
Client-Server Semantic Binary Database: Design and Development

Konstantin Beznosov

High Performance Database Research Center

Florida International University

http://www.cs.fiu.edu/˜beznosov

December 9, 1996

Abstract

This paper describes design and implementation of client-server architecture for Semantic Binary

Database Management System developed at High Performance Database Research Center1, Florida In-

ternational University2. We present a conceptual view of the system architecture, give a detailed picture

of its layers responsible for client-server interaction, describe implementation issues, and, if time con-

straints allow3, present performance tests results.

The document is available in electronic form at http://www.cs.fiu.edu/˜beznosov/client-server-SDBMS.

1 Introduction

The semantics and object-oriented database technologies are emerging in more and more application areas

where they are found to be more suitable to problem model, more easier to design, maintain and provide

1http://hpdrc.cs.fiu.edu
2http://www.fiu.edu
3This paper is originally written as a project in “Advanced Database Systems” Fall 1996 class COP6545 lead by Professor Dr.

Chen. So, it had to comply with regular school deadlines, etc.



2 SEMANTIC BINARY DATABASE ARCHITECTURE 2

data integrity, than current relational database technology. Advocation of semantics model as well as a

detailed description of it can be found in [Ris92]. One of the semantic binary database prototypes is under

development at FIU High Performance Database Research Center. The prototype will be referenced further

asDBMS.

The remainder of this paper is organized as follows. Section 2 describes the architecture of the DBMS.

Section 3 presents the design of client-server version of the DBMS. Details of the implementation are ex-

plored in Section 4. Performance considerations and test results are discussed in Section 5. Conclusions are

contained in Section 6.

2 Semantic Binary Database Architecture

The principal structure of the DBMS is depicted on Figure 1. The user application only interacts with

semantic engine through semantic engine interface. The semantic engine, in its turn, uses interface to B-

Tree to initiate a session, conduct queries and transactions as well as to end a session. Although B-Tree

engine is designed as B-tree with its unique decisions, modifications and optimizations, in this paper,B-Tree

refers not to the type of data storage structure known asB-treebut to the constructive layer of the DBMS. To

distinguish these two names, we will refer to the corresponding DBMS layer as B-Tree (with capital “T”)

and as B-tree to data storage structure.

2.1 Semantic Engine

2.2 B-Tree Engine and Interface

Each DBMS has a single B-Tree. B-Tree stores all data in its internal representation on local disks, as well

as it ”remembers” results of recently served queries in the main memory cache. The current version of B-

Tree is a direct implementation of Semantic Binary Model defined in [Ris87] and the data structure closely



2 SEMANTIC BINARY DATABASE ARCHITECTURE 3

Operating System

Hardware

Operating System Interface

B-Tree Engine

B-Tree Interface

Semantic Engine

Semantic Interface

Application

Figure 1: High level structure of semantic database

resembles that described in [Ris91]. A detailed description of B-Tree design is beyond the scope of this

paper. The interface to B-Tree is more important in the paper context.

B-Tree interface provides the following simple operations to semantic agent, which acts on behalf of the

currently running application4:

Login Authorizes the user of the application to interact with the DBMS and begins asession5 by opening

specified DBMS in requested mode6.

Query Retrieves information from the DBMS submitting query in the form ofatomic retrieval operation

described in [Ris91, p.4]. The semantic agent receives blocks of retrieved information.

Transaction Submits transaction by providing a set of facts to be inserted into the DBMS, a set of facts to

be deleted from the DBMS, as well as a list of fact ranges needed to verify that there is no interference

4Due to software development life-cycles the interface is subject to change as long as it is internal and the database development
continues. The main idea of providing service to semantic engine with ability to submit query and to perform transaction will stay
the same though.

5After session is opened, all queries and transaction are submitted without athorization information.
6Creating of new database is just one of possible modes in analogy with Unix operationopen.



3 CLIENT-SERVER DESIGN 4

between transactions of concurrent programs. If the transaction failed, the semantic agent receives a

list of fact ranges that were interfering with the transaction.

Logout Ends the current session.

3 Client-Server Design

In client-server version, the following partitioning of DBMS functionality has been chosen (Figure 2): se-

mantic engine resides on a client and B-Tree engine resides on a server. In this manner, multiple instances

(on each client) of semantic engine interact with one instance of B-Tree7 (on a server). While performing

queries, each client accumulates results of those queries in its own cached image of the server B-Tree called

local B-Tree.

4 Implementation

Communication engine has been implemented by means of Open Network Connectivity Remote Procedure

Call (ONC RPC, further just RPC) industry standard widely available on Unix and most of other platforms

in commercial as well as public domain variations.

Each call to B-Tree interface on the client site is translated in to a sequence of calls, each of them

manipulates with only small and simple data structures. Every such call is performed remotely on the

database server containing actual B-Tree engine via RPC facilities. Results are translated back into complex

data-structures of potentially unlimited size, and are returned to Semantic engine.

7In case of distributed database, multiple servers will be hidden behind B-Tree interface such that clients will still see one logical
server. Although each client might interact with a different server in fact.



5 PERFORMANCE 5

ServerClient

Local B-Tree Cache

Communication Engine

B-Tree Interface

Semantic Engine

Semantic Interface

Application

Communication Engine

B-Tree Engine

B-Tree Interface

Figure 2: High-level structure of client-server design

5 Performance

To better understand the effectiveness of the current design and implementation, we conducted a number of

performance tests for different system configurations.

5.1 Configurations

We set four different configurations of the DBMS:

1. Standalone configuration presented on Figure 1 where database files reside on local disk. This config-

uration is used as a reference since for this standalone mode and local disks, neither network delays

nor communication overhead are presented. We will refer to this architecture asstandalone local

approach.



5 PERFORMANCE 6

2. Standalone configuration where database files reside on remote disk8 and accessed via remote file

service such as SUN NFS [Sun88]. It is calledstandalone NFS.

3. Distributed configuration where a client and a server are two different processes and they are located

on the same machine so that no network delay (only communication overhead) is introduced. This

configuration is referred to aslocal client-server.

4. Distributed client-server configuration where a client and a server are located on different hosts of

10 Mbps Ethernet LAN.

5.2 Benchmarks

To compare the performance of described configurations, we used a suite of TPC-C9 standard business

database benchmark developed by benchmark group of SDB project. Since the process of running bench-

marks did not comply10 100% with official TPC-C specification we call it qTPC-C. We believe that results

are still useful because we compared different configurations of the same database, and we avoided compar-

isons with results of TPC-C benchmark run on different database systems.

Solaris 2.5.x platforms have been choosen for experiments. For each run, total 1000 complex TPC-

C specified transactions have being applied to the database created before. Original size of the database

is 195 MB. The first and last 50 transaction were ignored to count performance only of system in the

“stable” state. During each run, the database grew every time up to about 222 MB. Final size of local

B-Tree cache of semantic engine11 was total 2 KB. In distributed client-server as well as standlone NFS

configurations, B-Tree engine were running on computer with more “horse power.” The same machine was

8This particular test configuration is inspired by [DMFV90].
9http://www.tpc.org/bench.descrip.html

10The main deviation was ommiting various delays requied by the specification so that the tests could be accomplished in shorter
time.

11Local B-Tree cache was created for every configuration, even standalone for sake of uniform interface to B-Tree. That is,
Semantic layer is not aware wether B-Tree server is on local or remote host.



5 PERFORMANCE 7

used for configurations where semantic and B-Tree engines were supposed to be on the same host.

5.3 Result Analysis

This section presents results of qTPC-C benchmark runs. Total performance is represented by Accumulated

Transactions Per Minute (TPM) value. Specific types of qTPC-C a represented separately and they show

Accumulated Average Responce Time (AART) for each type of transaction in fractions of second. In all

cases, ATPM and AART are measurements based on all transactions executed since the beginning of the

run, hence Accumulated. CPU time used by process is used to compute results.

5.4 Total Performance

The most important performance characteristic in TPC-C suite is total throughput of the system in terms of

accomplished transactions per minute.

0

1

2

3

4

5

6

7

50 150 250 350 450 550 650 750 850 950

T
ra

ns
ac

tio
ns

/m
in

ut
e

Total Transactions

standalone local
local client-server

distributed client-server
standalone NFS

Figure 3: Transactions/minute

As we can see from 3 the performance of the system is the worse when remote file service like SUN NFS



5 PERFORMANCE 8

is used to provide access to the data. Two-fold better performance is observed for distributed client-server.

If network delays are avoided (local client-server) client-server configuration is as good asstandalone local

configuration. We will see further local client-server version even out-performs on all types of transactions.

5.5 Transactions By Type

Performance of different system configurations by transaction type was measured in terms of average trans-

action responce time accumulated over all executed transactions.

0

1

2

3

4

5

50 150 250 350 450 550 650 750 850 950

A
A

R
T

 (
se

c)

Total Transactions

standalone local
local client-server

distributed client-server
standalone NFS

Figure 4: New-Order Transaction

In each of five transaction types, the system demonstrated substantial advantage ofdistributed client-

serverconfiguration overstandalone NFSin response time. Main reasonlocal client-serverconfiguration

outperformsstandalone localis that only CPU time spent on client site of the transaction was measured.



5 PERFORMANCE 9

0

0.2

0.4

0.6

0.8

1

50 150 250 350 450 550 650 750 850 950

A
A

R
T

 (
se

c)

Total Transactions

standalone local
local client-server

distributed client-server
standalone NFS

Figure 5: Payment Transaction

0

0.5

1

1.5

2

2.5

50 150 250 350 450 550 650 750 850 950

A
A

R
T

 (
se

c)

Total Transactions

standalone local
local client-server

distributed client-server
standalone NFS

Figure 6: Order-Status Transaction



5 PERFORMANCE 10

0

2

4

6

8

10

12

14

50 150 250 350 450 550 650 750 850 950

A
A

R
T

 (
se

c)

Total Transactions

standalone local
local client-server

distributed client-server
standalone NFS

Figure 7: Delivery Transaction

0

5

10

15

20

25

30

35

40

50 150 250 350 450 550 650 750 850 950

A
A

R
T

 (
se

c)

Total Transactions

standalone local
local client-server

distributed client-server
standalone NFS

Figure 8: Stock-Level Transaction



6 CONCLUSION 11

6 Conclusion

The client-server version of Semantic Binary Database is implemented and preliminary results of simplified

TPC-C benchmark show that the implementation can have good performance when it is optimized and tuned.

6.1 Future Work

The main next step is to conduct more precise tests. For example fully compliant with specification TPC-C

benchmark will be a very good aid to analyze system performance objectively. It will be interesting to see

the difference in performance via 10 Mb/s Ethernet and 155 Mb/s ATM12 technologies, as well as emulated

by using modem connection WAN. It is necessary to measeer CPU time spent by server on each transaction

to have more realistic results. Also its scalability should be measured to appreciate real advantages of

client-server implementation.

The second phase in completing client-server implementation should be optimization of communication

engine. Feasible directions in this phase will be clearly seen after getting more precise measurements. For

now we can state the following possible ways to achieve better performance: minimization number of RPC

calls per transaction and query call, minimization of memory based operations might also help in gaining

better performance.

References

[DMFV90] David DeWitt, David Maier, Philippe Futtersack, and Fernando Velez. A study of three alter-

native workstation-server architectures for object-oriented database systems. InProceedenings

of 16th VLDB Conference, Australia, August 1990.

12Using IP over ATM [Lau94].



REFERENCES 12

[Lau94] M. Laubach. Classical IP and ARP over ATM, RFC#1577, January 1994. The document is

available in electronic form at http://fury.nosc.mil/general/atm-rfc/rfc1577.html.

[Ris87] Naphtali Rishe. Database semantics. Technical Report TRCS87-2, Univeristy of California,

Santa Barbara 1987.

[Ris91] Naphtali Rishe. A File Structure for Semantic Databases.Information Systems, 16(4):375–385,

April 1991.

[Ris92] Naphtali Rishe.Database Design: The Semantic Modeling Approach.McGraw-Hill, 1992.

[Sun88] Sun Microsystems.Network Programming Guide, May 1988. Part Number: 800-1779-10.


