
Contextual Permission Models for

Better Privacy Protection

by

Primal Wijesekera

B.Sc in Computer Science, University of Colombo (Sri Lanka), 2008

M.Sc in Computer Science, The University of British Columbia (Canada), 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

June 2018

© Primal Wijesekera, 2018

The following individuals certify that they have read, and recommend to the Fac-

ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Contextual Permission Models for
Better Privacy Protection

submitted by Primal Wijesekera in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Electrical and Computer Engineering.

Examining Committee:

Konstantin Beznosov, Electrical and Computer Engineering

Co-supervisor

Serge Egelman, Computer Science, UC Berkeley/ICSI

Co-supervisor

Sathish Gopalakrishnan, Electrical and Computer Engineering

Supervisory Committee Member

Philippe Kruchten, Electrical and Computer Engineering

University Examiner

Joanna McGrenere, Computer Science

University Examiner

Additional Supervisory Committee Members:

Karthik Pattabiraman, Electrical and Computer Engineering

Supervisory Committee Member

ii

Abstract

Despite corporate cyber intrusions attracting all the attention, privacy breaches

that we, as ordinary users, should be worried about occur every day without any

scrutiny. Smartphones, a household item, have inadvertently become a major en-

abler of privacy breaches. Smartphone platforms use permission systems to reg-

ulate access to sensitive resources. These permission systems, however, lack the

ability to understand users’ privacy expectations leaving a significant gap between

how permission models behave and how users would want the platform to protect

their sensitive data. This dissertation provides an in-depth analysis of how users

make privacy decisions in the context of Smartphones and how platforms can ac-

commodate user’s privacy requirements systematically.

We first performed a 36-person field study to quantify how often applications

access protected resources when users are not expecting it. We found that when

the application requesting the permission is running invisibly to the user, they are

more likely to deny applications access to protected resources. At least 80% of

our participants would have preferred to prevent at least one permission request.

To explore the feasibility of predicting user’s privacy decisions based on their

past decisions, we performed a longitudinal 131-person field study. Based on

the data, we built a classifier to make privacy decisions on the user’s behalf by

detecting when the context has changed and inferring privacy preferences based

on the user’s past decisions. We showed that our approach can accurately predict

users’ privacy decisions 96.8% of the time, which is an 80% reduction in error

rate compared to current systems.

iii

Based on these findings, we developed a custom Android version with a con-

textually aware permission model. The new model guards resources based on

user’s past decisions under similar contextual circumstances. We performed a

38-person field study to measure the efficiency and usability of the new permis-

sion model. Based on exit interviews and 5M data points, we found that the new

system is effective in reducing the potential violations by 75%. Despite being

significantly more restrictive over the default permission systems, participants did

not find the new model to cause any usability issues in terms of application func-

tionality.

iv

Lay Summary

Current smartphone operating systems employ permission systems to regulate

how apps access sensitive resources. These systems are not well-aligned with

users’ privacy expectations: users often have no idea how often and under what

circumstances their personal data is accessed. The thesis devises ways to system-

atically reduce this disconnect between expectations and reality. We found that

a significant portion of participants make contextual privacy decisions: when de-

termining whether access to sensitive data is appropriate, they consider what they

are doing on their phones at the time, including whether they are actively using

the applications requesting their data. We show that current privacy mechanisms

do not do a good job of accounting for these contextual factors, but that by apply-

ing machine learning to account for context, we can reduce privacy violations by

80%, while also minimizing user involvement.

v

Preface

This research was the product of a fruitful collaboration between the author of

the dissertation and the following people: Konstantin Beznosov (co-advisor) from

the University of British Columbia, Arjun Baokar, Serge Egelman (co-advisor),

Ashkan Hosseini, Joel Reardon, Lynn Tsai, David Wagner from the University

of California, Berkeley and Irwin Reyes from International Computer Science

Institute, Berkeley and Jung-Wei Chen, Nathan Good from Good Research, Inc.

It is worth mentioning that the work presented herein consists of research stud-

ies that have been published or under review in peer-reviewed international con-

ferences. In particular, the field study presented in Chapter 2, and partly discussed

in Chapter 5, are based on the following publication:

• Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David

Wagner, and Konstantin Beznosov. "Android Permissions Remystified: A

Field Study on Contextual Integrity." In USENIX Security Symposium, pp.

499-514. 2015.

The prediction model on privacy decisions presented in Chapter 3 and partly

discussed in Chapter 5, is based on the following publication:

• Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman,

David Wagner, and Konstantin Beznosov. 2017. The Feasibility of Dynami-

cally Granted Permissions: Aligning Mobile Privacy with User Preferences.

In 2017 IEEE Symposium on Security and Privacy (SP). 1077–1093.

vi

The implementation field study presented in Chapter 4 and partly discussed in

Chapter 5, is based on following publications:

• Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen,

Nathan Good, David Wagner, Konstantin Beznosov, and Serge Egelman.

"Contextualizing Privacy Decisions for Better Prediction (and Protection)".

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI ’18), 2018. * Honorable Mention Award.

• Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin Reyes, Serge Egelman,

David Wagner, Nathan Good, and Jung-Wei Chen. "Turtle Guard: Help-

ing Android Users Apply Contextual Privacy Preferences." In Thirteenth

Symposium on Usable Privacy and Security (SOUPS 2017), pp. 145-162.

USENIX Association, 2017.

As the author of the thesis, I have involved in implementing more than 95%

of the systems presented in this thesis: the instrumentation framework used in the

first study, the instrumentation and behavioral interception in the second study and

the implementing ML model and instrumentation in the third study. I have also

conducted more than 90% of all the analysis presented in the thesis.

All of the field studies carried out throughout the thesis received institutional

review board (IRB) approval prior to the respective study – approved by the UC

Berkeley IRB under protocol #2013-02-4992 and by UBC BREB under protocol

#H18-00856 for secondary use of data.

vii

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . viii

List of Tables . xii

List of Figures . xiv

Acknowledgments . xv

1 Introduction . 1

1.1 Problem Statement . 3

1.1.1 Challenges . 4

1.1.2 Adversary Model . 5

1.1.3 Research Methodology 6

1.2 Research Summary . 6

1.2.1 Resource Usage and User Expectations in the Wild 7

1.2.2 The Impact of the Surrounding Context 8

1.2.3 Impact of a Real World Contextual Permission Model . . . 9

1.3 Main Contributions . 10

viii

1.3.1 Understanding How Applications Access Data 11

1.3.2 How Users Perceive the Context 11

1.3.3 Ability to Predict Future Contextual Preferences 12

1.3.4 Contextually Aware Permission Model 13

1.4 Minor Contributions . 14

2 Resource Usage . 16

2.1 Related Work . 17

2.2 Methodology . 19

2.2.1 Tracking Access to Sensitive Data 20

2.2.2 Recruitment . 24

2.2.3 Exit Survey . 27

2.3 Application Behaviors . 29

2.3.1 Invisible Permission Requests 29

2.3.2 High Frequency Requests 34

2.3.3 Frequency of Data Exposure 35

2.4 User Expectations and Reactions 38

2.4.1 Reasons for Blocking . 38

2.4.2 Influential Factors . 40

2.4.3 User Inactivity and Resource Access 42

2.5 Feasibility of Runtime Requests 42

2.5.1 Modeling Users’ Decisions 44

2.6 Discussion . 47

3 Prediction . 50

3.1 Related Work . 52

3.2 Methodology . 55

3.2.1 Instrumentation . 58

3.2.2 Exit Survey . 60

3.2.3 Summary . 61

3.3 Types of Users . 62

ix

3.4 Ask-On-First-Use Permissions 64

3.5 Learning Privacy Preferences . 68

3.5.1 Feature Selection . 68

3.5.2 Inference Based on Behavior 71

3.5.3 Inference Based on Contextual Cues 72

3.6 Learning Strategy . 76

3.6.1 Bootstrapping . 76

3.6.2 Decision Confidence . 80

3.6.3 Online Model . 82

3.7 Contextual Integrity . 83

3.8 Discussion . 86

3.8.1 Limitations of Permission Models 87

3.8.2 Our ML-Based Model 87

3.8.3 Reducing the User Burden 88

3.8.4 User- and Permission-Tailored Models 89

3.8.5 Attacking the ML Model 89

3.8.6 Experimental Caveat . 90

3.8.7 Types of Users . 91

3.8.8 User Interface Panel . 91

3.8.9 The Cost of Greater Control 92

3.8.10 Conclusions . 92

4 Implementation . 93

4.1 Related Work . 94

4.2 Implementation . 97

4.2.1 A Local SVM Classifier 97

4.2.2 Sensitive Resources . 100

4.2.3 Permission Denial . 100

4.2.4 Contextually Aware Permission Manager 101

4.3 Validation Methodology . 105

4.3.1 Participant’s Privacy Preferences 105

x

4.3.2 Recruitment . 106

4.3.3 Exit Interview . 107

4.4 Results . 109

4.4.1 Status Quo Problems . 109

4.4.2 Classifier Accuracy . 112

4.4.3 Impact on App Functionality (and Stability) 115

4.4.4 User Reactions to Prompts 116

4.4.5 User Reactions to Controls 117

4.5 Discussion . 119

5 Discussion . 123

5.1 Mismatched Personas . 124

5.2 Arms Race . 126

5.3 Purpose Matters . 128

5.4 User driven Privacy . 129

5.5 Contextualization . 130

5.6 Conclusion . 131

Bibliography . 133

A Resource Usage . 151

A.1 Invisible requests . 151

A.2 Distribution of Requests . 153

A.3 Permission Type Breakdown . 154

A.4 User Application Breakdown . 155

B Decision Prediction . 156

B.1 Information Gain of Contextual Features 156

B.2 Information Gain of Behavioral Features 157

xi

List of Tables

Table 2.1 The 12 permissions that Felt et al. recommend be granted via

runtime dialogs [47]. We randomly took screenshots when

these permissions were requested by applications, and we asked

about them in our exit survey. 24

Table 2.2 Corresponding log entry . 26

Table 2.3 The most frequently requested permissions by applications with

zero visibility to the user. 32

Table 2.4 The applications making the most permission requests while

running invisibly to the user. 32

Table 2.5 The application/permission combinations that needed to be rate

limited during the study. The last two columns show the fastest

interval recorded and the average of all the intervals recorded

before rate-limiting. 35

Table 2.6 The sensitive permission requests (per user/day) when request-

ing applications were visible/invisible to users. “Data exposed”

reflects the subset of permission-protected requests that resulted

in sensitive data being accessed. 36

Table 2.7 Goodness-of-fit metrics for various mixed effects logistic re-

gression models on the exit survey data. 46

xii

Table 3.1 Felt et al. proposed granting a select set of 12 permissions at

runtime so that users have contextual information to infer why

the data might be needed [47]. Our instrumentation omits the

last two permission types (INTERNET & WRITE_SYNC_SETTINGS)

and records information about the other 10. 56

Table 3.2 Instrumented events that form our feature set 59

Table 3.3 The accuracy and number of different possible ask-on-first-use

combinations. A: Application requesting the permission, P:

Permission type requested, V: Visibility of the application re-

questing the permission, AF : Application running in the fore-

ground when the request is made. AOFU-AP is the policy used

in Android Marshmallow i.e., asking (prompting) the user for

each unique application, permission combination. The table

also differentiates policy numbers based on the subpopulation

of Contextuals, Defaulters, and across all users. 64

Table 3.4 The complete list of features used in the ML model evaluation.

All the numerical values in the behavioral group are normalized

per day. We use one-hot encoding for categorical variables. We

normalized numerical variables by making each one a z-score

relative to its own average. 69

Table 3.5 The median accuracy of the machine learning model for differ-

ent feature groups across different sub populations. 71

Table B.1 Feature Importance of Contextual Features 156

Table B.2 Feature Importance of Behavioral Features 157

xiii

List of Figures

Figure 2.1 Screenshot . 25

Figure 2.2 On the first screen, participants answered questions to estab-

lish awareness of the permission request based on the screenshot. 29

Figure 2.3 On the second screen, they saw the resource accessed, stated

whether it was expected, and whether it should have been

blocked. 30

Figure 3.1 A screenshot of an ESM prompt. 57

Figure 3.2 Histogram of users based on their denial rate. Defaulters tended

to allow or deny almost all requests without regard for contex-

tual cues, whereas Contextuals considered the visibility of the

requesting application. 63

Figure 3.3 How the median accuracy varies with the number of seen prompts 78

Figure 4.1 A screenshot of a permission request prompt. 99

Figure 4.2 The recent-allowed app activity 102

Figure 4.3 A list of installed apps and their associated permissions . . . 103

Figure 4.4 Permissions can be always granted, granted only when in use,

or never granted (bottom). 104

xiv

Acknowledgments

First and foremost, I would like to thank the God Almighty for all the blessings I

received in my life so far, for giving me the opportunity to work with a wonderful

set of people during the course of my PhD.

I am grateful to my research supervisors Konstantin Beznosov (UBC) and

Serge Egelman (UC Berkeley/ICSI) for all the necessary guidance and support

given throughout the PhD and for everything they are continuing to do for me.

I must specially thank Kosta for letting me do my research in UC Berkeley and

Serge for taking me in to UC Berkeley. I am also very grateful for the valuable

guidance I received from David Wagner in UC Berkeley and for all the fruitful

discussions I had regarding my thesis research and in general about research.

Any journey in life is hard without good companionship, let alone the PhD.

I have met amazing set of people from all around the world during the course of

my PhD. Specially, my close Sri Lankan friends in UBC, friends from LERSSE

and also friends/research collaborators in UC Berkeley and ICSI. The list is just

too many to name, but I appreciate everything you have done for me and I hope I

get a chance one day to return the favor.

Everything in life boils down to the family, I thank my parents, sister, and other

close family members who have stood next to me in all of my endeavors specially

during the difficult times and it was the encouragement and prayers from them

that helped me to be who I am today.

xv

To my parents and sister who are always there for me and never

stopped believing in me

xvi

Chapter 1

Introduction

The explosive growth of smartphone usage can be attributed to both rapidly in-

creasing hardware capabilities and the diverse set of available mobile applications

providing a variety of services to end users. Among the two most popular smart-

phone platforms (Android and iOS), there are over one million third party mo-

bile applications 1 available to download which have seen more than 100 billion

downloads collectively. While providing valuable and useful services, mobile ap-

plications have come under intense criticism for it’s use of user’s personal data in

ways not expected by the end users [4, 43, 71, 79, 88, 109].

Mobile platform permission models regulate how applications access certain

resources, such as users’ personal information or sensor data (e.g., camera, GPS,

etc.). Earlier versions of Android (5.1 and below) asked users to make privacy

decisions during application installation as an all-or-nothing ultimatum, ask-on-

install (AOI),: either all requested permissions are approved or the application is

not installed. Previous work has shown issues with the AOI permission model: a)

few people read the requested permissions at install-time and even fewer correctly

understood them [49, 65], b) install-time permissions do not present users with

the context in which that permission will be exercised [47], which may cause

1All the applications which are not part of the platform and can be removed by the user are

referred as the third party applications and will be referred as simply applications in the future for

brevity.

1

users to make suboptimal decisions not aligned with their actual preferences. For

example, Egelman et al. observed that when an application requests access to

location data without providing context, users are just as likely to see this as a

signal for desirable location-based features as they are an invasion of privacy [42].

These issues have kept the users in the dark about how these applications exercise

their permissions to access sensitive resources [14, 50, 69, 87, 101]. Asking users

to make permission decisions at runtime—at the moment when the permission

will actually be used by the application—provides more context (i.e., what they

were doing at the time that data was requested) [16, 47, 62].

In iOS and Android M (6.0 and above), the user is now prompted at runtime

the first time an application attempts to access one of a set of “dangerous” per-

mission types (e.g., location, contacts, etc.). This ask-on-first-use (AOFU) model

is an improvement over ask-on-install (AOI). Prompting users the first time an

application uses one of the designated permissions gives users a better sense of

context: their knowledge of what they were doing when the application first tried

to access the data should help them determine whether the request is appropriate.

The biggest caveat in AOFU is its reuse of the user consent for the first prompt,

in all subsequent instances not accounting for the surrounding context. For exam-

ple, a user may grant an application access to location data because she is using

location-based features, but by doing this, the application can subsequently access

location data for behavioral advertising, which may violate the user’s preferences.

Previous work has already shown that applications access sensitive data for a va-

riety of reasons other than the core app functionality [4, 31, 43, 79]

Nissenbaum’s Privacy as Contextual Integrity explains why context matters

in Privacy. She posits that user privacy expectations are governed by their expec-

tations on potential information flows that could occur in a given context. Thus,

privacy violations occur if their expectations are defied. The notion implies that

any permission system in place should account for user expectations in the con-

text of the permission request. Despite that, none of the permission systems in

Android account for the context and iOS started to support some form of the con-

2

text (based on the foreground/background) for location requests which has been

largely focused on location leaving other sensitive data unprotected.

Barth et al. formalized the notion of Contextual Integrity providing a concrete

conceptual framework on privacy as contextual integrity. The work is, largely, fol-

lowed by a long line of work formalizing the privacy policy and access controls

focusing more towards theoretical aspects of privacy [26, 35]. A more closely re-

lated work on understanding users expectations found that context does influence

their expectations on sensitive data usage [71]. Despite these useful observations,

very little had been done to systematize the notion of Contextual Integrity so that

platforms can better learn user’s privacy expectations and protect their data in real

time.

In this dissertation, we2 operationalize the notion of Contextual Integrity. We

show how the platforms can use the notion of Contextual Integrity (CI) and better

protect sensitive user data aligning with their privacy expectations.

1.1 Problem Statement

Applications in mobile platforms provide a spectrum of functionality to the end

users; while doing so, these applications access a variety of data. While end users

are aware of the intended functionality provided by these applications, users are

mostly unaware of how applications are accessing their data [50, 69, 87, 108, 117].

Users trust these applications with the functionality provided by the applications

but the question remains do they trust these applications with their private data.

The core research question of this thesis is to investigate an effective approach

to better help users to protect their sensitive, private data from unexpected accesses

originated by the third party applications in the smartphone. The thesis presents a

new permission model where users are better empowered and informed to make

optimal privacy decisions and with a better-aligned protection.

2Use of the plural pronoun is customary even in solely authored research work.

3

1.1.1 Challenges

Privacy is a hard socio-technological problem where substantial technical con-

tribution is needed to understand and involve humans to make sure everyone’s

expectations are met. Here we present three of the critical challenges found.

Users already have an overwhelming set of choices to make in day to day life

in the digital world, yet they do not seem to have the control of making correct pri-

vacy decisions in the context of smartphones, these overwhelming set of choices

are the source of the security fatigue which leads them to risky behavior compro-

mising their privacy or security [86, 93, 105]. The important question remains as

to how can smartphone platforms give more control to the user without putting

more burden on the user? When is the correct time to ask the question (of ac-

quiring their preferences for allowing or denying a access request)? What is the

right question to ask? In the current technical setup, users will continue to make

sub-optimal privacy choices or worse, current systems could further reduce their

ability to make better privacy decisions [1, 2]. Thus the platform should reduce

the user involvement and should only try to get the attention of the user when it is

absolutely necessary because attention is a finite resource which should be used

carefully[24].

Finite attention is not the only problem, privacy is usually not the user’s main

priority [101, 122], but the functionality of the application is. Platforms should

never force the user to choose between the usability of the phone and their pri-

vacy expectations. Therefore, a finer grained permission model should be able

to accommodate access requests to the guarded resources when it is expected by

the user so that applications can deliver the expected functionality to the user. If

applications start to crash due to unavailability of resources, it will increase user

frustration and annoyance and make them go back and change their privacy deci-

sions trading privacy for functionality [6, 32]. Thus, the platform should be able

to preserve both user privacy and usability of the smartphone.

Restricted with finite attention and lack of motivation, the involvement of the

users should be comprehensible to the end users. Previous work has shown that

4

only a small portion of participants could understand the privacy prompt properly

hindering the protection significantly [49, 65]. Previous attempts on fixing privacy

controls have already come up with complicated controls to match with the user

expectations [29, 33, 81, 98]. These systems fail due their complexity barring

an average user from properly configuring the permission controls. Thus, inde-

pendent of user’s complicated privacy expectations, interfaces should be easily

comprehensible so that users can make an informed, optimal decision.

1.1.2 Adversary Model

The proposed new permission model will protect the user from applications al-

ready installed by the user, from using sensitive resources in unexpected ways

violating the privacy of the user. The application can be either a benign or a

malicious application. The application, however, does not exploit the Android

operating system itself; it operates within the permission privileges it has been

granted to request data. The integrity of the underlying operating system (and the

kernel) is assumed to be intact at all times for the permission model to function

as expected. We do not handle the case where applications are coupled with some

exploit that undermines the operating system or has any such malware [5, 46] that

subverts the permission system and security monitor altogether.

The model also does not cover all permission protected resources in the mo-

bile phone. A previous work by Felt et al. [47] showed that not all permission

controlled resources need runtime attention and only the ones that can result in

irreversible harm, highly sensitive data or data that could incur cost need runtime

user attention so that users make a runtime decision. The first two studies pre-

sented in the thesis are only focusing on the 12 resources that Felt suggested in

her prior study; this is explain in detail in Section 2.2.1. In the last study, on top

of the above mentioned 12 resources, we also added the newly classified set of

resources by Google as Dangerous resources [54]. While we believe the other

resources needs user attention, they are best served with other user consent mech-

anisms such as auditing or other mechanisms mentioned in [47].

5

1.1.3 Research Methodology

We have conducted two one-week long field studies and one 6-week long longitu-

dinal field study to gather real-world user data – all of the numbers we are present-

ing in this thesis are derived from real-world observations. We have used expe-

rience sampling and retrospective experience sampling throughout the studies to

collect empirical datapoints [59]. We have also used both quantitative and qualita-

tive analysis in evaluating the real-world datasets. After each study, we have con-

ducted either an online exit survey or in-person interviews to understand behavior

more insightfully. All of the quantification of qualitative data (user codes) were

done by three independent coders [12]. We have detailed each study’s method-

ology in depth under each different section. All of the field studies carried out

throughout the thesis received institutional review board (IRB) approval prior to

the respective study – approved by the UC Berkeley IRB under protocol #2013-

02-4992 and by UBC BREB under protocol #H18-00856 for secondary use of

data.

During the design and the execution phases of the presented studies, we took

extra steps to make sure the ecological validity of the studies are well preserved.

All of the study participants were randomly recruited through Craiglist except

for the second study. The participant pool for the second study was all somehow

affiliated to University of Buffalo, NY. The results of that study, however, were

validated in a follow-up study using a completely random sample set to prove that

the results of the second study are not affected by the selected participant pool.

All of the statistical tests were properly used while making sure all of the assumed

criteria are met for respective tests.

1.2 Research Summary

The thesis is evolved around four main research questions geared towards a) bet-

ter understanding how third-party application exercise their permissions in the

wild, b) understanding how user expectations on privacy vary from one context

6

to another, c) exploring the feasibility of predicting user privacy decisions, and d)

finally how both applications and users react to a more user-aligned and a con-

textually aware permission model. In the remainder of this section, we introduce

the three different projects we carried out in the process of this thesis and their

objectives.

1.2.1 Resource Usage and User Expectations in the Wild

Permission systems in mobile platforms protect private user data from third-party

applications. To design an effective permission system, it is imperative to under-

stand how applications access these protected sensitive resources; the understand-

ing entails knowing how often and under what circumstances these applications

are accessing private data. It is also critical to understand how these different cir-

cumstances change users’ expectations for the resource access. If a permission

system is to be effective on acting on behalf of the users, it is important to under-

stand how their expectations are changing under different circumstances so that

permission systems can act accordingly.

We instrumented the Android platform (v 4.1.1) to collect data regarding how

often and under what circumstances smartphone applications access protected re-

sources regulated by permissions. We performed a 36-person field study to ex-

plore how often applications access protected resources when users are not ex-

pecting it. Based on our collection of 27M data points and exit interviews with

participants, we examine the situations in which users would like the ability to

deny applications access to protected resources.

Main Findings

Following are the main findings based on the analysis of the 27M permission

requests and based on the exit survey responses from 36 participants.

• During the study period (one week), on average, each participant had one

sensitive permission requests every 15 seconds to a set of 12 sensitive re-

7

sources. This observation makes the premise of using runtime prompts to

give a better context impractical.

• During the exit survey, 80% of our participants wanted to block at least

one permission request that occurred during the study. Overall, participants

wanted to block access to protected resources a third of the time. This sug-

gests that some requests should be granted by runtime consent dialog, rather

than Android’s previous all-or-nothing install-time approval approach.

• The visibility of the requesting application and the frequency at which re-

quests occur are two important factors which need to be taken into account

in designing a future permission system.

1.2.2 The Impact of the Surrounding Context

The observation of impracticality of the runtime prompts calls for finding ways

to provide the context to the user when they make privacy decisions and also for

approaches to figure out how to best act on behalf of the users. The frequency of

sensitive permission requests increases the risk of habituation significantly, thus

platforms should be able to act on behalf of the user majority of the time. This

requires understanding how users want to act under different contexts so that the

platform won’t make a mistake that could end up violating the user’s privacy.

We performed a longitudinal 131-person field study to analyze the contextu-

ality behind user privacy decisions to regulate access to sensitive resources. We

built a classifier to make privacy decisions on the user’s behalf by detecting when

the context has changed and, when necessary, inferring privacy preferences based

on the user’s past decisions and behavior. Our goal is to automatically grant ap-

propriate resource requests without further user intervention, deny inappropriate

requests, and only prompt the user when the system is uncertain of the user’s

preferences.

8

Main Findings

Following are the main findings based on the analysis of the 176M data points

collected from 131 users over a period of six weeks.

• We show that the new permission model in Android, Ask-on-first-use (AOFU),

has a median error rate of 15% causing the platform to make an error once in

every minute. An error occurs everytime AOFU makes a decision different

from what the user would have done if they had the opportunity.

• We show that a significant portion of the studied participants makes contex-

tual decisions on permissions—the foreground application and the visibility

of the permission-requesting application are strong cues participants used to

make contextual decisions.

• We show how a machine-learned model can incorporate context and better

predict users’ privacy decisions. We show that our approach can accurately

predict users’ privacy decisions 96.8% of the time, which is a four-fold

reduction in error rate compared to current systems.

• To the best of our knowledge, we are the first to use passively (data acquired

without prompting the user) observed traits to infer future privacy decisions

on a case-by-case basis at runtime.

1.2.3 Impact of a Real World Contextual Permission Model

In the aforementioned model, participants were expressing their expectations with-

out any consequences. Given a choice between application functionality and pri-

vacy expectations, their privacy decisions could be different. The practicality of

the entire premise of having a contextually aware, more restrictive permission

model depends on how well users and third-party applications receive the new

permission model. A little work has been done on analyzing how third-party

applications will behave in the presence of actual resource denial and on under-

standing how users receive the new permission system[89].

9

To find answers to these questions, we implemented a novel privacy manage-

ment system in Android, in which we use contextual signals to build a classifier

that predicts user privacy preferences under various scenarios. We performed a

37-person field study to evaluate this new permission model under normal device

usage. We show that this new permission model reduces the error rate by 75%

(i.e., fewer privacy violations) while preserving usability. We offer guidelines for

how platforms can better support user privacy decision-making.

Main Findings

Following are the main findings based on our exit interviews and collection of

over 5 million data points from participants,

• Given the choice between functionality and privacy, users are still likely to

take a restrictive stance – data shows that the context still matters even in

the presence of actual resource denial.

• Desire to stick to their restrictive decisions shows the success of the data

spoofing technique in places in the custom Android to make the app believe

that they are getting genuine data.

• We show that AOFU not only lacks context, but it also fails to match users’

understanding of the method 25% of the time, substantially hampering its

ability to protect user data.

1.3 Main Contributions

In this section, we enlist the most important contributions of our work and how we

envision each of these contributions will impact the future research in increasing

privacy protection in mobile platforms. In summary, the main goal of the work is

to understand, design and develop a better user aligned permission model which

we believe achieved at the end of the study.

10

1.3.1 Understanding How Applications Access Data

As a research community, there was very little understanding of how applications

actually use the resources which could benefit research on permission systems.

To the best of our knowledge, we are the first to run a field study to under-

stand how applications access sensitive resources in the real world and to report

actual frequencies of these accesses under different circumstances – this obser-

vation made the proposal on frequent runtime prompts impractical and forced

researchers to think ways to engage the user while giving them the context. In the

same study, we found a substantial portion of the requests occur when the user

doesn’t have a clue that the application is running at all which had a statistically

significant impact towards their expectations and their decision towards denying

such permission requests. More details on this are presented in the Chapter 2.

The following are the most critical impacts of this contribution;

• Any future permission system should account for frequency. This observa-

tion makes any calls for increased user intervention in permission models,

impractical and obsolete.

• Given the significant portion of the invisible requests, our work suggests

that visibility has to be a factor in any future permission systems enabling

the users to control data accesses that occur when they are not using the

apps.

1.3.2 How Users Perceive the Context

Although, the notion of Contextual Integrity existed for some time and concep-

tualized frameworks have been proposed, very little has been done to concretely

systematize the notion in the context of smartphones. Any attempt to understand

how the context is affecting user’s decision needs to first identify the factors that

help users to grasp the context and how they actually vary their decisions accord-

ingly.

11

While iOS has already started enabling users to vary their decision based the

visibility of the requesting application, we are the first to quantitatively show that

the visibility of the requesting application has a statistically significant impact to-

wards their privacy decisions. We also demonstrated the impact of the foreground

application 3 in user’s privacy decisions. Extending the notion of Contextual In-

tegrity, we have demonstrated how visibility and the foreground application fit in

the notion of Privacy as Contextual Integrity. More details on this are presented

in the Chapter 3.

The following is the most critical impact of this contribution;

• Visibility of the requesting application is a critical factor in the user’s deci-

sion process. This implies – a) users should be able to vary their decision

based on the visibility of the requesting application, and b) platforms should

take the visibility into account when acting on behalf of the user.

• Any future permission models should take the visibility of the requesting

application and the foreground application at the time of user decision, if

they want to reuse the user decision in future subsequent instances.

1.3.3 Ability to Predict Future Contextual Preferences

The previous two key contributions demonstrated that one plausible way to move

forward is to understand how users make privacy decisions and predict their fu-

ture decisions so that the platform can take the decision on behalf of them without

involving the user in the process. The observation of two key contextual factors

(foreground application at the time of the request and the visibility of the request-

ing application) showed that those two factors are needed to be in the system if the

predictions are to be effective and aligned with the user’s preferences. Previous

work has already looked into predicting users’ privacy decisions using cluster-

ing [73, 74]. The project, however, does not take the surrounding context into

3Foreground application is the application the user is engaged with at the time of the request

12

account and did not measure the accuracy of the systems with respect to the adap-

tation of the new permission model of Android (AOFU) among the test subjects.

We present an accurate predictive model that can predict users’ future privacy

decisions with a 96.8% accuracy, using their past decisions. The use of context

and machine learning not only increased the privacy protection significantly; it

has helped to reduce the user involvement avoiding the risk of habituation. More

details on this are presented in the Chapter 3.

The following are the most critical impacts of this contribution:

• Successful use of the context to predict future privacy decisions which could

be useful for other domains as well.

• Demonstration of the feasibility of machine learning to counter user habit-

uation and increase their privacy protection significantly.

1.3.4 Contextually Aware Permission Model

There is a long line of work suggesting fixes and exposing defects in the previous

and current permission systems in Android [5, 60, 74, 81, 84, 100]. None of the

previous work, however, was contextually aware or analyzed the impact of the

new permission model in terms of user experience and preserving the application

functionality.

To the best of our knowledge, we are the first to implement a real-world con-

textually aware permission model that takes surrounding contextual signals into

account before deciding on allowing (or denying) a given permission request. We

show that if suitable data spoofing 4 mechanisms are in-place, a restrictive per-

mission model can preserve both privacy of the user and application functionality.

More details on this are presented in the Chapter 4.

The following are the most critical impacts of this contribution:

4Any mechanism that can feed synthetic data to the requesting application without risking user

privacy.

13

• We demonstrated running a full machine learning pipeline in Android with

real-world applications and users. This is the first proof that such a system

can be implemented in Android for taking individual privacy decisions real-

time based on user preferences.

• Contrary to the previous work by Fang et. al. [44], a more restrictive model

can preserve usability by handling resource denial gracefully; rather than

denying a resource platform can feed synthetic data that has no privacy im-

plications.

1.4 Minor Contributions

Here, we present a few minor contributions that will have a significant impact

towards future research along the lines of permission systems and privacy.

• We are, to the best of our knowledge, the first to report the use of behav-

ioral traits to predict future privacy decisions. This is a critically important

observation for any system which intends to learn users privacy decisions.

All of the user behavioral traits are passively observable – user involvement

in the learning phase is zero, which is an important victory against user

habituation.

There has been previous work done on connecting privacy and human be-

havior [3, 63] in a general setup. We, however, report the first successful

attempt to predict individual privacy decisions based on behavioral traits in

the context of smartphone usage.

This observation of using behavioral traits 5 is even more important in the

domain of IoT where the user involvement/engagement is minimal if it’s

not nonexistent. With behavioral traits are in placed, IoT devices can learn

about user’s privacy preferences with minimal resources available and do a

better job at protecting their user’s privacy.

5Participant’s behavioral habits that we hypothesized to be useful in predicting their privacy

behavior

14

Behavioral traits can be used for any permission model to further reduce the

user involvement in the learning phase. There is more work needed to fully

explore the potential of these passively observable traits.

• We have collected one of the largest (if not the largest) real-world data on

mobile user behavior (80M), privacy decisions (6K), sensitive data access

by third-party applications (130M), and third-party library data usage data

points (8M). During the course of the project, we have collected these data

points from 300+ real-world users.

We believe more exploration is needed to understand and fix privacy pro-

tection and understanding of the impact of the context. This data could be

immensely valuable for future research in privacy, mobile user behavior,

measurements, etc. We have already shared a portion of these data points

with the research community [84] and hope to continue doing the same in

the future.

15

Chapter 2

Resource Usage

Few people read the Android install-time permission requests and even fewer

comprehend them [49]. Another problem is habituation: on average, Android

applications present the user with four permission requests during the installation

process [45]. While iOS users are likely to see fewer permission requests than

Android users, because there are fewer possible permissions and they are only

displayed the first time the data is actually requested, it is not clear whether or not

users are being prompted about access to data that they actually find concerning,

or whether they would approve of subsequent requests [48].

Nissenbaum posited that the reason why most privacy models fail to predict

violations is that they fail to consider contextual integrity [82]. That is, privacy

violations occur when personal information is used in ways that defy users’ ex-

pectations. We believe that this notion of “privacy as contextual integrity” can be

applied to smartphone permission systems to yield more effective permissions by

only prompting users when an application’s access to sensitive data is likely to

defy expectations. As a first step down this path, we examined how applications

are currently accessing this data and then examined whether or not it complied

with users’ expectations.

We modified Android to log whenever an application accessed a permission-

protected resource and then gave these modified smartphones to 36 participants

16

who used them as their primary phones for one week. The purpose of this was to

perform dynamic analysis to determine how often various applications are actually

accessing protected resources under realistic circumstances. Afterwards, subjects

returned the phones to our laboratory and completed exit surveys. We showed

them various instances over the past week where applications had accessed cer-

tain types of data and asked whether those instances were expected, and whether

they would have wanted to deny access. Participants wanted to block a third of

the requests. Their decisions were governed primarily by two factors: whether

they had privacy concerns surrounding the specific data type and whether they

understood why the application needed it.

Key contributions of this chapter are:

• To our knowledge, we performed the first field study to quantify the permis-

sion usage by third-party applications under realistic circumstances.

• We show that our participants wanted to block access to protected resources

a third of the time. This suggests that some requests should be granted

by runtime consent dialogs, rather than Android’s previous all-or-nothing

install-time approval approach.

• We show that the visibility of the requesting application and the frequency

at which requests occur are two important factors which need to be taken

into account in designing a runtime consent platform.

2.1 Related Work

While users are required to approve Android application permission requests dur-

ing installation, most do not pay attention and fewer comprehend these requests [49,

65]. In fact, even developers are not fully knowledgeable about permissions [106],

and are given a lot of freedom when posting an application to the Google Play

Store [19]. Applications often do not follow the principle of least privilege, in-

tentionally or unintentionally [116]. Other work has suggested improving the An-

droid permission model with better definitions and hierarchical breakdowns [18].

17

Some researchers have experimented with adding fine-grained access control to

the Android model [28]. Providing users with more privacy information and per-

sonal examples has been shown to help users in choosing applications with fewer

permissions [56, 66].

Previous work has examined the overuse of permissions by applications [45,

55], and attempted to identify malicious applications through their permission re-

quests [99] or through natural language processing of application descriptions [85].

Researchers have also developed static analysis tools to analyze Android permis-

sion specifications [11, 23, 45]. Our work complements this static analysis by ap-

plying dynamic analysis to permission usage. Other researchers have applied dy-

namic analysis to native (non-Java) APIs among third-party mobile markets [104];

we apply it to the Java APIs available to developers in the Google Play Store.

Researchers examined user privacy expectations surrounding application per-

missions, and found that users were often surprised by the abilities of background

applications to collect data [64, 108]. Their level of concern varied from annoy-

ance to seeking retribution when presented with possible risks associated with per-

missions [48]. Some studies employed crowdsourcing to create a privacy model

based on user expectations [71].

Researchers have designed systems to track or reduce privacy violations by

recommending applications based on users’ security concerns [5, 43, 53, 60, 67,

121, 123, 125]. Other tools dynamically block runtime permission requests [100].

Enck et al. found that a considerable number of applications transmitted location

or other user data to third parties without requiring user consent [43]. Hornyack

et al.’s AppFence system gave users the ability to deny data to applications or

substitute fake data [60]. However, this broke application functionality for one-

third of the applications tested.

Reducing the number of security decisions a user must make is likely to de-

crease habituation, and therefore, it is critical to identify which security decisions

users should be asked to make. Based on this theory, Felt et al. created a decision

tree to aid platform designers in determining the most appropriate permission-

18

granting mechanism for a given resource (e.g., access to benign resources should

be granted automatically, whereas access to dangerous resources should require

approval) [47]. They concluded that the majority of Android permissions can be

automatically granted, but 16% (corresponding to the 12 permissions in Table 2.1)

should be granted via runtime dialogs.

Nissenbaum’s theory of contextual integrity can help us to analyze “the ap-

propriateness of a flow" in the context of permissions granted to Android appli-

cations [82]. There is ambiguity in defining when an application actually needs

access to user data to run properly. It is quite easy to see why a location-sharing

application would need access to GPS data, whereas that same request coming

from a game like Angry Birds is less obvious. “Contextual integrity is preserved

if information flows according to contextual norms” [82], however, the lack of

thorough documentation on the Android permission model makes it easier for pro-

grammers to neglect these norms, whether intentionally or accidentally [101]. De-

ciding on whether an application is violating users’ privacy can be quite compli-

cated since “the scope of privacy is wide-ranging” [82]. To that end, we performed

dynamic analysis to measure how often (and under what circumstances) applica-

tions were accessing protected resources, whether this complied with users’ ex-

pectations, as well as how often they might be prompted if we adopt Felt et al.’s

proposal to require runtime user confirmation before accessing a subset of these

resources [47]. Finally, we show how it is possible to develop a classifier to auto-

matically determine whether or not to prompt the user based on varying contextual

factors.

2.2 Methodology

Our long-term research goal is to minimize habituation by only confronting users

with necessary security decisions and avoiding showing them permission requests

that are either expected, reversible, or unconcerning. Selecting which permissions

to ask about requires understanding how often users would be confronted with

each type of request (to assess the risk of habituation) and user reactions to these

19

requests (to assess the benefit to users). In this study, we explored the problem

space in two parts: we instrumented Android so that we could collect actual usage

data to understand how often access to various protected resources is requested

by applications in practice, and then we surveyed our participants to understand

the requests that they would not have granted, if given the option. This field

study involved 36 participants over the course of one week of normal smartphone

usage. In this section, we describe the log data that we collected, our recruitment

procedure, and then our exit survey.

2.2.1 Tracking Access to Sensitive Data

In Android, when applications attempt to access protected resources (e.g., per-

sonal information, sensor data, etc.) at runtime, the operating system checks to

see whether or not the requesting application was previously granted access dur-

ing installation. We modified the Android platform to add a logging framework

so that we could determine every time one of these resources was accessed by an

application at runtime. Because our target device was a Samsung Nexus S smart-

phone, we modified Android 4.1.1 (Jellybean), which was the newest version of

Android supported by our hardware.

Data Collection Architecture

Our goal was to collect as much data as possible about each applications’ access

to protected resources, while minimizing our impact on system performance. Our

data collection framework consisted of two main components: a series of “pro-

ducers” that hooked various Android API calls and a “consumer” embedded in

the main Android framework service that wrote the data to a log file and uploaded

it to our collection server.

We logged three kinds of permission requests. First, we logged function calls

checked by checkPermission() in the Android Context implementation. Instru-

menting the Context implementation, instead of the ActivityManagerService

or PackageManager, allowed us to also log the function name invoked by the user-

20

space application. Next, we logged access to the ContentProvider class, which

verifies the read and write permissions of an application prior to it accessing struc-

tured data (e.g., contacts or calendars) [9]. Finally, we tracked permission checks

during Intent transmission by instrumenting the ActivityManagerService and

BroadcastQueue. Intents allow an application to pass messages to another ap-

plication when an activity is to be performed in that other application (e.g., open-

ing a URL in the web browser) [10].

We created a component called Producer that fetches the data from the above

instrumented points and sends it back to the Consumer, which is responsible for

logging everything reported. Producers are scattered across the Android Plat-

form, since permission checks occur in multiple places. The Producer that logged

the most data was in system_server and recorded direct function calls to An-

droid’s Java API. For a majority of privileged function calls, when a user appli-

cation invokes the function, it sends the request to system_server via Binder.

Binder is the most prominent IPC mechanism implemented to communicate with

the Android Platform (whereas Intents communicate between applications). For

requests that do not make IPC calls to the system_server, a Producer is placed

in the user application context (e.g., in the case of ContentProviders).

The Consumer class is responsible for logging data produced by each Producer.

Additionally, the Consumer also stores contextual information, which we describe

in Section 2.2.1. The Consumer syncs data with the filesystem periodically to

minimize impact on system performance. All log data is written to the internal

storage of the device because the Android kernel is not allowed to write to exter-

nal storage for security reasons. Although this protects our data from curious or

careless users, it also limits our storage capacity. Thus, we compressed the log

files once every two hours and upload them to our collection servers whenever the

phone had an active Internet connection (the average uploaded and zipped log file

was around 108KB and contained 9,000 events).

Due to the high volume of permission checks we encountered and our goal

of keeping system performance at acceptable levels, we added rate-limiting logic

21

to the Consumer. Specifically, if it has logged permission checks for a particular

application/permission combination more than 10,000 times, it examines whether

it did so while exceeding an average rate of 1 permission check every 2 seconds.

If so, the Consumer will only record 10% of all future requests for this applica-

tion/permission combination. When this rate-limiting is enabled, the Consumer

tracks these application/permission combinations and updates all the Producers

so that they start dropping these log entries. Finally, the Consumer makes a note

of whenever this occurs so that we can extrapolate the true number of permission

checks that occurred.

Data Collection

We hooked the permission-checking APIs so that every time the system checked

whether an application had been granted a particular permission, we logged the

name of the permission, the name of the application, and the API method that

resulted in the check. In addition to timestamps, we collected the following con-

textual data:

• Visibility—We categorized whether the requesting application was visible

to the user, using four categories: running (a) as a service with no user inter-

action; (b) as a service, but with user interaction via notifications or sounds;

(c) as a foreground process, but in the background due to multitasking; or

(d) as a foreground process with direct user interaction.

• Screen Status—Whether the screen was on/off.

• Connectivity—The phone’s WiFi connection state.

• Location—The user’s last known coordinates. In order to preserve battery

life, we collected cached location data, rather than directly querying the

GPS.

• View—The UI elements in the requesting application that were exposed to

the user at the time that a protected resource was accessed. Specifically,

since the UI is built from an XML file, we recorded the name of the screen

as defined in the DOM.

22

• History—A list of applications with which the user interacted prior to the

requesting application.

• Path—When access to a ContentProvider object was requested, the path

to the specific content.

Felt et al. proposed granting most Android permissions without a priori user

approval and granting 12 permissions (Table 2.1) at runtime so that users have

contextual information to infer why the data might be needed [47]. The idea is

that, if the user is asked to grant a permission while using an application, she may

have some understanding of why the application needs that permission based on

what she was doing. We initially wanted to perform experience sampling by prob-

abilistically questioning participants whenever any of these 12 permissions were

checked [68]. Our goal was to survey participants about whether access to these

resources was expected and whether it should proceed, but we were concerned

that this would prime them to the security focus of our experiment, biasing their

subsequent behaviors. Instead, we instrumented the phones to probabilistically

take screenshots of what participants were doing when these 12 permissions were

checked so that we could ask them about it during the exit survey. We used reser-

voir sampling to minimize storage and performance impacts, while also ensuring

that the screenshots covered a broad set of applications and permissions [114].

Figure 4.1 shows a screenshot captured during the study along with its corre-

sponding log entry shown in Table2.2. The user was playing the Solitaire game

while Spotify requested a WiFi scan. Since this permission was of interest (Table

2.1), our instrumentation took a screenshot. Since Spotify was not the applica-

tion the participant was interacting with, its visibility was set to false. The history

shows that prior to Spotify calling getScanResults(), the user had viewed Soli-

taire, the call screen, the launcher, and the list of MMS conversations.

23

Permission Type Activity

WRITE_SYNC_

SETTINGS

Change application sync settings

when the user is roaming

ACCESS_WIFI_

STATE
View nearby SSIDs

INTERNET Access Internet when roaming

NFC Communicate via NFC

READ_HISTORY_

BOOKMARKS
Read users’ browser history

ACCESS_FINE_

LOCATION
Read GPS location

ACCESS_COARSE_

LOCATION

Read network-inferred location

(i.e., cell tower and/or WiFi)

LOCATION_

HARDWARE
Directly access GPS data

READ_CALL_LOG Read call history

ADD_VOICEMAIL Read call history

READ_SMS Read sent/received/draft SMS

SEND_SMS Send SMS

Table 2.1: The 12 permissions that Felt et al. recommend be granted via runtime

dialogs [47]. We randomly took screenshots when these permissions were re-

quested by applications, and we asked about them in our exit survey.

2.2.2 Recruitment

We placed an online recruitment advertisement on Craigslist in October of 2014,

under the “et cetera jobs” section.1 The title of the advertisement was “Research

Study on Android Smartphones,” and it stated that the study was about how peo-

ple interact with their smartphones. We made no mention of security or privacy.

Those interested in participating were directed to an online consent form. Upon

agreeing to the consent form, potential participants were directed to a screening

application in the Google Play store. The screening application asked for informa-

tion about each potential participant’s age, gender, smartphone make and model.

1Approved by the UC Berkeley IRB under protocol #2013-02-4992

24

Figure 2.1: Screenshot

It also collected data on their phones’ internal memory size and the installed ap-

plications. We screened out applicants who were under 18 years of age or used

providers other than T-Mobile, since our experimental phones could not attain

3G speeds on other providers. We collected data on participants’ installed ap-

plications so that we could pre-install free applications prior to them visiting our

laboratory. (We copied paid applications from their phones, since we could not

25

Name Log Data

Type API_FUNC

Permission ACCESS_WIFI_STATE

App_Name com.spotify.music

Timestamp 1412888326273

API Function getScanResults()

Visibility FALSE

Screen Status SCREEN_ON

Connectivity NOT_CONNECTED

Location Lat 37.XXX Long -122.XXX

View com.mobilityware.solitaire/.Solitaire

History

com.android.phone/.InCallScreen

com.android.launcher/com.android.-

launcher2.Launcher

com.android.mms/ConversationList

Table 2.2: Corresponding log entry

download those ahead of time.)

We contacted participants who met our screening requirements to schedule

a time to do the initial setup. Overall, 48 people showed up to our laboratory,

and of those, 40 qualified (8 were rejected because our screening application did

not distinguish some Metro PCS users from T-Mobile users). In the email, we

noted that due to the space constraints of our experimental phones, we might not

be able to install all the applications on their existing phones, and therefore they

needed to make a note of the ones that they planned to use that week. The initial

setup took roughly 30 minutes and involved transferring their SIM cards, helping

them set up their Google and other accounts, and making sure they had all the

applications they needed. We compensated each participant with a $35 gift card

for showing up at the setup session. Out of 40 people who were given phones, 2

did not return them, and 2 did not regularly use them during the study period. Of

our 36 remaining participants who used the phones regularly, 19 were male and

17 were female; ages ranged from 20 to 63 years old (µ = 32, σ= 11).

After the initial setup session, participants used the experimental phones for

26

one week in lieu of their normal phones. They were allowed to install and unin-

stall applications, and we instructed them to use these phones as they would their

normal phones. Our logging framework kept track of every protected resource

accessed by a user-level application along with the previously-mentioned contex-

tual data. Due to storage constraints on the devices, our software uploaded log

files to our server every two hours. However, to preserve participants’ privacy,

screenshots remained on the phones during the course of the week. At the end of

the week, each participant returned to our laboratory, completed an exit survey,

returned the phone, and then received an additional $100 gift card (i.e., slightly

more than the value of the phone).

2.2.3 Exit Survey

When participants returned to our laboratory, they completed an exit survey. The

exit survey software ran on a laptop in a private room so that it could ask questions

about what they were doing on their phones during the course of the week without

raising privacy concerns. We did not view their screenshots until participants gave

us permission. The survey had three components:

• Screenshots—Our software displayed a screenshot taken after one of the

12 resources in Table 2.1 was accessed. Next to the screenshot (Figure 2.2),

we asked participants what they were doing on the phone when the screen-

shot was taken (open-ended). We also asked them to indicate which of

several actions they believed the application was performing, chosen from a

multiple-choice list of permissions presented in plain language (e.g., “read-

ing browser history,” “sending a SMS,” etc.). After answering these ques-

tions, they proceeded to a second page of questions (Figure 2.3). We in-

formed participants at the top of this page of the resource that the applica-

tion had accessed when the screenshot was taken, and asked them to indicate

how much they expected this (5-point Likert scale). Next, we asked, “if you

were given the choice, would you have prevented the app from accessing

this data,” and to explain why or why not. Finally, we asked for permission

27

to view the screenshot. This phase of the exit survey was repeated for 10-15

different screenshots per participant, based on the number of screenshots

saved by our reservoir sampling algorithm.

• Locked Screens—The second part of our survey involved questions about

the same protected resources, though accessed while device screens were

off (i.e., participants were not using their phones). Because there were no

contextual cues (i.e., screenshots), we outright told participants which ap-

plications were accessing which resources and asked them multiple choice

questions about whether they wanted to prevent this and the degree to which

these behaviors were expected. They answered these questions for up to 10

requests, similarly chosen by our reservoir sampling algorithm to yield a

breadth of application/permission combinations.

• Personal Privacy Preferences—Finally, in order to correlate survey re-

sponses with privacy preferences, participants completed two privacy scales.

Because of the numerous reliability problems with the Westin index [119],

we computed the average of both Buchanan et al.’s Privacy Concerns Scale

(PCS) [27] and Malhotra et al.’s Internet Users’ Information Privacy Con-

cerns (IUIPC) scale [77].

After participants completed the exit survey, we re-entered the room, answered

any remaining questions, and then assisted them in transferring their SIM cards

back into their personal phones. Finally, we compensated each participant with a

$100 gift card.

Three researchers independently coded 423 responses to the open-ended ques-

tion in the screenshot portion of the survey. The number of responses per partic-

ipant varied, as they were randomly selected based on the number of screenshots

taken: participants who used their phones more heavily had more screenshots, and

thus answered more questions. Prior to meeting to achieve consensus, the three

coders disagreed on 42 responses, which resulted in an inter-rater agreement of

90%. Taking into account the 9 possible codings for each response, Fleiss’ kappa

yielded 0.61, indicating substantial agreement.

28

Figure 2.2: On the first screen, participants answered questions to establish aware-

ness of the permission request based on the screenshot.

2.3 Application Behaviors

Over the week-long period, we logged 27M application requests to protected re-

sources governed by Android permissions. This translates to over 100,000 re-

quests per user/day. In this section, we quantify the circumstances under which

these resources were accessed. We focus on the rate at which resources were

accessed when participants were not actively using those applications (i.e., situ-

ations likely to defy users’ expectations), access to certain resources with partic-

ularly high frequency, and the impact of replacing certain requests with runtime

confirmation dialogs (as per Felt et al.’s suggestion [47]).

2.3.1 Invisible Permission Requests

In many cases, it is entirely expected that an application might make frequent

requests to resources protected by permissions. For instance, the INTERNET per-

mission is used every time an application needs to open a socket, ACCESS_FINE_LOCATION

29

Figure 2.3: On the second screen, they saw the resource accessed, stated whether it

was expected, and whether it should have been blocked.

is used every time the user’s location is checked by a mapping application, and so

on. However, in these cases, one expects users to have certain contextual cues

to help them understand that these applications are running and making these re-

quests. Based on our log data, most requests occurred while participants were not

actually interacting with those applications, nor did they have any cues to indicate

that the applications were even running. When resources are accessed, applica-

tions can be in five different states, with regard to their visibility to users:

1. Visible foreground application (12.04%): the user is using the application

requesting the resource.

2. Invisible background application (0.70%): due to multitasking, the ap-

plication is in the background.

3. Visible background service (12.86%): the application is a background

service, but the user may be aware of its presence due to other cues (e.g., it

is playing music or is present in the notification bar).

4. Invisible background service (14.40%): the application is a background

service without visibility.

30

5. Screen off (60.00%): the application is running, but the phone screen is off

because it is not in use.

Combining the 3.3M (12.04% of 27M) requests that were granted when the

user was actively using the application (Category 1) with the 3.5M (12.86% of

27M) requests that were granted when the user had other contextual cues to in-

dicate that the application was running (Category 3), we can see that fewer than

one quarter of all permission requests (24.90% of 27M) occurred when the user

had clear indications that those applications were running. This suggests that dur-

ing the vast majority of the time, access to protected resources occurs opaquely

to users. We focus on these 20.3M “invisible” requests (75.10% of 27M) in the

remainder of this subsection.

Harbach et al. found that users’ phone screens are off 94% of the time on av-

erage [57]. We observed that 60% of permission requests occurred while partici-

pants’ phone screens were off, which suggests that permission requests occurred

less frequently than when participants were using their phones. At the same time,

certain applications made more requests when participants were not using their

phones: “Brave Frontier Service,” “Microsoft Sky Drive,” and “Tile game by

UMoni.” Our study collected data on over 300 applications, and therefore it is pos-

sible that with a larger sample size, we would observe other applications engaging

in this behavior. All of the aforementioned applications primarily requested AC-

CESS_WIFI_STATE and INTERNET. While a definitive explanation for this be-

havior requires examining source code or the call stacks of these applications, we

hypothesize that they were continuously updating local data from remote servers.

For instance, Sky Drive may have been updating documents, whereas the other

two applications may have been checking the status of multiplayer games.

Table 2.3 shows the most frequently requested permissions from applications

running invisibly to the user (i.e., Categories 2, 4, and 5); Table 2.4 shows the

applications responsible for these requests (Appendix A.1 lists the permissions

requested by these applications). We normalized the numbers to show requests

per user/day. ACCESS_NETWORK_STATE was most frequently requested, av-

31

Permission Requests

ACCESS_NETWORK_STATE 31,206

WAKE_LOCK 23,816

ACCESS_FINE_LOCATION 5,652

GET_ACCOUNTS 3,411

ACCESS_WIFI_STATE 1,826

UPDATE_DEVICE_STATS 1,426

ACCESS_COARSE_LOCATION 1,277

AUTHENTICATE_ACCOUNTS 644

READ_SYNC_SETTINGS 426

INTERNET 416

Table 2.3: The most frequently requested permissions by applications with zero vis-

ibility to the user.

Application Requests

Facebook 36,346

Google Location Reporting 31,747

Facebook Messenger 22,008

Taptu DJ 10,662

Google Maps 5,483

Google Gapps 4,472

Foursquare 3,527

Yahoo Weather 2,659

Devexpert Weather 2,567

Tile Game(Umoni) 2,239

Table 2.4: The applications making the most permission requests while running in-

visibly to the user.

eraging 31,206 times per user/day—roughly once every 3 seconds. This is due to

applications constantly checking for Internet connectivity. However, the 5,562 re-

quests/day to ACCESS_FINE_LOCATION and 1,277 requests/day to ACCESS_COARSE_LOCATION

are more concerning, as this could enable detailed tracking of the user’s move-

ment throughout the day. Similarly, a user’s location can be inferred by using

32

ACCESS_WIFI_STATE to get data on nearby WiFi SSIDs.

Contextual integrity means ensuring that information flows are appropriate,

as determined by the user. Thus, users need the ability to see information flows.

Current mobile platforms have done some work to let the user know about loca-

tion tracking. For instance, recent versions of Android allow users to see which

applications have used location data recently. While attribution is a positive step

towards contextual integrity, attribution is most beneficial for actions that are re-

versible, whereas the disclosure of location information is not something that can

be undone [47]. We observed that fewer than 1% of location requests were made

when the applications were visible to the user or resulted in the displaying of a

GPS notification icon. Given that Thompson et al. showed that most users do not

understand that applications running in the background may have the same abil-

ities as applications running in the foreground [108], it is likely that in the vast

majority of cases, users do not know when their locations are being disclosed.

This low visibility rate is because Android only shows a notification icon

when the GPS sensor is accessed, while offering alternative ways of inferring

location. In 66.1% of applications’ location requests, they directly queried the

TelephonyManager, which can be used to determine location via cellular tower

information. In 33.3% of the cases, applications requested the SSIDs of nearby

WiFi networks. In the remaining 0.6% of cases, applications accessed location

information using one of three built-in location providers: GPS, network, or pas-

sive. Applications accessed the GPS location provider only 6% of the time (which

displayed a GPS notification). In the other 94% of the time, 13% queried the net-

work provider (i.e., approximate location based on nearby cellular towers and

WiFi SSIDs) and 81% queried the passive location provider. The passive location

provider caches prior requests made to either the GPS or network providers. Thus,

across all requests for location data, the GPS notification icon appeared 0.04% of

the time.

While the alternatives to querying the GPS are less accurate, users are still

surprised by their accuracy [51]. This suggests a serious violation of contextual

33

integrity, since users likely have no idea their locations are being requested in the

vast majority of cases. Thus, runtime notifications for location tracking need to

be improved [52].

Apart from these invisible location requests, we also observed applications

reading stored SMS messages (125 times per user/day), reading browser history

(5 times per user/day), and accessing the camera (once per user/day). Though

the use of these permissions does not necessarily lead to privacy violations, users

have no contextual cues to understand that these requests are occurring.

2.3.2 High Frequency Requests

Some permission requests occurred so frequently that a few applications (i.e.,

Facebook, Facebook Messenger, Google Location Reporting, Google Maps, Farm

Heroes Saga) had to be rate limited in our log files (see Section 2.2.1), so that

the logs would not fill up users’ remaining storage or incur performance over-

head. Table 2.5 shows the complete list of application/permission combinations

that exceeded the threshold. For instance, the most frequent requests came from

Facebook requesting ACCESS_NETWORK_STATE with an average interval of

213.88 ms (i.e., almost 5 times per second).

With the exception of Google’s applications, all rate-limited applications made

excessive requests for the connectivity state. We hypothesize that once these ap-

plications lose connectivity, they continuously poll the system until it is regained.

Their use of the getActiveNetworkInfo() method results in permission checks

and returns NetworkInfo objects, which allow them to determine connection state

(e.g., connected, disconnected, etc.) and type (e.g., WiFi, Bluetooth, cellular, etc.).

Thus, these requests do not appear to be leaking sensitive information per se, but

their frequency may have adverse effects on performance and battery life. It is

possible that using the ConnectivityManager’s NetworkCallback method may

be able to fulfill this need with far fewer permission checks.

34

Application / Permission Peak (ms) Avg. (ms)

com.facebook.katana
213.88 956.97

ACCESS_NETWORK_STATE

com.facebook.orca
334.78 1146.05

ACCESS_NETWORK_STATE

com.google.android.apps.maps
247.89 624.61

ACCESS_NETWORK_STATE

com.google.process.gapps
315.31 315.31

AUTHENTICATE_ACCOUNTS

com.google.process.gapps
898.94 1400.20

WAKE_LOCK

com.google.process.location
176.11 991.46

WAKE_LOCK

com.google.process.location
1387.26 1387.26

ACCESS_FINE_LOCATION

com.google.process.location
373.41 1878.88

GET_ACCOUNTS

com.google.process.location
1901.91 1901.91

ACCESS_WIFI_STATE

com.king.farmheroessaga
284.02 731.27

ACCESS_NETWORK_STATE

com.pandora.android
541.37 541.37

ACCESS_NETWORK_STATE

com.taptu.streams
1746.36 1746.36

ACCESS_NETWORK_STATE

Table 2.5: The application/permission combinations that needed to be rate limited

during the study. The last two columns show the fastest interval recorded and

the average of all the intervals recorded before rate-limiting.

2.3.3 Frequency of Data Exposure

Felt et al. posited that while most permissions can be granted automatically in or-

der to not habituate users to relatively benign risks, certain requests should require

runtime consent [47]. They advocated using runtime dialogs before the following

35

Resource Visible Invisible Total

Data Exposed Requests Data Exposed Requests Data Exposed Requests

Location 758 2,205 3,881 8,755 4,639 10,960

Read SMS data 378 486 72 125 450 611

Sending SMS 7 7 1 1 8 8

Browser History 12 14 2 5 14 19

Total 1,155 2,712 3,956 8,886 5,111 11,598

Table 2.6: The sensitive permission requests (per user/day) when requesting appli-

cations were visible/invisible to users. “Data exposed” reflects the subset of

permission-protected requests that resulted in sensitive data being accessed.

actions should proceed:

1. Reading location information (e.g., using conventional location APIs, scan-

ning WiFi SSIDs, etc.).

2. Reading the user’s web browser history.

3. Reading saved SMS messages.

4. Sending SMS messages that incur charges, or inappropriately spamming the

user’s contact list.

These four actions are governed by the 12 Android permissions listed in Ta-

ble 2.1. Of the 300 applications that we observed during the experiment, 91

(30.3%) performed one of these actions. On average, these permissions were

requested 213 times per hour/user—roughly every 20 seconds. However, per-

mission checks occur under a variety of circumstances, only a subset of which

expose sensitive resources. As a result, platform developers may decide to only

show runtime warnings to users when protected data is read or modified. Thus,

we attempted to quantify the frequency with which permission checks actually

result in access to sensitive resources for each of these four categories. Table 2.6

shows the number of requests seen per user/day under each of these four cate-

gories, separating the instances in which sensitive data was exposed from the total

36

permission requests observed. Unlike Section 2.3.1, we include “visible” permis-

sion requests (i.e., those occurring while the user was actively using the applica-

tion or had other contextual information to indicate it was running). We didn’t

observe any uses of NFC, READ_CALL_LOG, ADD_VOICEMAIL, accessing

WRITE_SYNC_SETTINGS or INTERNET while roaming in our dataset.

Of the location permission checks, a majority were due to requests for location

provider information (e.g., getBestProvider() returns the best location provider

based on application requirements), or checking WiFi state (e.g., getWifiState()

only reveals whether WiFi is enabled). Only a portion of the requests actually ex-

posed participants’ locations (e.g., getLastKnownLocation() or getScanResults()

exposed SSIDs of nearby WiFi networks).

Although a majority of requests for the READ_SMS permission exposed con-

tent in the SMS store (e.g., Query() reads the contents of the SMS store), a consid-

erable portion simply read information about the SMS store (e.g., renewMmsConnectivity()

resets an applications’ connection to the MMS store). An exception to this is the

use of SEND_SMS, which resulted in the transmission of an SMS message every

time the permission was requested.

Regarding browser history, both accessing visited URLs (getAllVisitedUrls())

and reorganizing bookmark folders (addFolderToCurrent()) result in the same

permission being checked. However, the latter does not expose specific URLs to

the invoking application.

Our analysis of the API calls indicated that on average, only half of all per-

mission checks granted applications access to sensitive data. For instance, across

both visible and invisible requests, 5,111 of the 11,598 (44.3%) permission checks

involving the 12 permissions in Table 2.1 resulted in the exposure of sensitive data

(Table 2.6).

While limiting runtime permission requests to only the cases in which pro-

tected resources are exposed will greatly decrease the number of user interrup-

tions, the frequency with which these requests occur is still too great. Prompting

the user on the first request is also not appropriate (e.g., à la iOS and Android M),

37

because our data show that in the vast majority of cases, the user has no contex-

tual cues to understand when protected resources are being accessed. Thus, a user

may grant a request the first time an application asks, because it is appropriate in

that instance, but then she may be surprised to find that the application continues

to access that resource in other contexts (e.g., when the application is not actively

used). As a result, a more intelligent method is needed to determine when a given

permission request is likely to be deemed appropriate by the user.

2.4 User Expectations and Reactions

To identify when users might want to be prompted about permission requests, our

exit survey focused on participants’ reactions to the 12 permissions in Table 2.1,

limiting the number of requests shown to each participant based on our reservoir

sampling algorithm, which was designed to ask participants about a diverse set of

permission/application combinations. We collected participants’ reactions to 673

permission requests (≈19/participant). Of these, 423 included screenshots be-

cause participants were actively using their phones when the requests were made,

whereas 250 permission requests were performed while device screens were off.2

Of the former, 243 screenshots were taken while the requesting application was

visible (Category 1 and 3 from Section 2.3.1), whereas 180 were taken while the

application was invisible (Category 2 and 4 from Section 2.3.1). In this section, we

describe the situations in which requests defied users’ expectations. We present

explanations for why participants wanted to block certain requests, the factors in-

fluencing those decisions, and how expectations changed when devices were not

in use.

2.4.1 Reasons for Blocking

When viewing screenshots of what they were doing when an application requested

a permission, 30 participants (80% of 36) stated that they would have preferred

2Our first 11 participants did not answer questions about permission requests occurring while

not using their devices, and therefore the data only corresponds to our last 25 participants.

38

to block at least one request, whereas 6 stated a willingness to allow all requests,

regardless of resource type or application. Across the entire study, participants

wanted to block 35% of these 423 permission requests. When we asked partici-

pants to explain their rationales for these decisions, two main themes emerged: the

request did not—in their minds—pertain to application functionality or it involved

information they were uncomfortable sharing.

Relevance to Application Functionality

When prompted for the reason behind blocking a permission request, 19 (53%

of 36) participants did not believe it was necessary for the application to perform

its task. Of the 149 (35% of 423) requests that participants would have preferred

to block, 79 (53%) were perceived as being irrelevant to the functionality of the

application:

• “It wasn’t doing anything that needed my current location.” (P1)

• “I don’t understand why this app would do anything with SMS.” (P10)

Accordingly, functionality was the most common reason for wanting a permis-

sion request to proceed. Out of the 274 permissible requests, 195 (71% of 274)

were perceived as necessary for the core functionality of the application, as noted

by thirty-one (86% of 36) participants:

• “Because it’s a weather app and it needs to know where you are to give you

weather information.”(P13)

• “I think it needs to read the SMS to keep track of the chat conversation.”(P12)

Beyond being necessary for core functionality, participants wanted 10% (27

of 274) of requests to proceed because they offered convenience; 90% of these

requests were for location data, and the majority of those applications were pub-

lished under the Weather, Social, and Travel & Local categories in the Google

Play store:

39

• “It selects the closest stop to me so I don’t have to scroll through the whole

list.” (P0)

• “This app should read my current location. I’d like for it to, so I won’t have

to manually enter in my zip code / area.” (P4)

Thus, requests were allowed when they were expected: when participants

rated the extent to which each request was expected on a 5-point Likert scale,

allowable requests averaged 3.2, whereas blocked requests averaged 2.3 (lower is

less expected).

Privacy Concerns

Participants also wanted to deny permission requests that involved data that they

considered sensitive, regardless of whether they believed the application actually

needed the data to function. Nineteen (53% of 36) participants noted privacy as a

concern while blocking a request, and of the 149 requests that participants wanted

to block, 49 (32% of 149) requests were blocked for this reason:

• “SMS messages are quite personal.” (P14)

• “It is part of a personal conversation.” (P11)

• “Pictures could be very private and I wouldn’t like for anybody to have

access.” (P16)

Conversely, 24 participants (66% of 36) wanted requests to proceed simply

because they did not believe that the data involved was particularly sensitive; this

reasoning accounted for 21% of the 274 allowable requests:

• “I’m ok with my location being recorded, no concerns.” (P3)

• “No personal info being shared.” (P29)

2.4.2 Influential Factors

Based on participants’ responses to the 423 permission requests involving screen-

shots (i.e., requests occurring while they were actively using their phones), we

40

quantitatively examined how various factors influenced their desire to block some

of these requests.

Effects of Identifying Permissions on Blocking: In the exit survey, we asked

participants to guess the permission an application was requesting, based on the

screenshot of what they were doing at the time. The real answer was among four

other incorrect answers. Of the 149 cases where participants wanted to block

permission requests, they were only able to correctly state what permission was

being requested 24% of the time; whereas when wanting a request to proceed,

they correctly identified the requested permission 44% (120 of 274) of the time.

However, Pearson’s product-moment test on the average number of blocked re-

quests per user and the average number of correct answers per user3 did not yield

a statistically significant correlation (r=−0.171, p<0.317).

Effects of Visibility on Expectations: We were particularly interested in ex-

ploring if permission requests originating from foreground applications (i.e., vis-

ible to the user) were more expected than ones from background applications. Of

the 243 visible permission requests that we asked about in our exit survey, par-

ticipants correctly identified the requested permission 44% of the time, and their

average rating on our expectation scale was 3.4. On the other hand, participants

correctly identified the resources accessed by background applications only 29%

of the time (52 of 180), and their average rating on our expectation scale was

3.0. A Wilcoxon Signed-Rank test with continuity correction revealed a statisti-

cally significant difference in participants’ expectations between these two groups

(V=441.5, p<0.001).

Effects of Visibility on Blocking: Participants wanted to block 71 (29% of

243) permission requests originating from applications running in the foreground,

whereas this increased by almost 50% when the applications were in the back-

ground invisible to them (43% of 180). We calculated the percentage of denials

for each participant, for both visible and invisible requests. A Wilcoxon Signed-

Rank test with continuity correction revealed a statistically significant difference

3Both measures were normally distributed.

41

(V=58, p<0.001).

Effects of Privacy Preferences on Blocking: Participants completed the Pri-

vacy Concerns Scale (PCS) [27] and the Internet Users’ Information Privacy Con-

cerns (IUIPC) scale [77]. A Spearman’s rank test yielded no statistically sig-

nificant correlation between their privacy preferences and their desire to block

permission requests (ρ = 0.156, p<0.364).

Effects of Expectations on Blocking: We examined whether participants’

expectations surrounding requests correlated with their desire to block them. For

each participant, we calculated their average Likert scores for their expectations

and the percentage of requests that they wanted to block. Pearson’s product-

moment test showed a statistically significant correlation (r=−0.39, p<0.018).

The negative correlation shows that participants were more likely to deny un-

expected requests.

2.4.3 User Inactivity and Resource Access

In the second part of the exit survey, participants answered questions about 10

resource requests that occurred when the screen was off (not in use). Overall, they

were more likely to expect resource requests to occur when using their devices

(µ = 3.26 versus µ = 2.66). They also stated a willingness to block almost half

of the permission requests (49.6% of 250) when not in use, compared to a third

of the requests that occurred when using their phones (35.2% of 423). However,

neither of these differences was statistically significant.

2.5 Feasibility of Runtime Requests

Felt et al. posited that certain sensitive permissions (Table 2.1) should require

runtime consent [47], but in Section 2.3.3 we showed that the frequencies with

which applications are requesting these permissions make it impractical to prompt

the user each time a request occurs. Instead, the major mobile platforms have

shifted towards a model of prompting the user the first time an application requests

42

access to certain resources: iOS does this for a selected set of resources, such as

location and contacts, and Android M does this for “dangerous” permissions.

How many prompts would users see, if we added runtime prompts for the first

use of these 12 permissions? We analyzed a scheme where a runtime prompt

is displayed at most once for each unique triplet of (application, permission, ap-

plication visibility), assuming the screen is on. With a naïve scheme, our study

data indicates our participants would have seen an average of 34 runtime prompts

(ranging from 13 to 77, σ=11). As a refinement, we propose that the user should

be prompted only if sensitive data will be exposed (Section 2.3.3), reducing the

average number of prompts to 29.

Of these 29 prompts, 21 (72%) are related to location. Apple iOS already

prompts users when an application accesses location for the first time, with no ev-

idence of user habituation or annoyance. Focusing on the remaining prompts, we

see that our policy would introduce an average of 8 new prompts per user: about 5

for reading SMS, 1 for sending SMS, and 2 for reading browser history. Our data

covers only the first week of use, but as we only prompt on first use of a permis-

sion, we expect that the number of prompts would decline greatly in subsequent

weeks, suggesting that this policy would likely not introduce significant risk of

habituation or annoyance. Thus, our results suggest adding runtime prompts for

reading SMS, sending SMS, and reading browser history would be useful given

their sensitivity and low frequency.

Our data suggests that taking visibility into account is important. If we ignore

visibility and prompted only once for each pair of (application, permission), users

would have no way to select a different policy for when the application is visible

or not visible. In contrast, “ask-on-first-use” for the triple (application, permis-

sion, visibility) gives users the option to vary their decision based on the visibility

of the requesting application. We evaluated these two policies by analyzing the

exit survey data (limited to situations where the screen was on) for cases where

the same user was asked twice in the survey about situations with the same (ap-

plication, permission) pair or the same (application, permission, visibility) triplet,

43

to see whether the user’s first decision to block or not matched their subsequent

decisions. For the former policy, we saw only 51.3% agreement; for the latter,

agreement increased to 83.5%. This suggests that the (application, permission,

visibility) triplet captures many of the contextual factors that users care about,

and thus it is reasonable to prompt only once per unique triplet.

A complicating factor is that applications can also run even when the user is

not actively using the phone. In addition to the 29 prompts mentioned above, our

data indicates applications would have triggered an average of 7 more prompts

while the user was not actively using the phone: 6 for location and one for reading

SMS. It is not clear how to handle prompts when the user is not available to

respond to the prompt: attribution might be helpful, but further research is needed.

2.5.1 Modeling Users’ Decisions

We constructed several statistical models to examine whether users’ desire to

block certain permission requests could be predicted using the contextual data that

we collected. If such a relationship exists, a classifier could determine when to

deny potentially unexpected permission requests without user intervention. Con-

versely, the classifier could be used to only prompt the user about questionable

data requests. Thus, the response variable in our models is the user’s choice of

whether to block the given permission request. Our predictive variables consisted

of the information that might be available at runtime: permission type (with the

restriction that the invoked function exposes data), requesting application, and

visibility of that application. We constructed several mixed effects binary logistic

regression models to account for both inter-subject and intra-subject effects.

Model Selection

In our mixed effects models, permission types and the visibility of the requesting

application were fixed effects, because all possible values for each variable existed

in our data set. Visibility had two values: visible (the user is interacting with the

application or has other contextual cues to know that it is running) and invisible.

44

Permission types were categorized based on Table 2.6. The application name and

the participant ID were included as random effects, because our survey data did

not have an exhaustive list of all possible applications a user could run, and the

participant has a non-systematic effect on the data.

Table 2.7 shows two goodness-of-fit metrics: the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC). Lower values for AIC and BIC

represent better fit. Table 2.7 shows the different parameters included in each

model. We found no evidence of interaction effects and therefore did not include

them. Visual inspection of residual plots of each model did not reveal obvious

deviations from homoscedasticity or normality.

We initially included the phone’s screen state as another variable. However,

we found that creating two separate models based on the screen state resulted

in better fit than using a single model that accounted for screen state as a fixed

effect. When the screen was on, the best fit was a model including application

visibility and application name, while controlling for subject effects. Here, fit im-

proved once permission type was removed from the model, which shows that the

decision to block a permission request was based on contextual factors: users do

not categorically deny permission requests based solely on the type of resource

being accessed (i.e., they also account for their trust in the application, as well as

whether they happened to be actively using it). When the screen was off, however,

the effect of permission type was relatively stronger. The strong subject effect in

both models indicates that these decisions vary from one user to the next. As a

result, any classifier developed to automatically decide whether to block a per-

mission at runtime (or prompt the user) will need to be tailored to that particular

user’s needs.

Predicting User Reactions

Using these two models, we built two classifiers to make decisions about whether

to block any of the sensitive permission requests listed in Table 2.6. We used

our exit survey data as ground truth, and used 5-fold cross-validation to evaluate

45

Predictors AIC BIC Screen State

UserCode 490.60 498.69 Screen On

Application 545.98 554.07 Screen On

Application

UserCode
491.86 503.99 Screen On

Permission

Application

UserCode

494.69 527.05 Screen On

Visibility

Application

UserCode

481.65 497.83 Screen On

Permission

Visibility

Application

UserCode

484.23 520.64 Screen On

UserCode 245.13 252.25 Screen Off

Application 349.38 356.50 Screen Off

Application

UserCode
238.84 249.52 Screen Off

Permission

Application

UserCode

235.48 263.97 Screen Off

Table 2.7: Goodness-of-fit metrics for various mixed effects logistic regression

models on the exit survey data.

model accuracy.

We calculated the receiver operating characteristic (ROC) to capture the trade-

off between true-positive and false-positive rate. The quality of the classifier can

be quantified with a single value by calculating the area under its ROC curve

(AUC) [58]. The closer the AUC gets to 1.0, the better the classifier is. When

screens were on, the AUC was 0.7, which is 40% better than the random base-

line (0.5). When screens were off, the AUC was 0.8, which is 60% better than a

random baseline.

46

2.6 Discussion

During the study, 80% of our participants deemed at least one permission re-

quest as inappropriate. This violates Nissenbaum’s notion of “privacy as con-

textual integrity” because applications were performing actions that defied users’

expectations [83]. Felt et al. posited that users may be able to better understand

why permission requests are needed if some of these requests are granted via

runtime consent dialogs, rather than Android’s previous install-time notification

approach [47]. By granting permissions at runtime, users will have additional con-

textual information; based on what they were doing at the time that resources are

requested, they may have a better idea of why those resources are being requested.

We make two primary contributions that system designers can use to make

more usable permissions systems. We show that the visibility of the requesting

application and the frequency at which requests occur are two important factors in

designing a runtime consent platform. Also, we show that “prompt-on-first-use”

per triplet could be implemented for some sensitive permissions without risking

user habituation or annoyance.

Based on the frequency with which runtime permissions are requested (Sec-

tion 2.3), it is infeasible to prompt users every time. Doing so would overwhelm

them and lead to habituation. At the same time, drawing user attention to the sit-

uations in which users are likely to be concerned will lead to greater control and

awareness. Thus, the challenge is in acquiring their preferences by confronting

them minimally and then automatically inferring when users are likely to find a

permission request unexpected, and only prompting them in these cases. Our data

suggests that participants’ desires to block particular permissions were heavily

influenced by two main factors: their understanding of the relevance of a permis-

sion request to the functionality of the requesting application and their individual

privacy concerns.

Our models in Section 2.5.1 showed that individual characteristics greatly ex-

plain the variance between what different users deem appropriate, in terms of

access to protected resources. While responses to privacy scales failed to explain

47

these differences, this was not a surprise, as the disconnect between stated privacy

preferences and behaviors is well-documented (e.g., [2]). This means that in order

to accurately model user preferences, the system will need to learn what a specific

user deems inappropriate over time. Thus, a feedback loop is likely needed: when

devices are “new,” users will be required to provide more input surrounding per-

mission requests, and then based on their responses, they will see fewer requests

in the future. Our data suggests that prompting once for each unique (application,

permission, application visibility) triplet can serve as a practical mechanism in

acquiring users’ privacy preferences.

Beyond individual subject characteristics (i.e., personal preferences), partic-

ipants based their decisions to block certain permission requests on the specific

applications making the requests and whether they had contextual cues to indicate

that the applications were running (and therefore needed the data to function).

Future systems could take these factors into account when deciding whether or

not to draw user attention to a particular request. For example, when an applica-

tion that a user is not actively using requests access to a protected resource, she

should be shown a runtime prompt. Our data indicates that, if the user decides to

grant a request in this situation, then with probability 0.84 the same decision will

hold in future situations where she is actively using that same application, and

therefore a subsequent prompt may not be needed. At a minimum, platforms need

to treat permission requests from background applications differently than those

originating from foreground applications. Similarly, applications running in the

background should use passive indicators to communicate when they are access-

ing particular resources. Platforms can also be designed to make decisions about

whether or not access to resources should be granted based on whether contextual

cues are present, or at its most basic, whether the device screen is even on.

Finally, we built our models and analyzed our data within the framework of

what resources our participants believed were necessary for applications to cor-

rectly function. Obviously, their perceptions may have been incorrect: if they

better understood why a particular resource was necessary, they may have been

48

more permissive. Thus, it is incumbent on developers to adequately communicate

why particular resources are needed, as this impacts user notions of contextual

integrity. Yet, no mechanisms in Android exist for developers to do this as part of

the permission-granting process. For example, one could imagine requiring meta-

data to be provided that explains how each requested resource will be used, and

then automatically integrating this information into permission requests. Tan et

al. examined a similar feature on iOS that allows developers to include free-form

text in runtime permission dialogs and observed that users were more likely to

grant requests that included this text [107]. Thus, we believe that including suc-

cinct explanations in these requests would help preserve contextual integrity by

promoting greater transparency.

In conclusion, we believe this study was instructive in showing the circum-

stances in which Android permission requests are made under real-world usage.

While prior work has already identified some limitations of deployed mobile per-

missions systems, we believe our study can benefit system designers by demon-

strating several ways in which contextual integrity can be improved, thereby em-

powering users to make better security decisions.

49

Chapter 3

Prediction

In iOS and Android M, the platform prompts the user when an application at-

tempts to access one of a set of “dangerous”1 permission types (e.g., location,

contacts, etc.) for the first time. This ask-on-first-use (AOFU) model is an im-

provement over ask-on-install (AOI). Prompting users the first time an application

uses one of the designated permissions gives users a better sense of context: their

knowledge of what they were doing when the application first tried to access the

data should help them determine whether the request is appropriate.

One critical caveat of this approach is that mobile platforms seek the consent

of the user the first time a given application attempts to access a certain data type

and then enforce the user’s decision for all subsequent cases, regardless of the

circumstances surrounding each access. For example, a user may grant an appli-

cation access to location data because she is using location-based features, but by

doing this, the application can subsequently access location data for behavioral

advertising, which may violate the user’s preferences. Based on the results pre-

sented in the previous chapter, however, it is not feasible to prompt the user every

time data is accessed, due to the high frequency of permission requests.

In the previous chapter we presented data from a field to operationalize the

1Android designated a selected set of 24 resource types as more sensitive over the other

resources.[54]

50

notion of “context,” to allow an operating system to differentiate between appro-

priate and inappropriate data requests by a single application for a single data

type. We show that users’ decisions to allow a permission request significantly

correlated with that application’s visibility – that this visibility is a strong contex-

tual cue that influences users’ responses to permission prompts. We also observed

that privacy decisions were highly nuanced, demonstrating that a one-size-fits-all

model is unlikely to be sufficient; a given information flow may be deemed appro-

priate by one user but not by another user – we suggest applying machine learning

in order to infer individual users’ privacy preferences.

To achieve this, research is needed to determine what factors affect user pri-

vacy decisions and how to use those factors to make privacy decisions on the

user’s behalf. While we cannot automatically capture everything involved in Nis-

senbaum’s notion of context, we can try to detect when context has likely changed

(insofar as to decide whether a different privacy decision should be made for the

same application and data type), by seeing whether the circumstances surrounding

a data request are similar to previous requests.

To this end, we collected real-world Android usage data in order to explore

whether we could infer users’ future privacy decisions based on their past privacy

decisions, contextual circumstances surrounding applications’ data requests, and

users’ behavioral traits. We conducted a field study where 131 participants used

Android phones that were instrumented to gather data over an average of 32 days

per participant. Also, their phones periodically prompted them to make privacy

decisions when applications used sensitive permissions, and we logged their de-

cisions. Overall, participants wanted to block 60% of these requests. We found

that AOFU yields 84% accuracy, i.e., its policy agrees with participants’ prompted

responses 84% of the time. AOI achieves only 25% accuracy.

We designed new techniques that use machine learning to automatically pre-

dict how users would respond to prompts, so that we can avoid prompting them

in most cases, thereby reducing user burden. Our classifier uses the user’s past

decisions in similar situations to predict their response to a particular permission

51

request. The classifier outputs a prediction and a confidence score; if the classi-

fier is sufficiently confident, we use its prediction, otherwise we prompt the user

for their decision. We also incorporate information about the user’s behavior in

other security and privacy situations to make inferences about their preferences:

whether they have a screen lock activated, how often they visit HTTPS websites,

and so on. We show that our scheme achieves 96.8% accuracy (a 4× reduction

in error rate over AOFU) with significantly less user involvement than the status

quo.

The specific contributions of this chapter are the following:

• We conducted the first known large-scale study on quantifying the effec-

tiveness of ask-on-first-use permissions.

• We show that a significant portion of the studied participants make contex-

tual decisions on permissions—the foreground application and the visibility

of the permission-requesting application are strong cues participants used to

make contextual decisions.

• We show how a machine-learned model can incorporate context and better

predict users’ privacy decisions.

• To the best of our knowledge, we are the first to use passively observed traits

to infer future privacy decisions on a case-by-case basis at runtime.

3.1 Related Work

There is a large body of work demonstrating that install-time prompts fail be-

cause users do not understand or pay attention to them [55, 65, 116]. When using

install-time prompts, users often do not understand which permission types corre-

spond to which sensitive resources and are surprised by the ability of background

applications to collect information [49, 64, 108]. Applications also transmit a

large amount of location or other sensitive data to third parties without user con-

sent [43]. When possible risks associated with these requests are revealed to users,

their concerns range from being annoyed to wanting to seek retribution [48].

52

To mitigate some of these problems, systems have been developed to track in-

formation flows across the Android system [43, 53, 67] or introduce finer-grained

permission control into Android [5, 60, 100], but many of these solutions increase

user involvement significantly, which can lead to habituation. Additionally, many

of these proposals are useful only to the most-motivated or technically savvy

users. For example, many such systems require users to configure complicated

control panels, which many are unlikely to do [122]. Other approaches involve

static analysis in order to better understand how applications could request in-

formation [11, 23, 45], but these say little about how applications actually use

information. Dynamic analysis improves upon this by allowing users to see how

often this information is requested in real time [43, 104, 117], but substantial work

is likely needed to present that information to average users in a meaningful way.

Solutions that require user interruptions need to also minimize user intervention

in order to prevent habituation.

Other researchers have developed recommendation systems to recommend ap-

plications based on users’ privacy preferences [125], or detect privacy violations

and suggest preferences based on crowdsourcing [4, 71], but such approaches of-

ten do not take individual user differences into account without significant user

intervention. Systems have also been developed to predict what users would share

on mobile social networks [22], which suggests that future systems could po-

tentially infer what information users would be willing to share with third-party

applications. By requiring users to self-report privacy preferences, clustering al-

gorithms have been used to define user privacy profiles even in the face of diverse

preferences [72, 97]. However, researchers have found that the order in which

information is requested has an impact on prediction accuracy [120], which could

mean that such systems are only likely to be accurate when they examine actual

user behavior over time (as opposed to one-time self-reports).

Liu et al. clustered users by privacy preferences and used ML techniques

to predict whether to allow or deny an application’s request for sensitive user

data [73]. Their dataset, however, was collected from a set of highly privacy-

53

conscious individuals: those who choose to install a permission-control mecha-

nism. Furthermore, the researchers removed “conflicting” user decisions, in which

a user chose to deny a permission for an application, and then later chose to allow

it. These conflicting decisions, however, do not represent noisy data. They occur

nearly 50% of the time in the real world as it was shown in the previous chap-

ter [117], and accurately reflect the nuances of user privacy preferences. Models

must therefore account for them. In fact, previous work found that users com-

monly reassess privacy preferences after usage [6]. Liu et al. also expect users to

make 10% of permission decisions manually, which, based on our previous field

study results, would result in being prompted every three minutes [117]. This is

obviously impractical. Our goal is to design a system that can automatically make

decisions on behalf of users, that accurately models their preferences, while also

not over-burdening them with repeated requests.

Closely related to this work, Liu et al. [74] performed a field study to measure

the effectiveness of a Privacy Assistant that offers recommendations to users on

privacy settings that they could adopt based on each user’s privacy profile—the

privacy assistant predicts what the user might want based on the inferred privacy

profile and static analysis of the third-party application. While this approach in-

creased user awareness on resource usage, the recommendations are static: they

do not consider each application’s access to sensitive data on a case-by-case basis.

Such a coarse-grained approach goes against our previous work suggesting that

users do want to vary their decisions based on contextual circumstances [117]. A

blanket approval or denial of a permission to a given application carries a con-

siderable risk of privacy violations or loss of desired functionality. In contrast,

our work uses dynamic analysis to infer the appropriateness of each given request

by considering the surrounding contextual cues and how the user has behaved in

similar situations in the past. As with Liu et al., their dataset was also collected

from privacy-conscious and considerably tech-savvy individuals, which may limit

the generalization of their results. The field study we conduct in our work uses a

more representative sample.

54

Nissenbaum’s theory of contextual integrity suggests that permission models

should focus on information flows that are likely to defy user expectations [82].

There are three main components involved in deciding the appropriateness of a

flow [20]: the context in which the resource request is made, the role played

by the requesting application under the current context, and the type of resource

being accessed. Neither previous nor currently deployed permission models take

all three factors into account. This model could be used to improve permission

models by automatically granting access to data when the system determines that

it is appropriate, denying access when it is inappropriate, and prompting the user

only when a decision cannot be made automatically, thereby reducing user burden.

Access Control Gadgets (ACGs) were proposed as a mechanism to tie sensi-

tive resource access to certain UI elements [78, 94–96]. Authors posit that such

an approach will increase user expectations, as a significant portion of participants

expected a UI interaction before a sensitive resource usage, giving users an im-

plicit mechanism to control access and increasing awareness on resource usage.

The biggest caveat in this approach is that tying a UI interaction to each sensitive

resource access is impossible in practice because resources are accessed at a high

frequency [117], and because many legitimate resource accesses occur without

user initiation [47].

3.2 Methodology

We collected data from 131 participants to understand what factors could be used

to infer whether a permission request is likely to be deemed appropriate by the

user.

Previous work by Felt et al. made the argument that certain permissions are

appropriate for runtime prompts, because they protect sensitive resources and be-

cause viewing the prompt at runtime imparts additional contextual information

about why an application might need the permission [47]. Similarly, Thompson

et al. showed that other permission requests could be replaced with audit mech-

anisms, because they represent either reversible changes or are sufficiently low

55

Permission Type Activity

ACCESS_WIFI_STATE View nearby SSIDs

NFC Communicate via NFC

READ_HISTORY_BOOKMARKS Read users’ browser history

ACCESS_FINE_LOCATION Read GPS location

ACCESS_COARSE_LOCATION
Read network-inferred location

(i.e., cell tower and/or WiFi)

LOCATION_HARDWARE Directly access GPS data

READ_CALL_LOG Read call history

ADD_VOICEMAIL Read call history

READ_SMS Read sent/received/draft

SMS

SEND_SMS Send SMS

*INTERNET Access Internet when roam-

ing

*WRITE_SYNC_SETTINGS
Change application sync

settings when roaming

Table 3.1: Felt et al. proposed granting a select set of 12 permissions at run-

time so that users have contextual information to infer why the data might

be needed [47]. Our instrumentation omits the last two permission types

(INTERNET & WRITE_SYNC_SETTINGS) and records information about the

other 10.

risk to not warrant habituating the user to prompts [108]. We collected informa-

tion about 10 of the 12 permissions Felt et al. suggest are best-suited for runtime

prompts. We omitted INTERNET and WRITE_SYNC_SETTINGS, because those

permissions only warrant runtime prompts if the user is roaming and we did not

expect any participant to be roaming during the study period, and focused on the

remaining 10 permission types (Table 3.1). While there are many other sensitive

permissions beyond this set, Felt et al. concluded that the others are best handled

by other mechanisms (e.g., install-time prompts, ACGs, etc.).

We used the Experience Sampling Method (ESM) to collect ground truth data

about users’ privacy preferences [59]. ESM involves repeatedly questioning par-

56

Figure 3.1: A screenshot of an ESM prompt.

ticipants in situ about a recently observed event; in this case, we probabilisti-

cally asked them about an application’s recent access to data on their phone, and

whether they would have permitted it if given the choice. We treated participants’

responses to these ESM probes as our main dependent variable (Figure 4.1).

We also instrumented participants’ smartphones to obtain data about their

privacy-related behaviors and the frequency with which applications accessed

protected resources. The instrumentation required a set of modifications to the

Android operating system and flashing a custom Android version onto partici-

pants’ devices. To facilitate such experiments, the University of Buffalo offers

57

non-affiliated academic researchers access to the PhoneLab panel [80], which

consists of more than 200 participants. All of these participants had LG Nexus

5 phones running Android 5.1.1 and the phones were periodically updated over-

the-air (OTA) with custom modifications to the Android operating system. Par-

ticipants can decide when to install the OTA update, which marks their entry into

new experiments. During our experiment period, different participants installed

the OTA update with our instrumentation at different times, thus we have neither

data on all PhoneLab participants nor data for the entire period. Our OTA update

was available to participants for a period of six weeks, between February 2016 and

March 2016. At the end of the study period, we emailed participants a link to an

exit survey to collect demographic information. Our study received institutional

review board (IRB) approval.2

3.2.1 Instrumentation

The goal of our instrumentation was to collect as much runtime and behavioral

data as could be observed from the Android platform, with minimal performance

cost. We collected three categories of data: behavioral information, runtime in-

formation, and user decisions. We made no modifications to any third-party ap-

plication code; our dynamic analysis techniques could be used on any third-party

Android application.

Table 3.2 contains the complete list of behavioral and runtime events our in-

strumentation recorded. The behavioral data fell under several categories, all cho-

sen based on several hypotheses that we had about the types of behaviors that

might correlate with privacy preferences: web-browsing habits, screen locking

behavior, third-party application usage behavior, audio preferences, call habits,

camera usage patterns, and behavior related to security settings. For example,

we hypothesized that someone who manually locks their device screen are more

privacy-conscious than someone who lets it time out.

We also collected runtime information about the context of each permission

2Approved by the UC Berkeley IRB under protocol #2013-02-4992

58

Type Event Recorded

Behavioral

Instrumentation

Changing developer options

Opening/Closing security settings

Changing security settings

Enabling/Disabling NFC

Changing location mode

Opening/Closing location settings

Changing screen-lock type

Use of two factor authentication

Log initial settings information

User locks the screen

Screen times out

App locks the screen

Audio mode changed

Enabling/Disabling speakerphone

Connecting/Disconnecting headphones

Muting the phone

Taking an audio call

Taking a picture (front- vs. rear-facing)

Visiting an HTTPS link in Chrome

Responding to a notification

Unlocking the phone

Runtime

Information

An application changing the visibility

Platform switches to a new activity

Permission

Requests

An app requests a sensitive permission

ESM prompt for a selected permission

Table 3.2: Instrumented events that form our feature set

request, including the visibility of the requesting application at the time of re-

quest, what the user was doing when the request was made (i.e., the name of

the foreground application), and the exact Android API function invoked by the

application to determine what information was requested. The visibility of an

application reflects the extent to which the user was likely aware that the appli-

cation was running; if the application was in the foreground, the user had cues

59

that the application was running, but if it was in the background, then the user

was likely not aware that the application was running and therefore might find the

permission request unexpected—some background services can still be visible to

the user due to on-screen notification or other cues that could be perceptible. We

monitored processes’ memory priority levels to determine the visibility of all An-

droid processes. We also collected information about which Android Activity

was active in the application.3

Once per day we probabilistically selected one of these permission requests

and prompted the user about them at runtime (Figure 4.1). We used weighted

reservoir sampling to select a permission request to prompt about. We weight

the combination of application, permission, visibility based on their frequency

of occurrence seen by the instrumentation; the most-frequent combination has

a higher probability of being shown to participants using ESM. We prompted

participants a maximum of three times for each unique combination. We tuned the

wording of the prompt to make it clear that the request had just occurred and their

response would not affect the system (a deny response would not actually deny

data). These responses serve as the ground truth for all the analysis mentioned in

the remainder of the chapter.

The intuition behind using weighted reservoir sampling is to focus more on

the frequently occurring permission requests over rare ones. Common permission

requests contribute most to user habituation due to their high frequency. Thus, it

is more important to learn about user privacy decisions on highly frequent permis-

sion requests over the rare ones, which might not risk user habituation or annoy-

ance (and the context of rare requests may be less likely to change).

3.2.2 Exit Survey

At the end of our data collection period, PhoneLab staff emailed participants a link

to our online exit survey, which they were incentivized to complete with a raffle for

3An Android Activity represents the application screen and UI elements currently exposed

to the user.

60

two $100 Amazon gift cards. The survey gathered demographic information and

qualitative information on their privacy preferences. Of the 203 participants in our

experiment, 53 fully completed the survey, and another 14 partially completed it.

Of the 53 participants to fully complete the survey, 21 were male, 31 were female,

and 1 undisclosed. Participants ranged from 20 to 72 years of age (µ = 40.83, σ =

14.32). Participants identified themselves as 39.3% staff, 32.1% students, 19.6%

faculty, and 9% other. Only 21% of the survey respondents had an academic

qualification in STEM, which suggests that the sample is unlikely to be biased

towards tech-savvy users.

3.2.3 Summary

We collected data from February 5 to March 17, 2016. PhoneLab allows any par-

ticipant to opt-out of an experiment at any time. Thus, of the 203 participants who

installed our custom Android build, there were 131 who used it for more than 20

days. During the study period, we collected 176M events across all participants

(31K events per participant/day). Our dataset consists of 1,686 unique applica-

tions and 13K unique activities. Participants also responded to 4,636 prompts

during the study period. We logged 96M sensitive permission requests, which

translates to roughly one sensitive permission request every 6 seconds per partic-

ipant. For the remainder of the paper, we only consider the data from the 131

participants who used the system for at least 20 days, which corresponds to 4,224

ESM prompts.

Of the 4,224 prompts, 55.3% were in response to ACCESS_WIFI_STATE, when

trying to access WiFi SSID information that could be used to infer the location

of the smartphone; 21.0%, 17.3%, 5.08%, 0.78%, and 0.54% were from access-

ing location directly, reading SMS, sending SMS, reading call logs, and access-

ing browser history, respectively. A total of 137 unique applications triggered

prompts during the study period. Of the 4,224 prompts, participants wanted to

deny 60.01% of them, and 57.65% of the prompts were shown when the request-

ing application was running in the foreground or the user had visual cues that the

61

application was running (e.g., notifications). A Wilcoxon signed rank test with

continuity correction revealed a statistically significant difference in participants’

desire to allow or deny a permission request based on the visibility of the re-

questing application (p < 0.0152, r = 0.221), which corroborates findings in the

previous chapter [117].

3.3 Types of Users

We hypothesized that there may be different types of users based on how they want

to disclose their private information to third parties. It is imperative to identify

these different sub-populations since different permission models affect users dif-

ferently based on their privacy preferences; performance numbers averaged across

a user population could be misleading since different sub-populations might react

differently to the same permission model.

While our study size was too small to effectively apply clustering techniques

to generate classes of users, we did find a meaningful distinction using the denial

rate (i.e., the percentage of prompts to which users wanted to deny access). We

aggregated users by their denial rate in 10% increments and examined how these

different participants considered the surrounding contextual circumstances in their

decisions.

We discovered that application visibility was a significant factor for users with

a denial rate of 10–90%, but not for users with a denial rate of 0–10% or 90–100%.

We call the former group Contextuals, as they seem to care about the surround-

ing context (i.e., they make nuanced decisions, allowing or denying a permission

request based on whether they had contextual cues that indicated that the request-

ing application was running), and the latter group Defaulters, because they seem

to simply always allow or always deny requests, regardless of contextual cues.

We analyzed how the effects of the visibility of the requesting application varies

among different participants to decide the boundaries of the two groups. The rea-

son for us to draw the boundary at the two ends was better explained later when

we explain the benefit of the figuring out the defaulter as early as possible for

62

0

5

10

15

0 25 50 75 100

Denial Rate

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Category

Contextuals

Defaulters

Figure 3.2: Histogram of users based on their denial rate. Defaulters tended to al-

low or deny almost all requests without regard for contextual cues, whereas

Contextuals considered the visibility of the requesting application.

better performance.

Defaulters accounted for 53% of 131 participants and Contextuals accounted

for 47%. A Wilcoxon signed-rank test with continuity correction revealed a statis-

tically significant difference in Contextuals’ responses based on requesting appli-

cation visibility (p < 0.013, r = 0.312), while for Defaulters there was no statis-

tically significant difference (p = 0.227). That is, Contextuals used visibility as a

contextual cue, when deciding the appropriateness of a given permission request,

whereas Defaulters did not vary their decisions based on this cue. Figure 3.2

shows the distribution of users based on their denial rate. Vertical lines indicate

the borders between Contextuals and Defaulters.

63

Policy Contextuals Defaulters Overall Prompts

AOI 44.11% 6.00% 25.00% 0.00

AOFU-AP 64.49% 93.33% 84.61% 12.34

AOFU-APV 64.28% 92.85% 83.33% 15.79

AOFU-AFPV 66.67% 98.95% 84.61% 16.91

AOFU-VP 58.65% 94.44% 78.04% 6.43

AOFU-VA 63.39% 93.75% 84.21% 12.24

AOFU-A 64.27% 93.54% 83.33% 9.06

AOFU-P 57.95% 95.45% 82.14% 3.84

AOFU-V 52.27% 95.34% 81.48% 2.00

Table 3.3: The accuracy and number of different possible ask-on-first-use combina-

tions. A: Application requesting the permission, P: Permission type requested,

V: Visibility of the application requesting the permission, AF : Application run-

ning in the foreground when the request is made. AOFU-AP is the policy used

in Android Marshmallow i.e., asking (prompting) the user for each unique ap-

plication, permission combination. The table also differentiates policy numbers

based on the subpopulation of Contextuals, Defaulters, and across all users.

In the remainder of this chapter, we use our Contextuals–Defaulters cate-

gorization to measure how current and proposed models affect these two sub-

populations, issues unique to these sub-populations, and ways to address these

issues.

3.4 Ask-On-First-Use Permissions

Ask-on-first-use (AOFU) is the current Android permission model, which was

first adopted in Android 6.0 (Marshmallow). AOFU prompts the user whenever

an application requests a dangerous permission for the first time [36]; the user’s

response to this prompt is thereafter applied whenever the same application re-

quests the same permission. As of March 2017, only 34.1% of Android users have

Android Marshmallow or a higher version [38], and among these Marshmallow

users, those who upgraded from a previous version only see runtime permission

prompts for freshly-installed applications.

64

For the remaining 65.9% of users, the system policy is ask-on-install (AOI),

which automatically allows all runtime permission requests. During the study

period, all of our participants had AOI running as the default permission model.

Because all runtime permission requests are allowed in AOI, any of our ESM

prompts that the user wanted to deny correspond to mispredictions under the AOI

model (i.e., the AOI model granted access to the data against users’ actual prefer-

ences). Table 3.3 shows the expected median accuracy for AOI, as well as several

other possible variants that we discuss in this section. The low median accuracy

for Defaulters was due to the significant number of people who simply denied

most of the prompts. The prompt count is zero for AOI because it does not prompt

the user during runtime; users are only shown permission prompts at installation.

More users will have AOFU in the future, as they upgrade to Android 6.0 and

beyond. To the best of our knowledge, no prior work has looked into quantify-

ing the effectiveness of AOFU systematically; this section presents analysis of

AOFU based on prompt responses collected from participants and creates a base-

line against which to measure our system’s improvement. We simulate how AOFU

performs through our ESM prompt responses. Because AOFU is deterministic,

each user’s response to the first prompt for each application:permission combi-

nation tells us how the AOFU model would respond for subsequent requests by

that same combination. For participants who responded to more than one prompt

for each combination, we can quantify how often AOFU would have been correct

for subsequent requests. Similarly, we also measure the accuracy for other pos-

sible policies that the platform could use to decide whether to prompt the user.

For example, the status quo is for the platform to prompt the user for each new

application:permission combination, but how would accuracy (and the number of

prompts shown) change if the policy were to prompt on all new combinations of

application:permission:visibility?

Table 3.3 shows the expected median accuracy4 for each policy based on par-

4The presented numbers—except for average prompt count, which was normally distributed—

are median values, because the distributions were skewed.

65

ticipants’ responses. For each policy, A represents the application requesting the

permission, P represents the requested permission, V represents the visibility of

the requesting application, and AF represents the application running in the fore-

ground when a sensitive permission request was made. For instance, AOFU-AP

is the policy where the user will be prompted for each new instance of an appli-

cation:permission combination, which the Android 6.0 model employs. The last

column shows the number of runtime prompts a participant would see under each

policy over the duration of the study, if that policy were to be implemented. Both

AOFU-AP and AOFU-AFPV show about a 4.9× reduction in error rate compared

to AOI; AOFU-AFPV would require more prompts over AOFU-AP, though yields

a similar overall accuracy rate. 5 Moving forward, we focus our analysis only on

AOFU-AP (i.e., the current standard).

Instances where the user wants to deny a permission and the policy instead

allows it (false positives) are privacy violations, because they expose more infor-

mation to the application than the user desires. Instances where the user wants

to allow a permission, but the policy denies it (false negatives) are functionality

losses. This is because the application is likely to lose some functionality that the

user desired when it is incorrectly denied a permission. Privacy violations and

functionality losses were approximately evenly split between the two categories

for AOFU-AP: median privacy violations and median functionality losses were

6.6% and 5.0%, respectively.

The AOFU policy works well for Defaulters because, by definition, they tend

to be consistent after their initial responses for each combination. In contrast,

the decisions of Contextuals vary due to other factors beyond just the requesting

application and the requested permission type. Hence, the accuracy of AOFU

for Contextuals is significantly lower than the accuracy for Defaulters. This dis-

tinction shows that learning privacy preferences for a significant portion of users

requires a deeper understanding of factors affecting their decisions, such as behav-

5While AOFU-AF PV has greater median accuracy when examining Defaulters and Contextu-

als separately, because the distributions are skewed, the median overall accuracy is identical to

AOFU-AP when combining the groups.

66

ioral tendencies and contextual cues. As Table 3.3 suggests, superficially adding

more contextual variables (such as visibility of the requesting application) does

not necessarily help to increase the accuracy of the AOFU policy.

The context in which users are prompted under AOFU might be a factor af-

fecting its ability to predict subsequent instances. In the previous chapter [117],

we found that the visibility of the requesting application is a strong contextual cue

users use to vary their decisions. During the study period, under the AOFU-AP

policy, 60% of the prompts could have occurred when the requesting application

was visible to the participant—these prompts had an accuracy of 83.3% in predict-

ing subsequent instances. In instances where participants were prompted when the

requesting application was running invisibly to the user, AOFU-AP had an accu-

racy of 93.7% in predicting subsequent instances. A Wilcoxon signed-ranks test,

however, did not reveal a statistically significant difference (p = 0.3735).

Our estimated accuracy numbers for AOFU may be inflated because AOFU

in deployment (Android 6 and above) does not filter permission requests that do

not reveal any sensitive information. For example, an application can request the

ACCESS_FINE_LOCATION permission to check whether the phone has a specific

location provider, which does not leak sensitive information. Our AOFU simula-

tion uses the invoked function to determine if sensitive data was actually accessed,

and only prompts in those cases (in the interest of avoiding any false positives), a

distinction that AOFU in Android does not make. Thus, an Android user would

see a permission request prompt when the application examines the list of location

providers, and if the permission is granted, would not subsequently see prompts

when location data is actually captured. In our previous field study, we found

that 79% of first-time permission requests do not reveal any sensitive informa-

tion [117], and nearly 33.9% of applications that request these sensitive permis-

sion types do not access sensitive data at all. The majority of AOFU prompts in

Marshmallow are therefore effectively false positives, which incorrectly serve as

the basis for future decisions. Given this, AOFU’s average accuracy is likely less

than the numbers presented in Table 3.3. We therefore consider our estimates of

67

AOFU to be an upper bound.

3.5 Learning Privacy Preferences

Table 3.3 shows that a significant portion of users (the 47% classified as Contex-

tuals) make privacy decisions that depend on factors other than the application

requesting the permission, the permission requested, and the visibility of the re-

questing application. To make decisions on behalf of the user, we must understand

what other factors affect their privacy decisions. We built a machine learning

model trained and tested on our labeled dataset of 4,224 prompts collected from

131 users over the period of 42 days. This approach is equivalent to training a

model based on runtime prompts from hundreds of users and using it to predict

those users’ future decisions.

We focus the scope of this work by making the following assumptions. We as-

sume that the platform, i.e., the Android OS, is trusted to manage and enforce per-

missions for applications. We assume that applications must go through the plat-

form’s permission system to gain access to protected resources. We assume that

we are in a non-adversarial machine-learning setting wherein the adversary does

not attempt to circumvent the machine-learned classifier by exploiting knowledge

of its decision-making process—though we do present a discussion of this prob-

lem and potential solutions in Section 3.8.

3.5.1 Feature Selection

Using the behavioral, contextual, and aggregate features shown in Table 3.2, we

constructed 16K candidate features, formed by combinations of specific applica-

tions and actions. We then selected 20 features by measuring Gini importance

through random forests [75], significance testing for correlations, and singular

value decomposition (SVD). SVD was particularly helpful to address the sparsity

and high dimensionality issues caused by features generated based on application

and activity usage. Table 3.4 lists the 20 features used in the rest of this work.

68

Feature

Group
Feature Type

Behavioral

Features

(B)

Number of times a website is loaded to

the Chrome browser.
Numerical

Out of all visited websites, the proportion

of HTTPS-secured websites.
Numerical

The number of downloads through Chrome. Numerical

Proportion of websites requested location

through Chrome.
Numerical

Number of times PIN/Password was used to

unlock the screen.
Numerical

Amount of time spent unlocking the screen. Numerical

Proportion of times screen was timed out

instead of pressing the lock button.
Numerical

Frequency of audio calls. Numerical

Amount of time spent on audio calls. Numerical

Proportion of time spent on silent mode. Numerical

Runtime

Features

(R1)

Application visibility (True/False) Categorical

Permission type Categorical

User ID Categorical

Time of day of permission request Numerical

Aggregated

Features

(A)

Average denial rate for (A1)

application:permission:visibility
Numerical

Average denial rate for (A2)

applicationF :permission:visibility
Numerical

Table 3.4: The complete list of features used in the ML model evaluation. All the

numerical values in the behavioral group are normalized per day. We use one-

hot encoding for categorical variables. We normalized numerical variables by

making each one a z-score relative to its own average.

The behavioral features (B) that proved predictive relate to browsing habits,

audio/call traits, and locking behavior. All behavioral features were normalized

per day/user and were scaled in the actual model. Features relating to browsing

habits included the number of websites visited, the proportion of HTTPS-secured

69

links visited, the number of downloads, and proportion of sites visited that re-

quested location access. Features relating to locking behavior included whether

users employed a passcode/PIN/pattern, the frequency of screen unlocking, the

proportion of times they allowed the screen to timeout instead of pressing the lock

button, and the average amount of time spent unlocking the screen. Features under

the audio and call category were the frequency of audio calls, the amount of time

they spend on audio calls, and the proportion of time they spent on silent mode.

Our runtime features (R1/R2) include the requesting application’s visibility,

permission requested, and time of day of the request. Initially, we included the

user ID to account for user-to-user variance, but as we discuss later, we subse-

quently removed it. Surprisingly, the application requesting the permission was

not predictive, nor were other features based on the requesting application, such

as application popularity.

Different users may have different ways of perceiving privacy threats posed by

the same permission request. To account for this, the learning algorithm should be

able to determine how each user perceives the appropriateness of a given request

in order to accurately predict future decisions. To quantify the difference between

users in how they perceive the threat posed by the same set of permission requests,

we introduced a set of aggregate features that could be measured at runtime and

that may partly capture users’ privacy preferences. We compute the average denial

rate for each unique combination of application:permission:visibility (A1) and of

applicationF
6:permission:visibility (A2). These aggregate features indicate how

the user responded to previous prompts associated with that combination. As

expected, after we introduced the aggregate features, the relative importance of

the user ID variable diminished and so we removed it (i.e., users no longer needed

to be uniquely identified). We define R2 as R1 without the user ID.

6The application running in the foreground when the permission is requested by another appli-

cation.

70

Feature Set Contextuals Defaulters Overall

R1 69.30% 95.80% 83.71%

R2 + B 69.48% 95.92% 83.93%

R2 + A 75.45% 99.20% 92.24%

Table 3.5: The median accuracy of the machine learning model for different feature

groups across different sub populations.

3.5.2 Inference Based on Behavior

One of our main hypotheses is that passively observing users’ behaviors helps

infer users’ future privacy decisions. To this end, we instrumented Android to

collect a wide array of behavioral data, listed in Table 3.2. We categorize our be-

havioral instrumentation into interaction with Android privacy/security settings,

locking behavior, audio settings and call habits, web-browsing habits, and appli-

cation usage habits. After the feature selection process (§3.5.1), we found that

only locking behavior, audio habits, and web-browsing habits correlated with pri-

vacy behaviors. Appendix B.2 contains more information on feature importance.

All the numerical values under the behavioral group were normalized per day.

We trained an SVM model with an RBF kernel on only the behavioral and run-

time features listed in Table 3.4, excluding user ID. The 5-fold cross-validation ac-

curacy (with random splitting) was 83% across all users. This first setup assumes

we have prior knowledge of previous privacy decisions to a certain extent from

each user before inferring their future privacy decisions, so it is primarily relevant

after the user has been using their phone for a while. However, the biggest ad-

vantage of using behavioral data is that it can be observed passively without any

active user involvement (i.e., no prompting).

We use leave-one-out cross validation to measure the extent to which we can

infer user privacy decisions with absolutely no user involvement (and without any

prior data on a user). In this second setup, when a new user starts using a smart-

phone, we assume there is a ML model which is already trained with behavioral

71

data and privacy decisions collected from a selected set of other users. We then

measured the efficacy of such a model to predict the privacy decisions of a new

user, purely based on passively observed behavior and runtime information on

the request, without ever prompting that new user. This is an even stricter lower

bound on user involvement, which essentially mandates that a user has to make no

effort to indicate privacy preferences, something that no system currently does.

We performed leave-one-out cross validation for each of our 131 participants,

meaning we predicted a single user’s privacy decisions using a model trained using

the data from the other 130 users’ privacy decisions and behavioral data. The only

input for each test user was the passively observed behavioral data and runtime

data surrounding each request. The model yielded a median accuracy of 75%,

which is a 3× improvement over AOI. Furthermore, AOI requires users to make

active decisions during the installation of an application, which our second model

does not require.

Examining only behavioral data with leave-one-group-out cross validation

yielded a median accuracy of 56% for Contextuals, while for Defaulters it was

93.01%. Although, prediction using solely behavioral data fell short of AOFU-AP

for Contextuals, it yielded a similar median accuracy for Defaulters; AOFU-AP

required 12 prompts to reach this level of accuracy, whereas our model would not

have resulted in any prompts. This relative success presents the significant obser-

vation that behavioral features, observed passively without user involvement, are

useful in learning user privacy preferences. This provides the potential to open

entirely new avenues of user learning and reduce the risk of habituation.

3.5.3 Inference Based on Contextual Cues

Our SVM model with an RBF kernel produced the best accuracy. The results

in the remainder of this section are trained and tested with five-fold cross vali-

dation with random splitting for an SVM model with an RBF kernel using the

ksvm library in R. In all instances, the training set was bootstrapped with an equal

number of allow and deny data points to avoid training a biased model. For each

72

feature group, all hyperparameters were tuned through grid search to achieve high-

est accuracy. We used one-hot encoding for categorical variables. We normalized

numerical variables by making each one a z-score relative to its own average. Ta-

ble 3.5 shows how the median accuracy changes with different feature groups. As

a minor note, the addition of the mentioned behavioral features to runtime fea-

tures performed only marginally better; this could be due to the fact that those two

groups do not complement each other in predictions. In this setup, we assume that

there is a single model across all the users of Android.

By incorporating user involvement in the form of prompts, we can use our ag-

gregate features to increase the accuracy for Contextuals, slightly less so for De-

faulters. The aggregate features primarily capture how consistent users are for par-

ticular combinations (i.e., application:permission:visibility, appli-cationF :permission:visibility),

which greatly affects accuracy for Contextuals. Defaulters have high accuracy

with just runtime features (R1), as they are likely to stick with a default allow

or deny policy regardless of the context surrounding a permission. Thus, even

without any aggregate features (which do not impart any new information about

this type of user), the model can predict privacy preferences of Defaulters with a

high degree of accuracy. On the other hand, Contextuals are more likely to vary

their decision for a given permission request. However, as the accuracy numbers

in Table 3.5 suggest, this variance is correlated with some contextual cues. The

high predictive power of aggregate features indicates that they may be capturing

the contextual cues, used by Contextuals to make decisions, to a greater extent.

The fact that both application:permission:visibility and applicationF :permission:visibility

are highly predictive (Appendix B.1) indicates that user responses for these com-

binations are consistent. The high consistency could relate to the notion that

the visibility and the foreground application (applicationF
7) are strong contex-

tual cues people use to make their privacy decisions; the only previously studied

contextual cue was the visibility of the application requesting the sensitive data

7Even when the requesting application is running visible to the user, the foreground application

could still be different from the requesting application since the only visible cue of the requesting

application could be a notification in the notification bar.

73

– which based on our data from the previous field study [117]. We offer a hy-

pothesis for why foreground application could be significant: the sensitivity of

the foreground application (i.e., high-sensitivity applications like banking, low-

sensitivity applications like games) might impact how users perceive threats posed

by requests. Irrespective of the application requesting the data, users may be likely

to deny the request because of the elevated sense of risk. We discuss this further

in Section 3.8.

The model trained on feature sets R2, A1, and A2 had the best accuracy (and

the fewest privacy violations). For the remainder of the chapter, we will refer to

this model unless otherwise noted. We now compare AOFU-AP (the status quo

as of Android 6.0 and above, presented in Table 3.3) and our model (Table 3.5).

Across all users, our model reduced the error rate from 15.38% to 7.76%, nearly

a two-fold improvement.

Mispredictions (errors) in the ML model were split between privacy viola-

tions and functionality losses (54% and 46%). Deciding which error type is more

acceptable is subjective and depends on factors like the usability issues surround-

ing functionality losses and gravity of privacy violations. However, the (approx-

imately) even split between the two error types shows that the ML is not biased

towards one particular decision (denying vs. allowing a request). Furthermore,

the area under the ROC curve (AUC), a metric used to measure the fairness of a

classifier, is also significantly better in the ML model (0.936 as opposed to 0.796

for AOFU). This indicates that the ML model is equally good at predicting when

to both allow and deny a permission request, while AOFU tends to lean more to-

wards one decision. In particular, with the AOFU policy, users would experience

privacy violations for 10.01% of decisions, compared to just 4.2% with the ML

model. Privacy violations are likely more costly to the user than functionality

loss: denied data can always be granted at a later time, but disclosed data cannot

be taken back.

While increasing the number of prompts improves classifier accuracy, it plateaus

after reaching its maximum accuracy, at a point we call the steady state. For some

74

users, the classifier might not be able to infer their privacy preferences effectively,

regardless of the number of prompts. As a metric to measure the effectiveness

of the ML model, we measure the confidence of the model in the decisions it

makes, based on prediction class probabilities.8 In cases where the confidence of

the model is below a certain threshold, the system should use a runtime prompt

to ask the user to make an explicit decision. Thus, we looked into the prevalence

of low-confidence predictions among the current predictions. With a 95% confi-

dence interval, on average across five folds, low-confidence predictions accounted

for less than 10% of all predictions. The remaining high-confidence predictions

(90% of all predictions) had an average accuracy of 96.2%, whereas predictions

with low confidence were only predicted with an average accuracy of 72%. §3.6.2

goes into this aspect in detail and estimates the rate at which users will see prompts

in steady state.

The caveat in our ML model is that AOFU-AP only resulted in 12 prompts on

average per user during the study, while our model averaged 24. The increased

prompting stems from multiple prompts for the same combination of applica-

tion:permission:visibility, whereas in AOFU, prompts are shown only once for

each application:permission combination. During the study period, users on aver-

age saw 2.28 prompts per unique combination. While multiple prompts per com-

bination help the ML model to capture user preferences under different contextual

circumstances, it risks habituation, which may eventually reduce the reliability of

the user responses.

The evaluation setup mentioned in the current section does not have a specific

strategy to select the training set. It randomly splits the data set into the 5 folds

and picks 4 out of 5 as the training set. In a real-world setup, the platform needs

a strategy to carefully select the training set so that the platform can learn most

of the user’s privacy preferences with a minimum number of prompts. The next

section presents an in-depth analysis on possible ways to reduce the number of

8To calculate the class probabilities, we used the KSVM library in R. It employs a technique

proposed by Platt et al. [70] to produce a numerical value for each class’s probability.

75

prompts needed to train the ML model.

3.6 Learning Strategy

This section presents a strategy the platform can follow in the learning phase of a

new user. The key objective of the learning strategy should be to learn the user’s

privacy preferences with minimal user involvement (prompts). Once the model

reaches adequate training, we can use model decision confidence to analyze how

the ML model performs for different users and examine the tradeoff between user

involvement and accuracy. We also utilize the model’s confidence on decisions to

present a strategy that can further reduce model error through selective permission

prompting.

3.6.1 Bootstrapping

The bootstrapping phase occurs when the ML model is presented with a new user

about whom the model has no prior information. In this section, we analyze how

the accuracy improves as we prompt the user. Since the model presented in §3.5

is a single model trained with data from all users, the ML model can still predict

a new user’s privacy decisions by leveraging the data collected on other users’

preferences.

We measured the accuracy of the ML model as if it had to predict each user’s

prompt responses using a model trained using other users’ data. Formally, this is

called leave-one-out cross-validation, where we remove all the prompt responses

from a single user. The training set contains all the prompt responses from 130

users and the test set is the prompt responses collected from the single remaining

user. The model had a median accuracy of 66.6% (56.2% for Contextuals, 86.4%

for Defaulters). Although this approach does not prompt new users, it falls short of

AOFU. This no-prompt model behaves close to random guessing for Contextuals

and significantly better for Defaulters. Furthermore, based on our first field study

data, we found that individuals’ privacy preferences varied a lot [117], suggesting

76

that utilizing other users’ decisions to predict decisions for a new user has limited

effectiveness, especially for Contextuals; some level of prompting is necessary.

There are a few interesting avenues to explore when determining the optimal

way to prompt the user in the learning phase. One option would be to follow

the same weighted-reservoir sampling algorithm mentioned in §3.2.1. The al-

gorithm is weighted by the frequency of each application:permission:visibility

combination. The most frequent combination will have the highest probability

of creating a permission prompt and after the given combination reaches a maxi-

mum of three prompts, the algorithm will no longer consider that combination for

prompting, giving the second most frequent combination the new highest prob-

ability. Due to frequency-weighting and multiple prompts per combination, the

weighted-reservoir sampling approach requires more prompts to cover a broader

set of combinations. However, AOFU prompts only once per combination without

frequency-weighting. This may be a useful strategy initially for a new user since

it allows the platform to learn about the users’ privacy preferences for a wide array

of combinations with minimal user interaction.

To simulate such an approach, we extend the aforementioned no-prompt model

(leave-one-out validation). In the no-prompt model, there was no overlap of users

in the train and test set. In the new approach, the training set includes the data

from other users as well as the new user’s responses to the first occurrence of each

unique combination of application:permission:visibility. The first occurrence of

each unique combination simulates the AOFU-APV policy. That is, this model is

bootstrapped using data from other users and then adopts the AOFU-APV policy

to further learn the current user’s preferences. The experiment was conducted us-

ing the same set of features mentioned in §3.5.1 (R2 + A1 + A2 and an SVM with

a RBF kernel). The test set only contained prompt responses collected after the

last AOFU prompt to ensure chronological consistency.

Figure 3.3 shows how accuracy changes with the varying number of AOFU

prompts for Contextuals and Defaulters. For each of the 131 users, we ran the

experiment varying the AOFU prompts from 1 to 12. We chose this upper bound

77

+

+ + +
+

+
+

+ + +

+
+

x x x x x

x x x x x x x

o

o o
o o o o o

o
o o

o

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Prompt Count

A
c
c
u
ra

c
y

Population

+++

xxx

ooo

Contextuals

Defaulters

Overall

Figure 3.3: How the median accuracy varies with the number of seen prompts

because, on average, a participant saw 12 different unique application:permission

combinations during the study period—the current permission model in Android.

AOFU relies on user prompts for each new combination. The proposed ML

model, however, has the advantage of leveraging data collected from other users

to predict a combination not seen by the user; it can significantly reduce user

involvement in the learning phase. After 12 prompts, accuracy reached 96.8%

across all users.

Each new user starts off with a single model shared by all new users and then

moves onto a separate model trained with AOFU prompt responses. We analyze

its performance for Defaulters and Contextuals separately, finding that it improves

accuracy while reducing user involvement in both cases, compared to the status

quo.

We first examine how our model performs for Defaulters, 53% of our sample.

78

Figure 3.3 shows that our model trained with AOFU permission-prompt responses

outperforms AOFU from the very beginning. The model starts off with 96.6%

accuracy (before it reaches close to 100% after 6 prompts), handily exceeding

AOFU’s 93.33%. This is a 83.3% reduction in permission prompts compared

to AOFU-AP (the status quo). Even with such a significant reduction in user

involvement, the new approach cuts the prediction error rate in half.

Contextuals needed more prompts to outperform the AOFU policy; the hybrid

approach matches AOFU-AP with just 7 prompts, a 42% reduction in prompts.

With 12 permission prompts, same as needed for AOFU-AP, the new approach

had reduced the error rate by 43% over AOFU-AP (the status quo). The number

of prompts needed to reach this level of accuracy in the new approach is 25% less

than what is needed for AOFU-APV. We also observed that as the number of

prompts increased, the AUC of our predictions also similarly increased. Overall,

the proposed learning strategy reduced the error rate by 80% after 12 user prompts

over AOFU-AP. Given, Defaulters plateau early in their learning cycle (after only

6 prompts), the proposed learning strategy, on average, needs 9 prompts to reach

its maximum capacity, which is a 25% reduction in user involvement over AOFU-

AP.

Contextuals have a higher need for user involvement than Defaulters, primar-

ily because it is easy to learn about Defaulters, as they are more likely to be

consistent with early decisions. On the other hand, Contextuals vary their deci-

sions based on different contextual cues and require more user involvement for the

model to learn the cues used by each user and how do they affect their decisions.

Thus, it is important to find a way to differentiate between Defaulters and Con-

textuals early in the bootstrapping phase to determine which users require fewer

prompts. The analysis of our hybrid approach addresses the concern of a high

number of permission prompts initially for an ML approach. Over time, accuracy

can always be improved with more prompts.

Our new hybrid approach of using AOFU-style permission prompts in the

bootstrapping phase to train our model can achieve higher accuracy than AOFU,

79

with significantly fewer prompts. Having a learning strategy (use of AOFU) over

random selection helped to minimize user involvement (24 vs. 9) while signif-

icantly reducing the error rate (7.6% vs. 3.2%) over a random selection of the

training set.

3.6.2 Decision Confidence

In the previous section, we looked into how we can optimize the learning phase

by merging AOFU and the ML model to reach higher accuracy with minimal

user prompts. However, for a small set of users, more permission prompts will

not increase accuracy, regardless of user involvement in the bootstrapping phase.

This could be due to the fact that a portion of users in our dataset are making

random decisions, or that the features that our ML model takes into account are

not predictive of those users’ decision processes. While we do not have the data

to support either explanation, we examine how we can measure whether the ML

model will perform well for a particular user and quantify how often it does not.

We present a method to identify difficult-to-predict users and reduce permission

prompting for those users.

While running the experiment in §4.2.1, we also measured how confident the

ML model was for each decision it made. To measure the ML model’s confi-

dence, we record the probability for each decision; since it is a binary classifica-

tion (deny or allow), the closer the probability is to 0.5, the less confident it is. We

then chose a class probability threshold above which a decision would be consid-

ered a high-confidence decision. In our analysis, we choose a class probability

threshold of 0.6, since this value resulted in >96% accuracy for our fully-trained

model (≈25 prompts per user) for high-confidence decisions, but this is a tunable

threshold. Thus, in the remainder of our analysis in this chapter, decisions that

the ML model made with a probability of >0.60 were labeled as high-confidence

decisions, while those made with a probability of <0.60 were labeled as low-

confidence decisions.

Since the most accurate version of AOFU uses 12 prompts, we also evaluate

80

the confidence of our model after 12 AOFU-style prompts. This setup is identical

to the bootstrapping approach; the model we evaluate here is trained on responses

from other users and the first 12 prompts chosen by AOFU. With this scheme, we

found that 10 users (7.63% of 131 users) had at least one decision predicted with

low confidence. The remaining 92.37% of users had all privacy decisions pre-

dicted with high confidence. Among those users whose decisions were predicted

with low confidence, the proportion of low-confidence decisions on average ac-

counted for 17.63% (median = 16.67%) out of all their predicted decisions. With

a sensitive permission request once every 15 seconds [117], prompting even for

17.63% of predictions is not practical. Users who had low-confidence predictions

had a median accuracy of 60.17%, compared to 98% accuracy for the remaining

set of users with only high-confidence predictions. Out of the 10 users who had

low-confidence predictions, there were no Defaulters. This further supports the

observation in Figure 3.3 that Defaulters require a shorter learning period.

In a real-world scenario, after the platform (ML model) prompts the user for

the first 12 AOFU prompts, the platform can measure the confidence of predict-

ing unlabeled data (sensitive permission requests for which the platform did not

prompt the user). If the proportion of low-confidence predictions is below some

threshold, the ML model can be deemed to have successfully learned user pri-

vacy preferences and the platform should keep on using the regular permission-

prompting strategy. Otherwise, the platform may choose to limit prompts (i.e.,

two per unique application:permission:visibility combination). It should also be

noted that rather than having a fixed number of prompts (e.g., 12) to measure

the low-confidence proportion, the platform can keep track of the low-confidence

proportion as it prompts the user according to any heuristic (i.e., unique combi-

nations). If the proportion does not decrease with the number of prompts, we

can infer that the ML model is not learning user preferences effectively or the

user is making random decisions, indicating that limiting prompts and accepting

lower accuracy could be a better option for that specific user, to avoid excessive

prompting. However, depending on which group the user is in (Contextual or De-

81

faulter), the point at which the platform could make the decision to continue or

limit prompting could change. In general, the platform should be able to reach

this deciding point relatively quickly for Defaulters.

Among participants with no low-confidence predictions, we had a median er-

ror rate of 2% (using the new hybrid approach after 12 AOFU prompts); for the

same set of users, AOFU could only reach a median error rate of 13.3%. How-

ever, using AOFU, a user in that set would have needed an average of 15.11

prompts to reach that accuracy. Using the ML model, a user would need just 9

prompts on average (Defaulters require far fewer prompts, dropping the average);

the model only requires 60% of the prompts that AOFU requires. Even with far

fewer prompts in the learning phase, the ML model achieves a 84.61% reduction

in error rate relative to AOFU.

While our model may not perform well for all users, it does seem to work

quite well for the majority of users (92.37% of our sample). We provide a way

of quickly identifying users for whom our system does not perform well, and

propose limiting prompts to avoid excessive user burden for those users, at the

cost of reduced efficacy. In the worst case, we could simply employ the AOFU

model for users our system does not work well for, resulting in a multifaceted

approach that is at least as good as the status quo for all users.

3.6.3 Online Model

Our proposed system relies on training models on a trusted server, sending it to

client phones (i.e., as a weight vector), and having phones make classifications.

By utilizing an online learning model, we can train models incrementally as users

respond to prompts over time. There are two key advantages to this: (i) this model

adapts to changing user preferences over time; (ii) it distributes the overhead of

training increasing the practicality of locally training the classifier on the phone

itself.

Our scheme requires two components: a feature extraction and storage mech-

anism on the phone (a small extension to our existing instrumentation) and a ma-

82

chine learning pipeline on a trusted server. The phone sends feature vectors to

the server every few prompts, and the server responds with a weight vector repre-

senting the newly trained classifier. To bootstrap the process, the server’s models

can be initialized with a model trained on a few hundred users, such as our sin-

gle model across all users. Since each user contributes data points over time, the

online model adapts to changing privacy preferences even if they conflict with pre-

vious data. When using this scheme, each model takes less than 10 KB to store.

With our current model, each feature and weight vector are at most 3 KB each,

resulting in at most 6 KB of data transfer per day.

To evaluate the accuracy of our online model, we trained a classifier using

stochastic gradient descent (SGD) with five-fold cross validation on our 4,224-

point data set. This served as the bootstrapping phase. We then simulated re-

ceiving the remaining data one-at-a-time in timestamp order. Any features that

changed with time (e.g., running averages for aggregate features, event counts)

were computed with each incoming data point, creating a snapshot of features

as the phone would see it. We then tested accuracy on the chronologically last

20% of our dataset. Our SGD classifier had 93.8% accuracy (AUC=0.929). We

attribute the drop in accuracy (compared to our offline model) to the fact that run-

ning averages take multiple data points to reach steady-state, causing some earlier

predictions to be incorrect.

A natural concern with a trusted server is compromise. To address this con-

cern, we do not send any personally-identifiable data to the server, and any fea-

tures sent to the server are scaled; they are reported in standard deviations from

the mean, not in raw values. Furthermore, using an online model with incremental

training allows us to periodically train the model on the phone (i.e., nightly, when

the user is charging her device) to eliminate the need for a trusted server.

3.7 Contextual Integrity

Contextual integrity is a conceptual framework that helps explain why most per-

mission models fail to protect user privacy—they often do not take the context

83

surrounding privacy decisions into account. In addressing this issue, we propose

an ML model that infers when context has changed. We believe that this is an

important first step towards operationalizing the notion of contextual integrity. In

this section, we explain the observations that we made in §3.5.3 based on the

contextual integrity framework proposed by Barth et al. [20].

Contextual integrity provides a conceptual framework to better understand

how users make privacy decisions; we use Barth et al.’s formalized model [20] as

a framework in which to view Android permission models. Barth et al. model par-

ties as communicating agents (P) knowing information represented as attributes

(T). A knowledge state κ is defined as a subset of P×P×T . We use κ = (p,q, t)

to mean that agent p knows attribute t of agent q. Agents play roles (R) in contexts

(C).

For example, an agent can be a game application, and have the role of a game

provider in an entertainment context. Knowledge transfer happens when infor-

mation is communicated between agents; all communications can be represented

through a series of traces (κ,(p,r),a), which are combinations of a knowledge

state κ , a role state (p,r), and a communication action a (information sent). The

role an agent plays in a given context helps determine whether an information

flow is acceptable for a user. The relationship between the agent sending the in-

formation and the role of the agent ((p,r)) receiving the information must follow

these contextual norms.

With the Android permission model, the same framework can be applied. Both

the user and the third-party application are communicating agents, and the infor-

mation to be transferred is the sensitive data requested by the application. When a

third-party application requests permission to access a guarded resource (e.g., lo-

cation), knowledge of the guarded resource is transferred from the one agent (i.e.,

the user/platform) to another agent (i.e., the third-party application). The extent

to which a user expects a given request depends not on the agent (the application

requesting the data), but on the role that agent is playing in that context. This

explains why the application as a feature itself (i.e., application name) was not

84

predictive in our models: this feature does not represent the role when determin-

ing whether it is unexpected. While it is difficult for the platform to determine

the exact role an application is playing, the visibility of the application hints at its

role. For instance, when the user is using Google Maps to navigate, it is playing

a different role from when Google Maps is running in the background without

the user’s knowledge. We believe that this is the reason why the visibility of the

requesting application is significant: it helps the user to infer the role played by

the application requesting the permission.

The user expects applications in certain roles to access resources depending

on the context in which the request is made. We believe that the foreground ap-

plication sets this context. Thus a combination of the role and the context decides

whether an information flow is expected to occur or not. Automatically inferring

the exact context of a request is likely an intractable problem. For our purposes,

however, it is possible that we need to only infer when context has changed, or

rather, when data is being requested in a context that is no longer acceptable to the

user. Based on our data, we believe that features based on foreground application

and visibility are most useful for this purpose, from our collected dataset.

We now combine all of this into a concrete example within the contextual

integrity framework: If a user is using Google Maps to reach a destination, the

application can play the role of a navigator in a geolocation context, whereby the

user feels comfortable sharing her location. In contrast, if the same application

requests location while running as a service invisible to the user, the user may

not want to provide the same information. Background applications play the role

of “passive listeners” in most contexts; this role as perceived by the user may

be why background applications are likelier to violate privacy expectations and

consequently be denied by users.

AOFU primarily focuses on controlling access through rules for application:permission

combinations. Thus, AOFU neglects the role played by the application (visibil-

ity) and relies purely on the agent (the application) and the information subject

(permission type). This explains why AOFU is wrong in nearly one-fifth of cases.

85

Based on Table 3.3, both AOFU-VA (possibly identifying the role played by the

application) and AOFU-AFPV (possibly identifying the current context because

of the current foreground application-AF) have higher accuracy than the other

AOFU combinations. However, as the contextual integrity framework suggests,

the permission model has to take both the role and the current context into account

before making an accurate decision. AOFU (and other models that neglect con-

text) only makes it possible to consider a single aspect, a limitation that does not

apply to our model.

While the data presented in this work suggest the importance of capturing con-

text to better protect user privacy, more work is needed along these lines to fully

understand how people use context to make decisions in the Android permission

model. Nevertheless, we believe we contribute a significant initial step towards

applying contextual integrity to improve smartphone privacy by dynamically reg-

ulating permissions.

3.8 Discussion

The primary goal of this research was to improve the accuracy of the Android

permission system so that it more correctly aligns with user privacy preferences.

We began with four hypotheses: (i) that the currently deployed AOFU policy

frequently violates user privacy; (ii) that the contextual information it ignores is

useful; (iii) that a ML-based classifier can account for this contextual information

and thus improve on the status quo; and (iv) that passively observable behavioral

traits can be used to infer privacy preferences.

To test these hypotheses, we performed the first large-scale study on the effec-

tiveness of AOFU permission systems in the wild, which showed that hypotheses

(i) and (ii) hold. We further built an ML classifier that took user permission deci-

sions along with observations of user behaviors and the context surrounding those

decisions to show that (iii) and (iv) hold. Our results show that existing systems

have significant room for improvement, and other permission-granting systems

may benefit from applying our results.

86

3.8.1 Limitations of Permission Models

Our field study confirms that users care about their privacy and are wary of permis-

sion requests that violate their expectations. We observed that 95% of participants

chose to block at least one permission request; in fact, the average denial rate

was 60%—a staggering amount given that the AOI model permits all permission

requests for an installed application.

While AOFU improves over the AOI model, it still violates user privacy around

one in seven times, as users deviate from their initial responses to permission

requests. This amount is significant because of the high frequency of sensitive

permission requests: a 15% error rate yields thousands of privacy violations per

user—based on the latest dataset, this amounts to a potential privacy violation

every minute. It further shows that AOFU’s correctness assumption—that users

make binary decisions based only on the application:permission combination—

is incorrect. Users take a richer space of information into account when making

decisions about permission requests.

3.8.2 Our ML-Based Model

We show that ML techniques are effective at learning from both the user’s previ-

ous decisions and the current environmental context in order to predict whether

to grant permissions on the user’s behalf. In fact, our techniques achieve better

results than the methods currently deployed on millions of phones worldwide—

while imposing significantly less user burden.

Our work incorporates elements of the surrounding context into a machine-

learning model. This better approximates user decisions by finding factors rel-

evant for users that are not encapsulated by the AOFU model. In fact, our ML

model reduces the errors made by the AOFU model by 75%. Our ML model’s

97% accuracy is a substantial improvement over AOFU’s 85% and AOI’s 25%;

the latter two of which comprise the status quo in the Android ecosystem.

Our research shows that many users make neither random nor fixed decisions:

the environmental context plays a significant role in user decision-making. Au-

87

tomatically detecting the precise context surrounding a request for sensitive data

is an incredibly difficult problem (e.g., inferring how data will be used), and is

potentially intractable. However, to better support user privacy, that problem does

not need to be solved; instead, we show that systems can be improved by using

environmental data to infer when context has changed. We found that the most

predictive factors in the environmental context were whether the application re-

questing the permission is visible, and what the foreground application the user

is engaged with. These are both strong contextual cues used by users, insofar as

they allowed us to better predict changes in context. Our results show that ML

techniques have great potential in improving user privacy, by allowing us to infer

when context has changed, and therefore when users would want data requests to

be brought to their attention.

3.8.3 Reducing the User Burden

Our work is also novel in using passively observable data to infer privacy deci-

sions: we show that we can predict a user’s preferences without any permission

prompts. Our model trained solely on behavioral traits yields a three-fold im-

provement over AOI; for Defaulters—who account for 53% of our sample—it was

as accurate as AOFU-AP. These results demonstrate that we can match the status

quo without any active user involvement (i.e., the need for obtrusive prompts).

These results imply that learning privacy preferences may be done entirely pas-

sively, which, to our knowledge, has not yet been attempted in this domain. Our

behavioral feature set provides a promising new direction to guide research in

creating permission models that minimize user burden.

The ML model trained with contextual data and past decisions also signifi-

cantly reduced the user burden while achieving higher accuracy than AOFU. The

model yielded an 81% reduction in prediction errors while reducing user involve-

ment by 25%. The significance of this observation is that by reducing the risk of

habituation, it increases reliability when user input is needed.

88

3.8.4 User- and Permission-Tailored Models

Our ML-based model incorporates data from all users into a single predictive

model. It may be the case, however, that a collection of models tailored to par-

ticular types of users outperforms our general-purpose model—provided that the

correct model is used for the particular user and permission. To determine if this

is true, we clustered users into groups based first on their behavioral features, and

then their denial rate, to see if we could build superior cluster-tailored ML mod-

els. Having data for only 131 users, however, resulted in clusters too small to carry

out an effective analysis. We note that we also created a separate model for each

sensitive permission type, using data only for that permission. Our experiments

determined, however, that these models were no better (and often worse) than our

general model. It is possible that such tailored models may be more useful when

our system is implemented at scale.

3.8.5 Attacking the ML Model

Attacking the ML model to get access to users’ data without prompting is a legit-

imate concern [17, 61, 112]. There are multiple ways an adversary can influence

the proposed permission model: (i) imposing an adversarial ML environment [76];

(ii) polluting the training set to bias the model to accept permissions; and (iii) ma-

nipulating input features in order to get access without user notification. We as-

sume in this work that the platform is not compromised; a compromised platform

will degrade any permission model’s ability to protect resources.

A thorough analysis on this topic is outside of our scope. Despite that, we

looked at the possibility of manipulating features to get access to resources with-

out user consent. None of the behavioral features used in the model can be in-

fluenced, since that would require compromising the platform. An adversary can

control the runtime features for a given permission request by specifically choos-

ing when to request the permission. We generated feature vectors manipulating

every adversary-controlled value and combination from our dataset, and tested

them on our model. We did not find any conclusive evidence that the adversary

89

can exploit the ML model by manipulating the input features to get access to re-

sources without user consent.

As this is not a comprehensive analysis on attack vectors, it is possible that

a scenario exists where the adversary is able to access sensitive resources with-

out prompting the user first. Our preliminary analysis suggests that such attacks

may be non-trivial, but more work is needed to study and prevent such attacks,

particularly examining adversarial ML techniques and feature brittleness.

3.8.6 Experimental Caveat

We repeat a caveat about our experimental data: users were free to deny permis-

sions without any consequences. We explicitly informed participants in our study

that their decisions to deny permission requests would have no impact on the

actual behavior of their applications. This is important to note because if an appli-

cation is denied a permission, it may exhibit undefined behavior or lose important

functionality. In fact, researchers have noted that many applications crash when

permissions are denied [44]. If these consequences are imposed on users, they

may decide that the functionality is more important than their privacy decision.

If we actually denied permissions, users’ decisions may skew towards a de-

creased denial rate. The denial rates in our experiments therefore represent the

actual privacy preferences of users and their expectations of reasonable applica-

tion behavior—not the result of choosing between application functionality and

privacy. We believe that how people react when choosing between functionality

and privacy preferences is an important research question beyond the scope of this

paper. Such a change, however, will not limit this contribution, since our proposed

model was effective in guarding resources of the users who are selective in their

decision making—the proposed classifier reduced the error rate of Contextuals by

44%.

We believe that there are important unanswered questions about how to solve

the technical hurdles surrounding enforcing restrictive preferences with minimal

usability issues. As a first step towards building a platform that does not force

90

users to choose between their privacy preferences and required functionality, we

must develop an environment where permissions appear—to the application—to

be allowed, but in reality only spurious or artificial data is provided.

3.8.7 Types of Users

We presented a categorization of users based on the significance that the appli-

cation’s visibility played towards their individual privacy decisions. We believe

that in an actual permission denial setting, the distribution will be different from

what was observed in our study. Our categorization’s significance, however, mo-

tivates a deeper analysis on understanding the factors that divide Contextuals and

Defaulters. While visibility was an important factor in this division, there may

be others that are significant and relevant. More work needs to be done to ex-

plore how Contextuals make decisions and which behaviors correlate with their

decisions.

3.8.8 User Interface Panel

Any model that predicts user decisions has the risk of making incorrect predic-

tions. Making predictions on a user’s behalf, however, is necessary because per-

missions are requested by applications with too high a frequency for manual ex-

amination. While we do not expect any system to be able to obtain perfect accu-

racy, we do expect that our 97% accuracy can be improved upon.

One plausible way of improving the accuracy of the permission model is to

empower the user to review and make changes on how the ML model makes

decisions through a user feedback panel. This gives users recourse to correct

undesirable decisions. The UI panel could also be used to reduce the usability

issues and functionality loss stemming from permission denial. The panel should

help the user figure out which rule incurred the functionality loss and to change

it accordingly. A user may also use this to adjust their settings as their privacy

preferences evolve over time.

91

3.8.9 The Cost of Greater Control

A more restrictive platform means users will have greater control over the data

being shared with third parties. Applications that generate revenue based on user

data, however, could be cut off from their primary revenue source. Such an effect

could disrupt the current eco-system and force app developers to degrade app

functionality based on the availability of the data. We believe the current eco-

system is unfairly biased against users and tighter control will make the user an

equal stakeholder. While more work is needed to understand the effects of a more

restrictive platform, we believe it is imperative to let the user have greater control

over their own data.

3.8.10 Conclusions

We have shown a number of important results. Users care about their privacy: they

deny a significant number of requests to access sensitive data. Existing permission

models for Android phones still result in significant privacy violations. Users

may allow permissions some times, while denying them at others, implying that

there are more factors that go into the decision-making process than simply the

application name and the permission type. We collected real-world data from 131

users and found that application visibility and the current foreground application

were important factors in user decisions. We used the data we collected to build

a machine-learning model to make automatic permission decisions. One of our

models had a comparable error rate to AOFU and benefited from not requiring

any user prompting. Another of our models required some user prompts—less

than is required by AOFU—and achieved a reduction of AOFU’s error rate by

81%.

92

Chapter 4

Implementation

In the previous chapter we trained an offline classifier by using participants’ re-

sponses to runtime prompts. While we demonstrated that the ML approach holds

promise: the training data was solely based on participants’ stated privacy pref-

erences, without considering the impact it might have on app functionality. That

is, if participants state they would like to deny an unexpected permission request,

but then discover that permission denial impacts app functionality, they may wish

to reconsider that decision and grant the permission. Thus, the realtime classifier

approach requires validation through real-world usage, which is the basis for this

chapter.

We implemented and evaluated the usability of a novel mobile privacy man-

agement system that builds heavily on prior prediction work. To resolve the long-

standing challenges of mobile privacy management, in the previous chapter we

proposed applying machine-learning (ML) to dynamically manage app permis-

sions, whereas Tsai et al. [111] proposed a user interface design for that system.

Both proposals applied Nissenbaum’s theory of Privacy as Contextual Integrity by

enabling users to vary their privacy preferences based on contextual factors [83],

but neither has been heretofore implemented and evaluated on real users in situ.

We implemented these systems on the Android platform and performed a field

study to evaluate their effectiveness at aligning app privacy behaviors with users’

93

expectations. The machine-learning (ML) model runs entirely on the device and

uses infrequent user prompts to retrain and improve its accuracy over time. When

the ML model makes a mistake, the user interface is available to support the user

in reviewing and modifying privacy decisions, thereby retraining the ML.

We performed a 37-person field study to evaluate this permission system, mea-

suring its efficacy and how it interacted with participants and third-party apps.

We issued each participant a smartphone running a custom Android OS with our

permission system that used an online classifier, which participants used as their

primary phones for a one-week study period. This produced real-world usage data

from 253 unique apps, which corresponded to more than 1,100 permission deci-

sions. Overall, participants denied 24% of permission requests. Our data show

that AOFU matched participant privacy preferences only 80% of the time, while

the new contextual model matched preferences 95% of the time, reducing the error

rate by 75%.

In summary, the contributions of this chapter are as follows:

• We implemented the first contextually-aware permission system that per-

forms permission denial dynamically, which is an advancement over prior

work that only performed offline learning or did not regulate permissions in

realtime.

• We show that AOFU not only lacks context, but it also fails to match users’

privacy expectations 25% of the time, substantially hampering its ability to

protect user data.

• We show opportunities and practical limitations for future work on more

usable mobile app permission systems.

4.1 Related Work

Substantial previous work has shown the ineffectiveness of mobile phone permis-

sion systems. For ask-on-install (AOI) prompts, earlier investigations showed that

users frequently did not pay attention to prompts or comprehend them. Users also

94

failed to understand the resources being protected [49, 55, 65, 116]. This lack

of understanding hinders users’ ability to address potential risks that arise from

allowing access to sensitive resources; some users were even found wanting ret-

ribution when the possible risks were revealed [48]. Another critical flaw with

the AOI model is that the user lacks any sense of context about how applications

might exercise the permissions granted to them. For example, users were sur-

prised to learn that applications can continue to access those resources even when

not being actively used [64, 108].

Prior research has used taint analysis and other information flow tracking tech-

niques to understand how applications use sensitive data in the wild [43, 53, 67].

While these techniques shed light on how applications access and share sensi-

tive data, none gave users a mechanism to indicate their preferences regarding

the access of sensitive data. Other approaches did involve users, but those efforts

required such a high degree of manual involvement as to overwhelm the average

user and risk habituation [5, 60, 100].

Nissenbaum’s theory of “contextual integrity” suggests that permission mod-

els should focus not on sensitive resources, but rather on information flows—from

source to destination—that are likely to defy the user’s expectations [82]. In an at-

tempt to systematize Nissenbaum’s theory, Barth et al. [20] extended the theory to

smartphones. They suggest that it is important to consider the context in which the

resource request is made, the role played by the requesting app under the current

context, and the type of resource being accessed. To the best of our knowledge,

we are the first to perform a field study to understand how users perceive sensitive

resource usage by apps in the wild. We found that users consider the visibility

of the requesting application in deciding whether a particular information flow is

acceptable.

Machine learning has recently gained traction as a promising approach to pre-

dict user privacy decisions. Machine learning can significantly reduce the user’s

involvement in decision-making and therefore reduce habituation—the problem

where users see so many notifications that they become desensitized to future re-

95

quests, thereby making poor decisions. Previous work in this direction developed

techniques to cluster users [72, 73, 97] and built recommender systems [125].

Liu et al. clustered users by privacy preferences, then subsequently predicted user

preferences to applications’ future permission requests using the inferred clus-

ter [74]. The authors developed a privacy assistant to recommend privacy settings

users should adopt based on their inferred cluster. The biggest drawback in these

works, however, is their lack of consideration for the rich signals that context

provides, which we found to be a significant factor in decision making [117, 118].

Access Control Gadgets (ACGs) are a proposed mechanism to more closely

associate sensitive resource accesses to particular UI elements [78, 94, 95], so

users are more aware when those accesses occur. Examples of this are the “file

chooser” and “photo picker” widgets. While such an approach helps the users be

better aware of resource accesses, it has two main limitations. First, applications

are known to legitimately access resources when the user is not actually using

the device, and therefore the user cannot receive any visual cues. Second, based

on our data in the first field study, the frequency of permission requests made by

smartphone apps makes systematic use of ACGs impractical [117].

After Android’s switch to the AOFU permission model, research followed that

investigates how users perceive it. Bonn et al. looked into understanding what

motivates users to (i) install an app, (ii) allow or deny an AOFU prompt, and (iii)

uninstall an app [25]. Other works investigate the consistency of user decisions

across application categories under this permission model [7, 8]. Closely related

are two works that proposed using contextual cues to better predict and protect

user data [84, 118]. In both of these works, contextual cues are used to build

a machine-learning-based permission model to increase the accuracy of the sys-

tem as compared to the default Android permission model. However, Olejnik et

al. [84] only focused on a selected set of applications and resources.

96

4.2 Implementation

We implemented a complete ML pipeline that includes: mechanisms to allow

users to review and redress their decisions based on Tsai et al. [111]; ways to mask

resource denial from apps so that apps continue to run, even when permissions are

denied (unless those permissions were critical to their functionality); and finally,

a classifier that takes surrounding contextual signals to predict user preferences

for each permission request. This means our usability study is a more accurate

assessment of how the system behaves in the wild than the previous investigations,

which relied on user expectations rather than consequential privacy decisions.

4.2.1 A Local SVM Classifier

In the previous chapter, we implemented an offline model and suggested this

could be deployed as a remote web-accessible service in order to shift compute

costs from the mobile device to a more powerful dedicated server [118]. We

note, however, that this design requires sending privacy-relevant data beyond the

smartphone, which creates a larger attack surface and increases system costs and

complexity. It also creates significant security risks if the server responsible for

making decisions is compromised or is trained with spurious data.

To mitigate these security and privacy issues, we implemented and integrated

the full SVM classifier into the Android operating system as a system service.

We ported the open-source implementation of libsvm to Android 6.0.1 (Marsh-

mallow) [30], and built two additional system-level services to interface with the

SVM: the SVMTrainManager, which trains the model using user-provided pri-

vacy preferences through prompts (See Figure 4.1); and the PermissionService,

which uses the SVM to regulate applications accessing permission-protected re-

sources and issues a prompt for the user for cases when the model produces low-

confidence predictions. The SVMTrainManager notifies the PermissionService

when the model is trained and ready for use. These two new services are im-

plemented into the core Android operating system, and neither are accessible to

97

third-party apps. On average, model training takes less than 5 seconds. We instru-

mented all Android control flows responsible for sharing sensitive permission-

protected data types to pass through this new pipeline.

Bootstrapping

We deployed our trainable permission system along with a generic model that was

pre-trained with the real-world permission decisions of 131 users, collected from

our previous chapter [118]. This ensured that a new user has an initial model for

making privacy decisions. This initial model, however, is inadequate for accu-

rately predicting any particular individual user’s preferences, because it simply

has no knowledge of that particular user. Despite that, we, in the previous chapter,

showed that our model only needs 12 additional user-provided permission deci-

sions before the model attains peak accuracy. Given this, our system requires that

the user make 12 decisions early on to train the initial model to that particular

user’s preferences.

The initial 12 decisions are selected based on weighted reservoir sampling. We

weigh the combination of application:permission:visibility1 by the frequency that

these are observed; the most-frequent combinations are the likeliest to produce a

permission request prompt (Figure 4.1). The intuition behind this strategy is to

focus more on the frequently occurring permission requests over rarer ones. We

used these same prompts for validating our classifier during the field study.

Feature Set

Our model considers the name of the application requesting the permission, the

application in the foreground at the time of the request (if different than the appli-

cation making the request), the requested permission type (e.g., Location, Camera,

Contacts), and the visibility of the application making the request. In a pilot study

(discussed later), our system implemented the full feature set described in the

1“application” is the app requesting the permission, “permission” is the requested resource

type, and “visibility” denotes whether the user is made aware that the app is running on the device.

98

each different permission request.

4.2.2 Sensitive Resources

Previous work by Felt et al. argued that certain permissions should be presented

as runtime prompts, as those permissions guard sensitive resources whose use

cases typically impart contextual cues indicating why an app would need that

resource [47]. Beginning with Android 6.0 (Marshmallow), the OS designated

certain permissions as “dangerous” [54], and prompts the user to grant or deny

permission when an app tries to use it for the first time. The user’s response to this

prompt then carries forward to all future uses of that resource by the requesting

application.

Our experimental permission system uses both Felt’s set of recommended per-

missions for runtime prompts and Android’s own “dangerous” ones. We did, how-

ever, opt to omit a few permissions from the resulting set that we viewed as irrel-

evant to most users. The INTERNET and WRITE_SYNC_SETTINGS permissions

were discounted, as we did not expect any participant (all recruited locally) to

roam internationally during the 1-week study period. We eliminated the NFC per-

mission because previous work demonstrated that very few apps operate on NFC

tags. Our system ignores the READ_HISTORY_BOOKMARKS permission, as this

is no longer supported.

We extended the frameworks we used in the last two chapters to monitor and

regulate all attempts by apps to resources protected by any of the 24 permissions

we monitored. We avoid false positives by monitoring both the requested permis-

sion and the returned data type.

4.2.3 Permission Denial

Making changes to the permission system carries the risk of app instability, as apps

may not expect to have their resource requests denied [44]. If denying permissions

results in frequent crashes, then users are likely to become more permissive simply

to improve app stability. We therefore designed our implementation with this

100

concern in mind: rather than simply withholding sensitive information in the event

of a denied permission, our system supplies apps with well-formed but otherwise

non-private “spoofed” data. This enables apps to continue functioning usefully

unless access to the permission-protected resource is critical to the app’s correct

behavior.

For example, if an app requests access to the microphone, but our permission

system denies it, the app will still receive a valid audio stream: not an actual

signal from the microphone, but that of a pre-recorded generic sound. (In our

implementation we used a loop of a whale song). This design allows apps to

operate on valid data while still preserving user privacy.

Permission-protected databases (e.g., contact lists and calendars) require finer-

grained regulation under our permission system. For instance, an app may have

a legitimate need to access the contact list. Under the stock Android permission

system, an app is either able to read all contacts or no contacts. We improve

upon this by adding a notion of provenance to each entry: every contact list item

contains a field that records the app that created the entry. If our permission system

denies an app access to the contact list, the app is still able to write into the contacts

database and read back any entries that it previously created. Apps without these

database permissions are effectively placed in a sandbox, in which they can still

carry out valid operations on their own versions of the data. They neither produce

an exception nor obtain all the information in the database. We allow full access

to the databases only to apps that are granted the appropriate permission.

4.2.4 Contextually Aware Permission Manager

We recognize that our classifier is bound to make mistakes. Therefore, it is cru-

cial to provide a mechanism for users to review and amend decisions made by the

permission model on their behalf. Mobile operating systems have configuration

panels to manage app permissions, but these fail to provide users key informa-

tion or options to make informed decisions. However, recent work by Tsai et

al. [111] proposed a new interface to solve this problem. The authors evaluated

101

not use these user-set rules to train the ML model, it is hard to capture the contex-

tuality behind these changes so the platform can not create any of the contextual

features to train the ML.

4.3 Validation Methodology

We tested our implementation by performing a field study with 37 participants.

Our goals were to understand how third-party apps and end-users react to a more

restrictive and selective permission model, as compared to the default AOFU

model.

For a period of one week, each participant used a smartphone (Nexus 5X)

running a custom version of the Android OS (a variation of Android 6.0.1) built

with the new permission system detailed in the previous section. During the study

period, all of a participant’s sensitive data was protected by the new contextually-

aware permission model.

4.3.1 Participant’s Privacy Preferences

We used the Experience Sampling Method (ESM) to understand how participants

want to control certain sensitive resource accesses [59]. ESM involves repeatedly

questioning participants in situ about a recently observed event; in our case, the

event is an app requesting access to a sensitive resource. We probabilistically

asked them about an application’s recent request to access to data on their phone,

and how they want to control future similar requests (Figure 4.1). We treated

participants’ responses to these ESM prompts as our main dependent variable,

which we used to validate the accuracy of the decisions that the classifier was

automatically making.

Each participant during the study period responded to 4 prompts per day, and

at most one per hour. The prompting was divided into two phases. The first phase

was the bootstrapping phase, which we described earlier, to train the classifier.

The second phase was the validation phase, which was used to measure the accu-

105

racy of the ML model. In addition to the validation phase prompts, participants

might also have occasional prompts for low-confidence decisions made by the

ML; a detailed discussion on low-confidence decisions is provided later. During

our study period, only 4 participants ever experienced low-confidence prompts.

4.3.2 Recruitment

We recruited participants in two phases: a pilot in May 2017 and the full study

in August 2017. We placed a recruitment ad on Craigslist under “et cetera jobs”

and “domestic gigs.”2 The title of the advertisement was “Smartphone Research

Study,” and it stated that the study was about how people interact with their smart-

phones. We made no mention of security or privacy. Interested participants down-

loaded a screening app from the Google Play store, which asked for demographic

information and and collected their smartphone make and model. We screened out

applicants who were under 18 years of age or used CDMA providers, since our

experimental phones were only GSM-compatible. We collected data on partici-

pants’ installed apps, so that we could pre-install free apps prior to them visiting

our laboratory. (We only encountered paid apps for a few participants, and those

apps were installed once we setup their Google account on the test phone.)

We scheduled a time with participants who met the screening requirements to

do the initial setup. Overall, 63 people showed up to our laboratory, and of those,

61 qualified (2 were rejected because our screening application did not identify

some CDMA carriers). The initial setup took roughly 30 minutes and involved

transferring their SIM cards, helping them set up their Google and other accounts,

and making sure they had all the applications they used. We compensated each

participant with a $35 gift card for showing up.

During the pilot phase, out of 20 people who were given phones, 14 partici-

pants had technical issues with the phone preventing them from using it, leaving

only 6 participants with usable data. During the main phase, out of 42 people who

were given phones, we had the following issues:

2Approved by the UC Berkeley IRB under protocol #2013-02-4992

106

• 4 participants mis-interpreted our ESM prompts so we filtered out their

prompt responses;

• 5 participants suffered from a bug in the code that inhibited the validation

phase of the ML;

• 2 participants performed factory resets on the phone before returning it,

which destroyed stored logs.

This left 31 participants with usable data from the main phase. We combined the

6 participants with usable data from the first phase with the 31 from the second

phase to produce our sample of 37 users, since we did not alter the study between

phases. All our results are drawn from log data and interview responses from

those 37 users. Of that population, 21 were female and 16 were male; ages ranged

from 18 to 59 years old (µ = 34.25, σ = 9.92).

After the initial setup, participants used the experimental phones for one week

in lieu of their normal phones. They were allowed to install, use, and uninstall

any apps that they wanted. Our logging framework kept track of every protected

resource accessed by an app, along with the contextual data surrounding each

application request. All the logged events were stored compressed in the local

system.

4.3.3 Exit Interview

When participants returned to our laboratory, we first copied the log data from

the phones to make sure that they had actually used the phone during the study

period. We then administered a semi-structured exit interview, which had four

components:

• New Permission Manager UI—We asked participants to show us how they

would use the UI (Figure 4.2, Figure 4.3, Figure 4.4) to block a given ap-

plication from accessing background location data, as well as how difficult

they found it. We also checked our data to see how they interacted with

the UI during the study period, and asked them about the circumstances for

107

those interactions. The objective of this task was to validate the design ob-

jectives of the UI, including whether they use it to resolve issues stemming

from resource denial.

• Permission Prompts—We asked participants questions about permission

prompts they had encountered during the study. We asked why they allowed

or denied permission requests and also how they felt about the prompts.

We asked them to rate their experience with the prompts across 3 different

categories: levels of surprise, feelings of control, and to what extent they

felt the new system had increased transparency. The objective of this section

was to understand the impact of the runtime prompts.

• Permission Models—We asked participants questions about their perspec-

tives on the privacy protections in Android. We asked how much they un-

derstood the current system. We then explained our new system, and asked

how they felt about letting ML act on their behalf. The objective of this

section was to understand how much participants actually understood the

new permission model.

• Privacy Concerns—Finally, we asked participants how they usually make

privacy decisions on their mobile devices, how serious they are about pri-

vacy, and how much are they willing to pay for privacy. We also asked

demographic questions.

Three researchers independently coded 144 responses to the Permission Prompts

and Permission Model questions (the other questions involved either direct obser-

vations or reporting participants’ responses verbatim without the need for coding).

Prior to meeting to achieve consensus, the three coders disagreed on 17 responses,

which resulted in an inter-rater agreement of 86.43% and Fleiss’ kappa yielded

0.747, indicating substantial agreement.

After the exit survey, we answered any remaining questions, and then assisted

them in transferring their SIM cards back into their personal phones. Finally, we

compensated each participant with a $100 gift card.

108

4.4 Results

At the end of the study period, we collected 1,159 privacy decisions (prompt re-

sponses) from 37 participants. A total of 133 unique applications caused prompts

for 17 different sensitive permission types. During the study period, 24.23% of all

runtime prompts were denied by participants. Most (66%) of these prompts oc-

curred when the requesting application was running visibly. Our instrumentation

logged 5.4M sensitive permission requests originating from 253 unique applica-

tions for 17 different permission types. On average, a sensitive permission request

occurred once every 4 seconds.

In the remainder of the chapter, we describe the shortcomings of the existing

ask-on-first-use permission model, both in accuracy and in aligning with users’

expectations; we show how our proposed system has vastly greater accuracy in

inferring users’ privacy preferences and applying them towards regulating appli-

cation permissions; and we show that is does this with minimal impact on app

functionality. Finally, we present results from the exit interviews regarding partic-

ipants’ perceptions about the training prompts and the privacy management user

interface.

4.4.1 Status Quo Problems

In the “ask-on-first-use” (AOFU) model, the user receives prompts to grant indi-

vidual permissions, but only the first time an app requests them. Requesting these

permissions at runtime allows the user to infer the potential reason for the request,

based on what they were doing when the request occurred (i.e., context). AOFU’s

shortcoming, however, is that it naïvely reapplies the user’s first-use decision in

subsequent scenarios, without adapting to different contexts. In the previous chap-

ter (Sec 3.4), we show that failing to account for changing contexts produces high

error rates.

We note that, in the previous study, we attempted to measure the accuracy

of the AOFU model by merely collecting users’ responses to runtime permission

109

prompts, without actually enforcing them by denying apps access to data [118].

Thus, the accuracy rates reported by that study may not actually be accurate, since

users may elect to change their permission-granting preferences, if they result in

a loss of application functionality. Thus, we evaluated the performance of the

AOFU approach (in current use by Android and iOS) by presenting participants

with permission prompts that actually resulted in the denial of application permis-

sions.

During the study period, each participant responded to combinations of appli-

cation:permission more than once. As AOFU is deterministic, we can simulate

it by comparing a user’s first response to a application:permission combination

to future responses to the prompts for the same app and permission. We use this

data to measure how often AOFU matches the user’s preference in subsequent

requests.

Our data show that the AOFU permission model has a median error rate3 of

20%: in more than one-fifth of app requests for permission-protected resources,

participants changed their initial response for the same application:permission

combination. Of the 37 participants, 64% had at least one such discrepancy be-

tween the first-use and subsequent preferences. This refutes AOFU’s core as-

sumption that only few users will deviate from their initial preferences in future

cases. This observation corroborates our previous data. [118], in which 79% of

131 participants were shown to deviate from their initial responses in subsequent

cases.

The errors shown in AOFU, could be either privacy violations or losses of

functionality. A privacy violation occurs when the system grants an app access

to a protected resource, contrary to the user’s preference, had she been prompted.

Loss of functionality occurs when the permission system denies access to a pro-

tected resource, which the user would have otherwise permitted. We consider

privacy violations to be the more severe type of error, as the user is unable to

3The median value is reported because the error rate is not normally distributed among partic-

ipants.

110

take back sensitive information once an app has acquired it and transmitted it to

a remote server. However, loss of functionality is still undesirable because those

errors might incentivize the user to be overly permissive in order to regain that

functionality. From our data, we found that 66.67% of AOFU errors were privacy

violations; the remaining 33.33% were losses in functionality.

AOFU User Expectations

Errors in permission systems could arise from a variety of reasons. Mismatched

user expectations and lack of comprehension are two critical ones, which could

hamper any permission model’s utility. User comprehension is critical because

users may make suboptimal decisions when they do not fully understand permis-

sion prompts, hindering the ability of the permission system to protect sensitive

system resources. Users must be able to comprehend the decision they are making

and the consequences of their choices. Recent work on AOFU has examined the

motives behind users’ decisions and how it varies between categories of applica-

tions, as well as how people adapt their behavior to the new model [7, 8, 25].

In our study, the participants had, on average, 5 years of experience with An-

droid. This indicates that most of our participants have experienced both install-

time permissions—the permission model prior to Android 6.0, released in 2015—

and runtime “ask-on-first-use” permission prompts. The majority of participants

said they noticed the shift to AOFU prompts, and they were aware that these

prompts are a way to ask the user for consent to share data with an app. A large

minority of participants (≈40%), however, had an inadequate understanding of

how AOFU works, which could substantially hinder that permission model’s ef-

fectiveness in protecting user data.

Four out of the 37 participants expressed doubts about the rationale behind

the prompts. Rather than seeing permission prompts as a way for users to reg-

ulate access to their sensitive data, these participants viewed these prompts as a

mechanism to extract more information from them:

“When I see prompts, I feel like they want to know something about

111

me, not that they want to protect anything.” (P21)

One possible explanation is that some users grew accustomed to install-time

prompts, and subsequently perceived the change to runtime prompts as a new way

for Android to collect user data. Although it is impractical to project how preva-

lent this sentiment is in the general population, we cannot reject its existence.

Hence, more work is needed to measure its impact and explore the potential solu-

tions.

A third (31.4%) of our participants were not aware that responding to an

AOFU prompt results in a blanket approval (or denial) that carries forward to

all the app’s future uses of the requested resource. Most participants believed that

responses were only valid for a certain amount of time, such as just for that ses-

sion or just that single request. This misconception significantly hinders AOFU’s

ability to correctly anticipate the user’s preferences in future occurrences. Again,

this observation raises the question of whether users would respond differently if

they had a more accurate understanding of how AOFU works:

“[I] didn’t know that granting a permission carries forward in the

future until otherwise changed. [I] expected permissions to be for

just that one use.” (P25)

It is clear that granting blanket approval to sensitive resources is not what users

expect all the time. On the other hand, had our participants been asked for their

input on every permission request, they would have received a prompt once every

4 seconds—involving the user more frequently has practical limitations. How,

then, can we best project users’ privacy preferences to future scenarios without

overwhelming them with prompts?

4.4.2 Classifier Accuracy

During the week-long study period, each participant was subject to two opera-

tional phases of the contextual permission system: (a) the initial learning phase,

112

where participant responses to prompts were used to re-train the SVM classi-

fier according to each individual’s preferences, and (b) the steady-state validation

phase, where responses to prompts were collected to measure the accuracy of the

classifier’s decisions.

As previously discussed in our section on bootstrapping, we use weighted

reservoir sampling during the learning phase to prioritize prompting for the most

commonly observed instances of application:permission:visibility combinations.

During the validation phase, participants received the same prompts, triggered by

random combinations of features. This ensured that we collected validation results

both for previously-encountered and new combinations. We placed a maximum

limit of 3 prompts per combination in order to further improve prompt diversity

and coverage. After presenting participants with prompts, the instrumentation

recorded the response and the corresponding decision produced by the classifier.

Using participant responses to prompts as ground-truth, we measured the classi-

fier’s accuracy during the validation phase. From our sample of 37 participants,

we had to exclude 6 of them due to a cache coherency bug that was discovered

after the pilot, which degraded classifier performance. For the remainder of this

section, our results are drawn from the remaining sample of 31, unless otherwise

noted.

Taken as a whole, these 31 participants responded to 640 total prompts in the

validation phase. Our contextual permission model produced a median accuracy

of 90%, compared to 80% under AOFU for the same population. The classifier

reduced AOFU’s error rate by 50%, with the majority of classifier errors consisting

of privacy violations (i.e., access granted when the user would have denied it).

Offline Learning

We were curious whether the accuracy of our system could be improved through

the use of offline learning, which would require much more computing power.

Using participant responses to permission prompts, we analyzed how an offline

SVM classifier would perform. We implemented the SVM model using the KSVM

113

module in R. We performed this analysis on data from all 37 participants, using

leave-one-out cross-validation to evaluate how the offline classifier would perform

for each participant.

The offline model had a median accuracy of 94.74% across the 37 participants.

By comparison, AOFU had a 80% accuracy for the same population. This repre-

sents a 75% error reduction in the offline contextual model compared to AOFU.

These numbers corroborate prior findings [118]. We stress the significance of this

corroboration, because the results hold in the presence of actual resource denial,

which was not examined in the prior study. This suggests that users will con-

tinue to indicate their true preferences in response to prompts, even when those

preferences are enforced, potentially resulting in unanticipated app behavior.

We note the accuracy difference between the SVM classifier we integrated into

Android and the R model (90% vs. 94.74%, respectively). This is due to how the

Android SVM implementation performs the bootstrapping. This issue is not in-

herent to integrating an SVM classifier into Android. An updated implementation

has the potential to reach the maximum accuracy observed in the offline model.

Decision Confidence

In the previous chapter we demonstrated how to use decision confidence to de-

termine for which application:permission:visibility combinations users should be

prompted in the validation phase(Sec 3.6.2). The rate of decision confidence is

also a measure of the extent to which the classifier has learned the user’s prefer-

ences. The authors suggested that if this rate does not decrease over time, then

AOFU will likely be a better system for those users.

In addition to the prediction, our classifier also produced a class probability,

which we used as the measure of decision confidence. The classifier produced a

binary result (i.e., allow or deny) with a cutoff point of 0.5. A decision probability

close to the cutoff point is a less confident result than one far from it. We used

the 95% confidence interval as a threshold to determine which decisions were

low-confidence and which ones were not.

114

Only 4 of our field study participants experienced low-confidence classifier

decisions that caused a prompt to appear after the bootstrapping period. Each of

these participants had just one such low-confidence prompt appear. These prompts

retrained the classifier, so the lack of any subsequent low-confidence prompts in-

dicates that the classifier produced high-confidence predictions for the same ap-

plication:permission:visibility combination in future cases.

The lack of additional training prompts also suggests that users are less likely

to become habituated to prompting. The 4 participants who each received one

additional prompt saw a total of 13 prompts (including the 12 prompts during

the training phase). The remaining 27 participants saw just the 12 training phase

prompts. Had our participants been subject to AOFU instead of our contextual

permission system, they would have received a median of 15 prompts each, with

a quarter of the participants receiving more than 17. Instead, we achieved a 75%

error reduction (80% vs. 94.74%) and reduced user involvement by 20% (12

prompts vs. 15) through the use of classifier-driven permissions, compared to

AOFU.

4.4.3 Impact on App Functionality (and Stability)

Previous research has shown that many applications do not properly handle cases

where they are denied permission to access a protected resource [44]. One core

objective of our work was to measure how apps responded to a stricter permission

model than AOFU. For example, the system will be unusable if it causes erratic

application behavior, through the use of dynamically granted permissions.

In the field study, our platform instrumentation recorded each application crash

and its corresponding exception message. This information allowed us to identify

the possible root cause of the crash and whether it was related to resource denial.

We observed 18 different exceptions classes, such as SecurityException,

RuntimeException, and NullPointerException. For the remainder of this sec-

tion, we will only discuss SecurityExceptions, as this class is directly related to

resource denials. Almost all (98.96%) of the recorded SecurityExceptions were

115

observed on the devices of just two participants. Each of the remaining partici-

pants encountered, on average, 18 SecurityExceptions during the study period

(i.e., roughly 3 SecurityExceptions per day per participant).

Almost all (99.93%) SecurityExceptions were caused when apps attempted

to read subscriber information (i.e., the READ_PHONE_STATE permission, used

to obtain the phone number). In the event of a READ_PHONE_STATE denial, we

designed our implementation to not supply the app with any phone number data.

We had considered supplying a randomly-generated phone number, but decided

against it due to potential risks, if the generated number were a valid phone num-

ber belonging to someone else.

For other denials, we opted to supply apps with generated data to ensure their

continued operation, without actually exposing private user data. During the study

period, the classifier denied 10.34% of all permission requests; more than 2,000

denials per participant per day. Our implementation, however, only recorded an

average of 3 SecurityExceptions per day per participant. This indicates that

passing synthetic but well-formed data to apps in lieu of actual private user data

does satisfy app functionality expectations to a great extent.

Our results are a positive sign for future permission systems more restrictive

than the current AOFU model: permissions can be more restrictive without forcing

the user to trade off usability for improved privacy protection, as we will show in

the next section. If apps gracefully handle resource denials, then users are free to

specify their privacy preferences without risking functionality issues.

4.4.4 User Reactions to Prompts

The use of runtime prompts was initially proposed as a mechanism to obtain

better-informed consent from users. At the end of the study period, we conducted

exit interviews with each participant in order to determine the extent to which

these assumptions were met.

We measured how much participants were surprised to see the prompts during

the course of the study period (on a scale of 1=“not surprised” to 5=“very sur-

116

prised”). Participants expressed an average rating of 2.7. Almost half (44%) of

the participants indicated that the prompts surprised them, and among them, 70%

were surprised at the frequency with which the prompts appeared (up to 4 times

per day), though few participants expressed annoyance by that frequency (8.33%).

We asked participants to rate how much they felt that they were in control of

resource usage (on a scale of 1=“nothing changed compared to default Android” to

5=“very much in control”). On average, our participants rated their experience as

3.44. Almost half (44%) of participants felt that they were in control of the system

as a result of the prompts. A small number (14%) still felt helpless, regardless of

their responses to the prompts. They felt resigned that applications would always

obtain their data.

Finally, we asked participants how they felt about the transparency provided

by the new system compared to their previous Android experiences (on a scale of

1=“nothing changed” to 5=“improved system transparency”). On average, partic-

ipants rated system transparency in the middle (3). Almost half (47%) of them felt

that the new system was more transparent. A minority (14%) mentioned wanting

to know why apps were requesting particular sensitive data types.

From these observations, we believe that the new contextual permission sys-

tem is a positive step toward improving user awareness. We believe this enables

users to make better privacy decisions for themselves. Although additional work

is needed to address some negative sentiments about the current implementation,

this system has shown to be in the right direction overall.

4.4.5 User Reactions to Controls

Whenever an automated system makes decisions on a user’s behalf, there is the

inevitable risk that the system will make an incorrect decision. In our case this

can cause apps to be over-priveledged and risk privacy violations, or be under-

privledged and risk app failure or reduced functionality. It is important to em-

power users so they can easily audit the decisions that were made on their behalf

and to amend those decisions that are not aligned with their preferences.

117

In our implementation, we built a user interface based on prior work by Tsai

et al. [111]. This system allowed our participants to view automated permissions

decisions made by the classifier, as well as set privacy preferences with respect to

context (i.e., the visibility of the requesting app). We included this user interface

as part of the operating system, as a panel within the system settings app.

When we on-boarded our participants, we mentioned to them that there was

a new “permission manager” available, but to avoid priming them, we made sure

not to emphasize it in any particular way. Our instrumented platform logged every

time participants interacted with our permission manager to understand how they

used it.

Fifteen of the 37 participants (40.5%) opened the permission manager during

the study period. Our implementation logged a total of 169 preference changes

across these participants. Only 6 out of 37 participants (16.2%) changed the set-

tings to be more restrictive. Of the adjustments made towards more restrictiveness,

the majority were for the GET_ACCOUNTS permission, which prevents apps from

reading the user’s stored credential data (e.g., usernames linked to accounts on

the device, such as for Google, Twitter, etc.). In contrast, the most-common per-

mission that participants adjusted to be more permissive was READ_CONTACTS.

When asked for their motives behind these changes, the majority of participants

said that functionality was their main reason for granting more access, and the

sensitivity of data for restricting access.

We also asked participants to demonstrate how they would change the settings

of a familiar app to only be able to access their location when they are using that

app. We based this task off of one of the evaluation tasks performed by Tsai

et al. [111], when they performed an online study to evaluate a low-fidelity pro-

totype of the design on which we based our user interface. All but two of our

participants were able to correctly complete this task using the user interface. Par-

ticipants rated the average ease of the task as 1.15 (on a scale from 1=“very easy”

to 5=“very hard”). We conclude that participants are able to understand the per-

mission interface after having used it for a week, and without special instructions.

118

The permission manager also enables users to diagnose application crashes

that result from a resource denial (a feature not present in the original design on

which we based it). In exit interviews, we examined how participants responded

to app crashes in their experiences with the device. The majority of participants

reported that their first step was to restart the app that had crashed. If that was

unsuccessful, they would then restart their phone. This informs the design of a

future system: if an app crashes as a result of a resource denial, the platform

should clearly communicate this to users or otherwise automatically adjust the

permissions on their behalf. This could be communicated through a dialog or in

the notification bar.

4.5 Discussion

The core objective of our 37-person field study was to analyze how a contextually-

aware, more-restrictive permission model performs in the wild. We examined

how participants balanced their privacy preferences with app functionality. This

measures the real-world applicability of predicting user privacy decisions with the

help of contextual cues surrounding each permission request.

Consequential Denial

Overall, participants denied 24% of all prompted permission requests. This is a

60% reduction in denials compared to the results from the previous chapter, who

did not enforce the user’s decision to deny a permission and prompted the user

using only hypothetical language: “given the choice, would you have denied...?”

The decreased denial rate we observed is therefore unsurprising given that par-

ticipants were now actually making a tradeoff between functionality and privacy,

instead of expressing the degree to which privacy is important to them. Our results

show that even in the presence of consequential resource denial, contextual cues

helped to predict users’ privacy decisions and better aligned permission settings

with their expectations, as compared to the status quo.

119

Ask on First Use

Our results corroborate our previous two chapters in showing that AOFU’s in-

ability to capture the context surrounding users’ decisions is a cause of AOFU’s

significant error rate. We also found that a significant portion of participants do

not have an adequate understanding of how AOFU works, which further lim-

its AOFU’s utility: 11 participants did not realize that their prompt responses

for AOFU are taken as permanent decisions; and 4 participants interpreted the

prompts as yet another mechanism for collecting user data instead of as a privacy-

protection mechanism. While the actual impact of these inaccurate beliefs is yet

to be explored, we believe that these issues need to be fixed in the future, in order

to increase Android’s ability to predict and protect user data effectively.

Implementation Limitations

While our new permission model reduces the number of mis-predictions com-

pared to AOFU by 50%, our offline analysis shows that it has the potential to

reduce mis-predictions by 75%. A further examination revealed that the perfor-

mance difference is due to the bootstraping of the training dataset in the imple-

mentation. We note that difference is not inherent to running a classifier in An-

droid, and so simply modifying our implementation to use these improvements

will allow it to achieve the same performance.

Purpose

While our new permission model outperforms AOFU, it still does not explain to

the user why an app needs to use a permission. In our exit interviews, we observed

that 14% of participants expressed the desire to know why apps made a request

in the first place. Previous work has shown that app functionality is a key factor

in permission decisions [25]. If users were properly informed of the functionality

requirement behind a permission request, then they might be better positioned to

make decisions that meet their privacy and functionality expectations.

We believe that there are ways to extend contextual permission systems by

120

incorporating the actual purpose of the request. For example, after introducing

AOFU permissions, Android started encouraging app developers to provide the

reason behind their permission requests so that the user can include that in the

decision-making process [40]. Tan et al. [107] showed that similar prompts on

iOS actually resulted in users being more permissive about granting permissions

to apps. Similarly, prior work has attempted to use static analysis to automatically

incorporate inferred purpose [71, 74].

Resource Denial

When deploying more-restrictive permission systems, it is important that apps

continue to run without entering into an error state that results from a resource

denial. Users should be able to select their privacy preferences with minimal

disruption to their experience; apps must not be able to force an ultimatum by

simply not functioning if a permission is denied. Indeed, some participants simply

allow most permission requests because that ensures their apps run properly.

The platform, therefore, is responsible to ensure that apps handle resource

denials gracefully. To their credit, when Android introduced AOFU, it imple-

mented some permission denials to appear like a lack of available data or the

non-existence of hardware, instead of throwing a SecurityException. In our

implementation, we take the extra step of supplying apps with generic but well-

formed data in the event of a denial. We observed that our participants tended to

deny more permissions as they progressed through the study period (on average

20% denial in the learning phase versus a 26% denial rate during the validation

phase). Those participants also experienced a low rate of app failures due to re-

source denials. In the future, platforms should implement measures to reduce

functionality losses stemming from having stricter privacy preferences. Failing to

do so might otherwise compel users to compromise on their privacy preferences

for the sake of functionality.

121

Remedying Unexpected Behavior

Regardless of any mitigations to avoid app crashes, it is practical to assume that

apps will crash when they fail to receive expected data under certain circum-

stances. One way to remedy this is to give users tools to adjust the behavior

of the permission system, such as being able to be more permissive to certain

applications in certain contexts. This approach, however, assumes that (i) users

accurately attribute a crash event to a resource denial, which may not always be

the case, and (ii) users are sufficiently technical to identify which resource denial

caused the crash. In our implementation of a new permission manager, we address

the latter assumption by providing users a timeline of recent decisions made by

the new permission system, which can be used to deduce the cause of a crash.

Our exit interviews showed that few participants would think to check the per-

mission manager following an application crash, so clearly more work is needed

here. With proposals for more-accurate and more-restrictive permission models,

it is necessary to have usable mechanisms to deal with inevitable crashes due to

resource denials. The platform should provide mechanisms either to help the user

diagnose and resolve such crashes, or to automatically fix permissions on a tem-

porary basis and give the user an option to make the fix permanent.

Conclusion

This study shows how applications and users respond to a real-world deployment

of a novel contextually-aware permission model. The new permission system

significantly reduced the error rate from that of the prevailing “ask-on-first-use”

model first deployed in Android 6.0. While prior work already demonstrated ways

to increase the protection provided by new permission models, we believe our

study provides opportunities to further improve performance and address practical

limitations in actual implementations.

122

Chapter 5

Discussion

The primary goal of this thesis is to develop a permission system that is capable

of protecting user’s private smartphone data – so that user’s privacy preferences

are better met compared to current systems. Reaching that goal required under-

standing how users make privacy decisions, understanding different circumstances

under which mobile applications access resources, and devise ways a mobile plat-

form can align platform protection with user privacy preferences.

We started the project with three hypotheses: a) currently deployed permission

controls are not efficient in protecting user’s private data, b) users are likely to take

advantage of finer grained permission controls, and if such options are available,

c)the context surrounding the permission decision will play a critical role in user’s

privacy decisions. To test our hypothesis, we conducted two (one-week long)

field studies and one (six-week long) longitudinal field study. We have collected

6K privacy decisions using Experience Sampling – to collect their in-situ privacy

preferences– from more than 200 real-world users and also collected more than

200M real-world data points on resource usage and contextual information on how

participants used the phone during the study period.

More than 80% of our participants wanted to block at least one sensitive per-

mission request during the study period showing their desire to have finer grained

permission systems compared to currently deployed Android permission system.

123

While making privacy decisions (allowing or denying), nearly half of the partic-

ipants took the context surrounding each permission request into account – the

remaining half, based on the factors we measured, didn’t seem to take the context

into account. It could also be the case that, we are not fully aware of the actual

factors remaining participants are considering.

During the period of the thesis, Android switched from Ask-on-install to Ask-

on-first-use reducing the potential error rate from 75% to 15%, measured using the

data collected from the three field studies. While AOFU demonstrated a signifi-

cant improvement, it does not fully capture the user decision when it confronts the

user to seek their consent on sharing their private data with an application. AOFU

falsely assumes once a user makes a privacy decision, it lasts forever regardless

of the surrounding context – this false assumption is solely responsible for the

error rate of AOFU. Based on our collected dataset, 70% of participants have at

least changed their initial decision in subsequent cases nullifying the AOFU core

assumption.

Based on our collected privacy decisions, we designed and developed a con-

textually aware permission system that reduces the user confrontation and signif-

icantly increases the protection by taking the surrounding context into account.

In the new permission system, once a user makes a privacy decision, the con-

text in which the user made the decision is taken into account when it reuses the

user decision in subsequent cases. The new permission model has the potential

to have an 80% lower error rate compared to AOFU. The new permission model

was first tested as an offline simulation, and then in the real world, interacting

with real-time user decisions and with data-hungry applications. While achieving

the increased protection and reduced user involvement, it also preserves the app

functionality to a greater extent.

5.1 Mismatched Personas

The threat model of the new permission system is not to protect sensitive data from

malicious applications that exploit security vulnerabilities of the mobile platform.

124

It is to protect sensitive data from benign applications that access sensitive data

when it is not expected by the user but through legitimate channels implemented

in Android. Majority of the unexpected requests come from benign applications

with a legitimate functionality. While understanding the motives behind developer

practices is beyond the scope of this work [13, 15], it is an important part of the

bigger effort of building a more privacy-friendly ecosystem in mobile.

In product development, personas have been a widely used technique where

developers create hypothetical characters based on scenarios to guide the design

process of the application [34, 90]. While this approach has been a success in

designing an application that is functionally efficient, personas can have a different

impact on the privacy side of the application. The use of personas helps designers

and developers design the application in a way a potential user from the targeted

audience would use it. This entails making assumptions about how their potential

audience usage of the applications – these assumptions, inadvertently, include how

the potential user would share their data, with the outside world, in the process of

using the application.

How practical is it to assume potential users sharing practices? We show in

previous chapters [117, 118], each participant has a unique way of expecting data

accesses which corroborates with previous work [2, 72, 103, 119]. Contextual

Integrity also suggests that their expectations are based on their surroundings -

none of the one-size-fits-all models worked because of this. It is impractical to

envision each user’s different contexts and the dependent expectations when the

application is designed – which is what is done by using personas. This explains

why a majority of users were surprised to see certain data accesses during the

study which lead them to deny a significant portion of it.

As an application developer, it is infeasible to assume each different potential

user’s contextual privacy expectations under different contexts in which the appli-

cation will be used. We believe the best an application developer can do is to let

the user decide what to share and when to share it so that users can make their

own privacy decisions and contextual preferences. Users, however, already have a

125

plethora of decisions to make in the day to day digital world [86, 93, 105]; so we

must find a way to engage the user without habituating or annoying them while

getting the required privacy consent. Given the number of applications each user

is using, the number of privacy decisions they have to make can quickly get out of

control.

From the beginning, to their credit, mobile platforms took care of the burden

of seeking user consent, removing that responsibility from the application devel-

opers. Platforms, however, were not efficient at asking the correct question at the

correct time, which has the serious consequences of not giving enough context

to the user for before forcing them to make a privacy decision. These issues led

users to make sub-optimal privacy decisions risking the protection of their own

sensitive data.

Fixing the developer ecosystem to be more privacy-friendly is a very impor-

tant, yet, beyond the scope of this work. More work is needed along the lines

of helping developers to make better privacy choices while developing applica-

tions. We, however, fix the issues of helping users to make better privacy de-

cisions so that when applications request data users can make optimal privacy

decisions [1, 2].

5.2 Arms Race

Regardless of their design and development methodologies, developers were used

to receive all the resource they requested – in earlier Android versions users were

forced to make an all-or-nothing choice (Ask-on-install), so developers could

safely assume that an installed application is allowed to access all requested re-

sources. Android 6.0 introduced Ask-on-first-use, giving users finer grained ac-

cess control – users could just only allow the data types they were comfortable

with sharing with the app while denying the rest. Previous work, however, showed

that applications are unlikely to take resource denial gracefully, leaving the pos-

sibility of a critical usability chaos [44]. Furthermore, work has shown that if

applications start to crash, users are likely to adopt a less restrictive, more permis-

126

sive privacy policy, trading privacy for the desired usability and functionality [6].

With the introduction of AOFU, Google has been warning developers to be

prepared to have resource requests denied, and to gracefully handle resource de-

nials [39]. No work recent work suggests developers are adapting to the new

guidelines, or otherwise. Regardless, platforms need to make sure that users are

free from the burden of worrying about usability issues when they make privacy

decisions. If not, the objective of a more restrictive, more user-aligned permission

system is lost, much like the previous regime of permission systems.

People have looked into ways to feed carefully articulated data to prevent leak-

ing sensitive information [21, 29, 60, 124] – none of these techniques were tested

in a real-world setup. A closely related work tested on real world applications

but do not report a quantitative analysis on it’s impact [84]. Our last field study

look into ways to feed obfuscated data in the event of a resource denial so that ap-

plications will continue serving their functionality based on allowed data without

crashing. Our data suggest such obfuscated data feeding has been largely success-

ful – we only observe a median of 2 application crashes per day per participant.

compared to over 2000 resource denials observed for each user during the study

period. While two crashes per day are not ideal, we believe this is a correct step

towards making sure users are free to make privacy decisions. 99% of the crashes

came from a data resource for which we did not have an obfuscation implemented

– this shows a) without data obfuscation applications are likely to create a usabil-

ity issue, and b) currently implemented data obfuscation techniques are successful

to a sizable extent.

This, however, will be a short-lived success. When more users start to adopt

the finer grain permission systems, applications are likely to get more obfuscated

data. Depending on the nature of the applications, data incentives, and for other

reasons that probably require further research to understand, applications may

start to become more aggressive towards detecting obfuscated data. Therefore,

it is imperative that the platform takes measures to not let the applications know

about resource denial. We, however, believe this is going to be an arms race

127

between platforms trying to protect user data and applications wanting to get the

desired resources.

5.3 Purpose Matters

From the developer perspective, one way to avoid having an essential resource

denied, as Google, Apple and previous work explain [37, 40, 107], is to provide

the users with a reason for the access request. Tan et al. showed that users are

more likely to be permissive if a reason for the request is present [107]. During

our first field study [117], participants comprehension of the resource’s necessity

for desired functionality of the app played a major role in their decision to allow

or deny a resource request; a more recent work corroborates these findings [25].

Furthermore, some of our participants of the last study also mentioned the need to

know the actual reason for a permission request before making a privacy decision.

Participants could be making decisions based on ill-informed perceptions i.e., they

could be denying a request that could actually be needed for the core functionality

of the application, assuming they are not related or vice versa.

Previous research has looked into inferring the purpose of a given request

based on crowdsourcing [71], static analysis, and dynamic analyis [69, 115]. In

previous work, authors were relying on the previously collected data sets, labels

and machine learning techniques to figure out the purpose of each request. Liu et.

al. looked into incorporating the request’s purpose when informing the users about

sensitive access requests [74]. The reliance of previously accumulated data could

be a problem since a) applications are likely to update their code regularly, which

could make historical data obsolete, and b) techniques such as crowdsourcing

could be subjective to the participants. The new permission model presented,

however, in this thesis does not take the (inferred or actual) purposed into account

when making the decisions.

From the point of view of the users, the reason for a request could be a binary

value indicating whether the request is related to the core app code or whether it is

a third-party library. Third party libraries usually serve nonfunctional needs such

128

as analytics, ads, monetization. Previous work has already looked into runtime

library detection based on stack analysis [31, 115]. It would be an interesting

exploration to examine how users react to permission requests when they have

information about the actual source of the request – whether it is the actual code

or a library. It will be an interesting and helpful question to examine how the

purpose affects their contextual preferences. We believe such information can be

a useful feature to add to our current contextual permission system which could

further increase its accuracy.

5.4 User driven Privacy

Data privacy is a multi-faceted dilemma faced by different fronts in computer

science. There is a long line of work focusing on the data leakage aspect of it,

which belongs to more system side computer science [43, 53, 67, 110]. In a

different vein than the permission system proposed in this thesis – which focuses

on both systems and the user aspect of the problem, information flow tracking,

taint analysis, provenance analysis focus on low-level information passing that

occur between a known source (originating point e.g., location) and a sink (where

the data flow ends e.g., a socket connection).

Taint analysis will provide fine-grained information on how exactly applica-

tions are using and/or sharing the requested data. Some of these methods incur a

significant of overheard bearing it from practical usage [43]. Another important

difference would be not having the user in the pipeline before deciding an infor-

mation flow is inappropriate or not. This could risk false positives since not all

data flows leaving the phone are privacy violations – privacy violations only occur

if a flow defies user expectations. The work presented in the thesis monitors data

flows from system spaces to the app space. The current instrumentation mediates

before an information(a sensitive data) flow occur from system to app space.

The thesis of this work is based on having the user playing the central role in

deciding what flow is appropriate and what is not. Having a data point leaves a

phone does not necessarily defy user expectations. We believe it is essential for

129

users to have the final say about what is appropriate and what is not. Previous

work [41] and our own last study found that leaving users completely out of the

loop might not be the best solution. During that last study, we found participants

saying that they felt inferior to the phone given how applications use data and

not all participants were comfortable with letting the platform make decisions for

them. One way to elevate user confidence is by involving the users in the process

(but at the same time not to habituate them).

The question of who is well equipped to make the decision is an interest-

ing avenue to work on. While the platform has every bit of information, poten-

tially, needed to make the decision, the platform doesn’t have the user perspective.

While the user owns the data, so far users were not able to make optimal privacy

decisions to protect their data. One of the contributions of the new permission sys-

tem is to empower users to make informed decisions so that they can better protect

their own sensitive data. We believe this is an important distinction between the

more systems-level taint-tracking system and our new permission system. Mov-

ing forward, the correct direction would be to investigate how to merge these two

different approaches to better serve users.

5.5 Contextualization

One of the core hypothesis of this work is users make contextual decisions which

was first put forward by the notion of Contextual Integrity [82]. Over the course

of the project, we found that visibility of the requesting application and the fore-

ground application at the time of the request play a critical role in user decisions

– we believe these are two contextual factors used by users to make contextual

preferences. Not only these two factors are affecting their decisions, as we show

previously in the thesis (Chapter 3), users are more likely to be consistent with

these different factors as demonstrated by the high predictive power of these two

factors in the new predictive model.

While we identify factors that are likely to be contextual cues used by users to

make privacy decisions, we do not infer the context – automatically inferring the

130

current context could be an intractable problem. For the purpose of the mentioned

problem statement, what is more important is the identification of tangible factors

and impact of those factors towards users decision. Such knowledge will help

the platform to detect when the context changes so that platform can change their

decisions accordingly.

In chapter 3, based on the conceptual framework proposed by Barth et al. [20],

we explain why visibility and foreground are critical contextual factors. We posit

that the visibility of the requesting application could be helping the user to grasp

the role played by the requesting application (requesting actor). With the recent

advancement in the discovery of data sharing practices [91, 92, 102], it is plausible

that the actual data recipient might not be the application requesting the data.

If the data flow ends up in a third party server, then the user has an incorrect

understanding of the data recipient.

One approach to extending the current permission systems would be to in-

form the user about potential third parties other than the requesting application

that might receive the data so that the user is better informed about the actual data

recipient. A recent work shows that users are likely to vary their decision if they

know who is the actual data recipient is [113]. While previous work has incor-

porated potential purpose of a request using offline data [74], no one has yet to

incorporate the actual third parties that might receive the data from a request. We

believe by incorporating such information, the new permission system can achieve

even higher accuracy giving finer-grained information to the user’s decision.

We believe, that more work is needed to understand how the context impact

user decisions. There could be more contextual factors than just the visibility and

the foreground application. These new factors could help to further improve the

efficiency of the proposed permission system.

5.6 Conclusion

We show that by accounting for the surrounding context, mobile platforms can

increase the privacy protection by better aligning the platform protection with

131

how users expect to control sensitive data if they had an option. Rather than

enforcing a blanket allowance or denial – which risks both privacy violations and

unwarranted functionality loss – the platform should devise ways to dynamically

take decisions based on the surrounding context. Dynamically controlling the

access entails learning user privacy preferences under different circumstances; we

show that use of machine learning not only helps to understand how users want

to react under different contextual circumstances, but it also, helps to reduce the

user involvement significantly.

132

Bibliography

[1] A. Acquisti. Nudging Privacy: The Behavioral Economics of Personal

Information. IEEE Security and Privacy, 7(6):82–85, 2009.

http://www.computer.org/portal/web/computingnow/1209/whatsnew/

securityandprivacy. → pages

[2] A. Acquisti and J. Grossklags. Privacy and rationality in individual

decision making. IEEE Security & Privacy, 3(1):26–33,

January–February 2005. → pages

[3] A. Acquisti, L. Brandimarte, and G. Loewenstein. Privacy and human

behavior in the age of information. Science, 347(6221):509–514, 2015. →

pages

[4] Y. Agarwal and M. Hall. Protectmyprivacy: Detecting and mitigating

privacy leaks on ios devices using crowdsourcing. In Proceeding of the

11th Annual International Conference on Mobile Systems, Applications,

and Services, MobiSys ’13, pages 97–110, New York, NY, USA, 2013.

ACM. ISBN 978-1-4503-1672-9. doi:10.1145/2462456.2464460. URL

http://doi.acm.org/10.1145/2462456.2464460. → pages

[5] H. M. Almohri, D. D. Yao, and D. Kafura. Droidbarrier: Know what is

executing on your android. In Proc. of the 4th ACM Conf. on Data and

Application Security and Privacy, CODASPY ’14, pages 257–264, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2278-2.

doi:10.1145/2557547.2557571. URL

http://doi.acm.org/10.1145/2557547.2557571. → pages

[6] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck,

L. F. Cranor, and Y. Agarwal. Your location has been shared 5,398 times!:

A field study on mobile app privacy nudging. In Proc. of the 33rd Annual

133

ACM Conference on Human Factors in Computing Systems, pages

787–796. ACM, 2015. → pages

[7] P. Andriotis, M. A. Sasse, and G. Stringhini. Permissions snapshots:

Assessing users’ adaptation to the android runtime permission model. In

2016 IEEE International Workshop on Information Forensics and Security

(WIFS), pages 1–6, Dec 2016. doi:10.1109/WIFS.2016.7823922. →

pages

[8] P. Andriotis, S. Li, T. Spyridopoulos, and G. Stringhini. A Comparative

Study of Android Users’ Privacy Preferences Under the Runtime

Permission Model, pages 604–622. Springer International Publishing,

Cham, 2017. doi:10.1007/978-3-319-58460-7_42. → pages

[9] Android Developers. Content Providers. http:

//developer.android.com/guide/topics/providers/content-providers.html,

2014. Accessed: Nov. 12, 2014. → pages

[10] Android Developers. Common Intents.

https://developer.android.com/guide/components/intents-common.html,

2014. Accessed: November 12, 2014. → pages

[11] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: Analyzing the

android permission specification. In Proc. of the 2012 ACM Conf. on

Computer and Communications Security, CCS ’12, pages 217–228, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1651-4.

doi:10.1145/2382196.2382222. URL

http://doi.acm.org/10.1145/2382196.2382222. → pages

[12] C. Auerbach and L. B. Silverstein. Qualitative data: An introduction to

coding and analysis. NYU press, 2003. → pages

[13] R. Balebako and L. Cranor. Improving app privacy: Nudging app

developers to protect user privacy. IEEE Security & Privacy, 12(4):55–58,

2014. → pages

[14] R. Balebako, J. Jung, W. Lu, L. F. Cranor, and C. Nguyen. "little brothers

watching you": Raising awareness of data leaks on smartphones. In

Proceedings of the Ninth Symposium on Usable Privacy and Security,

SOUPS ’13, pages 12:1–12:11, New York, NY, USA, 2013. ACM. ISBN

134

978-1-4503-2319-2. doi:10.1145/2501604.2501616. URL

http://doi.acm.org/10.1145/2501604.2501616. → pages

[15] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. F. Cranor. The privacy

and security behaviors of smartphone app developers. 2014. → pages

[16] R. Balebako, F. Schaub, I. Adjerid, A. Acquisti, and L. Cranor. The

impact of timing on the salience of smartphone app privacy notices. In

Proceedings of the 5th Annual ACM CCS Workshop on Security and

Privacy in Smartphones and Mobile Devices, pages 63–74. ACM, 2015.

→ pages

[17] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can

machine learning be secure? In Proceedings of the 2006 ACM Symposium

on Information, computer and communications security, pages 16–25.

ACM, 2006. → pages

[18] D. Barrera, H. G. u. c. Kayacik, P. C. van Oorschot, and A. Somayaji. A

methodology for empirical analysis of permission-based security models

and its application to android. In Proc. of the ACM Conf. on Comp. and

Comm. Security, CCS ’10, pages 73–84, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0245-6.

doi:http://doi.acm.org/10.1145/1866307.1866317. URL

http://doi.acm.org/10.1145/1866307.1866317. → pages

[19] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot. Understanding

and improving app installation security mechanisms through empirical

analysis of android. In Proceedings of the Second ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, SPSM ’12,

pages 81–92, New York, NY, USA, 2012. ACM. ISBN

978-1-4503-1666-8. doi:10.1145/2381934.2381949. URL

http://doi.acm.org/10.1145/2381934.2381949. → pages

[20] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and

contextual integrity: Framework and applications. In Proc. of the 2006

IEEE Symposium on Security and Privacy, SP ’06, Washington, DC,

USA, 2006. IEEE Computer Society. ISBN 0-7695-2574-1.

doi:10.1109/SP.2006.32. URL http://dx.doi.org/10.1109/SP.2006.32. →

pages

135

[21] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid: Trading

privacy for application functionality on smartphones. In Proceedings of

the 12th Workshop on Mobile Computing Systems and Applications,

HotMobile ’11, pages 49–54, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0649-2. doi:10.1145/2184489.2184500. URL

http://doi.acm.org/10.1145/2184489.2184500. → pages

[22] I. Bilogrevic, K. Huguenin, B. Agir, M. Jadliwala, and J.-P. Hubaux.

Adaptive information-sharing for privacy-aware mobile social networks.

In Proceedings of the 2013 ACM International Joint Conference on

Pervasive and Ubiquitous Computing, UbiComp ’13, pages 657–666,

New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1770-2.

doi:10.1145/2493432.2493510. URL

http://doi.acm.org/10.1145/2493432.2493510. → pages

[23] E. Bodden. Easily instrumenting android applications for security

purposes. In Proc. of the ACM Conf. on Comp. and Comm. Sec., CCS ’13,

pages 1499–1502, NY, NY, USA, 2013. ACM. ISBN 978-1-4503-2477-9.

doi:10.1145/2508859.2516759. URL

http://doi.acm.org/10.1145/2508859.2516759. → pages

[24] R. Böhme and J. Grossklags. The security cost of cheap user interaction.

In Proceedings of the 2011 New Security Paradigms Workshop, pages

67–82. ACM, 2011. → pages

[25] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft. Exploring decision

making with android’s runtime permission dialogs using in-context

surveys. In Thirteenth Symposium on Usable Privacy and Security

(SOUPS 2017), pages 195–210, Santa Clara, CA, 2017. USENIX

Association. ISBN 978-1-931971-39-3. URL https://www.usenix.org/

conference/soups2017/technical-sessions/presentation/bonne. → pages

[26] T. D. Breaux and A. Rao. Formal analysis of privacy requirements

specifications for multi-tier applications. In 2013 21st IEEE International

Requirements Engineering Conference (RE), pages 14–23, July 2013.

doi:10.1109/RE.2013.6636701. → pages

[27] T. Buchanan, C. Paine, A. N. Joinson, and U.-D. Reips. Development of

measures of online privacy concern and protection for use on the internet.

136

Journal of the American Society for Information Science and Technology,

58(2):157–165, 2007. → pages

[28] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and fine-grained

mandatory access control on android for diverse security and privacy

policies. In Proc. of the 22nd USENIX Security Symposium, SEC’13,

pages 131–146, Berkeley, CA, USA, 2013. USENIX Association. ISBN

978-1-931971-03-4. URL

http://dl.acm.org/citation.cfm?id=2534766.2534778. → pages

[29] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar, and

M. B. Srivastava. ipshield: A framework for enforcing context-aware

privacy. In NSDI, pages 143–156, 2014. → pages

[30] C.-C. Chang and C.-J. Lin. Libsvm – a library for support vector

machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed: September

11, 2017. → pages

[31] S. Chitkara, N. Gothoskar, S. Harish, J. I. Hong, and Y. Agarwal. Does

this app really need my location?: Context-aware privacy management for

smartphones. Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, 1(3):42, 2017. → pages

[32] E. K. Choe, J. Jung, B. Lee, and K. Fisher. Nudging people away from

privacy-invasive mobile apps through visual framing. In Human-Computer

Interaction–INTERACT 2013, pages 74–91. Springer, 2013. → pages

[33] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe: Context-related policy

enforcement for android. In ISC, volume 10, pages 331–345. Springer,

2010. → pages

[34] A. Cooper et al. The inmates are running the asylum:[Why high-tech

products drive us crazy and how to restore the sanity]. Sams Indianapolis,

IN, USA:, 2004. → pages

[35] A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia, D. Kaynar,

and A. Sinha. Understanding and Protecting Privacy: Formal Semantics

and Principled Audit Mechanisms, pages 1–27. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-25560-1_1.

URL https://doi.org/10.1007/978-3-642-25560-1_1. → pages

137

[36] A. Developer. Requesting permissions.

https://developer.android.com/guide/topics/permissions/requesting.html, .

Accessed: March 18, 2017. → pages

[37] A. Developer. App programming guide for ios.

https://developer.apple.com/library/content/documentation/iPhone/

Conceptual/iPhoneOSProgrammingGuide/ExpectedAppBehaviors/

ExpectedAppBehaviors.html#//apple_ref/doc/uid/

TP40007072-CH3-SW7, . Accessed: September 25, 2017. → pages

[38] G. Developer. Distribution of android versions.

http://developer.android.com/about/dashboards/index.html, . Accessed:

March 15, 2017. → pages

[39] G. Developer. Permissions usage notes.

https://developer.android.com/training/permissions/usage-notes.html, .

Accessed: September 24, 2017. → pages

[40] G. Developer. Requesting permissions at run time.

https://developer.android.com/training/permissions/requesting.html, .

Accessed: September 16, 2017. → pages

[41] W. K. Edwards, E. S. Poole, and J. Stoll. Security automation considered

harmful? In Proceedings of the 2007 Workshop on New Security

Paradigms, pages 33–42. ACM, 2008. → pages

[42] S. Egelman, A. P. Felt, and D. Wagner. Choice architecture and

smartphone privacy: There’s a price for that. In The 2012 Workshop on the

Economics of Information Security (WEIS), 2012. → pages

[43] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth. Taintdroid: an information-flow tracking system for realtime

privacy monitoring on smartphones. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation, OSDI’10,

pages 1–6, Berkeley, CA, USA, 2010. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=1924943.1924971. → pages

[44] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian, and

H. Chen. revdroid: Code analysis of the side effects after dynamic

permission revocation of android apps. In Proceedings of the 11th ACM

138

Asia Conference on Computer and Communications Security (ASIACCS

2016), Xi’an, China, 2016. ACM. → pages

[45] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android

permissions demystified. In Proc. of the ACM Conf. on Comp. and Comm.

Sec., CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0948-6. doi:http://doi.acm.org/10.1145/2046707.2046779.

URL http://doi.acm.org/10.1145/2046707.2046779. → pages

[46] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of

mobile malware in the wild. In Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, pages 3–14.

ACM, 2011. → pages

[47] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How to

ask for permission. In Proc. of the 7th USENIX conference on Hot Topics

in Security, Berkeley, CA, USA, 2012. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=2372387.2372394. → pages

[48] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99 problems, but vibration

ain’t one: a survey of smartphone users’ concerns. In Proc. of the 2nd

ACM workshop on Security and Privacy in Smartphones and Mobile

devices, SPSM ’12, pages 33–44, New York, NY, USA, 2012. ACM.

ISBN 978-1-4503-1666-8. doi:10.1145/2381934.2381943. URL

http://doi.acm.org/10.1145/2381934.2381943. → pages

[49] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android

permissions: user attention, comprehension, and behavior. In Proc. of the

Eighth Symposium on Usable Privacy and Security, SOUPS ’12, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1532-6.

doi:10.1145/2335356.2335360. URL

http://doi.acm.org/10.1145/2335356.2335360. → pages

[50] FTC. Android flashlight app developer settles ftc charges it deceived

consumers. https://www.ftc.gov/news-events/press-releases/2013/12/

android-flashlight-app-developer-settles-ftc-charges-it-deceived.

Accessed: August 17, 2017. → pages

[51] H. Fu and J. Lindqvist. General area or approximate location?: How

people understand location permissions. In Proceedings of the 13th

139

Workshop on Privacy in the Electronic Society, pages 117–120. ACM,

2014. → pages

[52] H. Fu, Y. Yang, N. Shingte, J. Lindqvist, and M. Gruteser. A field study of

run-time location access disclosures on android smartphones. Proc.

USEC, 14, 2014. → pages

[53] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks:

Automatically detecting potential privacy leaks in android applications on

a large scale. In Proc. of the 5th Intl. Conf. on Trust and Trustworthy

Computing, TRUST’12, pages 291–307, Berlin, Heidelberg, 2012.

Springer-Verlag. ISBN 978-3-642-30920-5.

doi:10.1007/978-3-642-30921-2_17. URL

http://dx.doi.org/10.1007/978-3-642-30921-2_17. → pages

[54] Google. Dangerous permissions. https://developer.android.com/guide/

topics/permissions/requesting.html#normal-dangerous. Accessed:

August 17, 2017. → pages

[55] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior

against app descriptions. In Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, pages 1025–1035, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5.

doi:10.1145/2568225.2568276. URL

http://doi.acm.org/10.1145/2568225.2568276. → pages

[56] M. Harbach, M. Hettig, S. Weber, and M. Smith. Using personal examples

to improve risk communication for security & privacy decisions. In Proc.

of the 32nd Annual ACM Conf. on Human Factors in Computing Systems,

CHI ’14, pages 2647–2656, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2473-1. doi:10.1145/2556288.2556978. URL

http://doi.acm.org/10.1145/2556288.2556978. → pages

[57] M. Harbach, E. von Zezschwitz, A. Fichtner, A. De Luca, and M. Smith.

It’sa hard lock life: A field study of smartphone (un) locking behavior and

risk perception. In Symposium on Usable Privacy and Security (SOUPS),

2014. → pages

[58] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of

statistical learning: data mining, inference and prediction. The

Mathematical Intelligencer, 27(2):83–85, 2005. → pages

140

[59] S. E. Hormuth. The sampling of experiences in situ. Journal of

personality, 54(1):262–293, 1986. → pages

[60] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t

the droids you’re looking for: retrofitting android to protect data from

imperious applications. In Proc. of the ACM Conf. on Comp. and Comm.

Sec., CCS ’11, pages 639–652, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0948-6. doi:http://doi.acm.org/10.1145/2046707.2046780.

URL http://doi.acm.org/10.1145/2046707.2046780. → pages

[61] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar.

Adversarial machine learning. In Proceedings of the 4th ACM workshop

on Security and artificial intelligence, pages 43–58. ACM, 2011. → pages

[62] L. Jedrzejczyk, B. A. Price, A. K. Bandara, and B. Nuseibeh. On the

impact of real-time feedback on users’ behaviour in mobile

location-sharing applications. In Proceedings of the Sixth Symposium on

Usable Privacy and Security, page 14. ACM, 2010. → pages

[63] L. K. John, A. Acquisti, and G. Loewenstein. Strangers on a plane:

Context-dependent willingness to divulge sensitive information. Journal

of consumer research, 37(5):858–873, 2010. → pages

[64] J. Jung, S. Han, and D. Wetherall. Short paper: Enhancing mobile

application permissions with runtime feedback and constraints. In

Proceedings of the Second ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, SPSM ’12, pages 45–50, New York,

NY, USA, 2012. ACM. ISBN 978-1-4503-1666-8.

doi:10.1145/2381934.2381944. URL

http://doi.acm.org/10.1145/2381934.2381944. → pages

[65] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and

D. Wetherall. A conundrum of permissions: Installing applications on an

android smartphone. In Proc. of the 16th Intl. Conf. on Financial

Cryptography and Data Sec., FC’12, pages 68–79, Berlin, Heidelberg,

2012. Springer-Verlag. ISBN 978-3-642-34637-8.

doi:10.1007/978-3-642-34638-5_6. URL

http://dx.doi.org/10.1007/978-3-642-34638-5_6. → pages

141

[66] P. G. Kelley, L. F. Cranor, and N. Sadeh. Privacy as part of the app

decision-making process. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’13, pages 3393–3402, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-1899-0.

doi:10.1145/2470654.2466466. URL

http://doi.acm.org/10.1145/2470654.2466466. → pages

[67] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android taint flow

analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN

International Workshop on the State of the Art in Java Program Analysis,

SOAP ’14, New York, NY, USA, 2014. ISBN 978-1-4503-2919-4.

doi:10.1145/2614628.2614633. URL

http://doi.acm.org/10.1145/2614628.2614633. → pages

[68] R. Larson and M. Csikszentmihalyi. New directions for naturalistic

methods in the behavioral sciences. In H. Reis, editor, The Experience

Sampling Method, pages 41–56. Jossey-Bass, San Francisco, 1983. →

pages

[69] Y. Li, Y. Guo, and X. Chen. Peruim: Understanding mobile application

privacy with permission-ui mapping. In Proceedings of the 2016 ACM

International Joint Conference on Pervasive and Ubiquitous Computing,

pages 682–693. ACM, 2016. → pages

[70] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platt’s probabilistic

outputs for support vector machines. Machine learning, 68(3):267–276,

2007. → pages

[71] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang.

Expectation and purpose: understanding users’ mental models of mobile

app privacy through crowdsourcing. In Proc. of the 2012 ACM Conf. on

Ubiquitous Computing, UbiComp ’12, pages 501–510, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1224-0.

doi:10.1145/2370216.2370290. URL

http://doi.acm.org/10.1145/2370216.2370290. → pages

[72] J. Lin, B. Liu, N. Sadeh, and J. I. Hong. Modeling users’ mobile app

privacy preferences: Restoring usability in a sea of permission settings. In

Symposium On Usable Privacy and Security (SOUPS 2014), pages

142

199–212, Menlo Park, CA, 2014. USENIX Association. ISBN

978-1-931971-13-3. → pages

[73] B. Liu, J. Lin, and N. Sadeh. Reconciling mobile app privacy and usability

on smartphones: Could user privacy profiles help? In Proceedings of the

23rd International Conference on World Wide Web, WWW ’14, pages

201–212, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2744-2.

doi:10.1145/2566486.2568035. URL

http://doi.acm.org/10.1145/2566486.2568035. → pages

[74] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang,

N. Sadeh, Y. Agarwal, and A. Acquisti. Follow my recommendations: A

personalized assistant for mobile app permissions. In Twelfth Symposium

on Usable Privacy and Security (SOUPS 2016), 2016. → pages

[75] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable

importances in forests of randomized trees. In C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems 26. Curran Associates, Inc., 2013.

URL http://papers.nips.cc/paper/

4928-understanding-variable-importances-in-forests-of-randomized-trees.

pdf. → pages

[76] D. Lowd and C. Meek. Adversarial learning. In Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge discovery

in data mining, pages 641–647. ACM, 2005. → pages

[77] N. K. Malhotra, S. S. Kim, and J. Agarwal. Internet Users’ Information

Privacy Concerns (IUIPC): The Construct, The Scale, and A Causal

Model. Information Systems Research, 15(4):336–355, December 2004.

→ pages

[78] K. Micinski, D. Votipka, R. Stevens, N. Kofinas, J. S. Foster, and M. L.

Mazurek. User interactions and permission use on android. In CHI 2017,

2017. → pages

[79] S. Mirzamohammadi and A. Amiri Sani. Viola: Trustworthy sensor

notifications for enhanced privacy on mobile systems. In Proceedings of

the 14th Annual International Conference on Mobile Systems,

Applications, and Services, pages 263–276. ACM, 2016. → pages

143

[80] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao,

S. Y. Ko, and G. Challen. Phonelab: A large programmable smartphone

testbed. In Proceedings of First International Workshop on Sensing and

Big Data Mining, pages 1–6. ACM, 2013. → pages

[81] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission

model and enforcement with user-defined runtime constraints. In

Proceedings of the 5th ACM Symposium on Information, Computer and

Communications Security, ASIACCS ’10, pages 328–332, New York, NY,

USA, 2010. ACM. ISBN 978-1-60558-936-7.

doi:http://doi.acm.org/10.1145/1755688.1755732. URL

http://doi.acm.org/10.1145/1755688.1755732. → pages

[82] H. Nissenbaum. Privacy as contextual integrity. Washington Law Review,

79:119, February 2004. → pages

[83] H. Nissenbaum. Privacy in context: Technology, policy, and the integrity

of social life. Stanford University Press, 2009. → pages

[84] K. Olejnik, I. I. Dacosta Petrocelli, J. C. Soares Machado, K. Huguenin,

M. E. Khan, and J.-P. Hubaux. Smarper: Context-aware and automatic

runtime-permissions for mobile devices. In Proceedings of the 38th IEEE

Symposium on Security and Privacy (SP). IEEE, 2017. → pages

[85] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. WHYPER: Towards

Automating Risk Assessment of Mobile Applications. In Proc. of the

22nd USENIX Sec. Symp., SEC’13, pages 527–542, Berkeley, CA, USA,

2013. USENIX Association. ISBN 978-1-931971-03-4. URL

http://dl.acm.org/citation.cfm?id=2534766.2534812. → pages

[86] S. Parkin, K. Krol, I. Becker, and M. A. Sasse. Applying cognitive control

modes to identify security fatigue hotspots. In Twelfth Symposium on

Usable Privacy and Security (SOUPS 2016). USENIX Association, 2016.

→ pages

[87] Path. We are sorry. http://blog.path.com/post/17274932484/we-are-sorry.

Accessed: September 25, 2017. → pages

[88] Path. We are sorry. http://blog.path.com/post/17274932484/we-are-sorry,

February 8 2012. Accessed: February 26, 2016. → pages

144

[89] G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and T. Jaeger. Aware:

Preventing abuse of privacy-sensitive sensors via operation bindings. In

26th USENIX Security Symposium 17), pages 379–396. USENIX

Association, 2017. → pages

[90] J. Pruitt and J. Grudin. Personas: Practice and theory. In Proceedings of

the 2003 Conference on Designing for User Experiences, DUX ’03, pages

1–15, New York, NY, USA, 2003. ACM. ISBN 1-58113-728-1.

doi:10.1145/997078.997089. URL

http://doi.acm.org/10.1145/997078.997089. → pages

[91] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,

P. Gill, M. Allman, and V. Paxson. Haystack: In situ mobile traffic

analysis in user space. arXiv preprint, 2015. → pages

[92] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. Recon:

Revealing and controlling pii leaks in mobile network traffic. In

Proceedings of the 14th Annual International Conference on Mobile

Systems, Applications, and Services, pages 361–374. ACM, 2016. →

pages

[93] K. Renaud. Blaming noncompliance is too convenient: What really causes

information breaches? IEEE Security & Privacy, 10(3):57–63, 2012. →

pages

[94] T. Ringer, D. Grossman, and F. Roesner. Audacious: User-driven access

control with unmodified operating systems. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

pages 204–216. ACM, 2016. → pages

[95] F. Roesner and T. Kohno. Securing embedded user interfaces: Android

and beyond. In Presented as part of the 22nd USENIX Security

Symposium (USENIX Security 13), pages 97–112, 2013. → pages

[96] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan.

User-driven access control: Rethinking permission granting in modern

operating systems. In 2012 IEEE Symposium on Security and Privacy,

pages 224–238. IEEE, 2012. → pages

145

[97] J. L. B. L. N. Sadeh and J. I. Hong. Modeling users’ mobile app privacy

preferences: Restoring usability in a sea of permission settings. In

Symposium on Usable Privacy and Security (SOUPS), 2014. → pages

[98] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley, M. Prabaker, and J. Rao.

Understanding and capturing people’s privacy policies in a mobile social

networking application. Personal and Ubiquitous Computing, 13(6):

401–412, 2009. → pages

[99] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy.

Android permissions: A perspective combining risks and benefits. In

Proceedings of the 17th ACM Symposium on Access Control Models and

Technologies, SACMAT ’12, pages 13–22, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1295-0. doi:10.1145/2295136.2295141. URL

http://doi.acm.org/10.1145/2295136.2295141. → pages

[100] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino. Identidroid: Android

can finally wear its anonymous suit. Trans. Data Privacy, 7(1):27–50,

Apr. 2014. ISSN 1888-5063. URL

http://dl.acm.org/citation.cfm?id=2612163.2612165. → pages

[101] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and H. Borgthorsson.

Leakiness and creepiness in app space: Perceptions of privacy and mobile

app use. In Proc. of the 32nd Ann. ACM Conf. on Human Factors in

Computing Systems, CHI ’14, pages 2347–2356, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2473-1. doi:10.1145/2556288.2557421.

URL http://doi.acm.org/10.1145/2556288.2557421. → pages

[102] Y. Song and U. Hengartner. Privacyguard: A vpn-based platform to detect

information leakage on android devices. In Proceedings of the 5th Annual

ACM CCS Workshop on Security and Privacy in Smartphones and Mobile

Devices, pages 15–26. ACM, 2015. → pages

[103] S. Spiekermann, J. Grossklags, and B. Berendt. E-privacy in 2nd

generation e-commerce: privacy preferences versus actual behavior. In

Proceedings of the 3rd ACM conference on Electronic Commerce, pages

38–47. ACM, 2001. → pages

[104] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann.

Mobile-sandbox: Having a deeper look into android applications. In

146

Proceedings of the 28th Annual ACM Symposium on Applied Computing,

SAC ’13, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1656-9.

doi:10.1145/2480362.2480701. URL

http://doi.acm.org/10.1145/2480362.2480701. → pages

[105] B. Stanton, M. F. Theofanos, S. S. Prettyman, and S. Furman. Security

fatigue. IT Professional, 18(5):26–32, 2016. → pages

[106] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen. Asking for (and

about) permissions used by android apps. In Proc. of the 10th Working

Conf. on Mining Software Repositories, MSR ’13, pages 31–40,

Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1. URL

http://dl.acm.org/citation.cfm?id=2487085.2487093. → pages

[107] J. Tan, K. Nguyen, M. Theodorides, H. Negron-Arroyo, C. Thompson,

S. Egelman, and D. Wagner. The effect of developer-specified

explanations for permission requests on smartphone user behavior. In

Proc. of the SIGCHI Conf. on Human Factors in Computing Systems,

2014. → pages

[108] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King. When

it’s better to ask forgiveness than get permission: Designing usable audit

mechanisms for mobile permissions. In Proc. of the 2013 Symposium on

Usable Privacy and Security (SOUPS), 2013. → pages

[109] S. Thurm and Y. I. Kane. Your apps are watching you. The Wall Street

Journal. Accessed: January 21, 2016. → pages

[110] O. Tripp and J. Rubin. A bayesian approach to privacy enforcement in

smartphones. In 23rd USENIX Security Symposium (USENIX Security

14), pages 175–190, San Diego, CA, 2014. USENIX Association. ISBN

978-1-931971-15-7. URL https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/tripp. → pages

[111] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. Wagner,

N. Good, and J.-W. Chen. Turtle guard: Helping android users apply

contextual privacy preferences. In Thirteenth Symposium on Usable

Privacy and Security (SOUPS 2017), pages 145–162, Santa Clara, CA,

2017. USENIX Association. ISBN 978-1-931971-39-3. → pages

147

[112] J. Tygar. Adversarial machine learning. IEEE Internet Computing, 15(5):

4–6, 2011. → pages

[113] M. Van Kleek, I. Liccardi, R. Binns, J. Zhao, D. J. Weitzner, and

N. Shadbolt. Better the devil you know: Exposing the data sharing

practices of smartphone apps. In Proceedings of the 2017 CHI Conference

on Human Factors in Computing Systems, pages 5208–5220. ACM, 2017.

→ pages

[114] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,

11(1):37–57, Mar. 1985. ISSN 0098-3500. doi:10.1145/3147.3165. URL

http://doi.acm.org/10.1145/3147.3165. → pages

[115] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong. Understanding the

purpose of permission use in mobile apps. ACM Transactions on

Information Systems (TOIS), 35(4):43, 2017. → pages

[116] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution in

the android ecosystem. In Proceedings of the 28th Annual Computer

Security Applications Conference, ACSAC ’12, pages 31–40, New York,

NY, USA, 2012. ACM. ISBN 978-1-4503-1312-4.

doi:10.1145/2420950.2420956. URL

http://doi.acm.org/10.1145/2420950.2420956. → pages

[117] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and

K. Beznosov. Android permissions remystified: A field study on

contextual integrity. In 24th USENIX Security Symposium (USENIX

Security 15), pages 499–514, Washington, D.C., Aug. 2015. USENIX

Association. ISBN 978-1-931971-232. → pages

[118] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner, and

K. Beznosov. The feasibility of dynamically granted permissions:

Aligning mobile privacy with user preferences. In 2017 IEEE Symposium

on Security and Privacy (SP), pages 1077–1093, May 2017.

doi:10.1109/SP.2017.51. → pages

[119] A. Woodruff, V. Pihur, S. Consolvo, L. Brandimarte, and A. Acquisti.

Would a privacy fundamentalist sell their dna for $1000...if nothing bad

happened as a result? the westin categories, behavioral intentions, and

consequences. In Proceedings of the 2014 Symposium on Usable Privacy

148

and Security, pages 1–18. USENIX Association, 2014. ISBN

978-1-931971-13-3. URL https://www.usenix.org/conference/soups2014/

proceedings/presentation/woodruff. → pages

[120] H. Wu, B. P. Knijnenburg, and A. Kobsa. Improving the prediction of

users’ disclosure behavior by making them disclose more predictably? In

Symposium on Usable Privacy and Security (SOUPS), 2014. → pages

[121] R. Xu, H. Saïdi, and R. Anderson. Aurasium: Practical policy

enforcement for android applications. In Proc. of the 21st USENIX Sec.

Symp., Security’12, pages 27–27, Berkeley, CA, USA, 2012. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=2362793.2362820. →

pages

[122] K.-P. Yee. Guidelines and strategies for secure interaction design. Security

and Usability: Designing Secure Systems That People Can Use, 247,

2005. → pages

[123] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and

B. Zang. Vetting undesirable behaviors in android apps with permission

use analysis. In Proc. of the ACM Conf. on Comp. and Comm. Sec., CCS

’13, pages 611–622, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-2477-9. doi:10.1145/2508859.2516689. URL

http://doi.acm.org/10.1145/2508859.2516689. → pages

[124] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming

information-stealing smartphone applications (on android). In Trust and

Trustworthy Computing, pages 93–107. Springer, 2011. → pages

[125] H. Zhu, H. Xiong, Y. Ge, and E. Chen. Mobile app recommendations with

security and privacy awareness. In Proc. of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2956-9.

doi:10.1145/2623330.2623705. URL

http://doi.acm.org/10.1145/2623330.2623705. → pages

149

Appendix A

Resource Usage

This section presents observations made during the first field study. Specifi-

cally related to applications accessing resources under varying contextual circum-

stances.

A.1 Invisible requests

Following list shows the set of applications that have requested the most num-

ber of permissions while executing invisibly to the user and the most requested

permission types by each respective application.

• Facebook App— ACCESS NETWORK STATE, ACCESS FINE LOCA-

TION, ACCESS WIFI STATE ,WAKE LOCK,

• Google Location—WAKE LOCK, ACCESS FINE LOCATION, GET AC-

COUNTS, ACCESS COARSE LOCATION,

• Facebook Messenger—ACCESS NETWORK STATE, ACCESS WIFI STATE,

WAKE LOCK, READ PHONE STATE,

• Taptu DJ—ACCESS NETWORK STATE, INTERNET, NFC

• Google Maps—ACCESS NETWORK STATE, GET ACCOUNTS, WAKE

LOCK, ACCESS FINE LOCATION,

150

• Google (Gapps)—WAKE LOCK, ACCESS FINE LOCATION, AUTHEN-

TICATE ACCOUNTS, ACCESS NETWORK STATE,

• Fouraquare—ACCESS WIFI STATE, WAKE LOCK, ACCESS FINE LO-

CATION, INTERNET,

• Yahoo Weather—ACCESS FINE LOCATION, ACCESS NETWORK STATE,

INTERNET, ACCESS WIFI STATE,

• Devexpert Weather—ACCESS NETWORK STATE, INTERNET, ACCESS

FINE LOCATION,

• Tile Game(Umoni)—ACCESS NETWORK STATE, WAKE LOCK, INTER-

NET, ACCESS WIFI STATE,

Following is the most frequently requested permission type by applications

while running invisibly to the user and the applications who requested the respec-

tive permission type most.

• ACCESS_NETWORK_STATE— Facebook App, Google Maps, Facebook

Messenger, Google (Gapps), Taptu - DJ

• WAKE_LOCK—Google (Location), Google (Gapps), Google (GMS), Face-

book App, GTalk.

• ACCESS_FINE_LOCATION—Google (Location), Google (Gapps), Face-

book App, Yahoo Weather, Rhapsody (Music)

• GET_ACCOUNTS—Google (Location), Google (Gapps), Google (Login),

Google (GM), Google (Vending)

• ACCESS_WIFI_STATE—Google (Location), Google (Gapps), Facebook App,

Foursqaure, Facebook Messenger

• UPDATE_DEVICE_STATS—Google (SystemUI), Google (Location), Google

(Gapps)

• ACCESS_COARSE_LOCATION—Google (Location), Google (Gapps), Google

(News), Facebook App, Google Maps

• AUTHENTICATE_ACCOUNTS—Google (Gapps), Google (Login), Twit-

ter, Yahoo Mail, Google (GMS)

151

• READ_SYNC_SETTINGS—Google (GM), Google (GMS), android.process.acore,

Google (Email), Google (Gapps)

• INTERNET—Google (Vending), Google (Gapps), Google (GM), Facebook

App, Google (Location)

A.2 Distribution of Requests

The following graph shows the distribution of requests throughout a given day

averaged across the data set.

5 10 15 20

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

Hour of the day

N
u

m
b

e
r

o
f

R
e

q
u

e
s
ts

152

A.3 Permission Type Breakdown

This table lists the most frequently used permissions during the study period. (per

user / per day)

Permission Type Requests

ACCESS_NETWORK_STATE 41077

WAKE_LOCK 27030

ACCESS_FINE_LOCATION 7400

GET_ACCOUNTS 4387

UPDATE_DEVICE_STATS 2873

ACCESS_WIFI_STATE 2092

ACCESS_COARSE_LOCATION 1468

AUTHENTICATE_ACCOUNTS 1335

READ_SYNC_SETTINGS 836

VIBRATE 740

INTERNET 739

READ_SMS 611

READ_PHONE_STATE 345

STATUS_BAR 290

WRITE_SYNC_SETTINGS 206

CHANGE_COMPONENT_ENABLED_STATE 197

CHANGE_WIFI_STATE 168

READ_CALENDAR 166

ACCOUNT_MANAGER 134

ACCESS_ALL_DOWNLOADS 127

READ_EXTERNAL_STORAGE 126

USE_CREDENTIALS 101

READ_LOGS 94

153

A.4 User Application Breakdown

This table shows the applications that most frequently requested access to pro-

tected resources during the study period. (per user / per day)

Application Name Requests

facebook.katana 40041

google.process.location 32426

facebook.orca 24702

taptu.streams 15188

google.android.apps.maps 6501

google.process.gapps 5340

yahoo.mobile.client.android.weather 5505

tumblr 4251

king.farmheroessaga 3862

joelapenna.foursquared 3729

telenav.app.android.scout_us 3335

devexpert.weather 2909

ch.bitspin.timely 2549

umonistudio.tile 2478

king.candycrushsaga 2448

android.systemui 2376

bambuna.podcastaddict 2087

contapps.android 1662

handcent.nextsms 1543

foursquare.robin 1408

qisiemoji.inputmethod 1384

devian.tubemate.home 1296

lookout 1158

154

Appendix B

Decision Prediction

This section presents how each different feature set was contributing to the final

accurateness of the respective predictive models.

B.1 Information Gain of Contextual Features

Contextuals Defaulters Overall

A1 0.4839 0.6444 0.5717

A2 0.4558 0.6395 0.5605

Permission 0.0040 0.0038 0.0050

Time 0.0487 0.1391 0.0130

Visibility 0.0015 0.0007 0.0010

Table B.1: Feature Importance of Contextual Features

155

B.2 Information Gain of Behavioral Features

Feature Importance

Amount of time spent on audio calls 0.327647825

Frequency of audio calls 0.321291184

Proportion of times screen was timed out

instead of pressing the lock button
0.317631096

Number of times PIN was used to

unlock the screen.
0.305287288

Number of screen unlock attempts 0.299564131

Amount of time spent unlocking the screen 0.29930659

Proportion of time spent on loud mode 0.163166296

Proportion of time spent on silent mode 0.138469725

Number of times a website is loaded to

the Chrome browser
0.094996437

Out of all visited websites, the proportion

of HTTPS-secured websites.
0.071096898

Number of times Password was used to

unlock the screen
0.067999523

Proportion of websites requested location

through Chrome
0.028404167

Time 0.019799623

The number of downloads through Chrome 0.014619351

Permission 0.001461635

Visibility 0.000162166

Table B.2: Feature Importance of Behavioral Features

156

