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ABSTRACT

Android rooting enables device owners to freely customize
their own devices and run useful apps that require root privi-
leges. While useful, rooting weakens the security of Android
devices and opens the door for malware to obtain privileged
access easily. Thus, several rooting prevention mechanisms
have been introduced by vendors, and sensitive or high-value
mobile apps perform rooting detection to mitigate potential
security exposures on rooted devices. However, there is a
lack of understanding whether existing rooting prevention
and detection methods are effective. To fill this knowledge
gap, we studied existing Android rooting methods and per-
formed manual and dynamic analysis on 182 selected apps,
in order to identify current rooting detection methods and
evaluate their effectiveness. Our results suggest that these
methods are ineffective. We conclude that reliable meth-
ods for detecting rooting must come from integrity-protected
kernels or trusted execution environments, which are diffi-
cult to bypass.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls, Inva-
sive software

General Terms

Security

Keywords

Android Rooting; Privileged Malware

1. INTRODUCTION
Android is the most popular mobile operating system, ac-
counting for about 80% of global mobile devices market in
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2014 [25]. Android security controls restrict users and appli-
cations (a.k.a. “apps”) from obtaining root privileges (i.e.,
full device administrative access), which could be abused or
misused to compromise the security of the entire system. In
order to freely explore or customize full system functionali-
ties, many Android device owners voluntarily perform root-
ing to remove root access constraints placed by stock An-
droid devices [27, 20]. Rooting is a process of allowing device
users to attain a persistent privileged control (i.e., “root” ac-
cess) to the device. The de-facto way to achieve this persis-
tent root access is by installing a custom su binary (known as
“switch user”, “super user”, or “substitute user”) that allows
any app on the device to perform privileged operations as
root (details in Section 3). Once the device has been rooted
(i.e., custom su installed), the device user can remove re-
strictions placed by carriers and hardware manufacturers,
alter or remove system applications, run paid apps for free,
or enjoy useful root apps (i.e., apps that requires root privi-
leges), such as backup and restore, firewall, tethering, or full
anti-malware functionality.
In this paper, by “rooting a device” we refer to the in-

stallation of a modified su binary on a device. This work
focuses on the study of those apps that detect widely de-
ployed su distributions installed voluntarily by the device
owners. The detection and prevention of the malware that
exploits system vulnerabilities, in order to obtain and persist
root access, are out of this paper’s scope.

Although useful to device owners, rooting weakens the se-
curity of Android devices. Without rooting, malware must
exploit a system or kernel vulnerability present in the system
in order to gain root access, which could be technically chal-
lenging. However, on a rooted device, any app could simply
ask the user for root access with one-line of code (e.g., Run-
time.exec(“su”)). The security of a rooted device relies solely
on the device user regulating root access properly. Yet, the
research shows that many users ignore security warnings due
to habituation or lack of contextual information [23, 35].
A usability study of Android permissions also showed that
most participants were not able to properly understand and
grant Android permissions [24]. Once root access is inad-
vertently granted, malware could gain unauthorized access
to any sensitive data stored on the device, intercept user
inputs, tamper with runtime code (e.g., circumvent security
controls, intercept file IO and network communication), and
manipulate inter-app communications.
Rooted devices are prevalent. According to a recent An-

droid security report [27], Google Verify Apps detected root-
ing apps (i.e., apps that root the devices via privilege-
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escalation vulnerabilities) installed on approximately 2.5M
devices, and particularly about 3-4% of Chinese devices have
a rooting application installed. Note that the number does
not include other rooting methods (e.g., unlockable boot-
loader, bootable SD card, OEM flash utilities). In addi-
tion, Verify Apps found that there are numerous applica-
tions from major Chinese corporations that include rooting
exploits to provide functionality that is unavailable through
the official Android API. Moreover, in China, 80% of cheap
Android phones are shipped with customized system images
that allow root access by default [20]. Furthermore, popu-
lar community-built system images (e.g., CyanogenMod [2])
and root apps (i.e., apps that require root access such as
Titanium Backup [15], Root Explorer [12]) each has over 10
million downloads.

Several rooting prevention mechanisms (e.g., mount sys-
tem partition with nosuid option [28], drop setuid call capa-
bility [28], SEAndrod [34]) have been introduced by Google
in Android versions 4.3 and later. Yet, as we show in this pa-
per, some rooting techniques bypass these countermeasures.

To reduce the risks of potential security exposures on
rooted devices, mobile apps with sensitive or high-value func-
tions therefore perform rooting detection and disable their
functions, if the device appears to be rooted. Unfortunately,
it is still common for the developers of root cloakers (i.e.,
apps that evade rooting detection) to engage into arms race
with the rooting detection methods [22].

This raises an immediate concern regarding the effective-
ness of rooting prevention and detection methods employed.
Clearly, reliable rooting detection is desirable. There is,
however, a lack of understanding of how various rooting
methods work and what rooting detection methods could
be difficult to evade. Our work aims to answer the following
research questions to bridge this knowledge gap:

• RQ1: What methods are currently available for de-
vice users to perform Android rooting, and how do
those rooting methods circumvent the rooting preven-
tion mechanisms employed?

• RQ2 What are traits exhibited on a rooted Android
device?

• RQ3: What methods are used by existing mobile apps
to detect rooting traits?

• RQ4: How effective existing rooting detection methods
are?

To answer these research questions, we first studied and
tested existing Android rooting methods to understand how
they work and what traits distinguish a rooted device. Next,
we conducted an exploratory study by reverse-engineering 30
apps that contain rooting detection logic, to gain an overall
understanding of existing root detection techniques. Manual
code inspection, however, is pronged to human errors and
hard to scale, because detection logic could be obfuscated
or written in native code (C/C++). In addition, it would
not allow us to evaluate the effectiveness of the detection
techniques.

Informed by the insights obtained from the exploratory
study, we developed a tool for dynamic analysis of rooting
detection methods. Named RDAnalyzer, it hooks a set of
APIs, both in Java and native code. For each hooked API,
our analyzer logs the input parameters, and manipulates
the output of the API attempting to evade the detection.

We tested RDAnalyzer against apps examined in the ex-
ploratory study, and revised it whenever a new rooting de-
tection method was uncovered. After this formative study,
we conducted a confirmatory study by analyzing 152 apps
downloaded from Google Play.
Our investigation of Android rooting methods found that

existing mechanisms for preventing rooting can be circum-
vented by an advanced su daemon started at boot time.
The su daemon could be installed through pre-boot rooting
methods (e.g., unlockable bootloader, bootable SD card),
and those rooting options would most likely remain avail-
able for device users, so long as “freedom of customization”
is embraced by device vendors. In addition, we found that
due to the confinement of privileged system daemons by SE-
Android, vendor-specific kernels and device drivers would
be the next main targets of those rooting apps that rely on
privilege-escalation vulnerabilities for rooting.

For rooting detection, we found a wide variety of tech-
niques used by the studied apps. Besides obvious rooting
traits (e.g., su binary, SuperSU app), various Java/C APIs
and shell commands are leveraged by apps to find a wide
range of rooting traits exhibited in different parts of the
system. These rooting traits range from files and packages
installed during and after rooting, to directory permissions,
suspicious processes, background tasks, system properties,
and even to the logo of a target app or over-the-air (OTA)
update certificates.
Unfortunately, current methods for detecting rooting are

not effective; they can be evaded, as we demonstrate with
our RDAnalyzer. As such, existing root cloakers could be
easily improved to evade all current rooting detection meth-
ods. Our study also suggests that the “arms race” between
the developers of rooting detectors and cloakers is heavily
asymmetric—the detectors are sandboxed while the cloak-
ers are armed with root privileges. Ultimately, mobile apps
need a reliable rooting detection method provided by the
mobile OS. Based on the results of our investigation, we call
for a reliable rooting detection API provided by Android
OS.

To summarize, this work makes the following contributions:

• We studied Android rooting methods and developed
their taxonomy that systemizes scattered knowledge
about them. We also investigated how existing rooting
prevention controls are circumvented.

• We conducted a first empirical study to understand
existing rooting detection techniques on Android.

• We evaluated the effectiveness of the existing rooting
detection techniques with a dynamic analysis tool that
we built. Our results suggest that all rooting detection
methods we found can be evaded.

The rest of the paper is organized as follows: We provide
background and describe related work in Section 2. Section 3
presents the methodology and results of our investigation of
rooting methods, and Section 4 discusses existing detection
methods and evasion techniques. The implications of our
findings and limitations are discussed in Section 5. We con-
clude in Section 6.

2. BACKGROUND AND RELATED WORK
Root access restrictions. Android security prevents

users and apps from obtaining root privileges [36]. First,
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Android Open Source Project (AOSP) releases and stock
Android devices allow only a small subset of core system ser-
vices to run with root privileges. Second, each app installed
on an Android device is constrained by Android’s security
sandbox. Upon installation, each app is assigned a unique
Linux-level user id (uid), and its privileges are restricted
within the uid-based process boundary through Linux’s Dis-
cretionary Access Control (DAC). Thus, an app can only
access resources within its own sandbox (i.e., app local stor-
age) and cannot interact with other apps by default. To
gain system resources access (e.g., GPS, network, contacts),
apps must declare their required permissions which need to
be granted by users during installation.1 Note that the de-
fault su binary shipped with Android Engineer (eng) build
allows only root and shell users to invoke it.

Persistent rooting mechanism. The de-facto mecha-
nism for device users to obtain a persistent root access is
by installing a custom su binary [19, 30, 32] that can be
executed by all apps and commands on the device. When
the custom su is invoked, it checks whether the calling app
has been granted root access by the user via a root privilege
management app [19, 30, 32] (denoted as “SuperSU” in this
paper). If the access has been granted, su calls setuid(0)

system call to switch the current process user to root and
then executes the input command under root privileges. We
found that, for Android versions 4.3 and later, due to the
rooting prevention mechanisms introduced by Google, su

does not call setuid system API anymore. Instead, su for-
wards the received command to an su daemon for execution
(see Section 3.3.2 for more details).

Risks of rooting. Vidas et al. [36] survey privileged
access attacks in the early Android platform (2011), includ-
ing rooting. Our work presents the current state of rooting
methods and analyzes how su has been advanced to circum-
vent current rooting prevention mechanisms.

Vulnerabilities in the su binary and SuperSU app could
be exploited by malware to gain root access as well. Several
implementation bugs in su were uncovered (CVE-2013-6774,
CVE-2013-6775, CVE-2013-6770), which allow any app ex-
ecute commands as root without a user permission [18]. In
addition, Shao et al. [33] demonstrate that SuperSU’s policy
database and the local socket file could be attacked by mal-
ware to obtain root privileges. Moreover, Zhang et al. [38]
show that privileged malware can retain its escalated per-
missions even after the user unroots the device. Further-
more, Zhou et al. [39] show that 37% of malware leverage
root-level exploits to fully compromise Android.

Rooting Prevention and Protection. SEAndroid pro-
vides mandatory access control (MAC) to enforce sandbox-
ing on Android system [34] and middleware [17] levels. Smal-
ley et al. [34] demonstrate that SEAndroid is able to stop
critical steps of a privilege-escalation exploit and prevent
abusing root privileges even if system daemons are compro-
mised. However, SEAndroid could be circumvented through
pre-boot rooting methods or kernel vulnerabilities (e.g., fu-
tex by TowelRoot). According to 2014 Android security re-
port [27], about 0.6% of devices had SELinux fully disabled
and 0.3% of devices had SELinux configured in permissive
mode. Our investigation uncovers how SEAndroid is cir-
cumvented (details in Section 3.3.2).

1Please note that Android platform has been expanded in
version Android M to include runtime permissions.

Verified Boot [29] establishes a chain of trust from the
bootloader to the system image, and thus it is able to prevent
unauthorized alterations to boot and system partitions (e.g.,
rooting). However, Verified Boot has not been deployed by
most Android devices, as it requires changes to the OTA
update mechanism (e.g., switching from file-level to block-
level updates).

RootGuard [33] is an enhanced root-management system
that provides fine-grain control (rather than “all” or “noth-
ing”) for users to grant the requested permissions to an app.
The permission policy is based on system calls and parame-
ters invoked by an app. Similarly to SE Android, RootGuard
monitors system calls made by root apps to detect and pre-
vent abnormal behavior of apps (i.e., malware) with root
privileges. Nevertheless, as acknowledged by the authors,
attackers might employ kernel rootkits or exploit kernel or
device driver vulnerabilities to circumvent RootGuard.

Usability of root management. Current root-
management model relies on users to grant root access to
apps, but it’s well known among usable security researchers
that average users are either uncapable or unmotivated to
consider carefully and make informed decisions about grant-
ing root privileges to an app. Many users ignore security
warnings due to habituation or lack of contextual informa-
tion [23, 35]. Felt et al. [24] show that only 3% of Internet
savvy and 24% of laboratory study participants are able to
successfully understand and grant permissions, while 42%
of participants are unaware of permissions at all. Kelley
et al. [31] performed twenty semi-structured interviews to
explore Android users’ feelings about and understanding of
permissions, and their findings are aligned with the results
of Felt et al. [24].

3. INVESTIGATING ROOTING METHODS
We started with a qualitative investigation of the methods
employed for rooting Android devices and getting around
various countermeasures that are supposed to make rooting
difficult, if not impossible. We systemized our understand-
ing in a form of a taxonomy of those methods.

3.1 Methodology
To understand what methods are available for device users
to root their Android devices (RQ1) and what traits are
exhibited on a rooted device (RQ2), we studied and tested
existing Android rooting methods from various sources. In
particular, we used XDA Developers website [37], a popular
source for rooting related-information. We studied forums
dedicated to particular models of Android devices, to un-
derstand various rooting-related topics, e.g., rooting tools,
instructions, trouble-shooting, custom ROMs, drivers. We
found that the information in those forums rich but not
comprehensible, and sometimes, confusing. Further inves-
tigation revealed that there are typically multiple ways to
obtain temporary root access for a given device, and there
might be dependencies among those temporary root access
mechanisms. In addition, for a given temporary root access
mechanism, there are multiple rooting packages available in
different forms. To build a complete view, we analyzed each
rooting method found, and developed a taxonomy to clar-
ify the relationships between various rooting-related compo-
nents.

We also studied su source code and its over-the-air (OTA)
update packages from three primary su distributions [19, 30,
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Figure 1: Taxonomy of Android Rooting Methods: The relationships between boot sequence, temporary root
access mechanisms and su installation packages.

32]. This allowed us to understand how su works and how
it overcomes the security protection mechanisms placed by
Google. We found that only Chainfire’s su distribution [30]
works on devices with SEAndroid [34] in enforcing mode,
but the distribution is closed source.

3.2 Taxonomy of Android Rooting Methods
The de-facto way for device users to attain a persistent root
access is by installing a custom su binary that allows any
app on the device to perform privileged operations as root.
However, users cannot simply download or copy su over on
to their devices. First, the system partition needs to be
remounted as read-writable in order to install the su bi-
nary and its related files on to system folders (e.g., /sys-
tem/xbin/). Second, any program that calls the setuid

system call is required to have its SUID bit set (e.g., via
chmod u+s command), which indicates to the operating sys-
tem that the program is allowed to escalate its runtime priv-
ileges to root. Furthermore, for Android versions 4.3 and
later, several system files need to be altered in order for the
su daemon to be launched at boot time (further discussed in
Section 3.3.2). All these operations require temporary root
access. The ways of obtaining such access can be divided
into two groups, depending on whether the access is gained
during or after the boot process.

When an Android device is powered on and starts to boot,
a low level, hardware specific program called “bootloader”
is executed. The main purpose of a bootloader is to find
and start the Android OS, or alternatively, the recovery OS.
Many Android devices (e.g., Nexus, HTC, Motorola XOOM,
Android One, Samsung) are shipped with an “unlockable”
bootloader, which allows device users to flash (i.e., write
raw partition image to the device’s persistent storage) cus-
tom system, recovery or boot images, or boot from transient
boot or recovery images, without flashing them to the device.
On the other hand, some Android devices do not have an
unlockable bootloader. Only those boot and recovery im-
ages signed by the manufacturer can be loaded by locked
bootloaders.

As illustrated in Figure 1, we have identified five tem-
porary root access mechanisms that device users could use
to install a custom su binary on their devices. Based on
whether the bootloader is unlockable or not, they are cate-
gorized into “pre-boot” or “post-boot” groups. Methods in

“pre-boot” group, require making the device’s bootloader to
boot into (1) a special bootloader mode or (2) a custom re-
covery OS, or (3) boot from an external bootable SD card.
Alternatively, “post-boot” rooting methods are employed af-
ter the device has been fully booted, and all of them require
first to obtain a root shell. They do so through either (4)
an exploitation of privilege-escalation vulnerabilities, or (5)
a privileged Android Debug Bridge (ADB).

Depending on which temporary root access mechanism is
used, there are different types of su packages available for
device users to facilitate the process of installing and con-
figuring su (e.g., OTA update package, custom system or
boot images, bundled with the rooting apps). The main al-
teration targets of rooting methods are the boot partition
(e.g., alter configurations in the RAM disk) and the sys-
tem partition (i.e., install su). We describe existing rooting
methods in the rest of this section.

1. Fastboot/Download mode: An unlockable bootloader
typically supports a special mode (e.g., fastboot [5] or down-
load [10] mode) that allows users to unlock the bootloader
and flash custom images using tools such as fastboot [5] or
ODIN [10]/heimdall [6] (for Samsung devices), through a
USB connection from a host machine. For security reasons,
“unlocking” a bootloader will typically trigger device fac-
tory reset (i.e., reformat the userdata and cache partitions)
to ensure that a malicious OS image cannot get access to the
existing user data. Once the bootloader has been unlocked,
there are several ways to install su:

Replace system partition: One easy way to enable per-
sistent root access is to flash a custom system image
that has su already installed on it (e.g., Cyanogen-
Mod [2]). Alternatively, if the user wants to use the
existing system image on the device, he/she could sim-
ply pull the stock system image from the device (e.g.,
using dd command) onto a host machine, install and
configure su, repackage it, and then flash the new sys-
tem image back to the device.

Alter boot partition to enable root shell: The user id
under which an ADB shell runs on the device depends
on the value of system property ro.secure. If ro.secure
equals 0, an ADB shell will run as root ; otherwise,
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the shell will run as a non-privileged user (e.g., shell).
The value of this property is set at boot time, based
on the default.prop file located in the boot parti-
tion. By unpacking and repacking a boot image with
ro.secure=0, one can make the ADB daemon run as
root and enable root access via a root shell.

Boot from a transient boot image: An Android boot im-
age consists of a Linux kernel and a RAM disk. The
RAM disk is a small partition image that contains a
root filesystem (i.e., rootfs) mounted as read-only by
the kernel at boot time. Once the rootfs is mounted,
the first Linux process init will be started to mount
the rest of file systems from the devices, and then per-
form initialization procedures based on the configura-
tion files (e.g., init.rc). By creating a boot image
that contains customized commands and scripts, one
can therefore install su into the system partition, or
even flash custom system images, by booting the de-
vice from a custom boot image.

Flash a custom recovery OS: Recovery OS is a minimal
Linux OS that consists of a Linux kernel, a RAM disk
with various low-level executables and configuration
files, and a recovery program. A stock recovery OS
is used to apply post-ship system updates delivered in
a form of over-the-air (OTA) update packages. OTA
packages include updated system files and a script that
applies the updates. Stock recovery OS typically only
allows applying OTA update packages signed by the
device manufacturer. Nevertheless, since the recovery
OS is stored in a partition similar to system and data

partitions, device users can replace it with a custom
recovery OS, once a temporary root access has been
obtained. All existing su distributions provide instal-
lation packages in a form of OTA update packages.

2. Custom recovery. A popular and flexible way to in-
stall su is via an OTA update package applied by a cus-
tom recovery OS (e.g., ClockworkMod Recovery [1], Team
Win Recovery Project [14]). An OTA update package can
add or alter system files without replacing the entire sys-
tem image, and thus the installed su can coexist with the
stock OS on the device. Note that the updater script for the
OTA update is usually written in a special edify script lan-
guage [26]. However, we found that all su OTA packages use
traditional UNIX shell, so that the same installation script
can be reused by other rooting methods (e.g., bootable SD
card, privileged ADB, one-click rooting apps). A snippet
of su installation script from Chainfire’s distribution [30] is
shown below.

mount -o rw,remount /system /* remount system as writable */
---snip--- /* place files and set permissions*/
cp_perm 0 0 06755 <src>/su /system/xbin/su
cp_perm 0 0 0755 <src>/su /system/xbin/daemonsu
cp_perm 0 0 0644 <src>/Superuser.apk /system/app/Superuser.apk
cp_perm 0 0 0755 <src>/supolicy /system/xbin/supolicy
cp_perm 0 0 0755 <src>/install-recovery.sh

/system/etc/install-recovery.sh
/* content of install-recovery.sh */
#!/system/bin/sh
/system/xbin/daemonsu --auto-daemon &

The update script first mounts the system and data par-
titions in read-write mode, and then copies the included

files to their intended locations in the file system via the
cp_perm helper function. Function cp_perm is a shell func-
tion that copies (cp) a source file to a target destination,
and then (1) changes the owner (chown) to root, (2) sets
permissions (chmod), including SUID bit of su, and (3) con-
figures SELinux security label of the target file (labeled as
system_file). Note that in addition to su and SuperSU
app, a script called by init to install OTA updates (i.e.,
install-recovery.sh) is overwritten by the update script,
which allows daemonsu to be invoked by init at boot time.
Furthermore, the tool (supolicy) used by daemonsu to patch
SELinuc policy at boot time is copied as well (details are in
Section 3.3.2).

3. Bootable SD Card: Bootloaders of some devices (e.g.,
Nook Color, WonderMedia tablets) support booting from an
external bootable SD card. By creating a bootable SD card
that contains a customized RAM disk (e.g., accompanied
with the su binary and an update script similar to the one
shown above), one could install su into the system partition
by booting the device from the SD card.

4. Rooting apps or tools. For devices that do not have
an unlockable bootloader, root access can be obtained by
exploiting a system or kernel vulnerability. A privilege es-
calation exploit, typically packaged into “one-click” rooting
apps or scripts, allows an app or script to start a root shell
to install su or modify system configurations. Many popu-
lar one-click rooting tools exploit one or more vulnerabilities
found in the kernel (e.g., futex by TowelRoot, mem wrtite
by Mempodroid), device drivers (e.g., PowerVR SGX driver
by levitator, Qualcomm diagnostic driver by diagroot), or
system daemons (e.g., adbd by RAtC and bin4ry, zygote by
Zimperlich, init by psneuter and KINTO, vold by Zergrush
and GingerBreak) to install su for a persistent root access.

5. Privileged ADB. The ro.secure system property con-
figured in default.prop determines the process uid under
which an ADB shell is running. When the value is set to
1 (i.e., secure mode), the adbd daemon process, which ini-
tially runs as root, drops all capabilities from its capabil-
ity bounding set, except CAP SETUID and CAP SETGID,
and then changes its UID to AID SHELL (UID=2000) be-
fore spawning an ADB shell. Certain manufacturers, and
Android engineering (eng) builds, do not set ro.secure to
secure mode, which allows users to have a shell that can ex-
ecute any program as root. With a root shell from ADB,
one can upload su and its installation script to a temporary
folder on the device, and then execute the script from that
folder to persist su.

3.3 Privileged Operations via su
Once su and SuperSU app have been properly installed,

any app on the device can invoke su to run arbitrary com-
mand with root privileges. In this section, we discuss how
su is used by apps to perform privileged operations. This
knowledge allows us to analyze rooting detection methods
currently employed by various apps. It could also shed light
on future rooting detection and prevention techniques.

3.3.1 Android OS v4.2 and Earlier
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Figure 2: The sequence of invoking su by an app
to perform privileged operations on Android ver-
sions 4.2 and earlier. Dashed boxes denote process
boundaries.

Figure 2 illustrates the data flow when su is invoked by an
app in Android versions 4.2 and earlier:

1. An app invokes su binary through a shell. The input
command can be provided to su in the command line
directly (e.g., su -c cmd), or through standard input
piped from the calling app. Note that the app process
is always running under a unique uid assigned during
installation of the app.

2. su performs a permission check by sending an autho-
rization request. It starts with creating a local socket
under the SuperSU’s local folder, and sets the permis-
sions on the socket so that only SuperSU is allowed
to access it. Then, su sends an intent message to Su-
perSU, containing the path to this socket. Once Su-
perSU connects to this socket, su uses it to send an
authorization request that contains the package name
and UID of the requesting app.

3. SuperSU checks its policy database to determine whether
or not the requesting app has been granted root ac-
cess by the user. If the root permission has not been
granted, SuperSU prompts the user for granting root
permission to the app.

4. SuperSU returns to su the authorization decision, ei-
ther granting or denying the request.

5. If the root permission is granted, su calls setuid(0)

and setgid(0) to switch the uid of the current process
from the requesting app’s uid to root.

6. su forks a new shell to execute the input command
under root uid.

7 & 8. The output of the executed command is returned back
to the app through a standard output.

3.3.2 Android OS v4.3 and Later

For Android versions 4.3 and later, several security enhance-
ments have been introduced to disallow apps from execut-
ing, or installing, the su binary. The security enhance-
ments include (1) mounting system partition with nosuid

option, which disables programs located on that partition

Figure 3: The sequence of invoking su by an app to
perform privileged operations on Android versions
4.3 and later. Dashed boxes denote process bound-
aries, and underlined labels denote security context
(domain).

to call setuid API [28], (2) dropping all capabilities, includ-
ing call_setuid, from the capability bounding set for all
Android apps forked by the zygote process [28], and (3) con-
fining privileged processes with SEAndroid [34] mandatory
access control (MAC) policy.
Under SEAndroid (Android port of SELinux), each pro-

cess in the system is labeled with a security context (called
domain). When a process tries to perform an action on a
resource (called object in SEAndroid terminology), an ob-
ject manager in kernel intercepts the requested action, and
checks the request against a centrally managed MAC policy,
in order to determine whether the request should be allowed
or not. Thus, on Android versions with SELinux in enforcing
mode, executing a process with root UID does not change
its security context, and such a process is still constrained
by the SEAndroid MAC policy.
Due to these new security constraints, persisting root ac-

cess is not as simple as copying an SUID binary to the de-
vice. Although replacing the boot or system partitions al-
lows these security controls to be disabled and any security
mitigation to be reverted, such a radical approach is not de-
sirable by the su developers. Thus, su has been re-designed
to coexist with the new stock Android systems.
As illustrated in Figure 3, the original su has been sep-

arated into an su and a su daemon (denoted as dae-

monsu). The su binary does not call setuid API any
more. Instead, it forwards all the requests received from
apps to daemonsu, which runs as a daemon process with
root uid and init security context. To enable daemonsu

running under init domain, the su installation script mod-
ifies the system in such a way that the daemonsu is in-
voked by init so that it can inherit the domain of init (e.g.,
modify /system/etc/install-recovery.sh, symlink /sys-

tem/bin/app_process to /system/xbin/daemonsu, add an
init script to /system/etc/init.d/). In addition, daemonsu
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patches the MAC policy during boot time to unconfine the
init domain and to allow su to connect to the local socket
created by the daemonsu. Note that the new su architecture
is backward compatible, and thus existing root apps can
work with both versions of su without any modifications.

The data flow of an app performing privileged operations
via su in v4.3 and later is similar to the flow of v.4.2 and
earlier (see Figure 2). The main difference is in how the
domains of related processes are labeled. At boot time, the
first process, init, sets its own domain as “init”. When init
launches zygote process, zygote’s security context is labeled
automatically, according to the automatic domain transi-
tion rule defined in the policy (e.g., type_transition init

zygote_exec:process zygote), and the type of zygote ex-
ecutable labeled during the system build process (e.g., la-
beled as zygote_exec). All Android apps are forked by zy-
gote process, and when an app is launched, zygote assigns
the app to untrusted app domain, based on the app’s UID
assigned during installation and a system configuration file
(i.e., seapp_contexts). Note that when su is invoked by an
app, su inherits the domain of the app (i.e., untrusted app).
su then connects to a local socket of daemonsu. Upon re-
ceiving the request, daemonsu forks a new process and then
executes the input commands under root uid and init secu-
rity context.

In this section, we presented our findings on various root-
ing methods available for users, and how apps perform priv-
ileged operation through su. These technical details are es-
sential for apps to detect whether a device has been rooted.
In the following section, we discuss what methods are used
by current apps to perform rooting detection, and how those
detection techniques can be evaded.

4. DETECTION AND EVASION
Rooting traits are unique properties exhibited on a rooted
Android device. Depending on the rooting method employed
for rooting (e.g., OTA update packages, rooting apps), and
what root apps or tools have been installed after rooting,
different traits will be exhibited. Thus, some rooting traits
are present on all rooted devices (e.g., su binary, SuperSU
app), while others only on some. In addition, rooting traits
could be present in different parts of the system (e.g., file
system, process, package manager), and could be detected
via different API calls and commands. Rooting detection
on Android devices is achieved today by examining different
parts of the system and checking whether one (or more) of
these rooting traits can be found. When one of these rooting
traits is detected, it is an indication that the device has been
rooted.

4.1 Methodology
To evaluate the effectiveness of existing rooting detection
methods, we conducted three empirical studies. Specifically,
these studies helped us to understand what detection meth-
ods used by existing mobile apps (RQ3), and whether and
how those detection methods can be evaded (RQ4).

4.1.1 Exploratory Study

As a starting point, we conducted an exploratory study
by reverse-engineering 30 apps that contain rooting detec-
tion logic. The list of apps was obtained from a popular
root cloaker website [22], which claims that those apps had
been “successfully tested”. For each app, we downloaded

the app’s package (APK), converted the APK into JAR us-
ing dex2jar [4], and then decompiled the JAR using both
JAD [8] and JD-GUI [9]. We manually analyzed the source
code to identify the root detection methods employed by
these apps.

We observed that rooting detection functions are com-
monly called from the launch activity of the app. For each
rooting detection method identified, the API used by the app
and its input parameters were documented. We found four
apps that perform rooting detection in native code, instead
of Java, and three other apps had their code obfuscated. We
kept these apps for dynamic analysis in the formative study,
but did not attempt to reverse-engineer them any further,
as no new rooting detection methods were found after first
20 apps.

Manual analysis of the source code was valuable, allowing
us to understand what APIs and parameters are used by
apps to detect rooting traits. Manual analysis, however, is
neither effective nor scalable due to the following constraints:

• Manual source code inspection is a time-consuming
and error-prone process (e.g., miss or mis-identifies a
rooting detection method).

• Java code can be obfuscated before distribution, mak-
ing it difficult to analyze.

• Native code (C/C++) used for rooting detection is
compiled into machine code when the app is distributed.

• The effectiveness of the identified rooting method could
not be evaluated.

4.1.2 Formative Study

To overcome the constraints of manual analysis, we devel-
oped a tool, named “RDAnalyzer”, for semi-automatic dy-
namic analysis of rooting detection methods employed by
apps. RDAnalyzer consists of two parts. The first part pro-
vides user interface for configuration settings, such as the
list of targeted apps (specified in package name) and the
blacklisted rooting traits (e.g., file paths, package names,
commands, keywords). The second part is an API hooking
module that intercepts a set of API calls, both in Java and
native code. The list of hooked APIs and input parame-
ters were initially gathered from the exploratory study and
were revised throughout the confirmatory study (described
in the next section). The hooking module was implemented
as an extension of Cydia Substrate [3], a popular userland
API hooking framework for both Android and iOS. Sub-
strate injects our hooking module into each app when the
app process is forked by the zygote process.
We first deployed RDAnalyzer to dynamically analyze apps

that were examined in the exploratory study. For each API
hooked at runtime, RDAnalyzer logs the input parameters
and manipulates the output of the API to evade detection.
For instance, RDAnalyzer returns false when the app checks
the existence of a file (e.g., /system/xbin/su), removes root-
ing traits from the output of an API call, or throws an ex-
ception when a targeted shell command (e.g., “which su”)
is executed. Whenever RDAnalyzer failed to evade a detec-
tion method, we reverse-engineered the corresponding app
to understand which APIs and input parameters should be
considered, and then revised RDAnalyzer to evade the newly
discovered detection technique(s). To confirm whether RD-
Analyzer has successfully evaded an app’s root detection, we
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inspect that app manually (e.g., message shows that“the de-
vice is not rooted”, functions prohibited to run on a rooted
device is enabled when RDAnalyzer is activated).

4.1.3 Confirmatory Study

By applying RDAnalyzer to a sample of apps, we collected
data on the use of various detection techniques in the wild.
During this study, whenever we uncovered previously un-
known detection techniques, we revised RDAnalyzer accord-
ingly, and re-analyzed previously analyzed apps from the
sample. For each app, we recorded the detection techniques
it employed. The primary objective of this study was to ob-
tain descriptive statistics about the use of rooting detection
techniques in the wild.

To facilitate the collection of the sample apps in sys-
tematic and reproducible way, we developed a tool, named
“APK downloader”, that automatically downloads apps from
Google Play based on query keywords. We selected apps
that (a) most likely have rooting detection logic in place,
such as those that can be found on Google Play by search-
ing for the query strings on free apps “root check” and “root
verify” with APK Downloader and (b) popular apps that
require the device to be rooted (e.g., backup, file manager)
that could be found in Google Play and third party app
stores.

Overall, we selected 242 apps, out of which, we excluded
apps (1) whose description mentioned specifically that no
root is required, (2) with UI in a language other than En-
glish or Spanish, (3) that did not work properly (e.g., the app
could not be opened due to an error), (4) in which “root”,
“check” or “verify” in the description has a different meaning
than Android rooting (e.g., “math square root”), (5) that are
designed for specific device models (e.g., Samsung Galaxy
only), (6) with low popularity (i.e., less than 1,000 down-
loads), and (7) that we considered not to be valid for analy-
sis as we used them for rooting purposes (e.g., Busybox and
SuperSU ). Overall, we excluded 45 apps. At the end, 152
apps were selected for analysis in the confirmatory study.

We first downloaded all the apps’ apk and meta data (e.g.,
app description, popularity in number of downloads, cate-
gory) for a certain query using APK Downloader. We then
proceeded to install all the apps on a rooted Nexus 7 de-
vice with Android version 4.2.1. We employed the following
procedure for the analysis of each app:

• Without activating RDAnalyzer, we launched one-by-
one all the installed apps from the tablet. For each
app we inspected whether it detects that the device
has been rooted. We did this by (1) looking for visual
indications that could appear on the screen (e.g., su
permission prompt, message shows that “the device is
rooted” or “the app is prohibited to run on a rooted
device”), and (2) testing app features that need root
and verifying if they work or not.

• We then activated RDAnalyzer. We again launched
one-by-one all the apps and looked for the indications
mentioned previously to confirm whether they detect
that the device has been rooted. We also obtained the
log generated by RDAnalyzer to classify the rooting
detection techniques each app used.

• If the analyzed app surpassed RDAnalyzer, we first in-
stalled the app in an unrooted Nexus S with Android
version 4.1.2 to check whether the detection was a false

positive (i.e., the app reports rooting even when the
device is not rooted). In the case it is not a false posi-
tive (which was the case for all the examined apps), we
reverse-engineered the app to find new detection meth-
ods. We then revised RDAnalyzer and tested the app
again, until all rooting detection methods employed by
the app were evaded successfully.

4.2 Results: Detection Methods
The results of the uncovered rooting detection methods are
presented in this section. Using RDAnalyzer, all of the root-
ing detection methods we discovered can be evaded. Figure 4
illustrates the distribution of detection methods used by the
apps in the confirmatory study, ordered by download popu-
larity from most (left) to least (right). Note that D4 (Check
System Properties) was identified in the exploratory study,
but none of apps in the confirmatory study used this detec-
tion method.

In the rest of this section, we discuss each of the seven
detection techniques and the ways we were able to evade
them.

4.2.1 D1: Check Installed Packages

Certain apps packages are commonly installed during or af-
ter rooting, for instance:

1. SuperSU app: An app that installed along with the su
binary for users to regulate root access [19, 30, 32].

2. Rooting apps: Apps that exploit privilege-escalation
vulnerabilities to root the device (e.g., One Click Root,
iRoot, Root Genius).

3. Root apps: Apps that require root privileges for their
functions, such as BusyBox, SetCPU, Titanium Backup,
Wireless Tether, Adfree, ShootMe.

4. Root cloakers: Apps that hide the fact the device has
been rooted (e.g., Root Cloaker [22], Root Cloaker
Plus [21]).

5. API hooking frameworks: Libraries that provide API
hooking functions (e.g., Cydia Substrate [3], Xopsed
Framework [16]).

PackageManager is an Android Java class for retrieving
various kinds of information related to installed applica-
tion packages. This class is commonly used by the stud-
ied apps to check whether a specific app package that re-
quires root privileges is installed on the device. For instance,
getInstalledPackages or getInstalledApplications re-
turn a list of all packages/applications that are installed on
the device. The detecting app then iterates through the re-
sults to see whether a specific package is presented. Other
common used APIs are getPackageInfo and getApplica-

tionInfo which retrieves overall information about an in-
stall package/application.
We found that some PackageManager’s methods do not di-

rectly return an application/package information, but they
are leveraged by apps to infer whether a given package is in-
stalled or not. For example, getApplicationLogo retrieves
the logo icon associated with an application, getLaunch-

IntentForPackage returns an intent to launch a front-door
activity in a package, and getPackageGids returns an array
of all of the secondary group-ids that have been assigned to
a package.
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Evasion: For APIs that return a list of packages or ap-
plications, RDAnalyzer calls the hooked function and then
removes the target package names from the result before re-
turning them to the app. For APIs that retrieve specific
information for an given package, RDAnalyzer returns null
directly to falsely indicate to the app that the package does
not exist.

4.2.2 D2: Check Installed Files

The File.exists Java method, or access, open C APIs can
be used to check the existence of a file in the file system.
Commonly checked files include the follows:

• /system/xbin/su, system/bin/su. We found that some
apps manipulate the path attempting to confuse eva-
sion (e.g., /system/xbin/../xbin/su).

• /system/xbin/busybox and all symbolic links of com-
mands created by busybox.

• /data/app/<APK name> or /system/app/<APK name>
of popular apps packages that are installed during or
after rooting.

We found that some apps check APK files under /data/data/
directory, however, access to this directory are restricted by
default for user installed apps.

Evasion: When the target file path is detected in the in-
put parameter, RDAnalyzer calls the original hooked func-
tion with a fake file path that certainly does not exist (e.g.,
/system/xbin/doesnotexist) as the input parameter. While
openat() and other related functions can be used to remove
full path names from the executable and refer to the file by
a file handle, RDAnalyzer or root cloakers could find the full
path of the file, given the file handle.

4.2.3 D3: Check the BUILD tag

By default, stock Android images from Google are built with
“release-keys” tag. If “test-keys” are presented, this can
mean that the Android image on the device is either a de-
veloper build or an unofficial build. The follow code is used
by apps to test whether the Android image on the device is
an official build or not.

if (!android.os.Build.TAGS.equals(‘‘release-keys’’)) {//rooted}

Evasion: We examined the source code of Build.TAGS
and found that this build tags information is a class-level
static final string retried from “ro.build.tags” system
property through System.getProperty method. To mask
this value, RDAnalyzer uses Java reflection APIs to change
it to “release-keys”.

Class _class = Class.forName("android.os.Build");
Field field= _class.getDeclaredField("TAGS");
field.set(null, "release-keys");

4.2.4 D4: Check System Properties

If the value of system property ro.secure equals “0”, the
adb shell will be running as root instead of shell user. Sys-
tem.getProperty Java API can be used by apps to examine
this property value. We found that some apps also check if
“ro.debuggable=1” and “service.adb.root=1”. Examining
ADB source code reveals that the adbd daemon will be also
running as root user if both properties are set to one.

Evasion: RDAnalyzer hooks System.getProperty and
returns“‘1”for ro.secure property, and“0”for ro.debuggable
and service.adb.root properties.

4.2.5 D5: Check Directory Permissions

Some rooting tools make certain root folders readable (e.g.,
/data) or writable (e.g., /etc, /system/xbin, /system, /proc,
/vendor/bin) to any process on the device. The File.canRead
and canWrite Java APIs, or access C API can be used to
check whether such condition exists.

Evasion: If the target path is presented in the input pa-
rameter, RDAnalyzer simply returns false (e.g., not readable
or not writable) to the app.

4.2.6 D6: Check Processes/Services/Tasks

The ActivityManager.getRunningAppProcesses method
returns a list of currently running application processes.
This API is used by studied apps to check whether a spe-
cific app that requires root privileges is running on the de-
vice. Similarly, getRunningServices or getRecentTasks

APIs are also used by apps to retrieve a list of current run-
ning services or tasks respectively to check whether SuperSU
and popular apps for rooted devices are running on the de-
vice.

Evasion: RDAnalyzer calls the hooked function and then
removes the target names from the result before returning
them to the app.

4.2.7 D7: Check Rooting Traits Using Shell Com-
mands

Shell commands are commonly used by studied apps to de-
tect aforementioned rooting traits. Apps can use Runtime.exec
Java API, ProcessBuilder Java class, or execve C API to
execute a specified command in a separate process, and then
examine the output of the shell command to detect rooting
traits. Commonly employed shell commands are as follows:

• su: If the su binary exists, this shell command will
exit without error; otherwise, an IOException will be
thrown to the calling app.

• which su: The which command outputs the full path
of a specified command; in this case, the su command
(e.g., /system/xbin/su).

• ps | grep <target>: The ps command outputs a list
of the current running processes. The output of ps
can be piped through a grep command to search spe-
cific app processes that requires root access (e.g., dae-
monsu, SuperSu).

• ls - <target>: ls command can be used to check the
existence of a file in the file system.

• pm list packages: List all installed packages using
the pm command to search for specific targets.

• pm path <package>: Output the full path of the tar-
geted package.

• cat /system/build.prop | grep ro.build.tags: Check
whether ro.build.tags=release-keys

Evasion: RDAnalyzer (1) throws an IO exception if the
input command involves su, or (2) removes target names
from the command output by piping the input command
through an invert-match grep command (e.g., | grep -v

"su"), so that only non-matching lines are returned to the
calling app.
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integrity-protected kernels or external trusted execution en-
vironments. How such an API can certify correctness of the
result is a subject of future research.

5.1 Additional Observations
During our studies, we also observed two new detection tech-
niques that could complicate current root cloakers. These
new techniques were tested against two popular root cloak-
ers [22, 21].

Exception Call Stack Inspection. We found that
Java exception call stack can be leveraged by apps to infer
whether the device has been rooted. When performing root-
ing detection using a shell command via Runtime.exec("su")
or ProcessBuilder("su"), a Java IO exception will be thrown
to the app if the su binary does not exist. We found that
when the API has been hooked, the call stack will be differ-
ent. That is, when the API has been hooked, the hooking
function will be presented on the top of the call stack, in-
stead of the hooked API (e.g., Runtime.exec). Thus, apps
could determine whether the API call has been hooked by
checking the function name on the top of an IO exception
call stack. If the API has been hooked, the device must
be rooted because API hooking requires root privilege. To
evade this detection method, the root cloakers need to tam-
per with Java runtime in order to hide its trace left on the
IO exception call stack.

Stateful rooting detection. We found that existing
rooting detection methods are stateless (i.e., detection is
solely based on the return value of a single API call), and
therefore they can be evaded easily. Even when a new root-
ing trait has been discovered and used in detection, due to
the simplistic nature of stateless detection mechanism, it is
trivial for root cloakers to evade it (e.g., by adding the new
traits to its configuration). To complicate evasion, a stateful
rooting detection mechanism could be used. For instance,
an app can first create an interactive shell that will not
trigger evasion (e.g., Runtime.exec(‘sh’), execv (‘sh’)).
Once the shell object has been successfully obtained, the app
then pipes detection commands (e.g., ls /system/xbin/su,
which su) through the input stream of the shell object and
examines the output to determine whether the device has
been rooted. In order to evade this detection method, root
cloakers need to intercept both input and output streams of
the shell object.

5.2 Limitations
App samples. In the course of our study, we observed

that there are two general reasons why developers add root
detection logic to an app. The first reason is to improve
usability—to tell users whether their devices are rooted, to
warn users that their devices have not been rooted when
the app need root access to perform an action, or to display
different options to users based on whether the device has
been rooted. The second reason is for security—to protect
sensitive or high value user data against the security impact
of having a persist root access on the device.

Intuitively, apps detecting root for usability reasons might
need a lower quality of root detection than apps detecting
root for user data protection. In the confirmatory study,
we excluded paid apps and those apps that required hav-
ing accounts that we were unable to register (e.g., banking,
mobile device management apps). Most of those excluded
apps might be performing rooting detection for security rea-

son, which might employ such detection techniques that are
more difficult to evade. In addition, the majority of the
apps in our sample were downloaded from Google Play, ex-
cept for a small number of popular root apps downloaded
from third-party app stores (because they are available only
there). We plan to address these limitations as part of a
larger-scale version of the confirmatory study.
Rooting method samples. We used XDA Developers

Forums as our primary source for studying existing rooting
methods. There may be other existing rooting methods from
other sources that we are unaware of.

5.3 Future Work
In addition to addressing the limitations of our current study,
we plan to conduct the following future work:

Understanding user’s risk perception of rooting.
The security of a rooted device relies on the device user to
regulate root access properly. Thus, understanding user’s
mental model and risk perception of rooting could provide
informed design improvements to raise user awareness and
improve root-management functionalities.
Profiling root apps for reliable detection. Under-

standing and characterizing the behaviours of root apps (e.g.,
system calls, objects accessed and actions) might shed lights
on runtime detection of rooted devices, and provide informed
design improvements for root-management apps.
Hypothetically, a root detection approach can also look

for telltale signs that the device was put in a configura-
tion state that allowed future (or past) installation of a root
framework. While we did not find any approaches that do
so, it could be part of future studies.

6. CONCLUSION
This work uncovers the details of arm race between root-
ing methods and prevention mechanisms, as well as rooting
detection and evasion techniques. By creating a taxonomy
of the rooting methods, we found that despite the layers of
several countermeasures that, besides other protections, are
supposed to resist rooting, pre-boot rooting methods would
remain as options for rooting so long as “freedom of cus-
tomization” is embraced by vendors. For rooting detection
and evasion, we found a wide variety of techniques used by
apps to detect rooted devices, but unfortunately, all rooting
detection methods studied can be evaded. Our study results
suggest that, ultimately, a reliable rooting detection method
should be provided by Android OS, with rooting detection
logic implemented in the trusted parts of the system, such
as integrity-protected kernels or external trusted execution
environments.
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