Forecasting Suspicious Account Activity at Large-Scale Online Service Providers

Hassan Halawa ; Konstantin Beznosov ; Baris Coskun ; Meizhu Liu ; Matei Ripeanu

29 November 2018

Abstract: In the face of large-scale automated social engineering attacks to large online services, fast detection and remediation of compromised accounts are crucial to limit the spread of the attack and to mitigate the overall damage to users, companies, and the public at large. We advocate a fully automated approach based on machine learning: we develop an early warning system that harnesses account activity traces to predict which accounts are likely to be compromised in the future. We demonstrate the feasibility and applicability of the system through an experiment at a large-scale online service provider using four months of real-world production data encompassing hundreds of millions of users. We show that—even limiting ourselves to login data only in order to derive features with low computational cost, and a basic model selection approach—our classifier can be tuned to achieve good classification precision when used for forecasting. Our system correctly identifies up to one month in advance the accounts later flagged as suspicious with precision, recall, and false positive rates that indicate the mechanism is likely to prove valuable in operational settings to support additional layers of defense.

Keyword(s): Forecasting ; Machine Learning for Security ; Big Data Analytics for Security ; Large-Scale Cyberattacks ; Cloud Security

Published in: In the proceedings of Twenty-Third International Conference on Financial Cryptography and Data Security (FC'19), St. Kitts, 2019:

The record appears in these collections:
Refereed Conference Papers

 Record created 2018-11-30, last modified 2019-11-21

Rate this document:

Rate this document:
(Not yet reviewed)