008. A Report on a Survey and Study
of Static Analysis Users. In Proceedings of the 2008 Workshop on Defects in
Large Software Systems (Seattle, Washington) (DEFECTS ’08). Association for
Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/
1390817.1390819

[12] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs Fixit. In Pro-
ceedings of the 19th International Symposium on Software Testing and Analysis
(Trento, Italy) (ISSTA ’10). Association for Computing Machinery, New York,
NY, USA, 241–252. https://doi.org/10.1145/1831708.1831738

[13] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix. 2008.
Using Static Analysis to Find Bugs. IEEE Software 25, 5 (Sep. 2008), 22–29.

http://dblp.uni-trier.de/db/conf/sp/sp2017.html#Acar0FGKMS17
http://dblp.uni-trier.de/db/conf/sp/sp2017.html#Acar0FGKMS17
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2016.25
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2018/presentation/assal
https://www.usenix.org/conference/soups2018/presentation/assal
https://doi.org/10.1145/3290605.3300519
https://doi.org/10.1145/1390817.1390819
https://doi.org/10.1145/1390817.1390819
https://doi.org/10.1145/1831708.1831738


SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

https://doi.org/10.1109/MS.2008.130
[14] Dejan Baca and Bengt Carlsson. 2011. Agile Development with Security En-

gineering Activities. In Proceedings of the 2011 International Conference on
Software and Systems Process (Waikiki, Honolulu, HI, USA) (ICSSP ’11). As-
sociation for Computing Machinery, New York, NY, USA, 149–158. https:
//doi.org/10.1145/1987875.1987900

[15] Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg. 2009. Static code
analysis to detect software security vulnerabilities-does experience matter?. In
2009 International Conference on Availability, Reliability and Security. IEEE,
IEEE Press, Fukuoka, Japan, 804–810.

[16] Wei Bai, Omer Akgul, and Michelle L. Mazurek. 2019. A Qualitative Investi-
gation of Insecure Code Propagation from Online Forums. In 2019 IEEE Cy-
bersecurity Development (SecDev). IEEE Press, McLean, VA, 34–48. https:
//doi.org/10.1109/SecDev.2019.00016

[17] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I Hong, and Lorrie Faith
Cranor. 2014. The privacy and security behaviors of smartphone app developers.
In Proc. of Workshop on Usable Security. Internet Society, San Diego, CA, USA,
1–10.

[18] Steffen Bartsch. 2011. Practitioners’ Perspectives on Security in Agile Develop-
ment. In Proceedings of the 2011 Sixth International Conference on Availability,
Reliability and Security (ARES ’11). IEEE Computer Society, USA, 479–484.
https://doi.org/10.1109/ARES.2011.82

[19] Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutchler, and John C Mitchell.
2012. Vulnerability factors in new web applications: Audit tools, developer
selection & languages. Stanford, Tech. Rep (2012).

[20] Deanna D. Caputo, Shari Lawrence Pfleeger, M. Angela Sasse, Paul Am-
mann, Jeff Offutt, and Lin Deng. 2016. Barriers to Usable Security? Three
Organizational Case Studies. IEEE Security Privacy 14, 5 (2016), 22–32.
https://doi.org/10.1109/MSP.2016.95

[21] George Chalhoub, Ivan Flechais, Norbert Nthala, and Ruba Abu-Salma. 2020.
Innovation Inaction or In Action? The Role of User Experience in the Security
and Privacy Design of Smart Home Cameras. In Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020). USENIX Association, Online, 185–204.
https://www.usenix.org/conference/soups2020/presentation/chalhoub

[22] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens Grossklags.
2019. How Reliable is the Crowdsourced Knowledge of Security Imple-
mentation?. In Proceedings of the 41st International Conference on Software
Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 536–547.
https://doi.org/10.1109/ICSE.2019.00065

[23] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu,
and Lihua Xu. 2018. Are Mobile Banking Apps Secure? What Can Be Im-
proved?. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Asso-
ciation for Computing Machinery, New York, NY, USA, 797–802. https:
//doi.org/10.1145/3236024.3275523

[24] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from
Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
332–343. https://doi.org/10.1145/2970276.2970347

[25] Symantec Corporation. [n.d.]. Symantec Internet Security Threat Report. https:
//docs.broadcom.com/doc/istr-22-2017-en, publisher=Broadcom Inc. Accessed:
2021-05-03.

[26] Catherine Courage and Kathy Baxter. 2005. Appendix F - Affinity Diagram. In
Understanding Your Users: A Practical Guide to User Requirements Methods,
Tools, and Techniques (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[27] Anastasia Danilova, Alena Naiakshina, Johanna Deuter, and Matthew Smith.
2020. Replication: On the Ecological Validity of Online Security Developer
Studies: Exploring Deception in a Password-Storage Study with Freelancers. In
Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020). USENIX
Association, Online, 165–183. https://www.usenix.org/conference/soups2020/
presentation/danilova

[28] Anastasia Danilova, Alena Naiakshina, and Matthew Smith. 2020. One Size
Does Not Fit All: A Grounded Theory and Online Survey Study of Developer
Preferences for Security Warning Types. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 136–148.
https://doi.org/10.1145/3377811.3380387

[29] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep Me Updated: An Empirical Study of Third-Party Library Updatability on
Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 2187–2200. https://doi.org/10.
1145/3133956.3134059

[30] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),

62–70. https://doi.org/10.1145/3338112
[31] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter, Adrian

Mettler, and David Wagner. 2013. An Empirical Study on the Effectiveness of
Security Code Review. In Proceedings of the 5th International Conference on
Engineering Secure Software and Systems (Paris, France) (ESSoS’13). Springer-
Verlag, Berlin, Heidelberg, 197–212. https://doi.org/10.1007/978-3-642-36563-
8_14

[32] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An Empirical Study of Cryptographic Misuse in Android Applications. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security (Berlin, Germany) (CCS ’13). Association for Computing Machin-
ery, New York, NY, USA, 73–84. https://doi.org/10.1145/2508859.2516693

[33] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith.
2013. Rethinking SSL Development in an Appified World. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security
(Berlin, Germany) (CCS ’13). Association for Computing Machinery, New York,
NY, USA, 49–60. https://doi.org/10.1145/2508859.2516655

[34] Martha S. Feldman and Brian T. Pentland. 2003. Reconceptualizing Organiza-
tional Routines as a Source of Flexibility and Change. Administrative Science
Quarterly 48, 1 (2003), 94–118. http://www.jstor.org/stable/3556620

[35] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack overflow considered harm-
ful? the impact of copy&paste on android application security. In 2017 IEEE
Symposium on Security and Privacy (SP). IEEE Press, San Jose, CA, 121–136.

[36] S. Frey, A. Rashid, P. Anthonysamy, M. Pinto-Albuquerque, and S. A. Naqvi.
2019. The Good, the Bad and the Ugly: A Study of Security Decisions in a
Cyber-Physical Systems Game. IEEE Transactions on Software Engineering 45,
5 (May 2019), 521–536. https://doi.org/10.1109/TSE.2017.2782813

[37] Joseph Giacomin. 2014. What is human centred design? The Design Journal 17,
4 (2014), 606–623.

[38] Peter Leo Gorski. 2021. Information flows to support software developers in
using security APIs. (2021).

[39] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl. 2020. Listen
to Developers! A Participatory Design Study on Security Warnings for Crypto-
graphic APIs. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Comput-
ing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.
3376142

[40] M. Green and M. Smith. 2016. Developers are Not the Enemy!: The Need
for Usable Security APIs. IEEE Security Privacy 14, 5 (Sep. 2016), 40–46.
https://doi.org/10.1109/MSP.2016.111

[41] Peter Hamm, David Harborth, and Sebastian Pape. 2019. A Systematic Analysis
of User Evaluations in Security Research. In Proceedings of the 14th Interna-
tional Conference on Availability, Reliability and Security. 1–7.

[42] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman.
2018. "We make it a big deal in the company": Security Mindsets in Organiza-
tions that Develop Cryptographic Products. In Fourteenth Symposium on Usable
Privacy and Security (SOUPS 2018). USENIX Association, Baltimore, MD,
357–373. https://www.usenix.org/conference/soups2018/presentation/haney-
mindsets

[43] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. 2019. Chal-
lenges with Responding to Static Analysis Tool Alerts. In Proceedings of the
16th International Conference on Mining Software Repositories (Montréal,
QC, Canada) (MSR ’19). IEEE Press, Montreal, Quebec, Canada, 245–249.
https://doi.org/10.1109/MSR.2019.00049

[44] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 2013 International Conference on Software Engineering
(San Francisco, CA, USA) (ICSE ’13). Association for Computing Machinery,
New York, NY, USA, 672–681.

[45] Timothy P. Johnson. 2014. Snowball Sampling: Introduc-
tion. (2014). https://doi.org/10.1002/9781118445112.stat05720
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat05720

[46] Tamara Lopez, Helen Sharp, Thein Tun, Arosha Bandara, Mark Levine, and
Bashar Nuseibeh. 2019. Talking about Security with Professional Developers. In
Proceedings of the Joint 7th International Workshop on Conducting Empirical
Studies in Industry and 6th International Workshop on Software Engineering Re-
search and Industrial Practice (CESSER-IP ’19). IEEE Press, Montreal, Quebec,
Canada, 34–40. https://doi.org/10.1109/CESSER-IP.2019.00014

[47] Tamara Lopez, Helen Sharp, Thein Tun, Arosha K. Bandara, Mark Levine, and
Bashar Nuseibeh. 2019. "Hopefully We Are Mostly Secure": Views on Secure
Code in Professional Practice. In Proceedings of the 12th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE ’19). IEEE
Press, Montreal, Quebec, Canada, 61–68. https://doi.org/10.1109/CHASE.2019.
00023

[48] Tamara Lopez, Thein Tun, Arosha Bandara, Mark Levine, Bashar Nuseibeh, and
Helen Sharp. 2019. An Anatomy of Security Conversations in Stack Overflow.
In Proceedings of the 41st International Conference on Software Engineering:

https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1109/SecDev.2019.00016
https://doi.org/10.1109/SecDev.2019.00016
https://doi.org/10.1109/ARES.2011.82
https://doi.org/10.1109/MSP.2016.95
https://www.usenix.org/conference/soups2020/presentation/chalhoub
https://doi.org/10.1109/ICSE.2019.00065
https://doi.org/10.1145/3236024.3275523
https://doi.org/10.1145/3236024.3275523
https://doi.org/10.1145/2970276.2970347
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://www.usenix.org/conference/soups2020/presentation/danilova
https://www.usenix.org/conference/soups2020/presentation/danilova
https://doi.org/10.1145/3377811.3380387
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516655
http://www.jstor.org/stable/3556620
https://doi.org/10.1109/TSE.2017.2782813
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1109/MSP.2016.111
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1002/9781118445112.stat05720
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat05720
https://doi.org/10.1109/CESSER-IP.2019.00014
https://doi.org/10.1109/CHASE.2019.00023
https://doi.org/10.1109/CHASE.2019.00023


EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

Software Engineering in Society (ICSE-SEIS ’19). IEEE Press, Montreal, Quebec,
Canada, 31–40. https://doi.org/10.1109/ICSE-SEIS.2019.00012

[49] Check Point Software Technologies Ltd. [n.d.]. Cyber Security Report
2020. https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf, pub-
lisher=CHECK POINT. Accessed: 2021-05-03.

[50] Na Meng, Stefan Nagy, Danfeng (Daphne) Yao, Wenjie Zhuang, and Gus-
tavo Arango Argoty. 2018. Secure Coding Practices in Java: Challenges and Vul-
nerabilities. In Proceedings of the 40th International Conference on Software En-
gineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machin-
ery, New York, NY, USA, 372–383. https://doi.org/10.1145/3180155.3180201

[51] merriam webster. [n.d.]. Confidence. https://www.merriam-webster.com/
dictionary/confidence, publisher=Merriam-Webster. Accessed: 2021-07-20.

[52] merriam webster. [n.d.]. Deterrents. https://www.merriam-webster.com/
dictionary/deterrent, publisher=Merriam-Webster. Accessed: 2021-07-20.

[53] merriam webster. [n.d.]. Mindset. https://www.merriam-webster.com/dictionary/
mindset, publisher=Merriam-Webster. Accessed: 2019-10-03.

[54] Mohammad Tahaei and Kami Vaniea. 2019. A Survey on Developer-Centred
Security. In 2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW). 129–138. https://doi.org/10.1109/EuroSPW.2019.00021

[55] Azadeh Mokhberi, Tiffany Quon, and Konstantin Beznosov. 2021. What makes
security-related code examples different. In SOUPS Workshop on Security Infor-
mation Workers (WSIW). USENIX Association.

[56] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping
through Hoops: Why Do Java Developers Struggle with Cryptography APIs?.
In Proceedings of the 38th International Conference on Software Engineering
(Austin, Texas) (ICSE ’16). Association for Computing Machinery, New York,
NY, USA, 935–946. https://doi.org/10.1145/2884781.2884790

[57] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. 2020.
On Conducting Security Developer Studies with CS Students: Examining a
Password-Storage Study with CS Students, Freelancers, and Company Develop-
ers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376791

[58] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz,
and Matthew Smith. 2019. “If You Want, I Can Store the Encrypted Password”:
A Password-Storage Field Study with Freelance Developers. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, Article 140, 12 pages. https://doi.org/10.1145/3290605.3300370

[59] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage
Wrong? A Qualitative Usability Study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA)
(CCS ’17). Association for Computing Machinery, New York, NY, USA, 311–328.
https://doi.org/10.1145/3133956.3134082

[60] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith.
2018. Deception Task Design in Developer Password Studies: Exploring a
Student Sample. In Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018). USENIX Association, Baltimore, MD, 297–313. https://www.
usenix.org/conference/soups2018/presentation/naiakshina

[61] Chitu Okoli. 2015. A guide to conducting a standalone systematic literature
review. Communications of the Association for Information Systems 37, 1 (2015),
43.

[62] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin
Cappos, and Yanyan Zhuang. 2014. It’s the Psychology Stupid: How Heuris-
tics Explain Software Vulnerabilities and How Priming Can Illuminate De-
veloper’s Blind Spots. In Proceedings of the 30th Annual Computer Security
Applications Conference (New Orleans, Louisiana, USA) (ACSAC ’14). As-
sociation for Computing Machinery, New York, NY, USA, 296–305. https:
//doi.org/10.1145/2664243.2664254

[63] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad,
Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong, Justin Cappos,
and Yuriy Brun. 2018. API Blindspots: Why Experienced Developers Write
Vulnerable Code. In Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018). USENIX Association, Baltimore, MD, 315–328. https://www.
usenix.org/conference/soups2018/presentation/oliveira

[64] Stack Overflow. [n.d.]. Stack Overflow. https://stackoverflow.com/. Accessed:
2019-12-03.

[65] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende, Jay Ligatti, and Xinming
Ou. 2020. An Ethnographic Understanding of Software (In)Security and a
Co-Creation Model to Improve Secure Software Development. In Sixteenth Sym-
posium on Usable Privacy and Security (SOUPS 2020). USENIX Association,
Online, 205–220. https://www.usenix.org/conference/soups2020/presentation/
palombo

[66] Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko. 2017. Developer-Centered
Security and the Symmetry of Ignorance. In Proceedings of the 2017 New
Security Paradigms Workshop (Santa Cruz, CA, USA) (NSPW 2017). Association
for Computing Machinery, New York, NY, USA, 46–56. https://doi.org/10.1145/

3171533.3171539
[67] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and Katha-

rina Kinder-Kurlanda. 2017. Can Security Become a Routine? A Study of
Organizational Change in an Agile Software Development Group. In Pro-
ceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing (Portland, Oregon, USA) (CSCW ’17). Associ-
ation for Computing Machinery, New York, NY, USA, 2489–2503. https:
//doi.org/10.1145/2998181.2998191

[68] Lutz Prechelt. 2010. Plat_Forms: A web development platform comparison by
an exploratory experiment searching for emergent platform properties. IEEE
Transactions on Software Engineering 37, 1 (2010), 95–108.

[69] Akond Rahman, Asif Partho, Patrick Morrison, and Laurie Williams. 2018. What
Questions Do Programmers Ask about Configuration as Code?. In Proceedings
of the 4th International Workshop on Rapid Continuous Software Engineering
(Gothenburg, Sweden) (RCoSE ’18). Association for Computing Machinery,
New York, NY, USA, 16–22. https://doi.org/10.1145/3194760.3194769

[70] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek,
and Piotr Mardziel. 2016. Build It, Break It, Fix It: Contesting Secure Develop-
ment. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). Association for Com-
puting Machinery, New York, NY, USA, 690–703. https://doi.org/10.1145/
2976749.2978382

[71] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. 2018. Lessons from Building Static Analysis Tools at Google.
Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

[72] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE,
Florence, Italy, 598–608. https://doi.org/10.1109/ICSE.2015.76

[73] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Filom-
ena Ferrucci. 2020. Third-party libraries in mobile apps. Empirical Software
Engineering 25, 3 (2020), 2341–2377.

[74] Elizabeth B-N Sanders and Pieter Jan Stappers. 2008. Co-creation and the new
landscapes of design. Co-design 4, 1 (2008), 5–18.

[75] Jesper Simonsen, Connie Svabo, Sara Malou Strandvad, Kristine Samson, Morten
Hertzum, and Ole Erik Hansen. 2014. Situated Design Methods. The MIT Press.

[76] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why
Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis
Tools for Security. In Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020). USENIX Association, Online, 221–238. https://www.usenix.
org/conference/soups2020/presentation/smith

[77] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2019. How Developers Diagnose Potential Security
Vulnerabilities with a Static Analysis Tool. IEEE Transactions on Software
Engineering 45, 9, 877–897. https://doi.org/10.1109/TSE.2018.2810116

[78] Mohammad Tahaei, Kami Vaniea, Konstantin (Kosta) Beznosov, and Maria K
Wolters. 2021. Security Notifications in Static Analysis Tools: Developers’ Atti-
tudes, Comprehension, and Ability to Act on Them. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445616

[79] Tyler W. Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson
Murphy-Hill. 2016. What Questions Remain? An Examination of How De-
velopers Understand an Interactive Static Analysis Tool. In Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016). USENIX Association, Denver,
CO. https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/
presentation/thomas

[80] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. 2018. Secu-
rity During Application Development: An Application Security Expert Perspec-
tive. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machin-
ery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173836

[81] Mieke Van der Bijl-Brouwer and Kees Dorst. 2017. Advancing the strategic
impact of human-centred design. Design Studies 53 (2017), 1–23.

[82] veracode. [n.d.]. STATE OF SOFTWARE SECURITY. https:
//www.veracode.com/sites/default/files/Resources/Reports/state-of-software-
security-volume-7-veracode-report.pdf, publisher=Veracode. Accessed:
2021-05-03.

[83] Jan Vom Brocke, Alexander Simons, Kai Riemer, Bjoern Niehaves, Ralf Plattfaut,
and Anne Cleven. 2015. Standing on the shoulders of giants: Challenges and
recommendations of literature search in information systems research. Commu-
nications of the association for information systems 37, 1 (2015), 9.

[84] Daniel Votipka, Desiree Abrokwa, and Michelle L. Mazurek. 2020. Building
and Validating a Scale for Secure Software Development Self-Efficacy. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New
York, NY, USA, 1–20. https://doi.org/10.1145/3313831.3376754

[85] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L.
Mazurek, and Michael Hicks. 2020. Understanding security mistakes developers
make: Qualitative analysis from Build It, Break It, Fix It. In 29th USENIX

https://doi.org/10.1109/ICSE-SEIS.2019.00012
https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf
https://doi.org/10.1145/3180155.3180201
https://www.merriam-webster.com/dictionary/confidence
https://www.merriam-webster.com/dictionary/confidence
https://www.merriam-webster.com/dictionary/deterrent
https://www.merriam-webster.com/dictionary/deterrent
https://www.merriam-webster.com/dictionary/mindset
https://www.merriam-webster.com/dictionary/mindset
https://doi.org/10.1109/EuroSPW.2019.00021
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/3313831.3376791
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/2664243.2664254
https://doi.org/10.1145/2664243.2664254
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://stackoverflow.com/
https://www.usenix.org/conference/soups2020/presentation/palombo
https://www.usenix.org/conference/soups2020/presentation/palombo
https://doi.org/10.1145/3171533.3171539
https://doi.org/10.1145/3171533.3171539
https://doi.org/10.1145/2998181.2998191
https://doi.org/10.1145/2998181.2998191
https://doi.org/10.1145/3194760.3194769
https://doi.org/10.1145/2976749.2978382
https://doi.org/10.1145/2976749.2978382
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ICSE.2015.76
https://www.usenix.org/conference/soups2020/presentation/smith
https://www.usenix.org/conference/soups2020/presentation/smith
https://doi.org/10.1109/TSE.2018.2810116
https://doi.org/10.1145/3411764.3445616
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://doi.org/10.1145/3173574.3173836
 https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
 https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
 https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
https://doi.org/10.1145/3313831.3376754


SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

Security Symposium (USENIX Security 20). USENIX Association, Online, 109–
126. https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-
understanding

[86] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle
Mazurek. 2018. Hackers vs. testers: A comparison of software vulnerability
discovery processes. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE Press, San Francisco, CA, 374–391.

[87] Charles Weir, Ingolf Becker, and Lynne Blair. 2021. A Passion for Security:
Intervening to Help Software Developers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). 21–30. https://doi.org/10.1109/ICSE-SEIP52600.2021.00011

[88] Charles Weir, Ingolf Becker, James Noble, Lynne Blair, M. Angela Sasse, and
Awais Rashid. 2019. Interventions for Software Security: Creating a Lightweight
Program of Assurance Techniques for Developers. In Proceedings of the 41st
International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP ’19). IEEE Press, Montreal, Quebec, Canada, 41–50. https:
//doi.org/10.1109/ICSE-SEIP.2019.00013

[89] Charles Weir, Ben Hermann, and Sascha Fahl. 2020. From Needs to Actions
to Secure Apps? The Effect of Requirements and Developer Practices on App
Security. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 289–305. https://www.usenix.org/conference/usenixsecurity20/
presentation/weir

[90] Charles Weir, James Noble, and Awais Rashid. 2020. Challenging Software De-
velopers: Dialectic as a Foundation for Security Assurance Techniques. Journal
of Cybersecurity (2020), 30. https://doi.org/10.1093/cybsec/tyaa007

[91] Charles Weir, Awais Rashid, and James Noble. 2016. Reaching the Masses: A
New Subdiscipline of App Programmer Education. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (Seattle, WA, USA) (FSE 2016). Association for Computing Machinery,
New York, NY, USA, 936–939. https://doi.org/10.1145/2950290.2983981

[92] Charles Weir, Awais Rashid, and James Noble. 2017. I’d Like to Have an
Argument, Please: Using Dialectic for Effective App Security. (2017). https:
//doi.org/10.14722/eurousec.2017.23002

[93] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick
Traynor, and Sascha Fahl. 2018. A Large Scale Investigation of Obfuscation
Use in Google Play. In Proceedings of the 34th Annual Computer Security
Applications Conference (San Juan, PR, USA) (ACSAC ’18). Association for
Computing Machinery, New York, NY, USA, 222–235. https://doi.org/10.1145/
3274694.3274726

[94] Michael Whitney, Heather Lipford-Richter, Bill Chu, and Jun Zhu. 2015. Em-
bedding Secure Coding Instruction into the IDE: A Field Study in an Ad-
vanced CS Course. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE ’15).
Association for Computing Machinery, New York, NY, USA, 60–65. https:
//doi.org/10.1145/2676723.2677280

[95] Chamila Wijayarathna and Nalin A. G. Arachchilage. 2018. Why Johnny
Can’t Store Passwords Securely? A Usability Evaluation of Bouncycastle
Password Hashing. In Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018 (Christchurch, New
Zealand) (EASE’18). Association for Computing Machinery, New York, NY,
USA, 205–210. https://doi.org/10.1145/3210459.3210483

[96] Jim Witschey, Shundan Xiao, and Emerson Murphy-Hill. 2014. Technical and
Personal Factors Influencing Developers’ Adoption of Security Tools. In Proceed-
ings of the 2014 ACM Workshop on Security Information Workers (Scottsdale,
Arizona, USA) (SIW ’14). Association for Computing Machinery, New York,
NY, USA, 23–26. https://doi.org/10.1145/2663887.2663898

[97] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. 2015. Quantifying Developers’ Adoption
of Security Tools. In Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Asso-
ciation for Computing Machinery, New York, NY, USA, 260–271. https:
//doi.org/10.1145/2786805.2786816

[98] Joost F Wolfswinkel, Elfi Furtmueller, and Celeste PM Wilderom. 2013. Using
grounded theory as a method for rigorously reviewing literature. European
journal of information systems 22, 1 (2013), 45–55.

[99] Irene MY Woon and Atreyi Kankanhalli. 2007. Investigation of IS professionals’
intention to practise secure development of applications. International Journal
of Human-Computer Studies 65, 1 (2007), 29–41.

[100] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social In-
fluences on Secure Development Tool Adoption: Why Security Tools Spread.
In Proceedings of the 17th ACM Conference on Computer Supported Co-
operative Work & Social Computing (Baltimore, Maryland, USA) (CSCW

’14). Association for Computing Machinery, New York, NY, USA, 1095–1106.
https://doi.org/10.1145/2531602.2531722

[101] Jing Xie, Heather Lipford, and Bei-Tseng Chu. 2012. Evaluating Interactive
Support for Secure Programming. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12).
Association for Computing Machinery, New York, NY, USA, 2707–2716. https:

//doi.org/10.1145/2207676.2208665
[102] J. Xie, H. R. Lipford, and B. Chu. 2011. Why do programmers make security

errors?. In 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE Press, 161–164. https://doi.org/10.1109/VLHCC.
2011.6070393

[103] Mohammad Zarour, Mamdouh Alenezi, and Khalid Alsarayrah. 2020. Software
Security Specifications and Design: How Software Engineers and Practitioners
Are Mixing Things Up. In Proceedings of the Evaluation and Assessment in
Software Engineering. Association for Computing Machinery, New York, NY,
USA, 451–456. https://doi.org/10.1145/3383219.3383284

[104] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Code Examples on an Online Q&amp;A Forum
Reliable? A Study of API Misuse on Stack Overflow. In Proceedings of the 40th
International Conference on Software Engineering (Gothenburg, Sweden) (ICSE
’18). Association for Computing Machinery, New York, NY, USA, 886–896.
https://doi.org/10.1145/3180155.3180260

https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://doi.org/10.1109/ICSE-SEIP52600.2021.00011
https://doi.org/10.1109/ICSE-SEIP.2019.00013
https://doi.org/10.1109/ICSE-SEIP.2019.00013
https://www.usenix.org/conference/usenixsecurity20/presentation/weir
https://www.usenix.org/conference/usenixsecurity20/presentation/weir
https://doi.org/10.1093/cybsec/tyaa007
https://doi.org/10.1145/2950290.2983981
https://doi.org/10.14722/eurousec.2017.23002
https://doi.org/10.14722/eurousec.2017.23002
https://doi.org/10.1145/3274694.3274726
https://doi.org/10.1145/3274694.3274726
https://doi.org/10.1145/2676723.2677280
https://doi.org/10.1145/2676723.2677280
https://doi.org/10.1145/3210459.3210483
https://doi.org/10.1145/2663887.2663898
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1145/2207676.2208665
https://doi.org/10.1145/2207676.2208665
https://doi.org/10.1109/VLHCC.2011.6070393
https://doi.org/10.1109/VLHCC.2011.6070393
https://doi.org/10.1145/3383219.3383284
https://doi.org/10.1145/3180155.3180260


EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

Appendices

5 FRAMEWORK

EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

Appendices

5 FRAMEWORK

 Updates and
Upgrades

Human Dimensions

Organizational DimensionsTechnological Dimensions

Security
APIs/Libraries
and Protocols

  Online
Platforms

 Analysis Tools

 Languages 

Interactions

Role of
Individuals

 Security
Culture

 Requirements
& Policies

 Support &
Strategies

 Structure &
Size

 Learning
Strategies

 Deterrents

 Knowledge Attitudes and
Perceptions

Experience 

Role of
Personality

 Updates &
Upgrades

Security
APIs/Libraries

& Protocols

  Online
Platforms

 Analysis Tools

 Languages 

Role of
Personality

Experience 

 Attitudes &
Perceptions

 Knowledge

 Deterrents

 Learning
Strategies

Interactions

Fig. 1. The framework of developers’ challenges and their interplay. In this framework, ovals are identified areas of challenge (human
dimensions: orange,organizational dimensions: blue, and technological dimensions: green). Arrows indicate correlations between the
areas of challenge. These correlations can be one or more of the following: (1) challenges are linked, (2) one negatively affects the other,
(3) one positively affects the other, (4) one causes new challenges in the other area. For more details about the interactions showed by an
arrow in the framework, see the related challenge descriptions.

22

Figure 1: The framework of developers’ challenges and their interplay. In this framework, ovals are identified areas of challenge
(human dimensions: orange,organizational dimensions: blue, and technological dimensions: green). Arrows indicate correlations
between the areas of challenge. These correlations can be one or more of the following: (1) challenges are linked, (2) one negatively
affects the other, (3) one positively affects the other, (4) one causes new challenges in the other area. For more details about the
interactions showed by an arrow in the framework, see the related challenge descriptions.



SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

6 FRAMEWORK2
SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

6 FRAMEWORK2

 Updates and
Upgrades

Human Dimensions

Organizational DimensionsTechnological Dimensions

Security
APIs/Libraries
and Protocols

  Online
Platforms

 Analysis Tools

 Languages 

Interactions

Role of
Individuals

 Security
Culture

 Requirements
& Policies

 Support &
Strategies

 Structure &
Size

 Learning
Strategies

 Deterrents

 Knowledge Attitudes and
Perceptions

Experience 

Role of
Personality

 Updates &
Upgrades

Security
APIs/Libraries

& Protocols

  Online
Platforms

 Analysis Tools

 Languages 

Role of
Personality

Experience 

 Attitudes &
Perceptions

 Knowledge

 Deterrents

 Learning
Strategies

Interactions

Fig. 2. The loop of challenges can be seen in red color

23

Figure 2: The loop of challenges can be seen in red color



EuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

7 SEARCH STRATEGYEuroUSEC ’21, October 11–12, 2021, Online Azadeh Mokhberi and Konstantin Beznosov

7 SEARCH STRATEGY

Initial
Keywords

20 publications

Resulted in 2,846
papers

Read abstract and
discussion

Search in 15 proceeding conferences from: 
Computer Security  and Cryptography
Human-Computer Interaction
Software Systems

Filtered by research 
exclusion criteria

Read the whole paper

Snowballing

126 selected

2007-2020

Set of Queries

Second major search in
venues 

Search in
Google Scholar

First major search in
venues

Fig. 3. Search strategy.

24

Figure 3: Search strategy.



SoK: Human, Organizational, and Technological Dimensions of Developers’ Challenges . . . EuroUSEC ’21, October 11–12, 2021, Online

8 SUMMARY OF REVIEWED PUBLICATIONS

Reference No. Study Design Human Organizational Technological

Method-Type of Participants-Number of Participants R
ol

e
of

Pe
rs

on
al

ity

A
tti

tu
de

s
&

Pe
r.

D
et

er
re

nt
s

K
no

w
le

dg
e

E
xp

er
ie

nc
e

L
ea

rn
in

g
St

ra
te

gi
es

Se
cu

ri
ty

C
ul

tu
re

R
eq

ui
r.

&
Po

lic
ie

s

Su
pp

or
ta

nd
St

ra
te

gi
es

St
ru

ct
ur

e
&

Si
ze

R
ol

e
of

In
di

vi
du

al
s

in
O

rg
.

In
te

ra
ct

io
ns

Se
c.

A
PI

s/
L

ib
s.

,P
ro

to
co

ls

A
na

ly
se

s
To

ol
s

O
nl

in
e

Pl
at

fo
rm

s

U
pd

at
es

&
U

pg
ra

de
s

L
an

gu
ag

es

Σ 07 18 08 14 14 06 09 14 06 07 08 06 08 17 13 03 05

2020—- Chalhoub [21] Interview-UX designers, developers, ...-20
———–Danilova [27] online study-Freelance developers-43
———–Danilova [28] Interview-dev, students-14,12+focus group 7 researchers+survey,50 dev
———–Naiakshina [57] Online lab study-Students, Freelancers, & developers-36
———–Palombo [65] 1.5 years of observationl study (ethnographic study)
———–Smith [76] Walkthrough, user study-developers-12
———–Votipka [84] Survey-developers-311
———–Votipka [85] 94submissions of four BIBIFI contests
———–Weir [89] Survey-developers-335
———–Weir [90] Interview-app sec. experts-12
2019—–Assal [10] Survey-developers-123
———–Bai [16] survey,interview-GitHub developers-133,15
———–Chen [22] Analysis and evaluation of Stack Overflow posts
———–Frey [36] lab study-sec. experts, computer scientists, managers-43
———–Imtiaz [43] Analysis of 280 Stack Overflow questions
———–Lopez [47] Interview-managers, developers, tester-7
———–Lopez [46] Ethnographic studies (sets of workshops-developers-70+
———–Lopez [48] Study on Stack Overflow
———–Naiakshina [58] Lab study-freelancer developers-40
———–Salza [73] Survey-developers-73
———–Weir [88] Interview, workshops -sec. experts, developers-15,3 teams
2018—–Assal [8] Semi structured interview-developers-13
———–Assal [9] Interview-developers-13
———–Chen [23] Interview-bank entities-7, survey-developers-20 noinfo
———–Haney [42] Semi structured interview-mix-21
———–Meng [50] Empirical study on Stack Overflow posts
———–Oliveira [63] Online task study-developers, students-70,39
———–Rahman [69] Study on Stack Overflow
———–Smith [77] Lab study-Students, developers-5,5
———–Thomas [80] Semi structured interview-sec. experts-32
———–Votipka [86] Interview-testers,hackers-25
———–Wermke [93] Survey-developers-308
———–Wijayarathna [95] Lab study-developers-10
———–Zhang [104] Analysis of 217,818 Stack Overflow posts
2017—–Acar [2] Controlled experiment study-developers-256
———–Acar [4] Survey-developers-295
———–Acar [6] Online experimental study-developers-307
———–Abdalkareem [1] Analysis and evaluation of 22 open source Android apps
———–Derr [29] Survey-developers-203
———–Fischer [35] Study on Stack Overflow
———–Poller [67] survey, survey, observation, interview-mix-15,12,23,15
———–Weir [92] Interview-sec. experts-12
———–Naiakshina [59] Lab study-students-20
2016—–Acar [3] Survey, lab experiment-developers-295,54
———–Ashenden [7] Three pilot workshops-developers-18
———–Caputo [20] Three organizations studied
———–Christakis [24] Interview, Survey-developers-5, 375
———–Nadi [56] survey, survey-developers-11,37
———–Ruef [70] Evaluation of work by 116 teams of three BIBIFI contests
———–Thomas [79] Observation behaviour-developers-13 noinfo
2015—–Sadowski [72] In-situ evaluation- Google developers
———–Whitney [94] Two field study-students-72
———–Witschey [97] Survey, survey-developers-14, 61 noinfo
2014—–Balebako [17] Semi structured interview, Survey-developers, mix-13, 228
———–Oliveira [62] Survey-developers-47
———–Witschey [96] Interview-developers-42
———–Xiao [100] Semi structured interview-developers-42
2013—–Edmundson [31] Online tasks-developers-30
———–Egele [32] Empirical Study
———–Fahl [33] Interview-developers-14
———–Johnson [44] Lab study-developers-20
2012—–Xie [101] Lab study-students, developers-18, 9
———–Bau [19] Lab study-Sturtup developers, freelancers-19, 8
2011—–Baca [14] Interview-developers-12
———–Bartsch [18] Semi structured interview-majority developer-10
———–Xie [102] Semi structured interview-developers-15
2010—–Ayewah [12] User study-developers-700+
———–Prechelt [68] 3 field study-developers-27
2009—–Baca [15] Lab study-developers-34
2008—–Ayewah [13] Survey,interview-developers-400+, 12
———–Ayewah [11] Lab study-students-12
2007—–Woon [99] Survey-systems professionals (includes developers)-184

Table 1: The list of all reviewed publications grouped by theme (we were referring to professional developers by the term developers
or dev). In this table, the greyed cells indicate that those papers have been cited on that specific area of challenge.


	Abstract
	1 Introduction
	2 Methodology
	3 Results
	3.1 Human
	3.2 Organizational
	3.3 Technological

	4 Discussion
	4.1 Limitations
	4.2 Developed Framework
	4.3 Recommendations for Practitioners
	4.4 Avenues for Academic Research

	Acknowledgments
	References
	5 Framework
	6 Framework2
	7 Search Strategy
	8 Summary of Reviewed Publications

