
Pervasive and Mobile Computing 32 (2016) 26–34

Contents lists available at ScienceDirect

Pervasive and Mobile Computing

journal homepage: www.elsevier.com/locate/pmc

Decoupling data-at-rest encryption and smartphone locking
with wearable devices

Ildar Muslukhov ∗, San-Tsai Sun, Primal Wijesekera, Yazan Boshmaf,
Konstantin Beznosov

The University of British Columbia, 4085-4224 Main Mall, Vancouver, BC, Canada

a r t i c l e i n f o

Article history:

Available online 5 July 2016

Keywords:

Smartphone loss and theft

Data-at-rest encryption

Smartphone locking

Wearable devices

Encryption keys management

a b s t r a c t

Smartphones store sensitive and confidential data, e.g., business related documents or

emails. If a smartphone is stolen, such data are at risk of disclosure. To mitigate this

risk, modern smartphones allow users to enable data encryption, which uses a locking

password to protect the data encryption key. Unfortunately, users either do not lock

their devices at all, due to usability issues, or use weak and easy to guess 4-digit PINs.

This makes the current approach of protecting confidential data-at-rest ineffective against

password guessing attackers. To address this problem we design, implement and evaluate

the Sidekick system — a system that uses a wearable device to decouple data encryption

and smartphone locking. Evaluation of the Sidekick system revealed that the proposal can

run on an 8-bit System-on-Chip, uses only 4 Kb/20 Kb of RAM/ROM, allows data encryption

key fetching in less than two seconds,while lasting formore than a year on a single coin-cell

battery.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the number of active smartphone users approaching two billion, these devices have become indispensable for
many users and companies. Users often store sensitive and confidential data, e.g., photos, videos, email messages, and
saved credentials. Unfortunately, only 50% of smartphone users choose to protect their data by enabling password-based
encryption (PBE) [1,2].

At the same time the wide adoption of the bring your own device (BYOD) policies in the organizations, i.e., a policy that
allows employees to use their own smartphones for business related purposes, creates a risk of corporate data disclosure [3].
Indeed, recent reports show that smartphone theft and confidential information disclosure have significant impact on
companies. In the US alone, every tenth smartphone owner has his smartphone stolen at least once [4]. More than 30% of
all street robberies involve a smartphone theft [5], and the number of stolen smartphones has doubled in 2014, reaching
3.1 million devices [6]. In addition, 46% of companies from North America and Europe stated that a theft of a data bearing
device, such as a smartphone, was the key factor in the data breaches they experienced [3].

The current approach to reduce the risk of sensitive information disclosure on smartphones is based on data
encryption. Users can enable PBE of data by setting up an encryption password. For usability reasons, in Android and iOS
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the same password is used for both PBE and smartphone locking/unlocking. The operating system (OS) then transparently
encrypts/decrypts data duringwrite/read operationswith a randomly generated data encryption key (DEK).1 For protection,
the DEK is encryptedwith a key encryption key (KEK). The encrypted DEK is then stored on themobile device, while the KEK
is not. Android and iOS derive the KEK from user authentication secret (e.g., a PIN or a password) by using a Key Derivation
Function (KDF), such as PBKDF2 (Password Based Key Derivation Function 2) or scrypt. The security encrypted data fully
depends on the strength of the authentication secret users choose to lock their smartphones.

Unfortunately, 9 out of 10 users that lock their devices tend to choose weak authentication secrets, such as 4-digit PINs,
citing usability issues as the key factors in that decision [2,7]. PINs not only can be easily eavesdropped [8], they can also
be guessed in a matter of minutes [9,10]. While the evaluation results of novel and usable authentication methods for
smartphones suggest that it is possible to mitigate certain threats, e.g., shoulder surfing, it is still challenging to increase
the entropy of the authentication secrets [11]. In an attempt to ease the burden of typing an unlocking password many
times a day, Touch Id, a biometric authentication sensor, was introduced to Apple’s iPhones and iPads. Although, this sensor
made it much more practical for users to employ harder-to-guess passwords, recent research showed that even with Touch
Id sensor enabled, users still prefer to use weak 4-digit PINs [7].

All of the above suggests that the current data-at-rest protection is ineffective against password guessing attackers.
That is, while organizations want their employees to lock their devices and use harder to guess passwords, users fail to
comply and would rather disable smartphone locking all-together if forced to employ stronger passwords with currently
available authentication methods. Even more, with the wide adoption of the BYOD, organizations are unable to enforce
these requirements on to their employees, since IT departments do not have control over the smartphones in use. This
makes the task of securing data-at-rest on smartphones against the risk of disclosure a hard and challenging problem for
commercial and governmental organizations. That is why in this paper we aim to answer the following research question
‘‘How canwe design a practical, readily deployable, efficient and effective system that mitigates password searching attackers who

aim to decrypt confidential data-at-rest while not requiring smartphone users to use stronger passwords?’’

Our Approach and Key Results. To address the problem of data-at-rest security for companies and organizations we
propose to use wearable devices to store randomly generated KEKs. Proliferation of wearable devices, e.g., smartwatches or
fitness trackers,makes such a proposal intriguing. First, such an approach canworkwith a limited connection to the Internet,
which gives it a better mobility. Second, using wearable devices allows us to decouple user authentication for smartphone
unlocking and data-at-rest encryption by storing randomly generated KEKs on a wearable device. Third, by using wearable
devices in a personal area network (PAN)we can use proximitymeasures (i.e., signal strength) to implement a cryptographic
‘‘lock-down’’ for confidential data, which works as follows. If a wearable device gets disconnected or the distance surpasses
a certain threshold, all KEKs and DEKs in smartphone’s RAM are wiped out and all corresponding applications are notified
about that event. KEKs and decrypted DEKs are only stored in RAM, hence, secure deletion of these keys from RAMmakes it
cryptographically infeasible to gain access to data theyprotect. Although, alreadydecrypteddata remain prone to exfiltration
while kept in RAM, applications can implement reaction to the disconnected event and securely remove that data as well.

To test the idea of usingwearable devices as KEKs storagewe designed and evaluated the Sidekick system, an effective and
practical system that uses an external wearable device to store randomly generated KEKs. The proposed system is effective
atmitigating adversaries thatmount brute-force attack on unlocking secrets, since it substantially increases the entropy of a
KEK, to at least 128-bit, without relying on users to remembermore complex passwords. In addition, unlike existing systems
with a single KEK, Sidekick allows having multiple DEKs and KEKs, which enables the use of unique DEK-KEK pairs per file,
directory or application. Such a fine grained approach coupled with a KEK wipe-out trigger based on proximity allows not
only limiting the damage from a successful cold-boot attack (due to a reduced set of files a single DEK can decrypt), but also
substantially increases required efforts for a successful cold-boot attack.

The evaluation of the Sidekick system revealed that the proposal is practical. First, the proposed system is cross-platform.
While we evaluated it only on iOS and Android, support for other platforms can be added trivially. Second, the Sidekick
system is backward compatible. That is, it works on new and old devices, as long as they support Bluetooth Low Energy
(BLE) — awireless communication stack that has been included in smartphones since 2011 [12,13]. In fact, we evaluated our
proposal on an iPhone 4S and a Samsung Galaxy S3, released in 2011 and 2012 respectively. Third, our proposal is efficient,
since power consumption overheads are negligible on smartphones and tablets. Furthermore, the power consumption on
a wearable device allows it to run for more than a year on a single coin-cell battery. Sidekick only requires explicit user
involvement during the initial pairing of the wearable device with her smartphone, an event that happens once. In addition,
minimal memory footprint (4 Kb/20 Kb of RAM/ROM) makes it possible to have Sidekick’s functionality as an additional
service to already available wearables. Finally, the proposal is relatively inexpensive, since it can be implemented on the
cheapest BLE-enabled System-on-Chip (SoC). In particular, in our evaluation we used a SoC that costs under $4. At the same
time the average cost of recovering from a data breach per record in 2014 was $218 and the average data breach involved
29,000 of such records [3]. A KEK can be fetched from wearable device in two seconds or less, which is faster than the most
common authentication methods, i.e., PIN-codes or Draw-A-Secret [14]. Overall, we argue that the Sidekick proposal is a
viable option for organizations that seek a way to protect their confidential data-at-rest in smartphones used and owned by
their employees.

1 Also called the master key in some sources.
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2. Threat model

In this section we describe threats, risks and attackers’ capabilities.

2.1. Threats and risks

The threats we consider in this work are smartphone loss and theft (we refer to both of them as theft for brevity). As a
result of a theft, the device ends up in hands of an attacker who wants to gain access to data stored on the stolen device
for any form of profit. Unlike existing adversarial models (e.g., see proposal by Do et al. [15]) we do not consider that the
attacker is interested in obtaining data in a forensically sound manner.

Once the device is in the hands of an attacker, there is a risk of confidential data disclosure. If the attacker obtains
confidential data then the victim might suffer losses (e.g., reputation damage or/and financial). For example, the victim
might have to pay fees for recovering from identity theft or fines for leaking private customer information.

2.2. Attack

If PBE is not enabled, then the attacker can access data trivially. If, however, PBE is enabled then the attacker extracts
a bit-by-bit image of the internal storage through his own or existing tools (e.g., [16]). The main reason for extracting the
image is to bypass OS level data wipe-out, which is usually triggered after a predefined set of unsuccessful authentication
attempts. For instance, in iOS user can enable device wipeout after 10 unsuccessful attempts. With the storage image in
hand, the attacker mounts a password guessing attack in order to recover the KEK.

During the attack, if the stolen device uses specialized hardware for PBE, the attacker might need to run certain
computations on that hardware. Such attacks are called on-device brute-force attacks and, in general, are significantly slower
than off-device attacks since massive parallelization becomes unavailable. Once the KEK is recovered, it becomes trivial to
recover the DEK and, consequentially, obtain access to encrypted data.

Since we are proposing using wearable devices, we ought to consider an increased attack surface. That is, we have
consider attacks on the wireless stack and the implications of such attacks on the overall security of encrypted data. First,
one can attempt to obtain KEKs transferred over the BLE channel. If such attack is successful, then one can decrypt DEK right
away. Second, the attackermight aim to corrupt KEK during transmission over BLE. If he succeeds in corrupting the KEK, then
the victim would use an incorrect KEK for DEK encryption, which later would render decryption of DEK cryptographically
impossible. Even more, KEK corruption attack allows locking users’ valuable data, which can be used by ransomware — a
malware that encrypts data and then extortsmoney for the decryption key.We consider KEK corruption during transmission
a significant risk to a positive user experience and system adoption.

2.3. General assumptions

We make several general assumptions in our threat model about the adversary’s capabilities. First of all, we assume
perfect cryptography, i.e., attackers cannot differentiate the AES cipher from a random permutation function. Considering
that non-generic attacks have yet to be found for the AES cipher this assumption is sound. We also assume that there are
no security bugs in the implementation of the data encryption system that would introduce a shortcut for encryption and
decryption (e.g., by using a hard-coded KEK or DEK, or by using a biased and predictable random number generator).

In addition,wedonot discuss or consider confidential data disclosure throughOS kernel compromises for several reasons.
First, having a secure OS kernel does not prevent the password guessing attack. Second, a compromised OS kernel renders
any data encryption ineffective. That is, if an attacker can compromise the OS kernel, he can extract all required data by
obtaining KEKs or DEKs directly from RAM.

Use of wireless communication stacks enables attackers to track users based on devices’ addresses (i.e., Media Access
Code). We, however, assume that tracking users is not one of the objectives of the attackers we consider. We argue that
such an objective is not only unrelated to data-at-rest security, but it can also be addressed with existingmethods and tools,
e.g., BLE privacy feature [13]. Neither do we consider deniability of data existence as one of the main requirements. In fact,
such a need can be addressed by using one of the available deniable file systems (e.g., [10]).

2.4. Crypto-attacker

The crypto-attacker aims to obtain confidential data-at-rest by recovering the KEK through password search. We make
the following assumptions about the crypto-attacker ’s capabilities. First, he has physical access to the victim’s smartphone.
Second, we assume that the crypto-attacker knows the design of the data encryption system and knows how the KEK is
generated. Third, we assume that he can obtain a bit-by-bit image of the internal storage on the stolen smartphone, which
allows bypassing the file system access control. Techniques that allow acquiring the raw storage image have been widely
discussed in the last few years [10,17]. Fourth, if the stolen device uses special hardware for data encryption, e.g., crypto-chip
in iPhones, he knows how to mount an on-device brute-force attack based on existing approaches [17]. Finally, we assume
that the crypto-attacker is not capable of brute-forcing pseudo-randomly generated 128-bit KEKs.



I. Muslukhov et al. / Pervasive and Mobile Computing 32 (2016) 26–34 29

Fig. 1. A smartphone, through Access Control sub-system, requests the user to authenticate. The user provides a correct authentication secret (1), which

is passed to the KeyManagement System (2). KeyManagement System at the same time receives a KEK (3) from awearable device (e.g., a fitness tracker or

smartwatch). KEK allows the corresponding DEK to be recovered, which is then passed to Data Encryption System (4) that encrypts/decrypts confidential

data (5).

2.5. Network-attacker

The network-attacker might have several objectives. First, he might be interested in data-at-rest stored on the
smartphone. In that case the attacker plans to steal the smartphone later, but first he aims to obtain all KEKs transmitted
over BLE in order to eliminate the necessity to do a KEK search later. Second, the network-attacker might be interested in
corrupting KEKs to cryptographically lock users’ valuable data. The attacker can then use his knowledge of how he corrupted
the KEK and request ransom payment from the victim.

To compromise thewireless channel, the network-attacker can use one of the two approaches. First, the attacker can focus
on the wireless messages themselves by exploiting insecure protocols and gaining the ability to recover or corrupt KEKs.
In particular, we assume that the network-attacker is able to exploit vulnerabilities reported in BLE stack thus far [18–20].
In particular, these attacks showed that recovering devices pairing key is practical, which allows the attacker decrypting
and modifying any message transmitted over BLE stack. Second, if the attacker has control over an application on victim’s
smartphonewith access to the BLE stack (cf. misbonding attack [21]), he can communicatewith thewearable device directly
and retrieve all required KEKs before stealing the device. In order to mount a misbonding attack one needs to get access
to the BLE stack, e.g., by requesting android.permission.BLUETOOTH permission for an Android application. This allows the
application to communicate with all Bluetooth devices that are paired and connected, including the wearable device used
for KEKs storage.

3. Our approach

The third step of the flow (presented at Fig. 1) is the only part that differentiates our proposal from all existing systems.
That is why in the remainder of this paperwe focus on security and performance evaluation of that step. Tomitigate the risks
associated with the theft of a smartphone, we propose to use a wearable device in the encryption keys management sub-
system. Existing systems, such as TrueCrypt and BitLocker, already support the use of physically attached devices, i.e, USB
flash drives, to store encryption keys [22,23]. The use of external devices eliminates the sole dependency of KEK strength on
the complexity of human-memorable secrets. In fact, it makes the use of password for data encryption completely optional.
That is, an application can securely encrypt data without requiring users to set a password for data encryption to work.
In that case, KEK is generated randomly and stored on the wearable device rather than derived from a human-memorable
password.

Unfortunately, physically attached external devices, such as memory cards or USB flash drives, are not well suited for
smartphones. First, almost all modern smartphones do not support USB flash drives or memory cards. Second, in contrast
to wearables, a physical connection requires constant user attention and vigilance. That is, forgetting to unplug the external
device from the smartphone destroys all security benefits that the use of a wearable device has added.

That is why we propose to use a wirelessly connected external device to store KEKs. We argue that wireless devices
are better suited for KEK storage for the following reasons. First, a wirelessly connected wearable device allows removing
users from the loop of obtaining required KEKs. That is, a smartphone can automatically scan the PAN and connect to the
appropriate device. Second, the proliferation of wearable devices, such as smartwatches and fitness trackers, increases a set
of options for a KEK storing device. Last but not least, all mobile platforms support a range of PAN stacks, e.g., BLE or NFC.

We chose to use BLE stack for prototyping for the following practical reasons. First, BLE hardware and BLE APIs are
available on all platforms,while other PAN stacks (e.g., NFC) have limited support. Second, BLE allows SoC towork formonths
off a single coin-cell battery [24,25]. Finally, most of the released wearable devices rely on the BLE stack for communicating
with smartphones (e.g., FitBit [26]). For system evaluation we decided to use CC2540 System-On-Chip (SoC) from Texas
Instruments as it was the least capable SoC at the time of our experiments [27].

Of course, one can use a remote server to store KEKs. Such an approach, however, requires a reliable connection to the
Internet in order to be able to fetch the KEK when needed. Using a centralized server, however, has several important
disadvantages. First, the use of wide area networks (WAN) limits the scenarios where one can access sensitive data. In
particular, when a user has limited connection to the Internet, e.g., while traveling. Second, in contrastwith PAN stacks,WAN
stacks do not provide means to measure proximity of the smartphone to the smartphone owner. That is, if a smartphone is
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Fig. 2. High-level design of the Sidekick System. A data containing device (DCD) runs applications that link the Sidekick library. The library takes care of all

communications with the KSD, e.g., storing or retrieving a KEK. Once a required KEK is retrieved, a corresponding DEK is decrypted and stored in Decrypted

DEKs Cache by the Sidekick Library. The DEK is then passed to the Data Encryption System in order to encrypt/decrypt data. Each application has a separate

KEK List. Reference monitor on KSD ensures that each application has access only to its own KEK List.

stolen, then an attacker still can access all KEKs stored on the central server until the theft is reported to the IT department
and appropriate actions are taken. Reporting might take substantial amounts of time, considering that a user has just lost
his primary communication device.

4. System design

In this section we present the design of the Sidekick system. We begin with a high-level overview of the system, then
proceed with a discussion of countermeasures that mitigate the network-attacker. We conclude with a security analysis of
the proposal in the presence of network and crypto attackers.

4.1. High level overview

The Sidekick system consists of two separate devices — (1) a data containing device (DCD), e.g., a smartphone, and (2) a
key storing device (KSD), i.e., a wearable device.When a user accesses sensitive data on the DCD, the Sidekick library fetches
KEKs from the KSD and recovers DEKs, whichmakes it possible to read/write data on DCD. The Sidekick library handles store,
update and delete requests in a similar fashion. The block diagram is shown at Fig. 2.

Each of the four requests (Req) that the DCD sends has a corresponding response (Resp) from the KSD. For instance, when
the DCD needs to store a new KEK on the KSD, it sends a StoreReq to the KSDwith the new KEK in the payload. Once the KSD
has processed that request, it responds with a StoreResp, which contains a KEKID, a unique KEK identifier, in the payload.

To make the system readily deployable we implemented the Sidekick system on the DCD as a library, rather than as a
patch for an OS. In addition, having Sidekick system as a library allows us to support multiple platforms, including closed
source, and platforms’ versions.

4.2. Securing communications over BLE

While the main objective of Sidekick system is to mitigate the crypto-attacker, we have to address the risks that arise
from use of the BLE stack. In particular, a network-attacker can exploit one of the previously reported vulnerabilities
[18–20].2 The existence of such attacks is not surprising, since the security of BLE was compromised in order to make BLE-
enabled SoC power-efficient [13]. In addition, we have to address the limitations in access control inmobile OS,which allows
any application on a smartphone with access to BLE stack to communicate with any paired BLE device.

Transport Layer Security. To ensure integrity and confidentiality protection for all Sidekick’s communications over BLE,
i.e., to mitigate the network-attacker who aims to corrupt KEKs, we used Counter with CBC-MAC mode (CCM) [28], because
(a) in all BLE-enabled SoC this mode must be implemented in hardware [13], and (b) it has been proven to be secure [29].
Indeed, in our benchmarking experiments we confirmed that hardware-based implementation of 128-bit AES in CCMmode
is in the order of twomagnitudes faster than its software counterpart (0.058ms against 4.45ms). Although existing BLE SoC
supports only 128-bit key size for hardware implementation of the AES cipher, we consider doing a complete search over
128-bit key-space is infeasible.

Mutual Authentication. On top of the transport layer, which is the Attribute Protocol (or ATT) in the BLE stack, we use a
mutual authentication protocol in order to mitigate identity spoofing attacks. We adopt a well-known and studied mutual
authentication protocol based on a shared secret [30].

Pairing KSD and DCD. For mutual authentication to work, one should have a shared secret first. Unfortunately, wearable
devices are usually limited in Input/Output capabilities. For instance, CC2540 SoC only has two LEDs in default circuit design.

2 As of this writing all these attacks are still practical.
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Considering such limitation, we decided to use blinking LED (BLED) approach proposed by Saxena et al. [31]. In BLED, one
device generates a pseudo random key and shares it through a blinking LED, while another device, DCD in our case, uses
camera and converts blinking LED into a bit stream. The security of secret shared this way is only crucial for the period of
time required to agree on a new shared key during KSD and DCD pairing process, e.g., through Elliptic Curve Diffie–Hellman
(ECDH). In our benchmarking experimentations, both Samsung S3 and iPhone 4S reached bandwidth of 3 bits/s in key sharing
over BLED, which allows to share a small 32-bit secret in about 10 s. Although this approach sounds cumbersome, a user
needs to execute it only once per device, i.e., during the initial pairing process.

Session Key Establishment. If a weak authentication secret was used during pairing, one should improve it through
other known protocols, e.g., Diffie–Hellman (DH) [32]. Unfortunately, due to computational constraints and limited RAM
on the wearables, the original DH protocol is not practical. That is why we choose to use ECDH protocol, based on the P128
curve.

Other Considerations. In addition to identity spoofing, we had to consider Replay and Retry attacks. To mitigate Replay

attacks we include a Nonce in each message and verify that Nonce on the recipient side. To mitigate Retry attacks we use a
monotonically increasing number as a Nonce, which allows us to detect old messages by comparing the message number of
the message in question with the last message sent/received thus far.

To summarize, by proposed measures we effectively mitigated the network-attacker presented in Section 2.5.

5. System evaluation

Experimental Setup. To evaluate the Sidekick systemwe used an iPhone 4S and a Samsung S3 as the DCDs, and a CC2540
SoC [33] as the KSD. We chose to use the CC2540 model of SoC as we found it to be the least capable, performance and
memorywise, BLE-enabled SoC available at the time of experiment. Thismakes it possible to run our proposal on all available
and future released BLE-enabled SoC.

Implementation. The Sidekick system consists of several components. First, there is a reference monitor (RM) and KEK
handling logic on the KSD, which we implemented as firmware for the CC2540. Second, there is a communication stack over
BLE that provides a secure channel between the KSD and the DCD. Most of the logic is implemented in C, with some parts
being implemented in native language for the given platforms, i.e., Objective C for iOS, or Java for Android. The memory
footprint of the Sidekick system can be ignored both for smartphones and for CC2540. In particular, the system needed less
than 20 Kb of ROM and 4 KB of RAM. In our implementation, we used 256-bit KEKs and DEKs, 32-bit integers as a KEKID, a
single byte as operation code (OpCode), and a single byte as operation status (OpStat).

5.1. Latency

We define the overall latency as time elapsed from the moment an application on the DCD submitted a request to the
moment the application receives a corresponding response from the KSD. The overall latency consists of two parts (a)
communication latency — the time spent on transferring all four messages over BLE, and (b) computation latency — the time
spent on all required computations, such as encryption, decryption. We ignore computation latency from further analysis,
because the results of our benchmarking experiments showed that computation latency is in order of several magnitudes
smaller than the communication latency.

There are several fundamental factors in BLE that impact communication latency. First, maximum transmission unit size
at the ATT layer (referred to asMTU_ATT in BLE specification [13]) limits the number of bytes one can fit into a single packet.
By sniffing the BLE connection setup, we identified that CC2540 and Android OS support only 23 bytes in each packet, while
iOS allows 132 bytes. Second, BLE defines a connection interval (CInterval), i.e., a time period during which only a single
packet is allowed. Our experiments with iOS and Android OS revealed that the default values for CInterval are 30 ms and
48.5 ms respectively. Finally, BLE defines a connection interval latency (CLatency), which defines the number of allowed
connection intervals without a message. Note that, to maintain connection, BLE stack sends so called empty-PDUs in unused
connection intervals, CLatency allows devices to skip sending empty-PDU without dropping the connection. Skipping several
intervals allows the wearable device to use power-efficient modes for longer periods of time, which overall reduces power
consumption. By sniffing BLE communication, we identified that both iOS and Android OS use zero as the default value for
CLatency, i.e., skipping connection intervals is not allowed by default. Results shown in Table 1 suggest that with default
values of CInterval and the smallest MTU_ATT, the system introduces no more than a second of latency overhead.

5.2. Power consumption

Smartphones. Power consumption is a crucial property of systems that are meant to be deployed in a mobile
environment. Draining too much power will make the proposal impractical. That is why we experimentally measured the
power consumption overhead that the Sidekick system introduces. The results of our experiments revealed that retrieving
a single 256-bit KEK consumes approximately 5.7 µAh on smartphones, or about 0.0004% of iPhone’s battery capacity. This
suggests that Sidekick system introduces negligible power consumption overhead for smartphones.
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Table 1

Overall Latency for each four request/response message pairs for the default

values for CInterval and CLatency.

Req/Resp, Overall Latency, ms

(Payload Length, bytes) Android OS iOS

Store (32/4) 873 540

Retrieve (4/32) 873 540

Update (32/0) 873 540

Delete (4/0) 776 480

Table 2

CR2032 battery life in days, depending on the maximum round-trip latency

for any request and for different numbers of requests per day.

Maximum Latency, ms

Requests per Day 540 1000 1500 2000

1 14 217 443 652

10 14 217 442 651

100 14 215 434 633

1000 14 197 366 496

Wearables. CC2540 SoC is based on the 8051 CPU, which provides great flexibility in power consumption through four
power modes: Active Mode, and Modes 1–3. In theory, CC2540 can run for 9 h in Active Mode and up to 30 years in Mode 3
on a single CR2032 battery [25]. Of course, in practice the battery lifespan depends on specifics of the application.

The results of our experiments revealed that a single KEK retrieval request consumes approximately 0.12µAh of battery
capacity on CC2540, which corresponds approximately to 0.00005% of battery capacity. That is, a single CR2032 battery
allows the KSD to receive and process about 2 million requests from the DCD. To assess battery lifespan, we need to define a
daily workload, i.e., the number of requests sent per day to the KSD. For example, if we consider that the KSD stores a single
KEK for the entire smartphone, then we can set the expected daily workload to approximately 100 requests a day [34]. In
other use cases, the expected workload can differ. For example, let us consider a case when only a banking app stores KEKs
on KSD. For a banking app we can safely assume a user does not open it on every smartphone unlock, which reduces the
expected dailyworkload. On the other hand, ifmultiple applications use Sidekick to store KEKs, thenwewould expect higher
workload. To cover different scenarios, we defined four workloads with 1, 10, 100, and 1000 requests a day.

Another parameter that impacts power consumption is CInterval. If increasing overall latency is acceptable, one can
increase the value of that parameter in order to make the wearable more energy efficient. To assess this possibility, we
explored the following four values {0, 15, 32, 48} for CInterval parameter, which correspond to the following set of latencies
540, 1000, 1500, 2000 ms for the KEK fetching request.

The results shown in Table 2 suggest that the default parameters for the BLE channel (CInterval = 30 ms and CLatency =

0) for the CC2540-based KSD allow it to run for two weeks only. If, however, we increase maximum allowed latency up to
2000 ms then with the daily workload of 100 requests a day or less, the battery would last for more than 600 days.

5.3. Session key renewal

Security of the session key is crucial for overall security of the Sidekick system. Unfortunately, our experiments revealed
that establishing a single 128-bit session key consumes 0.044% (or 0.1 mAh) of battery capacity on the CC2540 SoC. That
is, a single CR2032 battery allows the establishment of 2272 session keys with ECDH/P128 at most. That is why we have to
factor in the energy budget for session key renewals in our battery lifespan assessment.

For demonstration purposes let us consider the following example:3 100 requests a day are expected on average and two
seconds overall latency is acceptable. We can see from Table 2 that the battery would last for 633 days at most with such
requirements. If we agree that having a year of battery life for the wearable device is acceptable, then it leaves 42% of the
battery capacity available for key renewal. Hence, one can see that one can establish session keys 973 times in 365 days, or
slightly more than twice a day.

6. Related work

There are two approaches to improve data-at-rest security. First, one can increase the cost of the brute-force attack, by
making key derivation process harder for an attacker. In fact, PBKDF2 has been replaced with scrypt in Android 4.4 for that
exact reason. Second, defenders can persuade users to use passwords that are substantially harder to guess.

3 This example closely matches the requirements of current data protection systems in iOS and Android OS.
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Novel KDFs have been proposed, such that it substantially increases the cost of each step for the attacker. For example,
Boyen [35] developed a halting key derivation function, which forces an attacker to do substantial amounts of additional
computations. Other proposals (e.g., [10]) have suggested to increase the number of KDF iterations. This, however, is a never
ending arm-race. In contrast, we proposed a KDF agnostic system, that is, one can use Sidekick to store actual KEKs and does
not need to rely on a secure KDF.

Others focused on proposing and evaluating novel authentication methods on smartphones (e.g., [11]). The main
objective of such proposals is to introduce an alternative, usable, yet secure way to unlock smartphones. The evaluation
results suggest that the new proposals are usable and resilient against specific attacks, such as shoulder-surfing attacks.
Unfortunately, these proposals still create authentication secrets comparable in entropy with conventional 4-digit PINs. In
comparison, we present system that breaks that dependency on a strong authentication secret.

Finally, researchers proposed protection techniques for the data-at-rest on mobile devices. For instance, DOrazio
et al. [36] proposed an approach to conceal unprotected data in iPhones. Their solution, however, requires substantial
expertise from end-users in order to set up the concealment.

To summarize, all currently deployed systems for data-at-rest protection either unjustifiably rely on users to choose
secure passwords or require substantial expertise. In addition, while certain threats, e.g., shoulder surfing, have been
addressed by the research community, attempts to make a brute-force attack on passwords impractical have failed. To the
best of our knowledge, we are the first to use wearable devices for a practical and effective solution of mitigating an attacker
who steals a smartphone and attempts to decrypt confidential data.

7. Discussion and future work

Overall, the evaluation results suggest that our proposal is practical in both terms: added latency andpower consumption.
Low power consumption makes our proposal attractive for organizations since it requires minimal maintenance efforts,
i.e., frequency of battery replacement. Considering that the mobile OS does not need to be modified and that our proposal
is cross-platform immediate deployment is possible. In fact, the FusionPipe4 company has adopted our proposal for data
encryption in their Mobile Device Management solution.

Although we focused on the technical side of the system design, one can argue that a usable wearable device is required
for our system to be adopted. We, however, envision the Sidekick system to be a part of wearable devices that smartphone
owners already use in their daily life (e.g., fitness trackers or smartwatches). Unnoticeable memory footprint (less than 4
Kb/20 Kb and RAM/ROM) makes incorporation of Sidekick’s functionality into existing wearables a trivial exercise. Such
wearable devices, however, must be designed with security in mind, in order to keep KEK’s storage properly protected
(e.g., see [37] for boot chain exploit).

Finally, it is possible to usemultiple KSDs to protect a single DEK. Use ofmultiple KSDs can increase usability and security.
For example, consider a setup where each of N used KSDs allows decrypting DEKs on DCD. This would not only allow the
end-user to recover from loss of one of the KSD easier, but also will give him a freedom of choice for KSD form-factor (e.g., a
fitness tracker or RFID card).

To increase security, one can set up a policy that requires more than one KSD to access DEK. For example, one might
want an employee to have his RFID card and his smartwatch on him in order to access corporate confidential data on a
smartphone. Yet another scenario is when access to confidential data needs to be controlled by more than two persons,
i.e., multiple persons authorization. In that case, KSD of each of the person is used for storing KEKs during encryption process,
and all of them must be present within a certain proximity to be able to recover the DEK.

For the aforementioned scenarios we can employ the k out of n scheme with Shamir’s Secret Sharing [38] which uses n
KSDs, but requires only k of them to reconstruct KEK. Such deployment allows some flexibility in who can participate in the
multiple persons authorization process. Using more than one device makes the job for the attacker significantly harder. The
attacker would have to target not one but many devices for theft, and not one but many smartphone users in the case of
multiple persons authorization.

8. Conclusion

In this work we presented the design and evaluation of the Sidekick system — a system that uses wearable devices for
encryption key management. The proposed system is effective at mitigating the adversary who steals a smartphone and
tries to decrypt confidential data-at-rest, since it substantially increases the key encryption key (KEK) search space. This
renders the brute-force attack on KEK impractical.

In addition, the proposed system is practical. That is, it can be deployed across all mobile platforms right away, it works
on new and old devices, it introduces unnoticeable power consumption overhead, and the introduced latency can be up to
a few seconds, depending on power consumption requirements.

We evaluated the Sidekick system on iOS and Android platforms, and implemented the Key Storing Device (KSD) on a
SoC common for releasedwearable devices (CC2540 [33]). The results of the evaluation revealed that the default parameters

4 http://www.fusionpipe.com/.
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for BLE connection are not practical. To overcome this limitation, we proposed an approach to select the values of these
parameters, based on required latency and battery lifespan. In an example case we demonstrated how CC2540 SoC can be
configured to last for a year on a single CR2032 coin cell battery, while providing ability to refresh session key twice a day
and keeping latency under two seconds.
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