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ABSTRACT

Recent research suggests that 88% of Android applications that

use Java cryptographic APIs make at least one mistake, which

results in an insecure implementation. It is unclear, however, if

these mistakes originate from code written by application or third-

party library developers. Understanding the responsible party for a

misuse case is important for vulnerability disclosure. In this paper,

we bridge this knowledge gap and introduce source attribution to

the analysis of cryptographic API misuse. We developed BinSight,

a static program analyzer that supports source attribution, and

we analyzed 132K Android applications collected in years 2012,

2015, and 2016. Our results suggest that third-party libraries are

the main source of cryptographic API misuse. In particular, 90% of

the violating applications, which contain at least one call-site to

Java cryptographic API, originate from libraries. When compared

to 2012, we found the use of ECB mode for symmetric ciphers has

signi�cantly decreased in 2016, for both application and third-party

library code. Unlike application code, however, third-party libraries

have signi�cantly increased their reliance on static encryption keys

for symmetric ciphers and static IVs for CBC mode ciphers. Finally,

we found that the insecure RC4 and DES ciphers were the second

and the third most used ciphers in 2016.
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1 INTRODUCTION

Adoption rates of smartphones have grown exponentially over the

last decade. Android alone has enjoys more than 1.4 billion daily

active users [7]. As a result, smartphone users started to accumulate

large amounts of sensitive and private data on their personal mobile

devices that requires con�dentiality protection [28].

One way to achieve data con�dentiality on smartphones is to

enable �lesystem-level encryption. For example, the current im-

plementation of full-disk encryption in Android provides such a

service as part of the storage IO stack [1]. Another approach is to

implement custom, application-speci�c solutions using supported

cryptographic APIs, or crypto APIs for short. For example, appli-

cation developers can encrypt user data before storing it on the

device or transmitting it over the network.

Unfortunately, neither one of the approaches is problem-free.

Filesystem-level encryption relies on memorable passwords, which

are often weak [16] and vulnerable to shoulder sur�ng [30]. Cus-

tom, application-speci�c data encryption often uses static encryp-

tion keys or initialization vectors (IVs) [20], which violates cryp-

tographic notions of security, such as Indistinguishability Under

Chosen-Plaintext Attack (IND-CPA) [19]. Recent advances in smart-

phone authentication, such as Apple TouchID, have partially ad-

dressed the problem of easy-to-guess passwords by making the use

of longer, harder to guess secrets more convenient. The problem of

crypto API misuse, however, is still far from being fully understood.

While recent research shows that 88% of Android applications that

use crypto APIs make at least one mistake [20], a study by Derr

et al. [8] suggests that third-party libraries may be responsible for

such mistakes. It is unclear, however, to which extent third-party

libraries have contributed to the problem of crypto API misuse.

Problem. While third-party libraries used in Android applica-

tions misuse crypto APIs, it is unclear how prominent this problem

is and what the resulting security implications might be. Attributing

an API misuse to its source, be it an application code or a third-party

library, is important since it is crucial for vulnerability disclosure

and software patching, allowing security researchers and compa-

nies to address the root cause of the problem. In addition, it informs

application developers how libraries that they are using or consider

using consume crypto APIs.

Approach. The goal of this research is two fold: (1) to attribute

crypto APIs misuse to its source, and (2) to study how misuse has

changed between 2012 and 2016. To achieve that, we �rst obtained

three datasets consisting in total of 132K Android applications

from Google Play Store in 2012, 2015, and 2016. We then designed

and implemented BinSight, an automated analysis system that: (1)

identi�es call-sites terminating in Java crypto APIs using static



program slicing, (2) validates these call-sites against common rules

in cryptography, and �nally (3) attributes the misused call-sites to

their sources using a heuristic-based third-party library detection

technique.

Compared to existing program analyzers, such CryptoLint [20],

AndroGuard [18], and Soot [25], BinSight o�ers three unique fea-

tures: (1) it provides a reliable way to attribute a Java class identi�er

to its source, be it an application code or a third-party library, even

if class renaming has been applied using Java bytecode obfuscation

tools, (2) it scales to large Android applications that are usually ex-

cluded from analysis, and (3) it has a rich GUI for manual validation

and analysis of API (mis)use.

Results. We used BinSight to analyze Android applications on

a large scale. The analysis results suggest that third-party libraries

are the major consumer of crypto APIs. In particular, for the ap-

plications collected in 2016, we found that 90% of call-sites that

terminated in crypto APIs originated from 638 libraries. Further-

more, 79.4% of these libraries, a total of 507, were responsible for

introducing crypto API misuses in 89.5% of the �agged applications.

That is, if the library vendors �x crypto APIs misuse in 507 libraries

they can reduce tenfold the number of Android applications with

crypto API misuses.

Comparison of crypto APIs misuse between 2012 and 2016 re-

vealed that, with some exceptions, both libraries and applications

have improved. Unlike applications, libraries have signi�cantly in-

creased the use of static encryption keys and static initialization

vectors (IVs) for ciphers in CBC mode. Furthermore, we found that

both RC4 and DES ciphers, which are known to be insecure [23, 29],

have become the second and third mostly used ciphers in 2016. At

the same time, the popularity of 3DES has declined eight fold.

With BinSight’s GUI tools, we manually analyzed the top-two

libraries in each of the three datasets. The results of the manual

analysis revealed that while all but one library have misused crypto

APIs, the identi�ed misuse cases had minimal or no impact on the

actual security of the applications. For example, the Google Play

SDK, which used a symmetric cipher in CBC mode with a static

IV and a static encryption key, did so for obfuscation and not for

con�dentiality or integrity protection. We refer to such scenarios

as a “functional” false positives, in which the crypto API is formally

misused, but the misuse does not lead to insecurity.

Contributions. This paper makes the following contributions:

(1) A study of crypto APIs misuse in Android applications with

source attribution. We show that 90% of call-sites to crypto

APIs originate from third-party libraries, and source attri-

bution based on package name is still e�cient and e�ective,

even if class name obfuscation techniques are employed.

(2) Trend analysis of crypto API misuse rates since 2012. The

results of the analysis revealed that while applications and

libraries improved in most aspects, e.g., the use of ECB mode

and the use of static seeds for SecureRandom class, libraries

became worse in the use of static encryption keys and static

IVs. In addition, our results suggest that insecure RC4 and

DES ciphers, have gained popularity, by becoming the second

and third most used ciphers, and the use of 3DES, a more

secure version of DES, declined by eight fold.

(3) We demonstrate that the previously used metric to measure

crypto API misuse rates, i.e., the ratio of APK �les, is highly

biased towards popular libraries and might convey mislead-

ing results. We show how the ratio of call-sites with mistakes

can provide additional insights into the state of crypto APIs

misuse.

(4) We show that without a proper contextual knowledge, the

static program slicing approach, employed by both the Bin-

Sight and CryptoLint tools, su�ers from a signi�cant ratio

of functional false positives: a false positive that meets the

formal de�nition of misuse, yet, does not introduce an ex-

ploitable vulnerability. We identi�ed two instances of func-

tional false positives: (a) use of symmetric cipher for ob-

fuscation, i.e., no intention of con�dentiality or integrity

protection, and (b) edge case for ECB rule, in which a single

plain-text block of random data is encrypted. Our analysis

results provide evidence that the problem of functional false

positives is substantial, considering that the the misuse in

the most popular library from 2016 dataset was identi�ed

as functional false positive. That library was responsible for

over a half (56% or 50,015) of APK �les in 2016 dataset.

(5) Design and implementation of BinSight: an open source tool

for automatic crypto APIs misuse detection that supports

source attribution.1

2 RELATED WORK

The research community has paid signi�cant attention to the (mis)use

of cryptography in smartphone applications. For instance, Lazar et

al. [26] studied Common Vulnerabilities and Exposures (CVE) that

were reported between January of 2011 and May of 2014 and that

were related to cryptography. The results of their analysis suggest

that 83% of the CVEs were introduced by application developers

that incorrectly used crypto APIs. To understand how this issue

can be alleviated, Acar et al. [13] studied the usability of several

cryptographic libraries. The results of the user study suggest that

while making the crypto APIs simpler had its bene�ts, application

developers still required proper documentation, code samples and

certain features to be available for the library to be used properly.

Several researchers used static analysis methods and tools to

analyze crypto APIs misuse in Android applications’ binaries. For

example, Fahl et al. [22] studied the misuse of asymmetric cryptog-

raphy for SSL/TLS protocols, and certi�cates validation in particular.

The analysis of 13,500 top free Android applications revealed that

8% of the analyzed applications misused SSL/TLS APIs, which made

these applications potentially exploitable.

Egele et al. [20] developed the CryptoLint system that used static

analysis to identify misuses of crypto APIs. In particular, based on

IND-CPA notion of security [19], the authors de�ned six rules of

secure use of crypto APIs for symmetric ciphers, password based

key derivation function (PBKDF), and secure random number gen-

erators. Their analysis revealed that 88% of Android applications

that use crypto APIs violated at least one rule. Similarly to the

CryptoLint study, we focus on the same set of rules (reproduced

in Section 3), while introducing source attribution to the analysis

1The project can be found at https://github.com/iim/binsight. Due to large size of the
datasets, we will share them upon request. Contact �rst author for your requests.



pipeline. In addition, we extended the original dataset of the Cryp-

toLint study by adding newly collected applications from 2015 and

2016, and we also made the BinSight tool available as open source.

Finally, Derr et al. [8] studied how promptly application develop-

ers adopt new versions of the libraries, especially when there is a

known vulnerability in the library. While doing so, the authors also

evaluated the six rules de�ned in the CryptoLint study for the iden-

ti�ed libraries. Unsurprisingly, the results of the analysis revealed

that libraries violated these rules too. In contrast, we focused on

studying violation of the rules of using crypto APIs from speci�c

source, i.e., a library or the application itself.

To summarize, while previous research has looked into either

libraries or Android applications as a whole, the problem of at-

tributing the source of a crypto APIs misuse is still not addressed.

Attributing crypto APIs misuse to its source is crucial for several

reasons. First, one needs to clearly identify the responsible party

for �xing the bug. Second, identifying the source of a misuse allows

researchers to reduce over-counting of bugs, by identifying ones

that originate from libraries. In addition, by being able to analyze

binaries, the BinSight tool allows application developers to get an

insight into how a library (mis)uses crypto APIs. This allows them

to make an informed decision whether or not they want to use this

library in their applications.

3 COMMON RULES IN CRYPTOGRAPHY

Similar to related work [20, 31], we investigated whether an An-

droid application that uses Java cryptographic APIs achieves a

cryptographic notion of security, IND-CPA security in particular.2

Accordingly, we use the rules originally de�ned by Egele et al. [20],

and �ag all applications that violate any one of them. While it is

safe to �ag these applications as insecure, we note that a �agged

application might be using the APIs for purposes other than protect-

ing data con�dentiality or integrity, as suggested in §2. In the rest

of this section, we partially reproduce de�nitions of these rules. For

a detailed description, we refer readers to the original CryptoLint

paper [20].

3.1 Symmetric key encryption

In block ciphers, a mode of operation de�nes security properties

the cipher would provide, such as con�dentiality. A popular mode

is electronic codebook (ECB), which is not IND-CPA secure. The

major problem with ECB mode is that identical messages encrypt

to identical ciphertexts, which represents an information leak that

is often intolerable. Still, ECB mode is commonly considered secure

if the message �ts into a single cipher block and each messages are

unique. Therefore,

Rule 1. Do not use ECB mode for encryption.

Another popular mode of operation is ciphertext block chaining

(CBC), where each block of plaintext is XORed with the previous

block of ciphertext, before being encrypted by the block cipher. The

�rst block of plaintext is XORed with an initialization vector (IV).

2Indistinguishability Under a Chosen-Plaintext Attack (IND-CPA) is a basic require-
ment for most provably secure public key crypto systems. Informally, an encryption
scheme is called IND-CPA secure if an attacker is unable to distinguish pairs of cipher-
texts with a probability better than that of random guessing [19].

Using a constant IV will result in a deterministic, stateless cipher,

which is not IND-CPA secure. Thus,

Rule 2. Do not use a constant IV for CBC mode.

Any symmetric encryption scheme, de�ned using a block or a

stream cipher, should not reveal its key. If the key is hard-coded

into a publicly-available application as a constant, then the key is

not private, and so the resulting encryption does not provide con�-

dentiality and integrity protection. Symmetric encryption schemes

commonly assume a random key. Accordingly,

Rule 3. Do not use constant encryption keys.

3.2 Password-based encryption

User-created passwords are often weak and vulnerable to password

guessing attacks. Password-based encryption (PBE) schemes sig-

ni�cantly increase the costs of such attacks. They achieve this by

concatenating the password with a salt and applying multiple it-

erations of a cryptographic hash function, typically using a key

derivation algorithm. The salt and the iteration count entail a multi-

plicative increase in the work required for a guessing attack. Using a

constant salt is equivalent to not having a salt at all and using fewer

than 1,000 iterations makes password guessing attacks practical.

We note that this threshold for the iteration count is the minimum

value suggested by RFC 2898 [24]. Hence,

Rule 4. Do not use constant salts for PBE, and

Rule 5. Do not use fewer than 1,000 iterations for PBE.

3.3 Random number generation

Android provides an API to a seeded, cryptographically-strong

pseudo-random number generator (PRNG) via SecureRandom class.

This PRNG is designed to produce non-deterministic output, but if

seeded using a constant value, it will produce a constant, known

output. If such a PRNG is used to derive keys, the resulting keys

would not be random, making the encryption insecure. As such,

Rule 6. Do not use a constant to seed SecureRandom.

4 CRYPTOGRAPHY IN ANDROID

There are various reasons to use cryptography in Android appli-

cations. We now give an overview of the application ecosystem in

Android, focusing on packaging and Java run-time. We then present

a brief introduction to the use of cryptography in Java.

4.1 Android applications ecosystem

Android applications are authored as either native C/C++ or Java

source code. We only consider applications that are written in Java,

because Java has had stable crypto APIs since the release of Java

1.4 in 2002. An Android Java application is compiled to Dalvik

executable (DEX) bytecode. The application is packaged into an

APK �le with all required resources, such as images or third party

libraries. The APK �le is then uploaded to Google Play Store, and

when a user installs the application, the APK �le is downloaded

and installed on their device.



Name Number of APKs Sampling Year

R16 117,320 Random 2016

R12 10,990 Random 2012

T15 4,280 Top-100 2015

Table 1: Summary of used datasets

Even though a DEX bytecode is compiled from Java, the Dalvik

virtual machine (DVM) is considerably di�erent from the Java vir-

tual machine. Unlike Oracle Java virtual machine, which is stack-

based, DVM is register-based, with a dedicated assembly language

called Smali. However, it is possible to convert a DEX bytecode to

an Oracle Java bytecode with Dex2Jar tool [6], albeit with some

limitations, such as inability to decode speci�c classes. We note

that DVM was recently replaced by Android runtime (ART), which

translates the DEX bytecode into the CPU’s native instructions for

faster execution.

4.2 Java cryptography

Android provides a rich execution framework that o�ers access

to various sub-systems, including Java cryptography architecture

(JCA). The JCA standardizes how developers make use of many

cryptographic algorithms by de�ning a stable API. Accordingly, a

cryptographic service provider (CSP) is required to register with

the JCA in order to provide the actual implementation of these

algorithms. This abstraction allows developers to replace the default

CSP, which is BouncyCastle [4] in Android, with a custom CSP

that satis�es their requirements. For example, SpongyCastle [5] is

a popular third-party CSP that supports a wider range of crypto

algorithms.

Symmetric and asymmetric encryption schemes are accessible

to developers through the Cipher class, as illustrated in Listing 1.

To use a speci�c encryption scheme, the developer provides a trans-

formation as an argument to the Cipher.getInstance factory

method. A transformation string speci�es the name of an algo-

rithm, a cipher mode, and a padding scheme to use in the Cipher

object [12]. In Listing 1, the returned cipher instance uses AES

in CBC mode with PKCS#5 padding. Only the algorithm name is

mandatory, while the cipher mode as well as the padding scheme are

optional. Unfortunately, all CSPs default to ECB mode of operation

if only the cipher name is speci�ed, which is insecure [11].

Listing 1: Simpli�ed symmetric key encryption in Java

// values of iv and key should be randomly generated

public byte[] encrypt(byte[] iv, byte[] key, byte[] data) {

IvParameterSpec iv_spec = new IvParameterSpec(iv);

SecretKeySpec key_spec = new SecretKeySpec(key, "AES");

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, key_spec, iv_spec);

return cipher.doFinal(data);

}

5 DATASETS

As summarized in Table 1, we collected and analyzed three datasets,

with 132,590 APK �les in total. R12 is a subset of the CryptoLint

dataset with 10,990 APK �les. The original CryptoLint dataset

had 145,095 APK �les and was collected between May and July

of 2012 [20] by crawling Google Play marketplace. First, the au-

thors of CryptoLint excluded all APK �les that did not use crypto

APIs. Second, the authors also excluded all APK �les that had all

Crypto API calls originating from 11 white-listed libraries. This

resulted in a set of 15,134 APK �les. The CryptoLint tool, however,

failed to analyze 3,386 �les from this set and 758 �les were lost since

2012, resulting in 10,990 APK �les in the R12 dataset. Considering

that 758 lost �les are a random sample of the set that was presented

in the CryptoLint report [20], such loss does not have a signi�cant

impact on our results.

The R16 dataset was collected inMay of 2016 with help of Sophos.

To select APK �les in the R16 dataset we �rst generated a random

sample of 120,000 APK �les that were available on Google Play

market at that time and then downloaded that set through Sophos

servers. Unfortunately, 2,680 �les got corrupted during the down-

loading process, leaving us with 117,320 APK �les. During the anal-

ysis, we discovered that applying the same white-listing approach

that the authors of CryptoLint used did not introduce practically

and statistically signi�cant di�erence.

Finally, the T15 dataset includes the Top 100 Android applications

in each category from June 2015. For this dataset, a list of the Top

100 applications in each category was �rst obtained through Google

Play store APIs. Then each APK �le was separately downloaded

with the ApkDownloader tool [10]. The downloading process was

performed between June 13–28, 2015. As 20 applications were re-

moved from the Google Play Store before we were able to download

them, the �nal size of the dataset is 4,280.3 We compared T15 to

R16 only for additional insight into di�erences between random

and top applications.

6 CRYPTO API LINTING WITH BINSIGHT

At a high level, the rules de�ned in §3 represent temporal proper-

ties that can be validated using automated program analysis in a

task known as linting [21]. While previous research has proposed

various linters for Android crypto APIs [20, 31], they su�er from

various limitations. In particular, the state-of-the-art linter Cryp-

toLint is not available as open source and was unable to sanalyze

more than 20% of APK �les [20]. In addition, none of these tools

provide any code navigation, which is valuable for manual in-depth

analysis. Finally, existing tools do not support attribution of the

source of misuse, i.e., by using these tools one cannot tell whether

a misuse is due to an application code or a third-party library.

To overcome these limitations, we developed BinSight based

on technical description of the CryptoLint [20]. In comparison to

CryptoLint, BinSight also provides a rich, graphical UI for manual

analysis of an APK �le and source attribution. To overcome limi-

tations of CryptoLint study, we introduced two new stages to the

APK analysis pipeline. The technical details of linting pipeline are

provided in Appendix 11.1. In what follows, we focus on explaining

our approch to the source attribution.

3Due to large size of the T15 and R16 datasets we cannot make them available online,
but can share upon request. For the R12 dataset we refer readers to contact the authors
of the CryptoLint study.



Number of APKs

Name Total Unique Dups Crypto?

R12 10,990 10,222 768 (7%) 10,222 (100%)

R16 117,320 115,683 1,637 (1.4%) 95,775 (82.8%)

R16* 117,320 115,683 1,637 (1.4%) 93,994 (81.3%)

T15 4,280 4,067 213 (5%) 3,645 (89.6%)

Total 132,590 129,972 2,618 109,642

Table 2: Summary of duplicates and crypto APIs use in all

three datasets. R16* is a subset of R16 with CryptoLint li-

braries whitelisting applied.

6.1 Attribution

After the linting stage, every call site that terminates in a crypto

API is attributed to its source, which could be the application code

itself or a third-party library. Our attribution approach relies on

package names of classes that contain call to crypto APIs, and cross-

references them with an exhaustive list of third-party libraries in

our datasets. The attribution has to handle obfuscated package

names, in order to correctly map call sites to libraries. This is done

in the following two steps.

6.1.1 Obfuscation analysis. Although de-obfuscating Android

applications has been recently studied [14, 27], the underlying

techniques, while e�ective for manual forensics, are ine�cient for

analyzing applications on a large scale. Moreover, it is unclear how

prominent the use of obfuscation is in the real-world, especially in

the classes that use crypto APIs. To automatically detect the level

of obfuscation, we developed a simple, rule-based classi�er that

identi�es whether a given package name is fully obfuscated or not.

The heuristic rules are provided in Appendix 11.2. If the package is

not fully obfuscated, we found that in 99% of the cases one can still

use its name to identify the library it belongs to. We show in §7

that less than 2.5% of package names in R16 were fully obfuscated,

requiring sophisticated de-obfuscation techniques. We refer the

reader to the implementation of the UseCase class in the APKIn-

sight.Logic.Analysis.Data name space of BinSight project for more

details on the implementation of heuristic rules we developed.4

6.1.2 Third-party library detection. As mentioned above, almost

all call sites that terminated in crypto APIs correspond to package

names that were identi�able. We labeled the exceptions, which are

fully obfuscated package names, as “obfuscated,” meaning that we

were unable to attribute the source of their corresponding call sites.

For the remaining majority, we decided whether a package name

corresponds to an “application,” a “library,” or a “possible library”,

by searching an exhaustive list of package names for libraries and

potential libraries. We manually compiled this list by inspecting all

unique package names across the datasets, as described in §7. Our

approach complements Derr et al. [8] technique, which relies on a

list of library signatures extracted from a database of third-party

SDKs [8].

4https://github.com/iim/binsight

Class identi�er renaming level

None Class Partial Full Total

R16 509,643 203,447 106,091 21,279 840,460

60.64% 24.21% 12.62% 2.53% 100%

R12 78,883 14,513 6,882 2,002 102,280

77.12% 14.19% 6.73% 1.96% 100%

T15 26,821 12,907 3,620 1,804 45,152

59.40% 28.59% 8.02% 3.99% 100%

Table 3: Obfuscation analysis of class identi�ers.

7 MEASURING CRYPTO API MISUSE

This section presents and discusses the result of the analysis of

109,642 APK �les that had at least one call to crypto APIs. To the

best of our knowledge, this is the largest dataset analyzed for crypto

APIs misuse (e.g., the CryptoLint study is based on the analysis of

11,748 APK �les). First, we discuss duplicates, obfuscation detection

and source attribution for each of the datasets. Then we present the

overall statistics on crypto APIs misuse. Afterwards, we proceed

with the analysis of each rule separately. In our analysis, we com-

pare R12 to R16 in order to understand what have changed between

2012 and 2016, and T15 to R16 in order to understand how a top

application di�ers from a random one.

For each comparisonwe conducted Chi-square test to seewhether

the found di�erence was statistically signi�cant with 99% con�-

dence. In what follows we discuss only statistically signi�cant re-

sults and all �gures show 99% con�dence interval whiskers.

7.1 Preprocessing

Unsurprisingly, every application in R12 made at least one call

to crypto APIs, con�rming the analysis and the white-listing per-

formed by the authors of CryptoLint [20]. Interestingly, while they

found that only 10.4% of the applications called crypto APIs, in

R16 and T15 we found that 83% and 90% of the applications used

crypto APIs. Such a signi�cant increase in use of crypto APIs in

Android applications can be attributed to many factors, including

the white-listing the authors of CryptoLint applied or increased

necessity to protect users’ data.

Our analysis revealed that while all datasets contained duplicates,

R12 had the largest ratio (7%). We removed all duplicates from the

analyzed datasets. The summary of the datasets after de-duplication

is shown in Table 2.

Unlike CryptoLint, BinSight was able to disassemble and analyze

all but six of the 109,642 APKs. This represents a signi�cant im-

provement over CryptoLint, which failed to analyze 3,386 APK �les

(23% of the analyzed set) due to technical problems.5 BinSight com-

pleted analysis in about 14 days on a dual Xeon CPU with 128GB

RAM, i.e., processing about 7500 APK �les a day, which suggests

that BinSight is not only robust, but also scalable.

7.2 Linting and attribution

5According to CryptoLint authors, there were two major problems (a) the tool did
not �nish analysis within 30 minutes, and (b) the analysis infrastructure ran out of
memory.



Source (%)

Call sites Libs Apps Libs? ?

R16 840,460 90.7 4.9 1.9 2.5

R12 102,280 79.5 14.5 4.0 2.0

T15 45,152 80.6 10.7 4.7 4.0

Table 4: Attribution of cryptographic API call sites.

7.2.1 Obfuscation analysis. As noted in §6, it is unclear how

prominent the use of obfuscation is, and class identi�er renaming

(CIR) [8] in particular. Accordingly, we analyzed the three datasets

to quantify CIR in the real-world [8]. We limited the analysis to

only those classes that have at least one call site to crypto APIs.

While doing so served our needs, our results on the prevalence

of obfuscation should not be considered as a generalization to all

Android applications.

There are di�erent levels at which CIR can be applied by an obfus-

cator like DexGuard. For instance, for class com.domain.package.Class,

an obfuscator might not change the identi�er, rename the class only,

rename the class and partially its package, or rename the whole

class identi�er. For the �rst three levels, we can map the class to a

library or an application, if the package name has an identi�able

pre�x. As for the fourth level, we cannot use the package name for

source attribution.

Unlike previously published research, e.g., LibScout [8], we did

not aim to detect di�erent versions of the same libraries. Our goal

was simpler. That is, we aimed to tell if a class belongs to a speci�c

library or to an application. To assess the reliability of using package

names for source attribution, we �rst automatically compiled a

list of all unique class identi�ers that call crypto APIs. We then

semi-automatically inspected the list in order to determine if the

identi�ers were obfuscated. If in doubt, we used BinSight GUI to

inspect the internals of a class and its source �le name, when that

was available.

To our surprise, the analysis revealed that using package names

for source attribution is a reliable method for source attribution. In

particular, for applications in R16 we were able to identify the

source for 97.5% classes that made calls to crypto APIs. The results

of the analysis for all three datasets are provided in Table 3.

7.2.2 Third-party library detection. We classi�ed package names

into one of the four categories: applications (apps), libraries (libs),

possible libraries, and obfuscated. We now describe how we per-

formed this classi�cation. First, we assigned all package names

that have been fully obfuscated to category obfuscated. We then

assigned all package names that were found in a single application

to category applications. For the remaining packages, which were

found in two or more applications, we ranked them based on how

many applications used them in each dataset, and then performed

manual inspection in a decreasing order of the rank. In particular,

for each package name, we labeled the package name as a library if

we were able to �nd library source or website. Furthermore, if pre-

vious has failed we then used BinSight’s GUI for manual inspection

to verify if the package under investigation belongs to a library.

We stopped manual analysis once we identi�ed enough package

names to cover 95% of the call sites. We assigned the remaining

unclassi�ed package names to the possible libraries category.

In total, we manually analyzed 12,165 package names from the

three datasets, out of which 3,622 (29.7%) belonged to libraries.

Overall, we identi�ed 638, 260, and 265 libraries in R16, R12 and

T15, respectively. This suggests that BinSight signi�cantly improved

upon CryptoLint in terms of libraries detection6.

Our analysis based on source attribution revealed that the li-

braries were responsible for the majority of calls to crypto APIs

in all three datasets, as summarized in Table 4. Even more, 79.5%

of all calls to crypto APIs in the R12 dataset originated from 260

libraries. While the authors of CryptoLint study did white-list 11

libraries, analysis with BinSight allowed us to identify the remain-

ing 249 libraries, which accounted for 79.5% of the calls to crypto

APIs in R12. This suggests that BinSight signi�cantly improves the

accuracy of the results reported in [20].

To this end, we showed that (a) one can reliably use package name

for source attribution, since it covers 97.5% of the calls to crypto

APIs, (b) libraries are the major contributor to crypto APIs calls and

should be properly identi�ed, and (c) previously published research

(i.e., [20]) has missed more than 200 libraries, which suggest that

its results su�er from the over-counting problem.

7.3 Crypto APIs misuse

Inwhat follows, we present themain �ndings on crypto APIsmisuse

rates across all source categories. We begin with the results of the

analysis on overall misuse rates across all rules, i.e., at least one rule

is violated. Afterwards, we proceed with analysis of misuse rates

for each rule separately. For brevity, we omit results for possible

libraries and obfuscated call-sites source categories.

During the analysis we observed that the ratio of APK �les with

misuses, the metric used by CryptoLint study, has its limitations. In

particular, while such measure provides an intuition on the overall

share of APK �les with crypto APIs misuses, it is heavily biased

towards libraries, especially the popular ones. That is why in our

analysis, in addition to the ratio of APK �les with misuses, we used

the ratio of crypto API call-sites that make a mistake. The main

reason for measuring this ratio is due to the fact that it is trivial

to separate calls to crypto APIs based on source. Such separation

allows clearer understanding of trends within each source.

For both of the aforementioned metrices, we report results for

all sources combined and separately. The ratio of APK �les with

misuses per category is computed against the total number of APK

�les in the dataset. Because an APK �le might contain misuses

from various sources, the sum of ratios for all four categories will

be equal to “All” category. The ratio of call-sites with mistakes,

however, is assessed against the total number of calls that originate

from that category.

7.3.1 Overall crypto APIs misuse rate. The ratios of APK �les

with at least one violation of the rules per category are shown in

Figure 1(a). Unsurprisingly, our results for R12 sub-set were in-

line with previously reported, i.e., 95% in our study and 88% in

CryptoLint study [20]. We attribute the di�erence to two factors:

(a) we removed 7% of APK �les from the R12 dataset, as they were

6CryptoLint authors white-listed 11 libraries



Figure 1: Ratio of APK �les and call-sites that violated at least one of the crypto APIs use rules, per dataset. “All” category re-

sults are based on all call-sites together, without considering the source (i.e., library or an application). Libs andApps represent

APK �les or call-sites that originate from libraries or applications.

duplicates, and (b) 768 APK �les from the original the R12 dataset

were lost. As expected, we found that the white-listing approach

used in the CryptoLint study reduced the ratio of APK �les to which

libraries have introduced misuses. Yet, it did not have any impact

on the call-sites ratio, as shown in Figure 1(b).

Overall, we found that since 2012 the ratio of APK �les with at

least one misuse has decreased from 94.5% to 92.4%. At the same

time, the overall likelihood of a call-site to crypto APIs to made

a mistake remained around 28%, i.e., on average one out of four

calls to crypto APIs makes a mistake. Per category analysis, however,

showed that while libraries have increased the ratio of APK �les

they introduced a misuse of crypto APIs to (from 80% to 90%),

the likelihood of a call-site to make a mistake from libraries did

not show a statistically signi�cant change. The lack of change is

probably because the number of libraries has increased (from 260

in R12 to 638 in R16).

Unlike libraries, applications have improved in both the ratio

of APK �les and the likelihood of a call-site that make a mistake.

In particular, the ratio of APK �les decreased from 21% to 5% and

the ratio of call-sites from 31.8% to 27.7%. Although, the increase

in the total number of libraries might have also contributed to the

decrease in the ratio of APK �les applications contribute misuses

to. Comparing T15 with R16 revealed that applications were intro-

ducing crypto APIs misuses to a larger share of APK �les (5% in

R16 vs 14.6% T15). This di�erence, however, could be attributed to

the fact that T15 had fewer libraries (265 in T15 compared to 638 in

R16).

7.3.2 Rules 1 – 3: Symmetric key encryption. The overall use of

ECB mode for symmetric ciphers has signi�cantly decreased since

2012, as shown in Figure 2(a) - Rule 1. The number of APK �les

with cases of ECB mode use has dropped from 77% in R12 to 30% in

R16. Similarly, the ratio of relevant call-sites has dropped from 53%

to 29% (see Figure 2(b) - Rule 1). Source attribution revealed that

this decrease can be mainly attributed to improvements in libraries.

In particular, while applications decreased the ratio of relevant call-

sites that use ECBmode from 63% to 47%, libraries have reduced this

ratio from 52% to 26%, i.e., a two fold improvement. Comparison

of the T15 and R16 datasets revealed that a randomly selected

application is less likely to use ECB mode than a top application.

Despite the positive outlook on the use of ECB mode, we found

that there was a statistically signi�cant increase in the use of static

IVs. In particular, since 2012 the ratio APK �les that use symmetric

ciphers with a static IV in CBC mode has increased from 32% to 96%

(see Figure 2 - Rule 2). The ratio of relevant call-sites has increased

from 31% to 71%. Libraries were the main source of the increase.

Applications, at the same time, have reduced the ratio of call-sites

that violated Rule 2. A comparison of the T15 and R16 datasets did

not reveal any practically signi�cant changes, i.e., both of these

datasets were comparable.

By 2016, the ratios of APK�les and call-sites to symmetric ciphers

that use static encryption keys have increased (see Figure 2 - Rule

3). In particular, the ratio of APK �les that violate Rule 3 increased

from 70% to 93%, and the ratio of call-sites that use symmetric

cipher with static key increased from 45% to 57%. Both, applications

themselves and libraries, have become worse. Although, one might

say that the ratio of APK �les for applications have decreased, this,

however, was due to the increase in the number of libraries and the

ratio of all calls libraries make. This provides evidence that using

the ratio of APK �les with misuses is biased towards libraries.

In addition, we extracted the top-5 used symmetric ciphers from

each dataset, as summarized in Table 5. We observed two troubling

patterns. First, we found that the RC4 cipher has made it to the

top-3 used ciphers in both T15 and R16, even though it is considered

insecure [23] and security community has suggested to remove it

from cryptographic libraries [29]. Second, the results revealed that
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Cipher (%)

Call sites AES DES 3DES RC4 Blow�sh Others

R16 251,021 64.4 14.3 1.1 2.1 0.9 17.2

R12 31,192 58.9 19.0 8.8 0.4 1.9 10.9

T15 14,105 67.8 9.8 0.8 1.1 0.8 19.7

Table 5: The top-5 ciphers used in Android applications.

while DES remained second most used cipher, the popularity of

3DES, a more secure version of DES, has decreased eight folds.

To summarize, while the the popularity of ECB mode has sig-

ni�cantly decreased, the use rates of static IVs for CBC mode and

static encryption keys have increased. In addition, insecure ciphers,

namely DES and RC4, were the second and third most used in 2016.

7.3.3 Password-based encryption. The rates of misuse of PBKDF

have overall decreased for both static salts (Rule 4) and the number

of iterations (Rule 5), as shown in Figure 2 - Rule 4. In particular,

the ratio of APK �les that used static salts for PBKDF has decreased

from 81% to 74%. The ratio of APK �les that used fewer than 1,000

iterations decreased from 58% to 51%. The ratio of calls to relevant

crypto APIs that violate either rule 4 or 5 has also decreased (as

shown on Figure 2 - Rule 5). Source attribution analysis showed

that both libraries and applications have improved.

Comparison of T15 and R16 showed that, on average, 19% and

24% less APK �les from T15 violated Rules 4 and 5, respectively.

Analysis based on source attribution revealed that this e�ect was

mainly due to improvements in libraries in the T15 dataset and not

applications.

To summarize, in 2016 dataset, both applications and libraries

improved their use of PBKDF for PBE.

7.3.4 Random number generation. The use of static seed values

for SecureRandom has signi�cantly decreased since 2012 (Figure 2

- Rule 6). In particular, while the ratio of APK �les that used a static

seed for SecureRandom class has dropped from 73% to 67%, the

ratio of relevant call-sites with static seed value decreased to 43%,

from 69%. Analysis of call-sites revealed the likelihood of using

static seed in libraries has signi�cantly decreased (from 72% to 42%).

Comparison of the T15 and R16 datasets revealed that while libraries

in T15 signi�cantly outperformed those in R16, applications in T15

had higher violation rates than those in R16.

To summarize, both applications and libraries improved when it

comes to the use of SecureRandom.

7.4 The impact of third-party libraries

The results of source attribution analysis revealed that R12, R16 and

T15 contained 260, 638 and 265 libraries respectively, 222 (85%), 507

(79%) and 198 (75%) of which violated at least one crypto APIs use

rule. These libraries with violations were the only source of misuses

for 6,932 (70%), 79,207 (89.5%), and 2,629 (75.3%) of APK �les in R12,

R16, and T15 respectively. To this end the BinSight system allowed

us to improve upon CryptoLint results by identifying originally

missed 249 libraries (out of 260) in the analysis of the R12 dataset.

Another important factor to consider for the analysis of libraries

is their popularity. That is, a popular library with a misuse will

Figure 3: Proportion of APK �les that would become free

from crypto APIs misuse, depending on the number of �xed

top ranked libraries. The legend shows the total number of

applications that had at least one misuse in the correspond-

ing dataset.We identi�ed 222, 507 and 198 libraries withmis-

use in the R12, R16 and T15 datasets, hence, the end of the

corresponding curves.

impact a signi�cantly larger subset of APK �les. To understand

how the popularity impacts the misuse rates we proceeded with

the following analysis: we measured the number of APK �les that

would be misuse-free if one starts �xing libraries, starting with the

most popular ones �rst. Figure 3 shows this impact for each dataset.

In particular, by �xing the top most library in R16, one would make

50,015 APK �les misuse free (or 56% of all APK �les with misuses),

and by �xing all 507 libraries with crypto APIs misuse, one would

�x 79,207 APK �les (or 89.5% of APK �les with misuses).

7.5 In-depth analysis of the top libraries

Considering that the top libraries are responsible for a large portion

of �agged APK �les, e.g., the topmost library in R16 was responsible

for 56% of the APK �les, we conducted an in-depth manual analysis

of the top-2 libraries, shown in Table 6, from each dataset. This

resulted in �ve libraries analyzed, since one library was in top-2

for two datasets. The main objective of the manual analysis was

to understand the purpose for the use of cryptography and the

security implications of misuse.



Rank in dataset

Company Library Package Violated rules R16 R12 T15

Google Play SDK com.google.android.gms.internal 2, 3 1 – 1

Apache HTTP Auth org.apache.http.impl.auth 1 2 3 5

InMobi Advertising com.inmobi.commons.core.utilities.a – 3 – 2

Google Advertising com.google.ads.util 3 38 1 36

VPon Advertising com.vpon.adon.android.utils 1, 3 – 2 –

Table 6: Top-2 libraries that use Java cryptographic APIs. Empty values mean the library was not found in the dataset.

7.5.1 Google advertisement. This library was the top library in

the R12 dataset, and in the top 40 in the T15 and R16 datasets. This

library provides advertisement services to applications. It makes use

of data encryptionAPI in AdUtil class, located in com.google.ads.util.

The implementation uses static key for encryption (i.e., violates Rule

3), which is hard-coded in AdUtil class. The encryption function

receives plaintext as a string and returns cipher text, also as a string.

The encryption uses AES cipher in CBC mode with PKCS5Padding.

The encryption function is later used to encrypt a string repre-

sentation of user’s location, before it being sent back to Google’s

servers. Considering that the communication happens over HTTPS

protocol, the use of a static key does not impact con�dentiality in

the presence of a network attacker. In addition, we found that in

R16 and T15, this library has signi�cantly changed. In particular,

the newer version did not use encryption anymore. The structure of

the library got signi�cantly simpli�ed as well. There were, however,

several applications in both T15 and R16, where the old version

of the library was used. Interestingly, these applications were rela-

tively recently updated (2 – 3 months prior the data collection of

T15 and R16). This observation con�rms is in line with the �ndings

from a recent study [8] that suggests that application developers

are usually slow to adopt new versions of the libraries.

7.5.2 VPon advertisement. This library is also an advertisement

library, present only in the R12 dataset. It uses a cipher to encrypt

and decrypt data. All identi�ed call-sites were located in CryptU-

tils class, located in com.vpon.android.utils package. This library

violated two rules, the use of ECB mode (rule 1) and static encryp-

tion key (rule 3). CryptUtils class exposes two types of encryption

functions, one that uses javax.crypto.SealedObject as an input for en-

cryption, and one that accepts key and data as a string and returns

a string as a result. The functions that work with SealedObject

are used to encrypt requests that are sent back to the server and

decrypt responses from it. This suggests that the static key is shared

between the library and VPon’s servers. The requests are sent both,

over HTTP and over HTTPS. Unfortunately, we were not able to

understand exactly which data are sent over which protocol. The

second function, based on strings as input and output, is only used

to decrypt obfuscated string literals. Decrypting string literals in

Android applications is a common obfuscation technique. To sum-

marize, this library violates two rules (use of ECB mode and use of

static key) to communicate with the advertisement server and to

obfuscate data.

7.5.3 Apache library. This library allows applications to com-

municate over HTTP and HTTPS protocols. The library, was the

only library in top 5 in all three datasets. It called crypto APIs in

multiple locations, but one speci�c call site, which used ECB mode,

drew our attention. In particular, the ECB mode is used in the im-

plementation of a suit of NT Lan Manager (NTLM) authentication

protocols, which are commonly used to authenticate over HTTP(s).

This protocol, by design, uses DES cipher in ECB mode (i.e., violates

rule 1), to implement challenge response validation. It, however,

encrypts only a single cipher block (i.e., 8 bytes) consisting of a

random challenge, which creates cipher-text indistinguishable from

each other. This case is an example of functional false positive, i.e.,

the use of ECB mode in such scenario (single block of random data).

It, however, is prone to other attacks, such as exhaustive search of

the encryption key, due to the use of a insecure cipher, that is DES.

7.5.4 Google Play SDK. This library provides services of Google

Play platform, such as In-App purchases or authentication with

Google accounts. It was the top most library in both T15 and R16,

and was absent from the R12 dataset. The library violated two

rules, the use of static IV and static keys (rules 2 and 3). Inter-

estingly, this library implemented decryption function only, that

accepts an array of bytes as a key and a string as a cipher-text

and returns the plain-text as a byte array. We found that the key

is hard-coded as a property in a static class, which is located in

com.google.android.gms.internal package. The same static class con-

tains all the cipher-texts that get decrypted. Further analysis re-

vealed that one of the cipher-texts was actually an encrypted DEX

�le, which upon decryption (about 3Kb in size) was loaded into

application’s space through Java Re�ection API. The remaining

cipher texts were string literals that identi�ed properties and func-

tions of the dynamically loaded class. It is clear, that this is a case

of obfuscation, hence, a functional false positive.

7.5.5 InMobi advertisement. This library (second most popular

in T15) allows applications to show In-App advertisements. The

call-sites to Cipher facilities were found in InternlSDKUtil, lo-

cated in com.inmobi.commons.internal package. This class uses AES

cipher in CBC mode with PKCS7 padding. It also sends to the server

a symmetric key encrypted with RSA cipher. We found that this

library, similarly to VPon, uses encryption facilities to encrypt com-

munications with their back-end server. Interestingly, we saw the

use of both HTTP and HTTPS protocols for the communication

to the same host name, thus, it is unclear why the library develop-

ers had not switched all communications to HTTPS. This library

generates an encryption key once, stores it in SharedPreferences

and then reuses it on all sub-sequent communications. Formally,



InMobi’s implementation does not violate any of the IND-CPA rules

related to the cipher.

7.6 The impact of third-party libraries revisited

The results of in-depth analysis of the top libraries revealed that the

current approach for identifying crypto APIs misuses in Android

applications might be su�ering from a signi�cant ratio of functional

false positives. We classify a misuse case as a functional false posi-

tive if the actual use of the crypto APIs was not meant to provide

integrity or con�dentiality protection. For example, while Google

Play SDK violated rules 2 and 3, it did so for obfuscation purposes

only. Another limitation of the current approach is missing certain

edge cases, e.g., encryption of a single block of random data in ECB

mode. Such cases, however, signi�cantly in�ate the misuse rates

(e.g., the impact of Apache library on overall misuse rates), and thus,

convey a wrong state of actual misuse of cryptography in Android

applications. Future research should focus on expanding BinSight’s

ability to classify if cryptographic APIs are used for obfuscation

purposes.

8 DISCUSSION

The results of our analysis revealed that both applications and li-

braries decreased their reliance on ECBmode for symmetric ciphers.

Libraries, however, have signi�cantly increased the use of static

IVs and static encryption keys. This suggest that while application

developers tried to move away from insecure ECB mode, they failed

to do so properly. The failures to adopt secure encryption might be

explained by the lack of understanding or incomplete documenta-

tion [13]. Another possible factor is the introduction of a warning

message into the Android Studio after the CryptoLint study was

conducted. The warning message highlights the insecurity of ECB

mode (“...because the default mode on android is ECB, which is inse-

cure.” ). To our surprise, we found that the Crypto Stack-Exchange7

is full of invalid suggestions on how to �x this warning message.

The use of PBKDF has also improved since 2012. In particu-

lar, both applications and libraries reduced the use of static salts.

They also improved on the number of iterations used to derive

keys for PBE. Interestingly, we found that libraries used by the top

applications (the T15 dataset) were signi�cantly better at using

PBKDF. Furthermore, we found that, since 2012, both applications

and libraries had improved on the use of SecureRandom class. To

our surprise, while libraries in the top applications signi�cantly

outperformed those in R16, the top applications themselves were

signi�cantly worse than those in R16. Considering that the Se-

cureRandom class can seed itself and that re-seeding again does

not decrease its entropy, we suggest that this class should always

seed itself, even if a seed value is provided to the constructor of the

class.

Future research on human factors in security should investigate

the impact of warning messages for developers on misuse rates

of crypto APIs. In addition, to supplement the warning messages,

Google can provide to application developers “ready-to-use” code

snippets in Android Studio IDE. This would eliminate the neces-

sity for the developers to search online for code examples that,

potentially, might have implementation issues.

7http://crypto.stackexchange.com/

While our results suggest that there is a positive trend, research

community should focus on how to improve the state of the practice

even further. For example, onemight consider showing amessage to

the application developers that describes the implications of using

static salt and fewer than 1,000 iterations. Such a warning message

might include time estimates of how long a password guessing

attack would take to go through the password space.

It also worth mentioning that insecure ciphers, namely DES and

RC4, are still among the top three most used ciphers. Even more,

the popularity of triple DES has decreased eight folds. While it

is unclear why DES and RC4 gained popularity, future research

should focus on ways to reduce their usage. For instance, one might

consider similar warning messages, when a developer tries to use

these ciphers.

9 LIMITATIONS AND FUTUREWORK

By using static analysis we inherited all the limitations that come

with it. In particular, our super Control Flow Graph (sCFG) is an

over estimation of the actual sCFG. This creates a risk to validity

of our results, where we analyze a path that never gets executed.

While dynamic analysis might address this issue, it is impractical

on large sets of applications. We leave the extension of BinSight

with a dynamic analysis for future research.

While one cannot obfuscate calls to platformAPIs, such as crypto

APIs, it is still possible to hide them. In particular, one can use Java

Re�ection APIs to side-load a binary that would make the actual

call to the APIs under investigation. Since, in this research, we did

not study the use of Java Re�ection API for hiding crypto APIs calls,

future research should consider addressing this limitation.

Even though the ratio of fully obfuscated classes in our datasets

was negligible (2.5% in R16), understanding how fully obfuscated

applications di�er from others is still an important and interesting

research question to investigate. Such low adoption of full obfusca-

tion, on the other hand, allowed us to use trivial yet e�cient and

e�ective source attribution based on package names.

Finally, while looking into the top libraries we found that not

all misuses of crypto APIs necessarily have security implications.

Our analysis, however, was exploratory in nature and does not

provide precise assessment of what ratio of all identi�ed crypto APIs

misuses were functional false positives. Considering that the top

library from R16 was responsible for 56% of �agged APK �les and it

used crypto APIs only for obfuscation, we suspect that a signi�cant

portion of misuse cases are such functional false positives. Future

research should focus on addressing this knowledge gap.

10 CONCLUSION

We studied how crypto APIs misuse in Android applications has

changed between 2012 and 2016. By introducing source attribution

to the process, we also were able to examine how misuse rates have

changed in applications and libraries separately. Overall, we found

that signi�cantly fewer libraries and applications were using ECB

mode in 2016. However, libraries have signi�cantly increased the

use of static IVs (for ciphers in CBC mode) and static encryption

keys. At the same time, applications have signi�cantly reduced

the use of static IVs and keys. Both libraries and applications have

improved in the use of PBKDFs and SecureRandom, i.e., there was



a signi�cant decrease in the use of static salt, fewer than 1,000

iterations and static seed.

We also identi�ed several limitations in the previous research

(i.e., the CryptoLint study [20]). In particular, while the authors

of CryptoLint did white-list 11 libraries, they missed 249 libraries,

which resulted in over-counting, since 70% of identi�ed by them

misuse cases originated from 222 libraries. Furthermore, we showed

that using APK �les ratio with misuses as a measure of crypto APIs

misuse is highly biased towards libraries, especially the popular

ones. To improve the reporting we suggest to measure also the ratio

of call-sites that make a mistake.

Finally, through manual analysis of the top-2 libraries in each

dataset, we showed that the current approach used for identi�cation

of crypto APIs misuse needs further improvement. In particular,

by manually analyzing the top-2 libraries from each dataset we

showed that it su�ers from a signi�cant rate of functional false

positives, i.e., cases when crypto APIs are used for other reasons

than con�dentiality or integrity protection. We suggest that future

research should consider improving the technique of identifying

misuse of crypto APIs.

We made BinSight framework available as open source. In addi-

tion, we will provide data for the R16 and T15 datasets upon request.

For the R12 dataset we refer readers to the authors of CryptoLint.
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11 APPENDIX

11.1 BinSight Linting Pipeline

The overall analysis pipeline is shown at Figure 4. In what follows,

we provide technical details on disassembly, de-duplication, and

linting.

Each downloaded APK �le undergoes a two-step pre-processing

stage before it gets linted. The goal of this stage is to �lter out all

applications that do not use crypto APIs and remove all duplicate

APK �les, as described below.



Figure 4: Cryptographic API linting for Android applications using BinSight. Gray components represents parts that were

reimplemented from CryptoLint [20], and white components represent the extensions that we added.

11.1.1 Disassembly. Similar to CryptoLint, our analysis oper-

ates on a higher-level representation of the Dalvik bytecode. In

particular, we use ApkTool [2] to decode an APK �le and disas-

semble it into a set of Smali �les. Each Smali �le represents a class

de�nition, and uses DEX op-codes to represent instructions [3]. We

picked ApkTool over AndroGuard [9], which was used by Cryp-

toLint, to improve analysis reliability. As shown in §7, we were able

to analyze all but six applications across the three datasets, while

CryptoLint failed to analyze 23% of applications in the original

dataset.

After an application is disassembled, we search all its generated

Smali �les to locate entry points to crypto APIs. If such entry points

are not found, the application is disregarded from further analysis.

Otherwise, we proceed to the de-duplication step.

11.1.2 De-duplication. Downloading thousands of APK �les

fromGoogle Play is technically challenging. First, it has to span over

weeks or months, in order to avoid account blocking. Second, an

application might be listed in multiple categories. These challenges

lead to duplicates in a dataset. Removing duplicates is important for

validity of the results. For de-duplication we relied on application

ID, which is stored in the APK’s manifest �le.

For each dataset separately we generated a list of all APK �le-

names, corresponding application Id and its download time (for

T15 and R16) or, when available, application version (R12). We then

identi�ed all duplicates within a dataset by grouping �les with the

same application Id. For identi�ed duplicates within a dataset we

kept the latest version of the application, based on its download

date or version.

11.1.3 Linting. In order to evaluate the rules de�ned in §3 Bin-

Sight computes static program slices that terminate in calls to crypto

APIs, and then extracts the necessary information from these slices

to evaluate if a corresponding rule was violated or not. We next

give a brief overview of the three main steps involved in this stage,

and refer the reader to related work for more details [20, 31].

11.1.4 Super Control Flow Graph extraction. It is typical for an

application to use crypto APIs in multiple methods. For example,

a cipher object could be instantiated in an object constructor and

then used in two di�erent methods to encrypt and decrypt the

data, respectively. If the two methods are analyzed in isolation, we

will not be able to extract the encryption scheme that was used

when the cipher object was instantiated. Fortunately, the super

control-�ow graph (sCFG) of an application allows us to perform

Endpoint signature Rule

Cipher.getInstance() 1

cipher.init() 2

secureRandom.setSeed() 6

new SecretKeySpec() 3

new PBEKeySpec() 4

new PBEParameterSpec() 5

new SecureRandom() 6

Table 7: Cryptographic API endpoints and related rules.

inter-procedural analysis, which is required to correlate the use of

a cipher object for encryption and decryption with its instantiation.

BinSight constructs the sCFG of a preprocessed application as

follows: First, it extracts the intra-procedural CFGs of all methods

from the decoded Smali class �les. This task also involves trans-

lating all methods into single static assignment (SSA) form [17],

and extracting the class hierarchy of all classes in the application.

After that, BinSight superimposes a control-�ow graph over the

CFGs of the individual methods, resulting in the sCFG. Similarly to

CryptoLint [20], BinSight adds call edges between call instructions

and method entry points, and method exit points are connected

with exit edges back to the call site. Similar to CryptoLint, BinSight

reconstructs an over-approximated sCFG of the application.

11.1.5 Static program slicing. Static program slicing is the com-

putation of a set of program statements, called slices, that may

a�ect the values of certain variables at a particular program point

of interest, referred to as a slicing criterion [15]. BinSight applies

static program slicing on the sCFG to identify if the analyzed appli-

cation uses any of the crypto APIs. In particular, BinSight searches

the sCFG for nodes that belong to Java’s crypto APIs endpoints. If

these nodes are found, it uses their incoming edges to locate all call

sites in the application. Note that this search depends on the type of

the crypto APIs endpoint in the sCFG. Table 7 shows the relevant

API endpoints and their corresponding cryptographic rules.

11.1.6 Rule evaluation. Rule evaluation depends on the values

assigned to the parameters of crypto API call, where value assign-

ment can be either local or external to the containing method. For

the earlier case, BinSight computes a backward slice of the program

to all possible locations where the involved parameter is set, af-

ter which we apply validation logic on its value. As for the latter

case, the evaluation depends on the origin of value assignment



outside the method. As such, BinSight computes backward slices to

all locations where this value can be assigned. BinSight stops the

computation if it reaches a dead-end, where a node does not have

any incoming edge or it reaches an assignment to a static value.

11.2 Rule-based classi�cation

The following rules were de�ned as a result of several manual iter-

ations over all unique class identi�ers. We ran these rules several

times over all unique class identi�ers and every time manually ana-

lyzed the results. Our main objective at this point is to �nd patters

that we can include into our classi�er. Eventually we came up with

the seven rules (listed below) that allowed us assign automatically

the level of class identi�er renaming (CIR), i.e., none, class, partial,

and full CIR obfuscation.

(1) If all parts of the identi�er are of length one, then this case

is full obfuscation.

(2) If all but the �rst part of the identi�er are of length one and

the �rst part is in the set {com, ch, org, io, jp, net}, then this

case is partial obfuscation.

(3) If none of the package name parts in the identi�er are of

length one, then this case is either none or class-level obfus-

cation.

(4) if at least one part but not all of the identi�er are of length

one, then the case is partial obfuscation.

(5) If class name is longer than 3 chars then it is none obfusca-

tion.

(6) If class name length is 1 character, then this case is class

obfuscation.

(7) If class name of length 2 or 3 characters and the �rst character

is in lower case, then this is class obfuscation.


