
Security Analysis of Malicious Socialbots on the Web

by

Yazan Boshmaf

B. Computer Engineering, Jordan University of Science and Technology, 2005

M. Information Technology, University of Stuttgart, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

May 2015

© Yazan Boshmaf, 2015

Abstract

The open nature of the Web, online social networks (OSNs) in particular, makes it
possible to design socialbots—automation software that controls fake accounts in
a target OSN, and has the ability to perform basic activities similar to those of real
users. In the wrong hands, socialbots can be used to infiltrate online communities,
build up trust over time, and then engage in various malicious activities.

This dissertation presents an in-depth security analysis of malicious socialbots
on the Web, OSNs in particular. The analysis focuses on two main goals: (1) to
characterize and analyze the vulnerability of OSNs to cyber attacks by malicious
socialbots, social infiltration in particular, and (2) to design and evaluate a coun-
termeasure to efficiently and effectively defend against socialbots.

To achieve these goals, we first studied social infiltration as an organized cam-
paign operated by a socialbot network (SbN)—a group of programmable social-
bots that are coordinated by an attacker in a botnet-like fashion. We implemented
a prototypical SbN consisting of 100 socialbots and operated it on Facebook for 8
weeks. Among various findings, we observed that some users are more likely to
become victims than others, depending on factors related to their social structure.
Moreover, we found that traditional OSN defenses are not effective at identifying
automated fake accounts or their social infiltration campaigns.

Based on these findings, we designed Íntegro—an infiltration-resilient defense

system that helps OSNs detect automated fake accounts via a user ranking scheme.
In particular, Íntegro relies on a novel approach that leverages victim classification

for robust graph-based fake account detection, with provable security guarantees.

ii

We implemented Íntegro on top of widely-used, open-source distributed systems,
in which it scaled nearly linearly. We evaluated Íntegro against SybilRank—the
state-of-the-art in graph-based fake account detection—using real-world datasets
and a large-scale, production-class deployment at Tuenti, the largest OSN in Spain
with more than 15 million users. We showed that Íntegro significantly outperforms
SybilRank in ranking quality, allowing Tuenti to detect at least 10 times more fake
accounts than their current abuse detection system.

iii

Preface

“Акъылым уасэ иIэкъым, гъэсэныгъэм гъунэ иIэкъым”
“Intellect is priceless, education has no limit” — Circassian proverb [59]

This research was the product of a fruitful collaboration between the author of
the dissertation and the following people: Ildar Muslukhov, Konstantin Beznosov
(co-advisor), and Matei Ripeanu (co-advisor) from the University of British Columbia,
Dionysios Logothetis and Georgos Siganos from Telefónica Research, and Jorge
Rodriguez Lería and Jose Lorenzo from Tuenti, Telefónica Digital.

It is worth mentioning that the work presented herein consists of research stud-
ies that have been published or under review in peer-reviewed international confer-
ences, workshops, and journals. In particular, the characterization study presented
in Chapter 2, and partly discussed in Chapter 4, led to the following publications:

• Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. The Socialbot
Network: When Bots Socialize for Fame and Money. In Proceedings of the

27th Annual Computer Security Applications Conference (ACSAC ’11), pp.
93–102, Orlando, FL, USA, 2011 (best paper award, 20% acceptance rate).

• Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. Key Challenges
in Defending against Malicious Socialbots. In Proceedings of the 5th An-

nual USENIX Workshop on Large-Scale Exploits and Emergent Threats

(LEET ’12), San Jose, CA, USA, 2012 (18% acceptance rate).

iv

• Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. Design and Anal-
ysis of a Social Botnet. Computer Networks, Elsevier, 57(2), pp. 556–578,
2013 (1.87 impact factor).

The results related to the system design part, which are reported in Chapter 3,
are presented in the following refereed publications:

• Y. Boshmaf, K. Beznosov, and M. Ripeanu. Graph-based Sybil Detection in
Social and Information Systems. In Proceedings of the 2013 IEEE/ACM In-

ternational Conference on Advances in Social Networks Analysis and Min-

ing (ASONAM ’13), pp. 466–473, Niagara Falls, ON, Canada, 2013 (best
paper award, 13% acceptance rate).

• Y. Boshmaf, D. Logothetis, G. Siganos, J. R. Lería, J. Lorenzo, M. Ripeanu,
and K. Beznosov. Íntegro: Leveraging Victim Prediction for Robust Fake
Account Detection in OSNs. In Proceedings of the 2015 Annual Network

and Distributed System Security Symposium (NDSS ’15), San Diego, CA,
USA, 2015 (16% acceptance rate).

• Y. Boshmaf, D. Logothetis, G. Siganos, J. R. Lería, J. Lorenzo, M. Ripeanu,
and K. Beznosov. Thwarting Fake Accounts in Online Social Networks by
Predicting their Victims. Under review (submitted in March, 2015).

The discussion in Chapter 4 is partially influenced by ideas and findings which
led to publications at the following refereed workshops and conferences:

• S-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov. A Billion Keys, but
Few Locks: The Crisis of Web Single Sign-On. In Proceedings of the 2010

Workshop on New Security Paradigms (NSPW ’10), Concord, MA, USA,
2010 (32% acceptance rate).

• H. Rashtian, Y. Boshmaf, P. Jaferian, and K. Beznosov. To Befriend or Not?
A Model for Friend Request Acceptance on Facebook. In Proceedings of

the 11th Symposium On Usable Privacy and Security (SOUPS ’14), Menlo
Park, CA, USA, 2014 (27% acceptance rate).

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . xi

List of Figures . xii

Acknowledgments . xiii

Dedication . xiv

1 Introduction . 1
1.1 Problem Overview . 2

1.1.1 What is the Threat? . 2
1.1.2 What is at Stake? . 3
1.1.3 Who is Liable? . 3
1.1.4 Why is the Threat Hard to Mitigate? 4

1.2 Goals and Methodology . 6
1.3 Research Summary . 6

1.3.1 Threat Characterization 7
1.3.2 Countermeasure Design 11

vi

2 Social Infiltration in OSNs . 15
2.1 Background and Related Work 16

2.1.1 Online Social Networks 16
2.1.2 Sybil Attacks and Social Infiltration 17
2.1.3 Social Engineering, Automation, and Socialbots 17
2.1.4 Online Attacks in a Web of Scale 18
2.1.5 The Cyber-Criminal Ecosystem for OSN Abuse 20

2.2 Vulnerabilities in OSN Platforms 21
2.2.1 Ineffective CAPTCHAs 21
2.2.2 Fake Accounts and User Profiles 22
2.2.3 Crawlable Social Graphs 24
2.2.4 Exploitable Platforms and APIs 24

2.3 Design of a Social Botnet . 25
2.3.1 Overview . 26
2.3.2 Threat Model . 27
2.3.3 Requirements . 27
2.3.4 Socialbots . 28
2.3.5 Botmaster . 29
2.3.6 C&C Channel . 31

2.4 Empirical Evaluation . 32
2.4.1 Ethics Consideration . 32
2.4.2 Methodology . 33
2.4.3 Implementation on Facebook 34
2.4.4 Experimentation . 35
2.4.5 Analysis and Discussion 37

2.5 Economic Feasibility . 42
2.5.1 Methodology . 43
2.5.2 Model and Assumptions 43
2.5.3 Scalability of Social Infiltration 44
2.5.4 Profit-Maximizing Infiltration Strategies 48

vii

2.5.5 Case Study: Social Infiltration in Facebook 50
2.5.6 Discussion . 53

2.6 Summary . 56

3 Infiltration-Resilient Fake Account Detection in OSNs 57
3.1 Background and Related Work 58

3.1.1 Threat Model . 58
3.1.2 Fake Account Detection 60
3.1.3 Abuse Mitigation and the Ground-truth 63
3.1.4 Analyzing Victim Accounts 64

3.2 Intuition, Goals, and Model . 64
3.2.1 Intuition . 65
3.2.2 Design Goals . 65
3.2.3 System Model . 66

3.3 System Design . 67
3.3.1 Overview . 67
3.3.2 Identifying Potential Victims 68
3.3.3 Ranking User Accounts 70
3.3.4 Selecting Trusted Accounts 74
3.3.5 Computational Cost . 76
3.3.6 Security Guarantees . 76

3.4 Comparative Evaluation . 79
3.4.1 Compared System . 79
3.4.2 Methodology . 80
3.4.3 Datasets . 80
3.4.4 Implementation . 82
3.4.5 Victim Classification . 82
3.4.6 Ranking Quality . 87
3.4.7 Sensitivity to Seed-targeting Attacks 90
3.4.8 Deployment at Tuenti . 92
3.4.9 Scalability . 96

viii

3.5 Discussion . 97
3.5.1 Robustness of User Ranking 97
3.5.2 Maintenance and Impact 98
3.5.3 Limitations . 98

3.6 Summary . 99

4 Discussion and Research Directions 101
4.1 Challenges for Preventive Countermeasures 101

4.1.1 Web Automation . 102
4.1.2 Identity Binding . 104
4.1.3 Usable Security . 105

4.2 Account Admission Control in OSNs 106
4.2.1 Vouching . 106
4.2.2 Service Provisioning . 106
4.2.3 User Education and Security Advice 107

4.3 Leveraging Victim Prediction . 107
4.3.1 User-Facing Security Advice 108
4.3.2 Honeypots and User Sampling 109

5 Impact and Conclusion . 110

Bibliography . 114

A Security Analysis of Íntegro . 129
A.1 Background . 129
A.2 Mathematical Proofs . 131

B Evaluating Sybil Node Detection Algorithms with SyPy 140
B.1 Framework . 140

B.1.1 Graphs and Regions . 141
B.1.2 Networks . 141
B.1.3 Detectors . 142

ix

B.2 Benchmarks . 142
B.3 Extensibility . 143

x

List of Tables

Table 2.1 Generic operations supported by the socialbot malware 28
Table 2.2 Master commands executed by socialbots 30
Table 2.3 Estimates for analyzing infiltration profitability in Facebook . . 51

Table 3.1 Low-cost features extracted from Facebook and Tuenti 84

xi

List of Figures

Figure 1.1 Research questions and contributions 7

Figure 2.1 Components required for OSN abuse in Facebook 20
Figure 2.2 An overview of a socialbot network (SbN) 25
Figure 2.3 Seeding social infiltration in Facebook 36
Figure 2.4 Demographics of contacted users 38
Figure 2.5 User susceptibility to infiltration on Facebook (CI=95%) . . . 38
Figure 2.6 Real-world samples of user interactions with socialbots 39
Figure 2.7 Users with accessible private data 40
Figure 2.8 Infiltration performance on Facebook 41

Figure 3.1 System model . 66
Figure 3.2 Trust propagation example 74
Figure 3.3 Victim classifier tuning . 85
Figure 3.4 Victim classification using the RF algorithm 86
Figure 3.5 Ranking quality under each infiltration scenario (CI=95%) . . 89
Figure 3.6 Ranking sensitivity to seed-targeting attacks (CI=95%) 91
Figure 3.7 Preprocessing for system deployment 92
Figure 3.8 Deployment results at Tuenti 95
Figure 3.9 System scalability on distributed computing platforms 97

Figure B.1 SyPy network visualization 144

xii

Acknowledgments

First and foremost, I would like to thank my kind advisors, Konstantin Beznosov
and Matei Ripeanu, for giving me the opportunity to venture into different topics
and disciplines, and for patiently guiding me through this journey.

Second, this work would have been no fun without my fabulous collaborators
and supportive friends. In no particular order, I give my special thanks to you all:
Dionysios Logothetis, Georgos Siganos, Jorge Rodriguez Lería, Jose Lorenzo,
Ildar Muslukhov, Pooya Jaferian, San-Tsai Sun, Hootan Rashtian, Primal Wije-
sekera, Ivan Cherapau, Tareq AlKhatib, Bader AlAhmad, Hussam Ashab, Antone
Dabeet, Daniel Lopez, Nima Fartash, Mohammad Shamma, and Alex Dauphin.

Third, I would like to thank all members of LERSSE and NetSysLab for their
feedback and constructive discussions. I am greatly thankful to Tim Hwang from
Pacific Social, Chris Sumner from the Online Privacy Foundation, Ulf Lindqvist
from SRI International, Hasan Cavusoglu from Sauder School of Business, Joseph
McCarthy from University of Washington–Bothell, the Alexander von Humboldt
Foundation, and the Natural Sciences and Engineering Research Council (NSERC)
of Canada for their external support and feedback during my studies. I am vastly
indebted to the University of British Columbia for a generous doctoral fellowship.

Fourth, salutes to my colleagues at Facebook, Telefónica, Microsoft, and Sophos
for enriching internship experiences: Kyle Zeeuwen, David Cornell, Dmitry Samos-
seiko, Yuchun Tang, Matt Jones, Nikolaos Laoutaris, and Mihai Budiu.

Last but not least, I would like to thank my family. Words cannot express how
thankful I am for your constant support and love over these years.

xiii

Dedication

To my parents who never stopped believing in me

xiv

Chapter 1

Introduction

Our personal and professional lives have gone digital. We live, work, and play in
the cyber-space. We use the Web every day to talk, email, text, and socialize with
family, friends, and colleagues. Among a plethora of social Web services, online
social networks (OSNs), such as Facebook1 and Twitter2, have had the highest
popularity and impact on the way we engage with the Web on a daily basis [11].

With more than one billion active users [30, 119], OSNs have attracted third
parties who exploit them as effective online social media to reach out to and poten-
tially influence a large and diverse population of web users [24, 62]. For example,
OSNs were heavily employed by Obama’s 2012 campaign team who raised $690
million online, up from $500 million in 2008 [100]. In addition, it has been ar-
gued that OSNs were one of the major enablers of the recent Arab Spring in the
Middle East [89]. This pervasive integration of OSNs into everyday life is rapidly
becoming the norm, and arguably, it is here to stay. Today’s social Web, however,
is not exclusive to only human beings. In fact, online personas and their social
interactions can be programmed and fully automated. As Hwang et al. put it [56]:
“digitization drives botification; the use of technology in a realm of human activity
enables the creation of software to act in lieu of human.”

1http://facebook.com
2http://twitter.com

1

http://facebook.com
http://twitter.com

In this dissertation, we analyze the threat of malicious socialbots—automated
personas that infiltrate OSNs like virtual con men, build up trust over time, and
then exploit it to promote personalized messages for adversarial objectives.3

1.1 Problem Overview
In what follows, we first define the threat of malicious socialbots (Section 1.1.1),
explain why it is important to defend against (Section 1.1.2), discuss who is legally
liable in case of harm or damage (Section 1.1.3), and then elaborate why mitigat-
ing this threat is a hard socio-technical problem (Section 1.1.4).

1.1.1 What is the Threat?
A new breed of computer programs called socialbots are emerging, and they can
influence users online [79]. A socialbot is an automation software that controls a
fake account in a target OSN, and has the ability to perform basic activities similar
to those of real users, such as posting messages and sending friend requests.

What makes a socialbot different from self-declared bots, such as Twitter bots
that post weather forecasts, or spambots, which are bots that massively distribute
unsolicited messages to non-consenting users, is that it is designed to pass itself

off as a human being. This is achieved by either simply mimicking the actions of
a real OSN user or by simulating such a user using artificial intelligence, just as
in social robotics [56].

In the wrong hands, a socialbot can be used to infiltrate users in a target OSN
and reach an influential position, that is, to adversely manipulate the social graph

of the OSN by connecting with a large number of its users. We discuss the threat
model is more detail in Sections 2.3.2 and 3.1.1

3Use of the plural pronoun is customary even in solely authored research work. However, given
the subject of this dissertation, its use herein is particularly ironic, following Douceur’s seminal
paper [22] on multiple-identity or Sybil attacks in distributed systems.

2

1.1.2 What is at Stake?
First of all, a malicious socialbot can pollute the target OSN with a large number of
non-genuine social relationships. This means that it is unsafe to treat the infiltrated
OSN as a network of trust anymore, which goes against the long-term health of the
OSN ecosystem [11]. Put differently, third-party applications and websites would
have to identify and remove fake user accounts before integrating with such OSNs,
which has been shown to be a non-trivial task [137].

Second, once a socialbot infiltrates the target OSN, it can exploit its new po-
sition in the network to spread misinformation and bias the public opinion [113],
perform online surveillance [95], and even influence algorithmic trading [8]. For
example, Ratkiewicz et al. [98] described the use of Twitter bots to run astroturf
campaigns during the 2010 U.S. midterm elections. Moreover, a socialbot can ex-
ploit its position in the network to distribute malicious content, such as malware
and botnet executables [132]. For example, the Koobface botnet [112] propagates
by hijacking user accounts of infected machines, after which it uses these accounts
to send messages containing a malicious link to other OSN users. When clicked,
the link points to a compromised website that attempts to infect its visitors with
the Koobface malware using drive-by download attacks [132].

Third and last, as a socialbot infiltrates the target OSN, it can harvest private
user data such as email addresses, phone numbers, and other personally identifi-
able information that have monetary value. For an attacker, such data are valuable
and can be used for online profiling and large-scale email spam and phishing cam-
paigns [58]. It is thus not surprising that similar socialbots are being offered for
sale at underground markets, along with other commodities for OSN abuse [114].

1.1.3 Who is Liable?
It is often the case that OSN users or third parties are liable for any damage caused
by OSN platforms or services, not OSN operators [78]. For example, Facebook’s
Terms of Service explicitly states under §15 entitled “Disputes” that [33]:

3

“We [Facebook and subsidiaries] try to keep Facebook up, bug-free,
and safe, but you [the end user] use it at your own risk. We are pro-
viding Facebook as is without any express or implied warranties. [...]
We do not guarantee that Facebook will always be safe, secure or
error-free. [...] Facebook is not responsible for the actions, content,
information, or data of third parties, and you release us, our directors,
officers, employees, and agents from any claims and damages, known
and unknown, arising out of or in any way connected with any claim
you have against any such third parties.”

From privacy law perspective, the American courts, for example, lack coher-
ent and consistent methodology for determining if an individual has a reasonable
expectation of privacy in a particular fact that has been shared with one or more
persons in social networks [106]. In online settings, this methodological weakness
can have severe implications, as OSNs like Facebook end up facilitating peer-to-
peer privacy violations in which users harm each others’ privacy interests [43].
While policymakers cannot make such OSNs completely safe, they can help peo-
ple use it safely by introducing policy interventions, such as a strengthened public-
disclosure tort and a right to opt out completely [43]. It is also in the interest of
OSN operators to keep their platforms as safe and secure as possible by preventing
or detecting malicious activities, including automated fake accounts [17, 33]. This
commitment is evident by the large investments made by OSNs to hire teams of
security engineers in order to develop, deploy, and maintain sophisticated defense
mechanisms [15, 104, 135].

1.1.4 Why is the Threat Hard to Mitigate?
Recently, a number of feature-based detection techniques were proposed to auto-
matically identify OSN bots, or automated fake accounts, based on their abnormal
behavior [108, 127, 135]. By extracting features that describe certain user behav-
iors from recent activities (e.g., frequency of friend requests), a fake account clas-
sifier is trained using various machine learning techniques. For example, Stein et

4

al. [104] presented Facebook’s “immune system”—an adversarial machine learn-
ing system that performs real-time checks and classifications on every read and
write action on Facebook’s database, which are based on features extracted from
user accounts and their activities. Accordingly, it is expected that such an adver-
sarial learning system to be effective at identifying and blocking spambots. Social-
bots, however, are more deceptive than spambots as they are designed to behave
“normally” by posing as average OSN users [56]. Armed with today’s artificial
intelligence advancements, it is feasible to orchestrate a network of socialbots that
sense, think, and act cooperatively just like human beings. An attacker, for exam-
ple, can use adversarial classifier reverse engineering techniques [74] in order to
learn sufficient information about the employed security defenses and then evade
detection by constructing an adversarial strategy that minimizes the chance of a
socialbot being classified as abnormal or fake, sometimes down to zero.

Graph-based detection techniques [2, 123, 137], as an alternative to feature-
based detection, analyze the social graph in order to partition it into two regions

separating real accounts from fakes. Such techniques, however, are expected to be
less effective at identifying malicious socialbot, as they make strong assumptions
about the capabilities of online attackers that do not hold in practice. For example,
it is often assumed that the regions are sparsely connected, that is, automated fake
accounts cannot establish many social relationships with real users, as this would
require exceptional social engineering [137]. This assumption does not hold when
malicious socialbots are used, because each bot is expected to gradually infiltrate
and integrate into the online community it targets, resembling the scenario when
a new user joins an OSN and starts connecting with others [56].

To this end, detecting malicious socialbots in OSNs is expected to result in an
arms race, which will keep both the defenders and the attackers busy, depending
on their available resources. The threat of socialbots could be mitigated by elim-
inating the factors that make their automated operation feasible in the first place.
Doing so, however, involves solving a number of hard socio-technical challenges,
which we identify later in Section 4.1. Alternatively, the OSN can facilitate strict

5

account admission policies that limit the service offered to newly registered users.
As we discussed in Section 4.2, this can negatively impact user experience.

1.2 Goals and Methodology
Our ultimate goal is twofold: (1) to understand and characterize what makes OSNs
vulnerable to cyber-attacks by malicious socialbots, to social infiltration in partic-
ular, and (2) to design a new countermeasure to effectively and efficiently defend
against malicious socialbots. In order to achieve these goals, we divided our inves-
tigation into two parts: Threat characterization, which is presented in Chapter 2,
and countermeasure design, which is presented in Chapter 3.

As for our research methodology, we followed the standard iterative process
in improving computer security, which starts with vulnerability analysis, followed
by security requirements specification and countermeasure design, and then ends
with security assurance [4]. We used quantitative and analytical research methods
to characterize social infiltration in OSNs and design a robust defense mechanism
against it with provable security guarantees. These methods included controlled
experiments, statistical analysis, simulations, mathematical modeling and analy-
sis, and real-world system deployment. We provide more detailed description of
our research methodology in Sections 2.4.2 and 3.4.2.

1.3 Research Summary
While the motivations for operating socialbots and the technical mechanisms that
enable them remain rich areas of research, we focus our investigation around four
research questions (RQs) covering the threat characterization part (Section 1.3.1)
and the countermeasure design part (Section 1.3.2). Figure 1.1 summarizes the
research questions and contributions of this dissertation.

6

• Vulnerability-analysis-
of-OSN-pla5orms-

• Characteriza;on-of-
user-suscep;bility--

How-vulnerable-are-OSNs-
to-social-infiltra;on?-

• Quan;fica;on-of-
privacy-breaches-

• Effec;veness-of-
security-defenses-

What-are-the-security-and-
privacy-implica;ons-of-
social-infiltra;on?- • Scalability-from-

economic-context-

• ProfitHmaximizing-
infiltra;on-strategy-

What-is-the-economic-
ra;onale-behind-social-
infiltra;on-at-scale?-

• Vic;m-predic;on-for-
robust-detec;on-

• Framework-for-
systema;c-evalua;on-

How-can-OSNs-detect-
automated-fakes-that-

infiltrate-on-a-large-scale?-

Threat Characterization

Countermeasure Design

1 1

1 2

1 3

1 4

Figure 1.1: Research questions and contributions

1.3.1 Threat Characterization
In Chapter 2, we consider profit-driven attackers who infiltrate OSNs using mali-
cious socialbots. In particular, the following questions guide our characterization

of social infiltration in OSNs:

• RQ1: How vulnerable are OSNs to social infiltration?

• RQ2: What are the security and privacy implications of social infiltration?

• RQ3: What is the economic rationale behind social infiltration at scale?

To address these questions, we studied social infiltration as an organized cam-
paign run by a network of socialbots. In particular, we adopted the design of
web-based botnets [101] and defined what we call a socialbot network (SbN): A
group of programmable socialbots that are coordinated by an attacker using a soft-
ware controller called the botmaster. In our design, the botmaster follows simple
infiltration strategies that exploit known social behaviors of users in OSNs in order
to increase the scale of infiltration and its success rate.

7

Main Findings

We implemented an SbN consisting of 100 socialbots and a single botmaster. We
operated this SbN on Facebook for 8 weeks in early 2011. During that time, the
socialbots sent a total of 9,646 friend requests to attacked users, out of which
3,439 requests were accepted by victims. This resulted in an average success rate
of 35.7%. We recorded all data related to user behavior, along with all accessible
users’ profile information.

The main findings of this part of the dissertation are the following:

Finding 1 (under RQ1): OSNs such as Facebook suffer from inherent vulnerabil-

ities that enable an attacker to automate social infiltration on a large scale

We analyzed the vulnerability of Facebook to malicious automation. We found
that OSNs such as Facebook employ ineffective CAPTCHAs, allow multiple ac-
counts to be created by the same user, hide the social graph but permit any user to
crawl it, and provide social APIs and web platforms that are relatively easy to ex-
ploit or reverse engineer. Along with poorly designed end-user privacy controls,
these vulnerabilities represent the enabling factors that make operating socialbots
feasible in the first place.

Finding 2 (under RQ1): Some users are more likely to become victims than oth-

ers, which partly depends on factors related to their social structure.

We found that OSN users are not careful when accepting connection requests,
especially when they share mutual connections with the sender. This behavior can
be exploited to achieve a large-scale infiltration with a success rate of up to 80%,
where the bots shared at least 10 mutual friends with the victims. Moreover, we
found that the more friends a user has, the more likely the user is to accept friend
requests sent by fakes posing as strangers, regardless to their gender or number of
mutual friends.

Finding 3 (under RQ2): An SbN can seriously breach the privacy of users, where

personally identifiable information is compromised.

8

Subject to user privacy settings, we showed that an attacker can gain access to
2.6 times more private user data by running a social infiltration campaign. These
data include birth dates, email addresses, phone numbers, and other personally
identifiable information. This privacy breach includes the private data of “friends
of friends,” that is, users who have not been infiltrated by socialbots but are friends
with their victims.

Finding 4 (under RQ2): Traditional OSN defenses are not effective at identifying

automated fake accounts nor their social infiltration campaigns.

Even though Facebook uses a sophisticated feature-based abuse detection sys-
tem that relies on various machine learning techniques to identify fake accounts [104],
we found that only 20% of the fakes controlled by socialbots were correctly iden-
tified and suspended. However, these suspended accounts were in fact manually
flagged by concerned users, rather than by Facebook. In addition, while the aver-
age Facebook user had approximately 100 friends [39], we found that 50% of the
socialbots infiltrated more than 35 victims and up to 120, which means fakes are
not always loosely connected to real accounts in the social graph. This, as a result,
renders graph-based fake account detection systems, which aim to find sparse cuts
to separate real accounts from fakes, ineffective in practice.

Finding 5 (under RQ3): For an SbN to be scalable in terms of number of attacked

users, it ought to have a fixed size in terms of number of socialbots.

We developed an economic model for a profit-driven social infiltration. Using
cost-volume-profit (CVP) analysis, we found that when operating an SbN using a
growing number of socialbots, there is no benefit—if not a loss—from scaling the
SbN and attacking even more users. Due to linear cost dependance, the attacker
makes the same profit, at best, if 1K or 100K users are attacked, for example.

Finding 6 (under RQ3): Operating an SbN at scale is expected to be profitable,

but it is not particularly attractive as an independent business.

9

We derived two business models for social infiltration under which an attacker
can make non-zero profit. In the first model, the attacker sells harvested user data
through infiltrating as many users as possible, following a scalable data-driven in-
filtration strategy. In the second model, the attacker receives a lump-sum payment
through infiltrating a predefined number of users, following a non-scalable target-

driven infiltration strategy. However, due to poor market incentives, our analysis
indicates that scalable social infiltration is not sustainable as an independent busi-
ness, and a rational botherder would utilize an SbN as a monetization platform for
more profitable underground commodities.

Contributions

In summary, this part of the dissertation makes the following main contributions:

Contribution 1: Demonstrating the feasibility of social infiltration in OSNs.

We performed the first comprehensive study that shows the feasibility of social
infiltration in OSNs such as Facebook. In particular, we designed and evaluated a
social botnet on Facebook, which resulted in new or confirmatory findings related
to platform vulnerabilities, user susceptibility to social infiltration, data breaches,
and the effectiveness of fake account detection mechanisms against malicious so-
cialbots that are capable of social infiltration at scale (Findings 1–4).

Contribution 2: Economic analysis of social infiltration at scale.

We developed a mathematical model to analyze the scalability of social infil-
tration from an economic context. We used this model to derive profit-maximizing
infiltration strategies that satisfy different scalability requirements. We also evalu-
ated the economic feasibility of social infiltration under these strategies using data
collected from Facebook, which resulted in new findings related to the dynamics
of social infiltration as a monetization platform for OSN abuse (Findings 5–6).

10

1.3.2 Countermeasure Design
In Chapter 3, we consider attackers who can run a social infiltration campaign at a
large scale using a set of automated fake accounts, or socialbots. Specifically, each
fake account can perform social activities similar to those of real users, including
befriending other real users. Motivated by Finding 4, our design of an infiltration-

resilient fake account detection mechanism tackles the following question:

• RQ4: How can OSNs detect automated fakes that infiltrate on a large scale?

To address this question, we designed Íntegro—a robust and scalable defense
system that helps OSNs detect automated fake accounts via a user ranking scheme.4

The system is suitable for OSNs whose users declare bidirectional social relation-
ships (e.g., Tuenti,5 RenRen,6 LinkedIn,7 Facebook), with the ranking process be-
ing completely transparent to users. While the ranking scheme is graph-based, the
graph is preprocessed first and annotated with information derived from feature-
based detection techniques, similar to those employed by Facebook’s immune sys-
tem. This approach of integrating user-level activities into graph-level structures
positions Íntegro as the first feature-and-graph-based detection mechanism.

Design Overview

Our design directly follows from Finding 2 and is based on the observation that
victims—real accounts whose users have accepted friend requests sent by fakes—
are useful for designing robust fake account detection mechanisms. In particular,
Íntegro uses simple account features (e.g., gender, number of friends, time since
last update), which are cheap to extract from user-level activities, to train a victim
classifier in order to identify potential victims in the OSNs. As attackers have no
control over victim accounts nor their activities, a victim classifier is inherently

4In Spanish, the word “íntegro” means integrated, which suites our novel approach of integrat-
ing user-level activities into graph-level structures.

5http://tuenti.com
6http://renren.com
7http://linkedin.com

11

http://tuenti.com
http://renren.com
http://linkedin.com

more resilient to adversarial attacks than a similarly-trained fake account classifier.
Moreover, as victims are directly connected to fakes in the graph, they represent a
natural “borderline” that separates real accounts from fakes.

Íntegro makes use of this observation by consistently assigning lower weights
to edges incident to potential victims than other accounts, after which it ranks user
accounts based on the landing probability of a short, supervised random walk that
starts from a known real account. The random walk is “short,” as it is terminated
early before it converges. The walk is “supervised,” as it is biased towards travers-
ing nodes that are reachable through higher-weight paths. Therefore, this modified
random walk is likely to stay within the subgraph consisting of real accounts, and
thus most real accounts receive higher ranks than fakes. Unlike SybilRank [15],
which is the state-of-the-art in graph-based fake account detection, we do not as-
sume sparse connectivity between real and fake accounts. This makes Íntegro the
first fake account detection system that is robust against social infiltration.

Given an OSN consisting of n user accounts, Íntegro takes O(n logn) time to
complete its computation. For attackers who randomly establish a set Ea of edges
between victim and fake accounts, Íntegro guarantees that at most O(vol(Ea) logn)

fakes are assigned ranks similar to or higher than real accounts in the worst case,
where vol(Ea) is the sum of weights on edges in Ea. In fact, this bound on ranking
quality represents an improvement factor of O(|Ea|/vol(Ea)) over SybilRank. In
addition, even with a uniformly random victim classifier that labels each account
as a victim with 0.5 probability, Íntegro ensures that vol(Ea) is at most equals to
|Ea|, resulting in the same asymptotic bound offered by SybilRank [15].

Main Results

We evaluated Íntegro against SybilRank using real-world datasets and a large-
scale deployment at Tuenti—the largest OSN in Spain with about 15 million users.
We picked SybilRank because it was shown to outperform known contenders [15],
including EigenTrust [60], SybilGuard [138], SybilLimit [139], SybilInfer [19],
Mislove’s method [122], and GateKeeper [118]. In addition, as SybilRank relies

12

on a user ranking scheme that is similar to ours albeit on an unweighted version
of the graph, evaluating against SybilRank allowed us to clearly show the impact
of leveraging victim classification on fake account detection.

Our evaluation results show that Íntegro consistently outperforms SybilRank in
ranking quality, especially as the fakes infiltrate an increasing number of victims,
that is, as Ea grows large. In particular, Íntegro resulted in up to 30% improvement
over SybilRank in its ranking area under ROC curve (AUC), which represents the
probability that a random real account is ranked higher than a random fake ac-
count [122]. In fact, Íntegro achieved an AUC greater than 0.92 as |Ea| increased,
while SybilRank resulted in an AUC as low as 0.71 under the same setting.

In practice, the deployment of Íntegro at Tuenti resulted in up to an order of
magnitude higher precision in fake account detection, where ideally fakes should
be located at the bottom of the ranked list. In particular, for the bottom 20K low-
ranking users, Íntegro achieved 95% precision, as compared to 43% by SybilRank,
or 5% by Tuenti’s current user-based abuse reporting system. More importantly,
the precision significantly decreased as we inspected higher ranks in the list, which
means Íntegro consistently placed most of the fakes at the bottom of the list, un-
like SybilRank. The only requirement for Íntegro to outperform SybilRank is to
train a victim classifier that is better than random. This requirement can be easily
satisfied during the cross-validation phase by deploying a victim classifier with
an AUC greater than 0.5. In our deployment, the victim classifier was 52% better
than random with an AUC of 0.76, although it was trained using low-cost features.

We implemented Íntegro on top of Mahout8 and Giraph,9 which are widely de-
ployed, open-source distributed machine learning and graph processing systems,
respectively. Using a synthetic benchmark of five OSNs consisting of up to 160M
users, Íntegro scaled nearly linearly with number of users in the graph. In partic-
ular, for the largest graph with 160M nodes, it took Íntegro less than 30 minutes
to finish its computation on a cluster of 33 commodity machines.

8http://mahout.apache.org
9http://giraph.apache.org

13

http://mahout.apache.org
http://giraph.apache.org

Contributions

In summary, this part of the dissertation makes the following contributions:

Contribution 3: Leveraging victim classification for fake account detection.

We designed and analyzed Íntegro—a fake account detection system that re-
lies on a novel technique for integrating user-level activities into graph-level struc-
tures. Íntegro uses supervised machine learning with features extracted from user-
level activities in order to identify potential victims in the OSN. By weighting the
graph such that edges incident to potential victims have lower weights than other
accounts, Íntegro guarantees that most real accounts are ranked higher than fakes.
These ranks are derived from the landing probability of a modified random walk
that starts from a known real account. To our knowledge, Íntegro is the first detec-
tion system that is robust against adverse manipulation of the graph, where fakes
follow an adversarial strategy to befriend a large number of accounts, real or fake,
in order to evade detection.

Contribution 4: Open-source implementation and evaluation framework.

We implemented Íntegro on top of open-source distributed systems which run
on commodity machines. We publicly released Íntegro as part of two projects: (1)
SyPy,10 our single-machine comparative evaluation framework for graph-based
fake account detection algorithms, and (2) GrafosML,11 a library and tools for ma-
chine learning and graph analytics. We evaluated Íntegro against SybilRank using
real-world datasets and a large-scale deployment at Tuenti. Íntegro has allowed
Tuenti to detect at least 10 times more fake accounts than their current user-based
abuse reporting system, in which reported users are not ranked. With an average
of about 16K flagged accounts a day [15], Íntegro has saved Tuenti hundreds of
man hours in manual verification by robustly ranking user accounts.

10http://boshmaf.github.io/sypy
11http://grafos.ml

14

http://boshmaf.github.io/sypy
http://grafos.ml

Chapter 2

Social Infiltration in OSNs

Online social networks (OSNs) have attracted more than a billion active user and
have become an integral part of today’s Web. In the wrong hands, however, OSNs
can be used to harvest private user data [6], distribute malware [132], control
botnets [63], perform surveillance [95], spread misinformation [113], and even
influence algorithmic trading [8]. Online attackers start their abuse by running a
social infiltration campaign using automated fake accounts, where fakes are used
to connect with a large number of users in the target OSN. Such an infiltration is
required because isolated fake accounts cannot directly interact with or promote
content to most users in the OSN [28].

While online attackers, also called cyber-criminals, were generally thought to
be less financially driven in the past, a number of recent studies showed that such
criminals are moving towards profitable business models [14, 38, 86]. For exam-
ple, spammers that promote generic pharmaceuticals and knock-off designer prod-
ucts generate an estimated revenue between $12–92 million each year [77], while
similar criminals that trick victims into installing ineffectual software, such as fake
anti-virus tools, pulling in $5–116 million [105]. The threats these cyber-criminals
pose to OSNs are aggravated by the emergence of an underground economy—a
digital network of criminals who buy and sell goods that directly enable the abuse
of OSNs for a small price. These goods include fake accounts [88], compromised

15

machines [14], CAPTCHA-solving services [87], and IP address proxies [53].
In this chapter, we consider profit-driven attackers who infiltrate OSNs using

malicious socialbots—automation software that control fake accounts and per-
form social activities similar to those of legitimate users. In particular, we aim to
address the following RQs, as introduced in Section 1.3.1:

• RQ1: How vulnerable are OSNs to social infiltration?

• RQ2: What are the security and privacy implications of social infiltration?

• RQ3: What is the economic rationale behind social infiltration at scale?

2.1 Background and Related Work
We next present required background and contrast related work to ours, focusing
on socialbots, social infiltration, scalability of online attacks, and the underground
market for OSN abuse.

2.1.1 Online Social Networks
An online social network (OSN) is a centralized web platform that facilitates and
mediates users’ social activities online. A user in such a platform owns an account
and is represented by a profile that describes her social attributes, such as name,
gender, interests, and contact information. We use the terms “account,” “profile,”
and “user” interchangeably but make the distinction when deemed necessary. A
social relationship between two users can be either bilateral such as friendships in
Facebook, or unilateral such as followerships in Twitter.

An OSN can be modeled as a social graph G=(V,E), where V represents a set
of users and E represents a set of social connections (i.e., relationships) among the
users. For every user vi ∈V , the neighborhood of vi is the set that contains all users
in V with whom vi has social connections. For the users in the neighborhood of vi,
the union of their neighborhoods is the extended neighborhood of vi. In Facebook,

16

for example, the neighborhood and the extended neighborhood of a user represent
the “friends” and the “friends of friends” of that user, respectively.

2.1.2 Sybil Attacks and Social Infiltration
The Sybil attack [22] represents the situation where an attacker controls multiple
identities, each called a Sybil, and joins a targeted system under these identities in
order to subvert a particular service. Accordingly, we define social infiltration in
OSNs as an instance of the Sybil attack, where an attacker employs an automation
software, which is scalable enough to control many attacker-owned fake accounts,
in order to connect with a large number of legitimate users in the target OSN.

Recent research indicates that social infiltration in OSNs is possible and rep-
resents an emerging threat [57, 91, 96]. For example, Bilge et al. [6] where among
the first to demonstrate that users in OSNs are not cautious when accepting friend
requests. In particular, the authors performed an experiment to evaluate how will-
ing users are to accept friend requests sent by forged user accounts of people who
were already in their friends list as confirmed contacts. They also compared that
with users’ response to friend requests sent by people who they do not know, that
is, fake accounts posing as strangers. In their experiment, they found that the
acceptance rate for forged accounts was over 60%, and about 20% for the fakes.
Unlike their targeted attack, we do not expect the attacker to steal identities and
forge user accounts, as this makes the attack non-scalable and more susceptible
to detection [104]. Moreover, we aim to characterize descriptive user behaviors
that are important to improve today’s OSN security defenses, and to evaluate the
corresponding security and privacy implications, all under the threat model of an
attacker who is capable of social infiltration on a large scale.

2.1.3 Social Engineering, Automation, and Socialbots
The concept of social engineering is usually defined as the art of gaining unautho-
rized access to secure objects by exploiting human psychology, rather than using
hacking techniques [4]. Social engineering has become more technical and com-

17

plex; social engineering attacks are being computerized and fully automated, and
have become adaptive and context-aware [6, 13, 57, 58, 95].

Huber et al. [54] presented one of the first frameworks for automated social en-
gineering in OSNs, where a new breed of bots can be used to automate traditional
social engineering attacks for many adversarial objectives. Under this framework,
a malicious socialbot represents an automated social engineering tool that allows
an attacker to infiltrate online communities like a virtual con man, build up trust
over time, and then exploit it to elicit information, sway opinions, and call to ac-
tion. In fact, automation has a strong economic rationale behind it. Herley [49]
showed for an online attack to be scalable, it ought to be automated without man-

ual per-user adjustments. If not, there are no economic incentives for a rational

(i.e., profit-driven) attacker to scale the attack, which is typically undesirable from
an adversarial standpoint.

Socialbots can be used for non-adversarial objectives as well [56]. For exam-
ple, the Web Ecology Project1 envisions the design of benign socialbots that have
positive impact on online communities by advocating awareness and cooperation
among human users on civic or humanitarian issues. Soon after, this objective was
extended towards realizing social architecture [92], where “intelligent” socialbots
are used to interact with, promote, and provoke online communities towards de-
sirable behaviors, including large-scale restructuring of social graphs.

2.1.4 Online Attacks in a Web of Scale
The distinction between online attacks that are scalable and those that are not has
long been recognized. Dwork and Naor [23] suggested that forcing a linear cost
dependence makes certain attacks financially unattractive.

Similarly, Herley [49] distinguished between scalable attacks, in which costs
are almost independent of the number of attacked users, and non-scalable or tar-

geted attacks, which involve per-user effort resulting in a higher than average cost.
To compensate, the non-scalable attacker must target users with higher than aver-

1http://www.webecologyproject.org

18

http://www.webecologyproject.org

age value, as low value users negatively affect the reward. To accomplish this, the
non-scalable attacker needs that value be both visible and very concentrated, with
few users having very high value while most have little. In this the attacker is for-
tunate; power-law long-tail distributions that describe the distributions of wealth,
fame, and other phenomena are extremely concentrated. However, in these distri-
butions, only a small fraction of the population have above average value. For ex-
ample, fewer than 2% of people have above average wealth in the US [20]. Thus,
when attacking assets where value is concentrated, the non-scalable attacker ig-
nores the vast majority of users. By contrast, the scalable attacker lives in a “costs
nothing to try” world and attacks everyone indiscriminately, whether they have
high or low value, ending up with an average value per user. As a result, scal-

able attacks reach orders of magnitude more users than non-scalable ones. This,
to some extent, explains why only few users ever get targeted with sophisticated
attacks, while mostly all users receive spam emails at some point in time [49].

The scale of an attack, interestingly, can lead to its own demise. Florêncio et
al. [35] observed that there is an enormous gap between potential and actual harm
of scalable online attacks; the majority of Web users appear unharmed each year.
The authors explained that a scalable attacker faces a sum-of-effort rather than

a weakest-link defense, leading to an increased cost per user. As scalable attacks
must be profitable in expectation, not merely in particular scenarios, many attacks
can be rendered non-profitable and non-scalable by marginally increasing the cost
to subvert the defenses deployed by the service provider or its users, even when
many profitable targets exist.

We analyze social infiltration in OSNs from an economic perspective, focusing
on the scale of infiltration, in terms of number of attacked users, and its effect on
profitability. We extend Herley’s analysis and assume the role of an attacker who
derives profit-maximizing infiltration strategies under different scalability require-
ments. As we discuss next, social infiltration and other online attacks, scalable or
not, integrate into a cyber-criminal ecosystem for OSN abuse, with a thriving un-
derground market pulling in hundreds of millions of dollars in revenue.

19

Fake Accounts Compromised
Accounts

Friend Spam Messaging
Spam

Photo-Tag
Spam

Page/Event
Spam

Knock-off
Products Fake Software Click-fraud Credit Card

Numbers
Underground
Infrastructure

External URL Information &
User Data Fame

External Abuse

Monetization
(Abuse egress point)

Engagement

Credentials
(Abuse ingress point)

11

12

13

Figure 2.1: Components required for OSN abuse in Facebook

2.1.5 The Cyber-Criminal Ecosystem for OSN Abuse
As OSNs dominate the daily activities of Web users, cyber-criminals have adapted
their monetization strategies to engage users within these walled gardens. Attacks
targeting OSNs require three components [114]: (1) access to account credentials,
(2) a mechanism to engage with legitimate users within the network (i.e. the vic-
tims that will be exploited to realize a profit), and (3) some form of a monetizable
content. With respect to Facebook, Figure 2.1 shows the underpinnings of each
component, which we use to guide the upcoming discussion.

As the figure shows, an attacker can use fake or compromised accounts in or-
der to get access to Facebook. Shortly after that, to draw an audience, the attacker
can engage users by running a social infiltration campaign (i.e., by sending friend
request spam). If user privacy settings are set to “public to everyone,” which is not
usually the case [46, 68], the attacker can engage users through other kinds of pub-
lic communication, such as messaging, photo-tagging, and page/event requests. In
order to monetize a victim, users are typically directed away from Facebook via
a URL to another website, which generates a profit via knock-off products, fake

20

software, click-fraud, banking information, or a malware that converts a victim’s
machine or assets (e.g., credentials, private data) into a commodity for the under-
ground market (e.g., zombie machines, compromised accounts, email addresses).

At the heart of this for-profit cyber-criminal ecosystem is an underground mar-
ket that connects attackers with parties selling a range of specialized products
and services, including spam hosting [3], fake accounts [88, 114], compromised
zombie machines [14], CAPTCHA-solving services [87], IP address proxies [53],
and exploit kits [42]. Even simple services such as generating favorable reviews
or writing webpage content are for sale [126]. Revenue generated by criminals
participating in this market varies widely based on business strategy, with spam
affiliate programs generating $12–92 million [77] and fake anti-virus scammers
pulling in $5–116 million [105] over the course of their operations.

Within this cyber-criminal ecosystem for OSN abuse, the analysis we present
in Section 2.5 suggests that social infiltration at scale is not financially attractive
as an independent business. However, it facilitates a non-zero profit monetization

campaign for underground market commodities, as illustrated in Figure 2.1.

2.2 Vulnerabilities in OSN Platforms
We discuss four vulnerabilities found in today’s OSNs that allow an attacker to run
a large-scale social infiltration campaign. Collectively, along with poorly designed
end-user privacy controls [73], these vulnerabilities represent the enabling factors

that make operating socialbots feasible in the first place.

2.2.1 Ineffective CAPTCHAs
Typically, OSNs employ CAPTCHAs [124], which are a type of challenge-response
test used in computing to determine whether or not the user is human, in order to
prevent automated bots from abusing their platforms. Attackers, however, can of-
ten circumvent this countermeasure using different techniques, such as automated
analysis using optical character recognition and machine learning [6], exploiting

21

botnets to trick victims into manually solving CAPTCHAs [25], reusing session
identifiers of known CAPTCHAs [52], or even hiring cheap human labor [87].

Let us consider the use of human labor to solve CAPTCHAs; a phenomenon
known as a CAPTCHA-solving business. Motoyama et al. [87] showed that com-
panies involved in such a business are surprisingly efficient: (1) they have high
service quality with a success rate of up to 98% in solving CAPTCHAs, (2) they
charge less than $1 per 1K successfully solved CAPTCHAs, and (3) they provide
software APIs to automate the whole process. Thus, even the most sophisticated
CAPTCHA that only humans could solve can be effectively circumvented with a
small investment from an attacker. In such a situation, the attacker is considered a
rational agent who invests in such businesses if the expected return on investment
is considerably high. This also allows researchers to study online attacks from an

economic context, and define cost structures that measure when it is economically
feasible for an attacker to mount scalable attacks that involve, for instance, solving
CAPTCHAs by employing cheap human labor [49]. We provide such an analysis
for social infiltration at scale in Section 2.5.

2.2.2 Fake Accounts and User Profiles
Creating a new user account on an OSN involves three tasks: (1) providing an
active email address, (2) creating a user profile, and (3) solving a CAPTCHA if
required. Each user account maps to one profile, but many user accounts can be
owned by the same person or organization using different email addresses, which
represents a potential Sybil attack. In what follows, we discuss how an attacker
can fully automate the account creation process in order to create a group of fake
accounts, where each account is represented by a fake user profile. In fact, this
automation is not new as similar tools, such as FriendBomber,2 are used for online
marketing. The attacker can write a customized software to create fake accounts
or buy OSN accounts in bulk from underground markets [88].

2http://www.friendbomber.com

22

http://www.friendbomber.com

Fake Accounts

When creating a new user account, an email address is required to validate then
activate the account. Usually, the OSN validates the account by associating it with
the owner of the email address. After account validation, the owner activates the
account by following an activation link that is emailed by the OSN. Accordingly,
an attacker has to overcome two hurdles when creating a new fake account: (1)
providing a working email address which is under his control, and (2) perform-
ing email-based account activation. To tackle the first hurdle, the attacker can
maintain many email addresses by either using “temp” email addresses that are
obtained from providers that do not require registration, such as 10MinuteEmail,3

or by creating email addresses using email providers that do not limit the number
of created email accounts per browsing session or IP address, such as MailRu.4

As for the second hurdle, an attacker can write a simple script that downloads the
activation email and then sends an HTTP request to the activation URL, which is
typically included in the downloaded email.

Fake User Profiles

Creating a user profile is a straightforward task for legitimate users, as they just
have to provide the information that describes their social attributes (e.g., name,
age, gender, interests). For an attacker, however, the situation is subtly different.
The objective of the attacker is to create profiles that are “socially attractive.” We
consider a purely adversarial standpoint concerning social attractiveness, where
attackers aim to exploit certain social attributes that have shown to be effective in
getting users’ attention. Such attributes can be inferred from recent social engi-
neering attacks. Specifically, using a profile picture of a good looking woman or
man has had the greatest impact [6]. Thus, an attacker can use publicly available
personal pictures for the newly created user profiles, along with the correspond-
ing gender and age range information. The attacker can use already-rated personal

3http://10minutemail.com
4http://mail.ru

23

http://10minutemail.com
http://mail.ru

pictures from websites like HotOrNot,5 where users publicly post their personal
pictures for others to rate their “hotness.” In fact, such websites also provide cate-
gorization of the rated personal pictures based on gender and age range. It is thus
possible for an attacker to automate the collection of required profile information
in order to populate a fake user profile by crawling, or scavenging, the Web.

2.2.3 Crawlable Social Graphs
The social graph of an OSN is usually hidden from public access in order to pro-
tect its users’ privacy. An attacker, however, can reconstruct parts or a complete
version of the social graph by first logging in to the OSN platform using one or
many fake accounts, and then traversing through linked user profiles starting from
a seed profile. In the second task, web crawling techniques can be used to down-
load profile pages and then scrape their content. This allows the attacker to parse
the connections lists of user profiles, such as the “friends list” in Facebook, along
with their profile information. After that, the attacker can gradually construct the
corresponding social graph with accessible social attributes using an online search
algorithm, such as breadth-first search [80]. The attacker can build either a cus-
tomized web crawler for this task or resort to cheap commercial crawling services,
such as 80Legs,6 that support social-content crawling.

2.2.4 Exploitable Platforms and APIs
Most OSNs provide software APIs that enable the integration of their platforms
into third-party software systems. Facebook’s Graph API [67], for example, en-
ables third parties to read from and write data into Facebook’s platform. It also
provides a simple and consistent view of Facebook’s social graph by uniformly
representing objects (e.g., profiles, photos, posts) and the connections between
them (e.g., friendships, likes, tags). An attacker, however, can use such APIs to
automate the execution of social activities online. If an activity is not supported

5http://hotornot.com
6http://80legs.com

24

http://hotornot.com
http://80legs.com

Botmaster!
C&C Channel!

Botherder!

Socialbot!

Socialbot!

Online Social Network!

Real!
Victim !
Fake!

OSN Channel!

Figure 2.2: An overview of a socialbot network (SbN)

by the API, the attacker can scrape the content from the platform’s website, and
record the exact HTTP requests which are used to carry out such an activity in or-
der to create request templates. In particular, sending connection requests is often
not supported, and is usually protected against automated usage by CAPTCHAs.
This is also the case if a user sends too many requests in a short time period. An
attacker, however, can always choose to reduce the frequency at which the bots
sends the requests to avoid CAPTCHAs. Another technique is to inject artificial
connection requests into non-encrypted OSN traffic at the HTTP level, so that it
would appear as if users have added the socialbot as a contact [55].

2.3 Design of a Social Botnet
In what follows, we present the design of a web-based social botnet. In particular,
we start with an overview of the socialbot network (SbN) concept and define its
threat model. This is followed by a detailed discussion of the SbN design and its
main components.

25

2.3.1 Overview
We studied large-scale infiltration in OSNs as an organized campaign run by a net-
work of malicious socialbots. We followed the design of web-based botnets [101]
and defined a socialbot network (SbN): A group of malicious socialbots that are
orchestrated by an attacker called the botherder.

As shown in Figure 2.2, an SbN consists of a set of socialbots, a botmaster,
and a command & control (C&C) channel. Each socialbot controls a fake account
in a target OSN, and is capable of executing commands that result in operations
related to social interactions (e.g., posting a message) or the social structure (e.g.,
sending a friend request). These commands are either sent by the botmaster or
defined locally on each socialbot. All data collected by socialbots are called the
botcargo, and are always sent back to the botmaster. A botmaster is a software
controller with which the botherder interacts in order to define commands that
are sent through the C&C channel. We designed the botmaster to exploit known
user behaviors in OSNs, such as the triadic closure principle [24], in order to
improve the success rate of the infiltration.7 The C&C channel is a communication
medium that facilitates the transfer of the botcargo and the commands between the
socialbots and the botmaster, including any heartbeat signals, which are used to
check whether a socialbot is online and operational.

In Figure 2.2, each node in the OSN represents a user account. Fake accounts,
which are controlled by socialbots, are marked in black. Victim accounts, which
are real accounts controlled by legitimate users but have been infiltrated by fakes,
are marked in grey. Edges between nodes represent bilateral social connections.
The dashed arrow represents a connection request. Small arrows represent social
interactions, such as posting a message. As we explain next, the SbN can be
part of an existing botnet, where compromised machines are also infected by the
socialbot malware that control fake accounts in the target OSN.

7The triadic closure principle states that if two people have a friend in common, then there is
an increased likelihood that they will become friends themselves in the future.

26

2.3.2 Threat Model
We assume a global passive attacker who is capable of designing and operating a
fully or semi automated SbN on a large scale. This involves exploiting all of the
vulnerabilities presented in Section 2.2, which collectively enable the operation
of an SbN in the target OSN. We also assume the attacker is capable of deploying
the SbN as part of an existing botnet, and thus, we treat the SbN as a distributed
network of compromised “zombie” machines acting cooperatively. Accordingly,
we believe it is fair to assume that the defenders, consisting of OSNs and Internet
service providers, are able to cooperate, and therefore have a global view of the
communication traffic. Finally, we assume that botnet infections are not easily
detected, that is, an SbN cannot tolerate 100% clean up of all infected machines,
just like any other botnet. We expect, however, an SbN to tolerate random losses of
a large number of compromised machines because at least one machine is required
to host all of the socialbots, as we show in Section 2.4.

As for the adversarial objectives, the botherder designs and operates an SbN
to (1) carry out a social infiltration campaign in the target OSN, and to (2) harvest
private user data. The first objective involves connecting with a large number of
either random or targeted OSN users for the purpose of establishing an influential
position, which can be exploited to promote malicious content or spread misinfor-
mation. In the second objective, however, the botherder aims to generate profit by
collecting personally identifiable information that have monetary value as goods
in underground markets. In addition, these data can be used to craft personalized
messages for subsequent spam, phishing, or astroturfing campaigns.

2.3.3 Requirements
Ideally, an SbN has to be automated and highly scalable to control hundreds of
socialbots, which is achieved by following the design of web-based botnets. In
order to be effective, however, an SbN has to meet three challenging requirements:
(1) each socialbot has to be designed in such a way that hides its true face, that is,
to pass itself off as a human not a bot, (2) the botmaster has to implement strategies

27

Operation Type Description

read(o,p) Interaction Reads object o from account p and returns its value v as botcargo
write(v,o,p) Interaction Writes value v to object o on account p
connect(b,p) Structure Sends or accepts a connection request between accounts b and p
break(b,p) Structure Breaks the social connection between accounts b and p

Table 2.1: Generic operations supported by the socialbot malware

that enable large-scale social infiltration in the target OSN, and (3) the traffic in
the C&C channel has to look benign in order to avoid detecting the botmaster.

We decided to use a simplistic design in order to meet each one of these re-
quirements. As we describe next, we used techniques that have shown to be both
feasible and effective. We acknowledge, however, that more sophisticated tech-
niques, which use machine learning algorithms [74], are possible. We refrained
from using such techniques as our goal is to evaluate the threat of social infiltra-
tion and characterize user behaviors, rather than to optimize the performance of
an SbN. We discuss the details of the used techniques in what follows.

2.3.4 Socialbots
A socialbot consists of two components: (1) a fake user account on a target OSN,
and (2) the socialbot software. As we design the socialbot software in an adversar-
ial setting, we regard this software as being malicious and refer to it as a malware.
We next present the primitives required for the socialbot malware to mimic real
user behavior in OSNs (e.g., posting messages, befriending others).

Each socialbot malware supports two types of generic operations in any given
OSN: (1) social interaction operations that are used to read and write social con-
tent, and (2) social structure operations that are used to modify the social graph.
A detailed description of these operations is shown in Table 2.1.

We define a set of commands that each includes a sequence of generic opera-
tions. A command is used to mimic a real user action that relates to social content
generation and networking, such as posting a status update and joining a commu-

28

nity of users. A command is either native or master, depending on its origin. A
native command is defined locally on each socialbots, while a master command
is sent by the botmaster to the socialbot through the C&C channel. For example,
we define a single native command called update(b), which is executed by each
socialbot, as follows: At arbitrary times, each socialbot b generates a message m

and executes the operation write(m,o,b), where o is the object which maintains
messages for the account b. This command resembles a user posting a status up-
date message on her profile, and is executed at arbitrary times in order to avoid
creating detectable patterns. More sophisticated commands can be defined that,
for example, allow socialbots to comment on each others’ status updates.

Each socialbot employs a native controller: A two-state finite-state machine
(FSM) that enables the socialbot to either socialize with others by executing com-
mands or stay dormant. State transition occurs whenever a native or master com-
mand needs to be executed. A native controller can also enable advanced social
interaction capabilities by integrating existing chatter bots [54] or hijacking online
human-to-human conversations in a man-in-the-middle fashion [69].

2.3.5 Botmaster
A botmaster is an automation software that orchestrates the overall operation of
an SbN. The botmaster software consists of a botworker, a botupdater, and a C&C
engine. The botworker maintains socialbots in the SbN by creating fake accounts
and delegating each account’s credentials, the user name and password, to the so-
cialbot’s malware in order to get full control over the account. The botupdater

pushes software updates to socialbots using the C&C channel, including new na-
tive commands, modified HTTP-request templates, and improved CAPTCHA-
solving capabilities. The C&C engine manages a repository of master commands
and deploys a master controller: A many-state FSM that is the core control com-
ponent of the SbN. The botherder interacts with the C&C engine to define a set
of master commands, which are dispatched when needed by the master controller
and then sent to the socialbots. We next present a set of master commands that

29

Command Description

cluster(b,k) Connects socialbot b with at most k other socialbots
seed(b,k) Connects socialbot b with k user profiles that are picked at random
decluster(b) Breaks the social connections between socialbot b and other socialbots
collect(b) Returns profile information of users in the neighborhoods of socialbot b
exploit(b) Connects socialbot b with users in its extended neighborhood

Table 2.2: Master commands executed by socialbots

define a social infiltration strategy which exploits known user behaviors in OSNs.
These master commands, which are summarized in Table 2.2, are issued by the
master controller in three super-states, or phases, as follows:

Setting up the SbN

In the beginning, each socialbot has no connections and is isolated from the rest
of the users in the targeted OSN, which is not favorable for social infiltration. In
particular, Tong et al. [116] showed that the social attractiveness of a profile in an
OSN is highly correlated to its neighborhood size, where the highest attractiveness
is observed when the neighborhood size is close to the OSN’s average. Therefore,
in an attempt to increase the social attractiveness of socialbots, we define a master
command cluster(b,k), which orders the socialbot b to connect with at most
k other socialbots. This initial clustering of socialbots can be helpful in evading
OSN security defenses that keep track of how many rejected connection requests
each new user has after joining the OSN, which is usually used as an indication of
an automated activity by fake accounts [135].

Seeding the Infiltration

After initial setup, the socialbots start their social infiltration campaign. In order
to bootstrap the infiltration with some victims, the seeds, we define a master com-
mand seed(b,k), which orders each socialbot b to connect with k user profiles
that are picked at random from the targeted OSN. Because the clique structure
among the socialbots can be easily detected [137], we define a master command

30

decluster(b) that orders the socialbot b to break the social connections with all
other socialbots. One can define a similar master command which orders each so-
cialbot to break one social connection with another socialbot for every new victim,
and thus gradually decluster.

To satisfy the second objective in the threat model, we define the master com-
mand collect(b), which orders the socialbot b to collect accessible user profile
information in the direct and extended neighborhoods of its victims, and then re-
turn them as botcargo. This command is issued whenever a new user is infiltrated.

Exploiting Triadic Closure

It has been widely observed that if two users have a friend in common, then there
is an increased chance that they become friends themselves in the future [71]. This
property, which is also known as the triadic closure principle [24], was first ob-
served in real-world social networks. Nagle et al. [91] showed that the likelihood
of accepting a friend request in Facebook is three times higher given the existence
of some number of mutual friend. Accordingly, in order to increase the yield of
social infiltration in the target OSN, we define a master command exploit(b),
which orders the socialbot b to connect with users with whom it has some mutual
connections, that is, users in its extended neighborhood.

2.3.6 C&C Channel
The communication model of an SbN consists of the C&C channel and the OSN
channel. The OSN channel carries only OSN-specific API calls over HTTP traffic,
which are the end product of executing a command by a socialbot. From the OSN
side, this traffic may originate from either an HTTP proxy, in case of high activity,
or from a normal user machine. It is therefore quite difficult to identify a socialbot
solely based on the traffic it generates in the OSN channel.

As for the C&C channel, we recall that detecting the botmaster from the C&C
traffic is as hard as it is in a traditional botnet, as the botherder can rely on an ex-
isting botnet infrastructure and deploy the SbN as part of the botnet, as discussed

31

in Section 2.3.2. Alternatively, the botherder can exploit the OSN platform itself
for the C&C infrastructure [63]. For example, Nagaraja et al. [90] showed that a
botherder can establish a probabilistically unobservable C&C channel by build-
ing a covert OSN botnet that, for example, uses image steganography to hide the
communication as part of photo sharing behavior of OSN users.

2.4 Empirical Evaluation
To evaluate how vulnerable OSNs are to social infiltration, we implemented an
SbN according to the discussion in Section 2.3. We picked Facebook as the target
OSN because it is the largest OSN today, consisting of more than one billion active
user [30]. Moreover, unlike other OSNs, Facebook is mostly used to connect with
real-world friends and family not with strangers [27, 68]. Finally, Facebook em-
ploys a state-of-the-art “immune system” that detects thousands of fake accounts
a day using various machine learning techniques [104]. Therefore, the success of
social infiltration on an OSN such as Facebook represents a serious threat which
needs to be addressed.

2.4.1 Ethics Consideration
Given the nature of social infiltration, one legitimate concern is whether it is eth-
ically acceptable and justifiable to conduct such a research experiment. As com-
puter security researchers, we believe that controlled, minimal-risk, and realistic
experiments are the only way to reliably estimate the feasibility of cyber attacks
in the real-world. These experiments allow us and the wider research community
to gain a genuine insight into the ecosystem of online attacks, which is useful in
understanding how similar attacks may behave and how to defend against them.

We carefully designed our experiment in order to reduce any potential risk at
the user side [9]. In particular, we followed known practices and received the ap-
proval of our university’s behavioral research ethics board (BREB).8 In addition,

8This study has been approved by BREB application #H10-01439.

32

we strongly encrypted and secured all collected data.
As part of our code of ethics, we communicated the details of our experiment

to Facebook before any publication, and accordingly, we decided not to include
specific technicalities about a set of vulnerabilities we discovered in Facebook’s
platform. We believe that these platform vulnerabilities can be exploited by cyber
criminals to mount different kinds of online attacks. We reported these vulnera-
bilities to Facebook through its platform’s vulnerability reporting tool [31].

2.4.2 Methodology
Our main research objective is to characterize users’ response to a social infiltra-
tion campaign in OSNs, along with the corresponding security and privacy im-
plications. We implemented an SbN prototype targeting Facebook for the reasons
outlined above, and operated this SbN for 8 weeks during the first quarter of 2011.
The duration of the experiment was informed by how many data points we needed
to properly capture user behavior, and accordingly, we took the SbN down once
we stopped observing new trends. We report only the results we observed during
the length of the experiment.

We used a single machine and two types of IP addresses at different stages of
the experiment. The first IP address was assigned by the university, and the second
IP address was assigned by a commercial Internet service provider. We also im-
plemented a simple HTTP proxy on the used machine in order to make the traffic
appear as if it originated from multiple clients having different browsers and oper-
ating systems. Even though the university-assigned IP address might have diluted
Facebook’s immune system, we believe that it is unsafe to completely white-list
university IP addresses.9 In fact, today’s botnet owners struggle over who has the
largest number of “high-quality” infected machines, including university, corpo-
rate, and even government machines [101].

9While operating the SbN under the university-issued IP address, we observed that some op-
erations were identified as malicious, and the used IP address was temporarily blocked, especially
during fake account creation. This supports the argument that even university IP addresses were
audited by Facebook, and they were not fully white-listed.

33

2.4.3 Implementation on Facebook
In our prototype’s implementation, each socialbot ran the same malware and was
equipped with one native command, namely, update. We implemented the generic
operations described in Table 2.1 using API calls and HTTP-request templates, as
follows. First, we used Facebook’s Graph API [67] to carry out social interaction
operations. The API, however, requires the user—the socialbot in this case—to be
logged in to Facebook at the time of any API call. As login sessions had timeouts,
we instead developed a Facebook application that fetched permanent OAuth 2.0
access tokens in order to allow each socialbot to send API calls without the need
to login.10 Second, for social structure operations, we used prerecorded HTTP-
request templates that enabled each socialbot to send friend requests to other users,
as if these requests were sent from a browser. To generate status update messages,
we used an API provided by iHeartQuotes11 to pull random quotes and blurbs.

For the botmaster software, our implementation integrates the botworker with
the following websites: DeCaptcher,12 a CAPTCHA-solving business; HotOrNot,
a photo-sharing website; and MailRu, a web email provider. The implementation
also supports on-demand updates through the botupdater, including HTTP-request
templates and native commands. Finally, we implemented each master command
described in Table 2.2.

Let us consider the random sampling used in seed(b,k). On Facebook, each
user profile has a unique identifier (ID) represented by a 64-bit integer, which is
assigned at account creation time. In order to obtain a uniformly random sample
of Facebook users, we used a sampling technique called rejection sampling [99],
as follows. First, we randomly generated 64-bit integers from known ID ranges
used by Facebook [39]. After that, we checked whether each newly generated ID
mapped to an existing user profile by probing the corresponding profile page. If
the profile existed, we included the user in the random sample only if the profile

10The application was called “Desktop Connector,” and was hosted on the same machine.
11http://iheartquotes.com
12http://de-captcher.com

34

http://iheartquotes.com
http://de-captcher.com

was not isolated. We define an isolated user profile as a profile that does not have
friends or does not share its friends list on Facebook.

We implemented the simple native and master controllers that follow a 3-phase
infiltration strategy. We note, however, that a more resourceful attacker can em-
ploy adversarial classifier reverse engineering [74] techniques to derive an infil-
tration strategy that has a higher chance at evading automated detection by defense
systems similar to those deployed by Facebook.

2.4.4 Experimentation
We operated the SbN prototype for 8 weeks from 28 January to 23 March, 2011.
The socialbots send 9,646 friend requests out of which 3,439 requests were ac-
cepted by legitimate users, resulting in an average acceptance rate of 35.7% . We
refer to such infiltrated users who accepted friend requests sent by malicious so-
cialbots as victims. We divide the upcoming discussion according to the 3-phase
social infiltration strategy.

Phase 1 – Setup

Our SbN prototype, which was physically hosted on a single commodity machine,
consisted of 100 socialbots and a single botmaster.13 Even though we could have
automatically created fake accounts for the socialbots, we decided not to finan-
cially support the CAPTCHA-solving business. In total, we manually created 49
socialbots that had male user profiles and 51 socialbots that had female user pro-
files. The socialbots clustered into a 100-clique structure, representing a tightly-
knit, cohesive community of users, as discussed in Section 2.3.5

13We note that the original study [10] involved two more socialbots. As these socialbots did not
participate in the infiltration but were rather used to check the status of the SbN, we decided to
exclude them from our analysis herein.

35

0

1

10

100

1 10 100 1000

N
um

be
r'o

f'u
se
rs
'in
'sa

m
pl
e'

Number'of'friends'

Power law with R² = 0.75

(a) Degree distribution of user sample

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

CD
F'

Days'before'friend'request'accepted'

58% of victims accepted
requests in a day or less

(b) Victims response time to requests

Figure 2.3: Seeding social infiltration in Facebook

Phase 2 – Seeding

The socialbots generated a random sample of 5,053 valid user profile IDs. These
unique IDs passed the inclusion criteria we presented in Section 2.4.3. Figure 2.3a
shows the degree distribution of this uniform sample.14

Each socialbot sent 25 friend requests per day in order to avoid CAPTCHAs.
Accordingly, it took the bots 2 days to send friend requests to the sampled users,
where each user received exactly one request. In total, 2,391 requests were sent
from “male” socialbots and 2,662 from “female” socialbots. We kept monitoring
the status of each request for 6 days after being sent. Overall, 976 requests were
accepted, resulting in an average acceptance rate of 19.3%. In particular, out of all
accepted requests, 381 were sent from male socialbots (15.9%) and 595 were sent
from female socialbots (22.3%). The difference in the average acceptance rate was
statistically significant (χ2 = 32.8702, p= 9.852×10−9, CI=95%), where female
socialbots outperformed male socialbots by 6.4%, on average.15 Moreover, 58%
of the victims accepted the request during the same day of being sent, as shown in
Figure 2.3b. In our implementation, the socialbots gradually broke the 100-clique

14The degree of a node is the size of its neighborhood. The degree distribution is the probability
distribution of these degrees over all nodes included in the sample.

15Using a two-sample test for equality of proportions.

36

structure as they infiltrated more victims. The SbN spent 2 weeks in this seeding
phase. For most of that time, however, the SbN was setting idle.

Phase III – Exploitation

We kept the SbN running for another 6 weeks on Facebook. During this time, the
socialbots send another 4,593 friend requests to users in their extended neighbor-
hoods. Overall, 2,463 requests were accepted by victims, resulting in an average
acceptance rate of 53.6%. The difference in average acceptance rate between the
two phases was statistically significant (χ2 = 1429.9, p = 2.2×10−16, CI=95%),
where exploiting triadic closure resulted in 34.3% higher average acceptance rate
than targeting users at random.

2.4.5 Analysis and Discussion
In what follows, we analyze and discuss the results presented in the Section 2.4.4.
We focus on characterizing user behaviors, the infiltration performance, and its
implications on user privacy and fake account detection mechanisms.

User Behavior

As the infiltration was seeded at random, the 9,646 users who received friend re-
quests sent by socialbots represented a diverse sample of Facebook’s user popula-
tion. In particular, the users were 51.3% males and 48.7% females, lived in 1,983
cities across 127 countries, practiced 43 languages, and have used Facebook for
5.4 years on average, as shown in Figure 2.4.

The main observation of this study is that some users are more likely to become

victims than others. First, in the seeding phase, we found that the more friends a
user had, the more likely the user was to accept friend requests sent by socialbots
posing as strangers, regardless to their gender or mutual friends, as shown in Fig-
ure 2.5a. Second, in the exploitation phase, we found that the more mutual friends
the user had with a socialbot, the more likely the user was to accept friend request
send by this socialbot, as shown in Figure 2.5b.

37

0

10

20

30

40

50

60

70

English Spanish Indonesian Italian French

Po
r=
on

'o
f'u

se
rs
'(%

)'

Language'

Top-5 used languages from locales

(a) Language

32% of users have 5 years
or more of experience

0

0.2

0.4

0.6

0.8

1

30 40 50 60 70 80 90 100 110

CD
F'

Months'since'joining'Facebook'

(b) Experience

(c) Location

Figure 2.4: Demographics of contacted users

0

10

20

30

40

50

60

70

80

Ac
ce
pt
an
ce
'ra

te
'(%

)'

Number'of'friends'

Pearson’s r = 0.85

(a) Seeding at random

Pearson’s r = 0.85

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 ≥11

Ac
ce
pt
an
ce
'ra

te
'(%

)'

Number'of'mutual'friends'

(b) Exploiting triadic closure

Figure 2.5: User susceptibility to infiltration on Facebook (CI=95%)

38

63"

(a) Victim’s comment on a status update posted by a socialbot

59"

68"

(b) Personalized phishing message sent to a socialbot

Figure 2.6: Real-world samples of user interactions with socialbots

Most of the victims maintained a social history with the socialbots. In partic-
ular, the socialbots received 73 personal messages, 112 “likes,” and 164 “wall”
posts by their victims. The bots also received 331 friend requests from the friends
of their victims, that is, from users in their extended neighborhoods. Interestingly,
the socialbots received 2 messages and 8 wall posts from users who are not in their
friends list. Based on manual inspection, we found that all of them were in fact
malicious, and were sent by a fake or hijacked user account.16 Figure 2.6 shows a
sample of user interactions with socialbots.

16This was possible because the accounts controlled by socialbots had public user profiles.

39

0

10

20

30

40

50

IM account ID Postal address Phone number E-mail address

N
um

be
r'o

f'u
se
rs
'(t
ho

us
an
ds
)'

Before'
AEer'

Direct (%) Extended (%)
Profile Info Before After Before After

Birth Date 3.5 72.4 4.5 53.8
Email Address 2.4 71.8 2.6 4.1
Gender 69.1 69.2 84.2 84.2
Home City 26.5 46.2 29.2 45.2
Current City 25.4 42.9 27.8 41.6
Phone Number 0.9 21.1 1.0 1.5
School Name 10.8 19.7 12.0 20.4
Postal Address 0.9 19.0 0.7 1.3
IM Account ID 0.6 10.9 0.5 0.8
Married To 2.9 6.4 3.9 4.9
Worked At 2.8 4.0 2.8 3.2
Average 13.3 34.9 15.4 23.7

Table 2.3: Percentage of users with accessible private data

2.4.7 Infiltration Performance
The socialbots infiltrated Facebook over 55 days starting January 28, 2011. Dur-
ing this time, the bots established 3,439 friendships with victim users, where each
friendship or attack edge connects exactly one victim to a socialbot, as shown in
Figure 2.7a. The figure also illustrates the effect of triadic closure. In particular,
the infiltration rapidly increased after the first 2 weeks, where each socialbot had
at least one friend in common with the user to which it sent a friend request.

Another observation of this study is that attack edges are generally easy to

establish. As shown in Figure 2.7b, an attacker can establish enough attack edges
such that fake accounts, which are controlled by socialbots, are strongly connected
to real accounts. This observation has serious implications to graph-based fake
account detection mechanisms used by defense systems such as EigenTrust [38],
SybilLimit [85], SybilInfer [11], Mislove’s method [76], and GateKeeper [73]. In
particular, these systems assume that fakes can establish only a small number of
attack edges, at most one per fake [84], so that the cut which crosses over attack
edges is sparse.17 Accordingly, the systems attempt to find such a sparse cut with

17A cut is a partition of the nodes of a graph into two disjoint subsets. Visually, it is a line that
cuts through or crosses over a set of edges in the graph.

36

(a) (b)

Figure 2.7: Users with accessible private data

Collected Data

The socialbots harvested large amounts of user data through the collect master
command. By the end of the 8th week, the SbN resulted in a total of 250GB in-
bound and 3GB outbound network traffic between our machine and Facebook. We
were able to collect news feeds, user profile information, and wall posts. In other
words, practically everything shared on Facebook by the victims, which could be
used for large-scale user surveillance [95]. Even though adversarial surveillance,
such as online profiling [44], is a serious threat to user privacy, we decided to focus
on user data that have monetary value at underground markets, such as personally
identifiable information (PII).

After excluding remaining friendships among the bots, the size of their direct
neighborhoods was 3,439 users. The size of all extended neighborhoods, however,
was as large as 1,085,785 users. In Figure 2.7a, we compare data revelation before
and after operating the SbN in terms of percentage of users with accessible private
data, PII in particular. On average, 2.62 times more PII was exposed in direct

neighborhoods after infiltration, and 1.54 times more in extended neighborhoods.
While one would expect the averages of direct and extended neighborhoods to be
approximately the same before the infiltration, there is a small difference of 2.1%.

40

0

1

2

3

4

0 7 14 21 28 35 42 49 56

N
um

be
r'o

f'a
Fa

ck
'e
dg
es
'(t
ho

us
an
ds
)'

Days'of'opera=on'

At least one mutual
friend per request

At least 11 mutual friends per request

(a) Infiltration over time

50% of bots had more
than 35 attack edges

0.00

0.25

0.50

0.75

1.00

5 15 25 35 45 55 65 75 85 95

CD
F'

Number'of'aFack'edges'per'socialbot'

(b) Infiltration per socialbot

Figure 2.8: Infiltration performance on Facebook

This minor artifact can be attributed to the relatively smaller sample size of direct
neighborhoods and the non-uniform sampling method of extended neighborhoods.

Infiltration Performance

The socialbots infiltrated users over a period of 55 days, starting January 28, 2011.
During this time, the bots established 3,439 friendships with victim users, where
each friendship or attack edge connects exactly one victim to a socialbot, as shown
in Figure 2.8a. The figure also illustrates the effect of triadic closure. In particular,
the infiltration rapidly increased after the first 2 weeks, where each socialbot had
at least one friend in common with the user to which it sent a friend request.

Another observation of this study is that attack edges are generally easy to

establish. As shown in Figure 2.8b, an attacker can establish enough attack edges
such that fake accounts, which are controlled by socialbots, are strongly con-
nected to real accounts in the social graph. This observation has serious implica-

tions on the performance of graph-based fake account detection systems such as
EigenTrust [60], SybilLimit [139], SybilInfer [19], GateKeeper [118], and Sybil-
Rank [15]. In particular, such systems often assume that fake accounts can estab-
lish only a small number of attack edges, ideally at most one per fake [137], so

41

that the cut which crosses over attack edges is sparse.17 Given this assumption,
these systems attempt to find such a sparse cut with formal guarantees in order to
separate fakes from real accounts. To our knowledge, we are the first to provide
an empirical evidence that invalidates this assumption. We systematically evaluate
the implications of this finding on detection accuracy in Chapter 3.

Finally, we found that only 20 fake accounts were blocked by Facebook (20%),
and curiously, all of these accounts represented female user profiles. After further
investigation, we found that these accounts were blocked because concerned Face-
book users flagged them as spam.18 In fact, we did not observe any evidence that

Facebook’s immune system detected the social infiltration campaign, other than
relying on user feedback. We also noticed that accumulating social history using
the cluster and update commands was in fact beneficial. In particular, when we
created 15 fake accounts for a pilot study in which the socialbots did not use these
commands, 93.3% of fakes were blocked by Facebook in less than a week.

2.5 Economic Feasibility
In what follows, we analyze the economic feasibility of social infiltration at scale.
We consider a rational botherder who runs a social infiltration campaign using a
socialbot network (SbN) in a target OSN. Unlike a botherder who is motivated
by fun, self-fulfillment, or proof of skills, a rational botherder makes decisions
about the SbN operation and its infiltration strategy based on whether the expected
reward exceeds the total cost. In particular, we seek to understand how the scale of

a social infiltration—number of attacked users who received friend requests from
fakes—affects its profit and infiltration strategies.

Our analysis suggests that social infiltration at scale, while not financially at-
tractive by itself, is a crucial part of the larger cyber-criminal underground market
for OSN abuse. In particular, it plays the role of a market enabler of the actual

17A cut is a partition of the nodes of a graph into two disjoint subsets. Visually, it is a line that
cuts through or crosses over a set of edges in the graph.

18Based on the content of a pop-up message that Facebook showed when we manually logged
in using the blocked accounts.

42

“money-makers,” which include social spam and malware, as confirmed by vari-
ous empirical studies on Twitter [109, 114].

2.5.1 Methodology
We developed a simple economic model using cost-volume-profit (CVP) analysis
(Section 2.5.2). We chose CVP analysis because it is typically used for short-run
decisions, which suites the underground market for OSN abuse that suffers from
cheating, dishonesty, and uncertainty [50]. Moreover, CVP analysis assumes the
behavior of costs and rewards does not change during the infiltration campaign,
which we believe is a reasonable assumption given the lack of information about
volume dynamics and discounts in underground markets.

We used this economic model to define and analyze the scale of a social infil-
tration campaign, quantified by the number of attacked users, from an economic
perspective. In particular, we analyzed the cost structure of an SbN as the infil-
tration grows arbitrarily large in scale, focusing on its effect on profitability (Sec-
tion 2.5.3). Using this model, we derived profit-maximizing infiltration strategies
that implement two business models under different scalability requirements (Sec-
tion 2.5.4). We applied these strategies in practice and found that they lead to a
non-zero profit on Facebook when operated as part of the underground market for
OSN abuse (Sections 2.5.5 and 2.5.6).

2.5.2 Model and Assumptions
We assume the threat model described in Section 2.3.2. In particular, we consider
a rational botherder who operates an SbN with scale n and size m. The scale

represents the number of attacked users—users who receive connection requests
from socialbots. The size represents the number of socialbots in the SbN.

The objective of the botherder is to maximize the profit by operating the SbN
under the best profit-maximizing infiltration strategy. Each socialbot has a fixed
average cost c̄ associated with it, which represents the estimated cost of creating a
new fake account. Moreover, each socialbot can have up to k social connections,

43

where k is an OSN-specific parameter (e.g., 5K in Facebook). Each user profile in
the target OSN has an associated average extracted value v̄, which represents, for
example, an estimate of the monetary value of the profile’s information.

We denote the reward and total cost of running a social infiltration campaign
with scale n by R(n) and C(n), respectively. Operating an SbN is profitable only
if the reward exceeds the total cost, that is, whenever the profit P(n) is non-zero

(i.e., positive), as follows:

P(n) = R(n)−C(n)> 0, (2.1)

where the botherder breaks even whenever n = n0 > 0 such that P(n0) = 0.

2.5.3 Scalability of Social Infiltration
Informally, we say that an SbN is scalable if the botherder has an economic incen-
tive to attack ever more users in a single infiltration campaign, that is, whenever
P(αn)> αP(n) for a scaling factor α > 1. This means that operating a scalable

SbN accrues an increasing profit margin.
In what follows, we formally define the scalability of a social infiltration cam-

paign from an economic perspective. After that, we develop the concepts needed
to relate scalability to profitability.

Scalability in Economic Context

We generalize the scalability definition of online attacks presented by Herley [49],
and adapt it to an arbitrarily-large social infiltration campaign. Formally, we call
an SbN scalable if C(n) grows more slowly than R(n) as n→ ∞. In other words,
when C(n) = o(R(n)) asymptotically, which is true if the following equality holds:

lim
n→∞

C(n)
R(n)

= 0. (2.2)

44

Otherwise, we call the SbN non-scalable. A scalable SbN is favorable as it has a
desirable effect on profitability, where the following equality now holds:

lim
n→∞

P(n)
R(n)

= 1, (2.3)

which means that given a scalable SbN, P(n) grows as fast as R(n), or similarly,
P(n)≈ R(n) as n→ ∞, where C(n) has a diminishing effect on profit.

To this end, in order to judge the scalability of a given SbN, we need to pre-
cisely define its total cost C(n) and reward R(n), after which we can test the scal-
ability condition defined in Equation 2.2.

The Cost Structure

For an SbN with scale n and size m, let Cs(n) and Co(n) be the setup and operation
costs of the SbN, respectively. The setup cost is the cost incurred due to creating m

fake accounts before operating the SbN, and the operation cost is the cost incurred
due to running the SbN for a particular period of time. The operation cost includes
a rental cost Cr(n) for operating the SbN in a botnet, and a detection cost Cd(n) for
creating new fake accounts in place of detected ones. As described in the thread
model, we assume the SbN is deployed as part of an existing botnet, with at least
one compromised machine that is available. In other words, the rental cost is fixed
Cr(n) = r̄, where r̄ is the average rental cost of a single machine in a botnet for the
duration of the campaign. As for the detection cost Cd(n), let p̄ be the probability
that a socialbot is detected during a single run of the campaign, we therefore have
Cd(n) = p̄×Cs(n). Accordingly, we define the total cost C(n) as follows:

C(n) =Cs(n)+Co(n)

=Cs(n)+Cr(n)+Cd(n)

=Cs(n)(1+ p̄)+ r̄. (2.4)

As outlined in Section 2.5.2, each socialbot is limited to up to k social connec-

45

tions. This means m = dn/ke bots are needed, and Cs(n) is linearly dependent on
n whenever n > k. Specifically, we define the setup cost Cs(n) as follows:

Cs(n) =

 c̄ if n≤ k,

c̄×
⌈n

k

⌉
if n > k.

(2.5)

From Equations 2.4 and 2.5, the total cost C(n) = O(1) for n≤ k, as the both-
erder needs to create a fixed amount of socialbots m = m̂ = O(1). In this case, the
following inequality holds for any scaling factor α > 1, as long as αn≤ k:

C(αn)< αC(n). (2.6)

Accordingly, we say the SbN achieves an economy of scale: The cost of operating
an SbN decreases per attacked user as the number of users to attack increases. For
n > k, however, we have C(n) = O(n) and the complement of Equation 2.6 holds
for any scaling factor α > 1:

C(αn)≥ αC(n). (2.7)

In this case, each attacked user adds cost at least as much as the previous one, and
the SbN has a growing size m = O(n), which is defined by both n and k.

The Basic Reward Model

As mentioned in Section 2.5.2, there is no clear pricing structure for SbN goods.
Therefore, we assume R(n) grows at least linearly as n→∞, that is, R(n) = Ω(n).
Moreover, this assumption is usually made upon entering new markets that do not
offer short-term feedback [121], in which case the simplest way for valuation is to
consider the average extracted value v̄ and quote it for each unit of goods. Such a
simple linear reward model, however, does not accommodate the network effect,

46

nor the market’s pricing fluctuations or trends.19 Accordingly, this model is useful
for basic, short-term analysis, which is suitable for today’s underground economy,
especially in the presence of dishonesty, cheating, and uncertainty [50].

To make things concrete, let ȳ be the yield of infiltration, which represents the
average acceptance rate of a connection request sent by a socialbot. For now, we
define the reward R(n) of a social infiltration campaign with scale n as follows:

R(n) = n× ȳ× v̄ = O(n). (2.8)

Scalability vs. Profitability

The definition of scalability (Equation 2.2) under the cost and reward definitions
(Equations 2.5 and 2.8) leads to the following basic result: For n ≤ k, the SbN is
scalable and has a fixed size m̂ = O(1), but for n > k, the SbN is non-scalable and
has a growing size m = O(n).

To give a meaningful interpretation of scalability, we now derive an economic
implication of the result presented above. Let us consider the profit when we scale
the SbN operation by a factor α > 1. For αn≤ k, we have:

P(αn) = R(αn)−C(αn)

> αR(n)−αC(n)

> αP(n), (2.9)

which means that the botherder earns more profit by attacking, say, 100n users as
opposed to n users when using a fixed number of socialbots. There is a clear eco-
nomic incentive for the attacker to use the bots to go as large in scale as possible.

19The network effect is the effect a user of a product has on the value of the product to others.
When present, the value of a product is dependent on the number of others using it [121].

47

When αn > k, however, the situation changes as follows:

P(αn) = R(αn)−C(αn)

≤ αR(n)−αC(n)

≤ αP(n), (2.10)

which means when operating an SbN using a growing number of socialbots, there
is no benefit, if not a loss, from scaling the SbN and attacking even more users.
The botherder makes the same profit, at best, if n or 100n users are attacked. This
leads to the following non-desirable situation: The botherder has an incentive to
scale the infiltration using a fixed number of socialbots, but has no incentives to
infiltrate more users by operating a growing network of socialbots. In other words,
for a rational botherder in a web of scale, social infiltration evidently suffers from
the plight of non-scalability. In what follows, we derive two profit-maximizing
social infiltration strategies which implement different business models under dif-
ferent scalability requirements.

2.5.4 Profit-Maximizing Infiltration Strategies
The main result from Section 2.5.3 is that for a a social infiltration campaign to

be scalable, it ought to use a fixed amount of socialbots. In other words, the size
of the SbN should be fixed m= m̂=O(1) while its scale should be as large as pos-
sible. However, scalable infiltration reaches only m̂× k users. Ideally, one would
like the reach to be unbounded for a scalable campaign, while being profitable.

In what follows, we show how the botherder can make profit by following a
profit-maximizing infiltration strategy that implements one of two business mod-
els. In the first model, the botherder makes profit by selling harvested user data
through infiltrating as many users as possible, following a scalable data-driven

infiltration strategy. In the second model, the botherder makes profit by receiving
a lump-sum payment through infiltrating a predefined number of users, following
a non-scalable target-driven infiltration strategy.

48

Scalable Data-driven Infiltration

In order to achieve scalability, we need to upper bound the total cost C(n) by o(n)

instead of O(n) whenever n > k. The botherder can do so by artificially removing
the limit k on each socialbot, and thus, making the cost independent from n. One
way to achieve this is by breaking one or more social connections between each
socialbot and attacked users after they become victims, or whenever the limit k is
reached.20 Doing so means the SbN can have a fixed size m̂ = O(1), and therefore
the total cost becomes independent from n as follows:

C(n) = r̄+Cs(n)(1+ p̄)

= r̄+(c̄× m̂)(1+ p̄). (2.11)

Accordingly, we have C(αn)< αC(n) for a scaling factor α > 1. In other words,
the SbN is now scalable and achieves economy of scale—the botherder has clear
incentives to scale its operation to infiltrate as many OSN users as possible.

We call this infiltration strategy data-driven, since the botherder seeks to har-
vest as much data from users as possible by following a simple infiltrate-collect-
break strategy. In this strategy, however, the yield should be refined to include the
average data access ratio per victim d̄, as follows:

ŷ = ȳ× d̄. (2.12)

We are interested in finding the scale n which maximizes the profit earned by
operating the SbN under this data-driven infiltration strategy. Formally, we aim to
solve the following profit-maximization problem:

maximize
n

P(n) =

R(n)︷ ︸︸ ︷
n× ȳ× d̄× v̄−

C(n)︷ ︸︸ ︷
r̄+(c̄× m̂)(1+ p̄)

subject to n≥ 1

20Recall that a socialbot collects user data immediately after an attacked user becomes a victim.

49

In order to maximize the profit, the botherder needs to maximize the reward or
minimize the cost. As the total cost is fixed, the optimal solution is set n as large as
possible, which means there is no closed form solution for n. Therefore, as n→∞,
the profit P(n)→ ∞ as well, which is an expected result given the scalability of
this infiltration strategy.

Non-Scalable Target-driven Infiltration

Another strategy is to keep the social connections with the victims, but to attack as
many users as required in order to meet a contractually-agreed number of victims
n̂ ≥ 1, after which the botherder receives a lump sum payment R(n) = ρ from
a third-party. We call such a non-scalable strategy target-driven: The botherder
operates the SbN on a limited scale to victimize n̂ users on average. The scale and
size of the SbN are derived by solving the following profit-maximization problem:

maximize
n,m

P(n,m) =

R(n)︷ ︸︸ ︷
n× ȳ× v̄−

C(n)︷ ︸︸ ︷
r̄+(c̄×m)(1+ p̄)

subject to m≥
⌈n

k

⌉
, n≥ n̂, and R(n)≤ ρ

The optimal solution is find the minimal size m that is large enough to earn the
lump-sum payment, in which the botherder is expected to victimize n̂ users. By
Equation 2.8, if the botherder attacks n users then the expected number of victims
is n× ȳ. Therefore, for a target of n̂ victims, the optimal solution is to set the scale
to n = dn̂/ȳe and the size to m = dn/ke= ddn̂/ȳe/ke.

2.5.5 Case Study: Social Infiltration in Facebook
We next assume the role of a botherder who plans to run a social infiltration cam-
paign in Facebook. In particular, we apply the analysis from Section 2.5.4 to
decide whether it is economically feasibility for the botherder to operate an SbN
under each one of the profit-maximizing infiltration strategies.

50

Parameter Description Estimate Source

p̄ Probability of detecting a fake account 0.2 Boshmaf et al. [10]
ȳ Average friend request acceptance rate 0.536 Boshmaf et al. [10]

r̄ Average rental cost of a machine in a botnet $0.35 Goncharov [41]
c̄ Average cost of creating a fake account $0.1 Thomas et al. [114]

d̄ Average email address access ratio 0.718 Boshmaf et al. [10]
v̄ Average extracted value per email address ¢0.03 Fossi et al. [37]

k Maximum number of friends per user 5,000 Boshmaf et al. [10]
n̂ Number of users to befriend and victimize 38,462 Motoyama et al. [88]
ρ Lump-sum payment for befriending n̂ users $1,000 Motoyama et al. [88]

Table 2.3: Estimates for analyzing infiltration profitability in Facebook

Campaign Setup

Let us consider a botherder who wants to operate an SbN constructed as described
in Section 2.4. Being rationale, the bothered wants to decide whether it would be
economically feasible to operate the SbN in the first place. The botherder targets
Facebook, where the average acceptance rate of a friend request is ȳ = 0.536 after
seeding. There is also a probability p̄ = 0.2 for each fake account to be detected.

To operate the SbN, the botherder needs to create fake accounts and rent at
least one machine in a botnet for the duration of the campaign. Thomas et al. [114]
reported that 1K phone-verified fake accounts costs $100 (c̄ = $0.1), where mer-
chants like BuyAccs21 making millions of dollars in revenue each year. Moreover,
a recent study [41] by TrendMicro on Russian underground markets reported that
the average rental cost of 2K hijacked machines in a botnet is $200 (r̄ = $0.35),
while buying a similar botnet costs as little as $700. Table 2.3 provides a summary
of these and other campaign parameters.

Economic Feasibility

In what follows, we apply the strategies derived in Section 2.5.4 in practice, and
show that operating an SbN on Facebook at scale is expected to be profitable but

21http://buyaccs.com

51

http://buyaccs.com

is not financially attractive as an independent business.

Collecting and Selling Email Addresses

Let us start with a data-driven infiltration campaign where the borherder operates
m̂ = 100 socialbots to collect and sell email addresses at underground markets.22

As presented in Section 2.4, the average data access ratio of email addresses
is d̄ = 0.718 after infiltration. A recent study [37] by Symantec on underground
markets reported that 1MB of email addresses is worth $0.3–$40 at IRC under-
ground markets, with an average of $20.15 per MB. Assuming an email address is
15 ASCII characters long, or 15 bytes, then an email address has an average value
of v̄ = ¢0.03. A more recent study [115] by Fortinet about the anatomy of botnets
reported a similar value of $100 for a million email addresses.

We can now calculate the profit in dollars for the SbN with scale n by substi-
tuting the values from Table 2.3 into Equations 2.1, 2.11, and 2.12, leading to:

P(n) = R(n)−C(n)

= $0.0001154544n−$12.35.

The botherder breaks even after attacking n0≈ 107K users. To make $1K in profit,
the botherder has to attack nearly 8.7 million users. In fact, the botherder can earn
at most $155,851 by attacking each one of the 1.35 billion users on Facebook [30].
While unrealistic, this figure represents an optimistic estimate of how much user
data, email addresses in particular, are worth in underground markets, even for the
unlikely case when the botherder manages to run such an extreme-scale campaign.

The main result here is that running a large-scale social infiltration campaign

is not expected to incur high cost nor high profits. It facilitates, however, a non-
zero profit monetization campaign for more profitable underground commodities.

22We chose to restrict the collected data to email addresses in order to avoid over-estimating the
extracted value of user profile information.

52

Befriending Users for Profit

We now consider a target-driven infiltration campaign, in which the figures look
more promising for the botherder. Motoyama et al. [88] recently reported that one
can earn ρ = $1,000 for befriending n̂ = 38,462 users in online freelance mar-
kets such as Freelancer.23 The authors refer to this task as OSN linking, where
a freelance worker creates enough accounts in the target OSN to befriend a par-
ticular number of users, after which the worker receives an specific lump-sum
payment. Given the limit of k = 5,000 friends per user account on Facebook [10],
the botherder attacks n = dn̂/ȳe = 71,758 users using m = dn/ke = 15 social-
bots. By directly applying Equations 2.1 and 2.5, where R(n) = ρ , the botherder
is expected to make a profit of P(71,758) = $1,000−$2.15 = $997.85.

To this end, the botherder can make more profit by operating a non-scalable

social infiltration campaign. As compared to the earlier strategy, the botherder
attacks nearly 120 times less users and makes about the same profit of $1K, which
makes the latter strategy more financially attractive. In fact, Motoyama et al. [88]
found that particular freelance tasks, such as OSN linking and creating fake ac-
counts, were finished in less than a minute, suggesting the use of automation soft-
ware to undertake these non-scalable tasks.

2.5.6 Discussion
We now discuss the implications of social infiltration on underground market. In
particular, we make the case that even if a social infiltration campaign is profitable,
it is still more reasonable for a botherder to treat it as a monetization campaign for
more profitable commodities, rather than an independent business by itself.

Implications for Underground Markets

Using a scalable data-driven SbN means its operation ought to be automated and
non-adaptive to individual users, while delivering commodity-goods as a result.

23http://freelancer.com/

53

http://freelancer.com/

These implications are attributed to the economy of scale the strategy achieves,
and are discussed in depth by Herely [49]. In particular, adding per-user person-
alization, such as responding to individual messages requesting introductions, or
adapting to per-user countermeasures, such as breaking CAPTCHAs to send more
connection requests, violates the cost structure of the strategy and would result in
potential losses. Moreover, as the operation of the SbN is automated, other copy-
cat attackers will have the incentives to operate a similar SbN as well. As Herley
nicely puts it [49]: “once a clever exploit is scripted, then it can be used by many.”
Consequently, this automation will increase the demand for large-scale social in-
filtration campaigns but decrease their profit, resembling the effect of the tragedy

of commons: A dilemma arising from the situation in which multiple individu-
als, acting independently and rationally, will ultimately deplete a shared limited
resource, even when it is clear that it is not in anyone’s long-term interest [121].
This has the implication of decreasing the average extracted value v̄ down to zero.

In a non-scalable target-driven SbN, the situation is different. As the objective
of the botherder is to reach a target number of victims rather than to attack users
at scale to collect their data, it is more reasonable to target users who are expected
to have a higher yield ȳ. As shown in Section 2.4, such users have a higher than
average number of friends on Facebook. For this the botherder is fortunate, the
degree distribution of users in OSNs is power-law and highly concentrated [80].
However, this also means the botherder will ignore the majority of users because
only a small fraction of users have higher than average number of friends.

Scalable Social Infiltration as a Business

Even though the profit estimates in Section 2.5.5 might be optimistic, it is safe to
assume that operating a data-driven SbN is expected to make a non-zero profit. In
what follows, we argue that such an SbN is not attractive as an independent and
sustainable business, and a rational botherder would utilize the SbN as a moneti-
zation tool for subsequent, more profitable campaigns.

First, the analysis we presented in Section 2.4.5 is a cost-volume-profit (CVP)

54

analysis, which is useful for short-run decisions and has to be re-evaluated reg-
ularly. Even if the botherder is able to observe market trends over time—which
allows planning a pricing structure, using more predictive economic models, and
forecasting future profits—the underground market is still unfriendly. Herley et
al. [50] used simple economic arguments to show that such markets suffer from
cheating, dishonesty, and uncertainty. Also, the authors showed that these mar-
kets represent a classic example of markets for lemons [121]: The situation where
sellers have better information than buyers about the quality of their goods, which
leads to an adverse selection where the bad drives out the good.24 These mar-
kets drive “high-quality” businesses out of existence and result in a diminishing
valuation of goods. After all, “nobody sells gold for the price of silver.” [50]

Second, maintaining a business requires durability. Operating an SbN at scale,
however, is expected to become more costly to maintain over time. This is due
to the fact that OSN operators update their deployed defenses to mitigate online
attacks, especially against large-scale ones. With adversarial learning systems
in place, such as Facebook’s immune system [104], this will result in an arms
race between the OSN operator and the botherder, where the more resourceful
party will eventually win. Based only on the profit the botherder is expected to
make from operating a data-driven SbN, the odds are small that the investment
in maintaining and updating the SbN will ever payback, especially as this would
force the SbN to become non-scalable due to the increased cost. As demonstrated
by Florêncio et al. [35], the botherder faces a sum-of-effort rather than a weakest-
link defense, which means even a slight improvement in defenses employed by
the OSN or its users can render the SbN non-scalable and non-profitable.

Finally, Kanich et al. [61] showed that the underground market for spam-
advertised businesses is particularly attractive, where such businesses make hun-
dreds of thousands of dollars a month in revenue. The botherder is thus better off
using an SbN as a tool for monetizing subsequent, personalized e-mail spam cam-

24A lemon is an American slang term for a car that is found to be defective only after it has been
bought. The market for lemons concludes that owners of good cars will not place their cars on the
used-car market. This is sometimes summarized as “the bad driving out the good” in the market.

55

paign as part of a larger underground affiliation. In other words, large-scale social
infiltration can be considered as a market enabler of the actual “money-makers,”
as confirmed by other empirical studies on Twitter [109, 114].

2.6 Summary
From a computer security perspective, the concept of socialbots is both interesting
and disturbing. The threat is no longer from a human controlling or monitoring a
computer, but from exactly the opposite.

This study presented an empirical evidence showing that OSNs such as Face-
book are vulnerable to social infiltration by socialbots—automated fake accounts
that mimic real user behavior. In particular, we found that such socialbots make
it difficult for OSN security defenses, such as Facebook’s immune system, to de-
tect or stop social infiltration as it occurs. This has resulted in alarming privacy
breaches and serious implications to graph-based fake account detection mecha-
nisms, which assume attackers who are not capable of social infiltration.

We also analyzed the economic feasibility of social infiltration at scale. The
analysis suggested that large-scale social infiltration, when operated as part of a
socialbot network (SbN), is expected to be profitable but is not particularly attrac-
tive as an independent business. Social infiltration at scale, however, plays the role
of a market enabler of more profitable commodities, which are monetized through
social spam and malware in a multi-million dollar underground market. In addi-
tion, we showed that for an SbN to be scalable in terms of number of attacked
users, it ought to have a fixed size in terms of number of its socialbots. Otherwise,
there would be a linear cost dependence which forces the botherder to limit the
scale of the SbN in order for it to be more financially attractive.

While this study showed that social infiltration in OSNs is both profitable and
difficult to detect, it has also made the observation that victims of socialbots have
predictive characteristics. As shown in Chapter 3, this insight has practical impli-
cations to the design of robust defense mechanisms that lead to a safer Web for
billions of active OSN users.

56

Chapter 3

Infiltration-Resilient Fake Account
Detection in OSNs

In its 2014 earnings report, Facebook estimated that 15–16 millions (1.2%) of its
monthly active users are in fact “undesirable,” representing fake accounts that are
used in violation of the site’s terms of service [32]. For such OSNs, the existence
of fakes leads advertisers, developers, and investors to distrust their reported user
metrics, which negatively impacts their revenues [17]. Moreover, as we discussed
in Chapter 2, attackers create and automate fake accounts, or socialbots, for vari-
ous malicious activities, starting with social infiltration. Therefore, it is important
for OSNs to detect fake accounts as fast and accurately as possible.

Most OSNs employ defense systems that automatically flag fake accounts by
analyzing either user-level activities or graph-level structures. Because automated
account suspension is inapplicable in practice, these accounts are pooled for man-
ual verification by experienced analysts, who maintain a ground-truth for fake and
real accounts [15, 104].

Fake account detection, in general, can be divided into two main approaches.
In the first approach, unique features are extracted from recent user activities, such
as frequency of friend requests and fraction of accepted requests, after which they
are applied to a fake account classifier that has been trained offline using machine

57

learning techniques [104]. In the second approach, an OSN is modeled as a graph,
with nodes representing user accounts and edges representing social relationships
(e.g., friendships). Given the assumption that fake accounts can befriend only few

real accounts, the graph is partitioned into two subgraphs, or regions, separating
real accounts from fakes, with a narrow passage between them [2, 137]. While
both approaches are effective against naïve attacks, various studies showed that
they are inaccurate in practice and can be easily evaded [6, 10, 29, 125]. In Chap-
ter 2, we showed that an attacker can cheaply create fake accounts that resemble
real users, circumventing feature-based detection, or use simple social engineer-
ing tactics to befriend and infiltrate many real users, invalidating the assumption
behind graph-based detection (Finding 4).

In this chapter, we consider attackers who can run a large-scale social infiltra-
tion campaign using a set of automated fake accounts, or socialbots. Specifically,
each fake account can perform social activities similar to those of real users, in-
cluding befriending other users. Under this stronger threat model, we aim to tackle
the following question in our design of Íntegro, as introduced in Section 1.3.2:

• RQ4: How can OSNs detect fakes that infiltrate users on a large scale?

3.1 Background and Related Work
We first review the threat model we assume in this work. We then present re-
quired background and related work on fake account detection, abuse mitigation,
maintaining a ground-truth, and analyzing victim accounts in OSNs.

3.1.1 Threat Model
We focus on large OSNs such as Tuenti, RenRen, and Facebook, which are open
to everyone and allow users to declare bilateral relationships (i.e., friendships).

58

Capabilities

As presented in Chapter 2, we consider attackers who are capable of creating and
automating fake accounts on a large scale. Each fake account, also referred to as
a socialbot, can perform social activities similar to those of real users [56]. This
includes sending friend requests and posting social content. We do not consider
attackers who are capable of hijacking real accounts, as there are existing detec-
tion systems that tackle this threat, such as COMPA [26]. We focus on detecting
fake accounts that can befriend a large number of benign users in order to mount
subsequent attacks, as we describe next.

Objectives

The objectives of an attacker include distributing social spam and malware, mis-
informing the public, and collecting private user data on a large scale. To achieve
these objectives, the attacker has to infiltrate the target OSN by using the fakes
to befriend many real accounts. Such an infiltration is required because isolated
fake accounts cannot directly interact with or promote content to most users in the
OSN [28]. This is also evident by a thriving underground market for OSN abuse,
including social infiltration. For example, attackers can have their fake accounts
befriend 1K users on Facebook for $26 or less [88].

Victims

We refer to accounts whose users have accepted friend requests sent by fake ac-
counts as victims. We refer to friendships between victim and fake accounts as
attack edges. Victim accounts are subset of real accounts, which are accounts cre-
ated and controlled by benign users who socialize with others in a non-adversarial
setting. Moreover, we refer to accounts whose users are more susceptible to so-
cial infiltration and are likely to be victims as potential victims. We use the terms
“account,” “profile,” and “user” interchangeably but do make the distinction when
deemed necessary.

59

3.1.2 Fake Account Detection
From a systems design perspective, most of today’s fake account detection mech-
anisms are either feature-based or graph-based, depending on whether they utilize
machine learning or graph analysis techniques in order to identify fakes. Next, we
discuss each of these approaches in detail.

Feature-based Detection

This approach relies on user-level activities and its account details (i.e., user logs,
profile pages). By identifying discriminating features of an account, one can clas-
sify each account as fake or real using various machine learning techniques. For
example, Facebook employs an “immune system” that performs real-time checks
and classification for each read and write action on its database, which are based
on features extracted from user accounts and their activities [104].

Yang et al. used ground-truth provided by RenRen to train an SVM classifier
in order to detect fake accounts [134]. Using simple features, such as frequency of
friend requests, fraction of accepted requests, and per-account clustering coeffi-
cient, the authors were able to train a classifier with 99% true-positive rate (TPR)
and 0.7% false-positive rate (FPR).

Stringhini et al. utilized honeypot accounts in order to collect data describing
various user activities in OSNs [108]. After analyzing the collected data, they
were able to assemble a ground-truth for real and fake accounts, with features
similar to those outlined before. The authors trained two random forests (RF)
classifiers to detect fakes in Facebook and Twitter, ending up with 2% FPR and 1%
false-negative rate (FNR) for Facebook, and 2.5% FPR and 3% FNR for Twitter.

Wang et al. used a click-stream dataset provided by RenRen to cluster user ac-
counts into “similar” behavioral groups, corresponding to real or fake accounts [127].
The authors extracted both sessions and clicks features, including average clicks
per session, average session length, the percentage of clicks used to send friend
requests, visit photos, and to share content. With these features, the authors were
able to calibrate a cluster-based classifier with 3% FPR and 1% FNR, using the

60

METIS clustering algorithm [64].
Cao et al. observed that fake accounts tend to perform loosely synchronized

actions in a variety of OSN applications, all from a limited set of IP addresses [16].
The authors extracted simple user action features, such as timestamp, target appli-
cation, and IP address, in order to cluster user accounts according to the similarity
of their actions using a scalable implementation of the single-linkage hierarchical
clustering algorithm. Through a deployment at Facebook, the authors we able to
calibrate a cluster-based classifier and detect more than two million fake accounts,
which acted similarly at about the same time for a sustained period of time.

Even though feature-based detection scales to large OSNs, it is still relatively
easy to circumvent. This is the case as it depends on features describing activities
of known fakes in order to identify unknown ones. In other words, attackers can
evade detection by adversely modifying the content and activity patterns of their
fakes, which leads to an arms race [74, 120]. In addition, feature-based detection
does not provide any formal security guarantees and often results in a high FPR
in practice. This is partly attributed to the large variety and unpredictability of
behaviors of users in adversarial settings [15].

With Íntegro, we use feature-based detection to identify potential victims in a

non-adversarial setting. In particular, the dataset used for training a victim clas-
sifier includes features of only known real accounts that have either accepted or
rejected friend requests send by known fakes. Because real accounts are controlled
by benign users who are not adversarial, a feature-based victim account classifier
is much harder to circumvent than a similarly-trained fake account classifier. As
we discuss in Section 3.3, we require the victim classification to be better than
random in order to outperform the state-of-the-art in fake account detection.

Graph-based Detection

As a response to the lack of formal security guarantees in feature-based detection,
the state-of-the-art in fake account detection utilizes a graph-based approach in-
stead. In this approach, an OSN is modeled as a graph, with nodes representing

61

user accounts and edges between nodes representing social relationship. Given the
assumption that fakes can establish only a small number of attack edges, the sub-
graph induced by the set of real accounts is sparsely connected to fakes, that is, the
cut over attack edges is sparse.1 Graph-based detection mechanisms make this as-
sumption, and attempt to find such a sparse cut with formal guarantees [123, 137].
For example, Tuenti employs SybilRank to rank accounts according to their per-
ceived likelihood of being fake, based on structural properties of its graph [15].

Yu et al. were among the first to analyze the social graph for the purpose of
identifying fake accounts in OSNs [138, 139]. The authors developed a technique
that labels each account as either fake or real based on multiple, modified random
walks. This binary classification is used to partition the graph into two smaller
subgraphs that are sparsely interconnected via attack edges, separating real ac-
counts from fakes. They also proved that in the worst case O(|Ea| logn) fakes can
be misclassified, where |Ea| is the number of attack edges and n is the number of
accounts in the network. Accordingly, it is sufficient for the attacker to establish
Ω(n/ logn) attack edges in order to evade this detection scheme with 0% TPR.

Viswanath et al. employed community detection techniques to identify fake
accounts in OSNs [122]. In general, community detection decomposes a given
graph into a number of tightly-knit subgraphs that are loosely connected to each
other, where each subgraph is called a community [36, 72]. By expanding a com-
munity starting with known real accounts [82], the authors were able to identify
the subgraph which contains mostly real accounts. Recently, however, Alvisi et
al. showed that such a local community detection technique can be easily circum-
vented if fake accounts establish sparse connectivity among themselves [2].

As binary classification often leads to high FPR [122], Cao et al. proposed
user ranking instead, such that almost all fake accounts are ranked lower than real
accounts [15]. The authors developed SybilRank, a fake account detection system
that assigns each account a rank describing how likely it is to be fake based on a

1A cut is a partition of nodes into two disjoint subsets. Visually, it is a line that cuts through or
crosses over a set of edges in the graph (see Figure 3.1).

62

modified random walk, in which a lower rank means the account is more likely to
be fake. They also proved that O(|Ea| logn) fakes can outrank real accounts in the
worst case, given the fakes establish |Ea| attack edges with victims at random.

While graph-based detection provides provable security guarantees, real-world
social graphs do not conform with the main assumption on which it depends. In
particular, various studies confirmed that attackers can infiltrate OSNs on a large
scale by deceiving users into befriending their fakes [6, 29, 125], which renders
graph-based fake account detection ineffective in practice.

With Íntegro, we do not assume that fake accounts are limited by how many

attack edges they can establish. Instead, we identify potential victims and leverage
this information to carefully weight the graph. After that, through a user ranking
scheme, we bound the security guarantee by the aggregate weight on attack edges,
vol(Ea), rather than their number, |Ea|. In particular, by assigning lower weights
to edges incident to potential victims than other accounts, we can upper bound the
value of vol(Ea) by |Ea|, as we show in Section 3.3.

3.1.3 Abuse Mitigation and the Ground-truth
Due to the inapplicability of automated account suspension, OSNs employ abuse
mitigation techniques, such as CAPTCHA challenges [104] and photo-based so-
cial authentication [136], in order to rate-limit accounts that have been automati-
cally flagged as fake. These accounts are pooled for manual inspection by experi-
enced analysts who maintain a ground-truth for real and fake accounts along with
their features, before suspending or removing verified fakes [15, 104, 128, 134].

While maintaining an up-to-date ground-truth is important for retraining de-
ployed classifiers and estimating their effectiveness in practice, it is rather a time-
consuming and non-scalable task. For example, on an average day, each analyst at
Tuenti inspects 250–350 accounts an hour, and for a team of 14 employees, up to
30K accounts are inspected per day [15]. It is thus important to rank user accounts

in terms of how likely they are to be fake in order to prioritize account inspection

by analysts. Íntegro offers this functionality and leads to a faster reaction against

63

potential abuse by fakes, benefiting both OSN operators and their users.

3.1.4 Analyzing Victim Accounts
While we are the first to leverage victim classification to separate fakes from real
accounts in the graph, other researchers have analyzed victim accounts as part of
the larger cyber criminal ecosystem in OSNs [109].

Wagner et al. were among the first to develop predictive models in order to
identify users who are more susceptible to social infiltration in Twitter [125]. They
found that susceptible users, or potential victims, tend to use Twitter for conver-
sational purposes, are more open and social since they communicate with many
different users, use more socially welcoming words, and show higher affection
than non-susceptible users.

Yang et al. studied the cyber criminal ecosystem on Twitter [133]. They found
that victims fall into one of three categories. The first are social butterflies who
have large numbers of followers and followings, and establish social relationships
with other accounts without careful examination. The second are social promot-

ers who have large following-follower ratios, larger following numbers, and a
relatively high URL ratios in their tweets. These victims use Twitter to promote
themselves or their business by actively following other accounts without consid-
eration. The last are dummies who post few tweets but have many followers. In
fact, these victims are dormant fake accounts at an early stage of their abuse.

3.2 Intuition, Goals, and Model
We now introduce Íntegro, a fake account detection system that is robust against

social infiltration. In what follows, we first present the intuition behind our design,
followed by its goals and model.

64

3.2.1 Intuition
We start with the premise that some users are more likely to be victims than others.
If we can train a classifier to identify potential victims with high probability, we
may be able to use this information to find the cut which separates fakes from real
accounts in the graph. As victims are benign users, the output of this classifier
represents a reliable information which we can integrate in the graph.

To find such a cut, we can define a graph weighting scheme that assigns edges
incident to potential victims lower weights than others, where weight values are
calculated from classification probabilities. In a weighted graph, the sparsest cut
is the cut with the smallest volume, which is the sum of weights on edges across
the cut. Given an accurate victim classifier, this cut is expected to cross over some
or all attack edges, effectively separating real accounts from fakes, even if the
number of attack edges is large. We aim to find such a cut using a ranking scheme
that ideally assigns higher ranks to nodes in one side of the cut than the other, as
one way to separate real accounts from fakes. This ranking scheme is inspired by
similar graph partitioning algorithms proposed by Spielman et al. [103], Yu [137],
and Cao et al. [15].

3.2.2 Design Goals
Íntegro is designed to help OSNs detect fake accounts, which are capable of large-
scale social infiltration, through a user ranking scheme. In particular, Íntegro has
the following design goals:

Effectiveness: High-Quality User Ranking

The system should ideally assign higher ranks to real accounts than fakes. If not,
it should limit the number of fakes that might rank similar to or higher than real
accounts. In practice, the ranking should have an area under ROC curve (ROC)

that is greater than 0.5 and closer to 1, where the AUC represents the probabil-
ity of a random real accounts to rank higher than a random fake account [122].

65

Real!
Trusted!
Victim!

Fake!

Attack!
edge!

Real region! Fake region!

 Gender #Friends #Posts!
Male! 3! … ! 10!

Feature vector of B!

B(

Figure 3.1: System model

Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision

of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user

accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi ∈ V represents a user account and each edge {vi,v j} ∈ E

represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

66

Attributes

Each node vi has a degree deg(vi), which is equal to the sum of weights on edges
incident to the node. In addition, vi has a feature vector A(vi), where each entry
a j ∈A(vi) describes a feature or an attribute of the account. Each edge {vi,v j}∈E

has a weight w(vi,v j) ∈ (0,1], which is initially set to 1.

Regions

The node set V is divided into two disjoint sets, Vr and Vf , representing real and
fake accounts, respectively. We refer to the subgraph induced by Vr as the real

region Gr, which includes all real accounts and the friendships between them.
Likewise, we refer to the subgraph induced by Vf as the fake region G f . The re-
gions are connected by a set of attack edges Ea between victim and fake accounts.
We assume the OSN operator is aware of a small set of trusted accounts Vt , also
called seeds, which are known to be real accounts and are not victims.

3.3 System Design
We now describe the design of Íntegro. We start with a short overview of our ap-
proach, after which we proceed with a detailed description of system components.

3.3.1 Overview
In the beginning, Íntegro trains a victim classifier using low-cost features extracted
from user-level activities. This feature-based binary classifier is used to identify
potential victims in the graph, each with some probability (Section 3.3.2). After
that, Íntegro calculates new edge weights from the probabilities computed by the
victim classifier in such a way that edges incident to potential victims have lower
weights than others. Íntegro then ranks user accounts based on the landing proba-
bility of a modified random walk that starts from a trusted account, or a seed node,
picked at random from all trusted accounts (Section 3.3.3).

The random walk is “short” because it is terminated after O(logn) steps, early

67

before it converges. The walk is “supervised,” as it is biased towards traversing
nodes which are reachable via higher-weight paths. This modified random walk
has a higher probability to stay in the real region of the graph, because it is highly
unlikely to escape into the fake region in few steps through low-weight attack
edges. As a result, Íntegro ranks most of real accounts higher than fakes, given a
seed selection strategy that considers the existing community structures in the real
region (Section 3.3.4).

Íntegro takes O(n logn) time to complete its computation (Section 3.3.5). In
addition, it formally guarantees that at most O(vol(Ea) logn) fake accounts can
have the same or higher ranks than real accounts in the worst case, given the fakes
establish |Ea| attack edges at random (Section 3.3.6).

3.3.2 Identifying Potential Victims
For each user vi, Íntegro extracts a feature vector A(vi) from its user-level activi-
ties. A subset of the feature vectors is selected to train a binary classifier in order
to identify potential victims using supervised machine learning, as follows:

Feature Engineering

Extracting and selecting useful features from user-level activities can be a chal-
lenging and time consuming task. To be efficient, we seek low-cost features which
could be extracted in O(1) time per user account. One possible location for ex-
tracting such features is the profile page of user accounts, where features are read-
ily available (e.g., a Facebook profile page). However, low-cost features are ex-
pected to be statistically weak, which means they may not strongly correlate with
the label of a user account (i.e., victim or not). As we explain later, we require the
victim classifier to be better than random in order to deliver robust fake account
detection. This requirement, fortunately, is easy to satisfy. In particular, we show
in Section 3.4 that an OSN can train and cross-validate a victim classifier that is
up to 52% better than random, using strictly low-cost features.

68

Supervised Machine Learning

For each user vi, Íntegro computes a vulnerability score p(vi) ∈ (0,1) that repre-
sents the probability of vi to be a victim. Given an operating threshold α ∈ (0,1)
with a default value α = 0.5, we say vi is a potential victim if p(vi) ≥ α . To
compute vulnerability scores, Íntegro uses random forests (RF) learning algo-
rithm [12] in order to train a victim classifier, which given A(vi) and α , decides
whether the user vi is a potential victim with a vulnerability score p(vi). We
picked the RF learning algorithm because it is both efficient and robust against
model over-fitting [47]. Íntegro takes O(n logn) time to extract n feature vectors
and train an RF-based victim classifier. It also takes O(n) to compute vulnerability
scores for all users, given their feature vectors and the trained victim classifier.

Robustness

As attackers do not control victims, a victim classifier is inherently more resilient
to adversarial attacks than similarly-trained fake account classifier. Let us consider
one concrete example. In the “boiling-frog” attack [120], fake accounts can force
a classifier to tolerate abusive activities by slowly introducing similar activities to
the OSN. Because the OSN operator has to retrain all deployed classifiers in order
to capture new behaviors, a fake account classifier will learn to tolerate more and
more abusive activities, up until the attacker can launch a full-scale attack without
detection [10]. When identifying potential victims, however, this is only possible
if the real accounts used to train the victim classifier have been compromised. This
situation can be avoided by verifying the accounts, as described in Section 3.1.3.

Generalization

While machine learning-based victim classification is imperfect and will typically
result in false positives, it is highly scalable and requires only a small ground-truth
to generalize the classification to the entire user-base, as we show in Section 3.4.5.
This ability of a methodically trained and validated classifier to generalize, so that
it performs accurately on unseen before feature vectors, is key for the predictive

69

power of machine learning [47]. If not, an OSN has to collect the missing ground-
truth by directly testing whether each user is likely to be a victim, possibly via a
benign social infiltration campaign that is run against the entire user-base. Such
a brute-force approach to identifying potential victims is infeasible for three main
reasons. First, it has a considerably high cost to the OSN and its users, as it needs
to be administered regularly against all accounts to capture changing user behav-
iors. Second, flooding the network with friend requests at random is highly ineffi-
cient, as only a small fraction of users are expected to become victims. Third and
last, forcing users to participate in the test introduces its own ethical concerns [9],
as it could result in risky user behaviors such as emotional attachment, in addition
to the corresponding negative impact on user experience.

3.3.3 Ranking User Accounts
To rank users, Íntegro computes the probability of a modified random walk to land
on each user vi after k steps, where the walk starts from a trusted user account
picked at random. For simplicity, we refer to the probability of a random walk to
land on a node as its trust value, so the probability distribution of the walk at each
step can be modeled as a trust propagation process [45]. In this process, a weight
w(vi,v j) represents the rate at which trust may propagate from either side of the
edge {vi,v j} ∈ E. We next describe this process in detail.

Trust Propagation

Íntegro utilizes the power iteration method to efficiently compute trust values [40].
This method involves successive matrix multiplications where each element of the
matrix is the transition probability of the random walk from one node to another.
Each iteration computes the trust distribution over nodes as the random walk pro-
ceeds by one step. Let Tk(vi) denote the trust collected by each node vi ∈V after k

iterations. Initially, the total trust, denoted by τ ≥ 1, is evenly distributed among

70

the trusted nodes in Vt :

T0(vi) =

τ/|Vt | if vi ∈Vt ,

0 otherwise.
(3.1)

The process then proceeds as follows:

Tk(vi) = ∑
{vi,v j}∈E

Tk−1(v j) ·
w(vi,v j)

deg(v j)
, (3.2)

where in iteration k, each node vi propagates its trust Tk−1(vi) from iteration k−1
to each neighbour v j, proportionally to the ratio w(vi,v j)/deg(vi). This is required
so that the sum of the propagated trust equals Tk−1(vi). The node vi then collects
the trust propagated similarly from each neighbour v j and updates its trust Tk(vi).
Throughout this process, τ is preserved such that for each iteration k≥ 1 we have:

∑
vi∈V

Tk−1(vi) = ∑
vi∈V

Tk(vi) = τ. (3.3)

Our goal here is to ensure that most real accounts collect higher trust than fake
accounts. In other words, we want to strictly limit the portion of τ that escapes the
real region Gr and enters the fake region G f . To achieve this propagation property,
we make the following modifications.

Adjusted Propagation Rates

In each iteration k, the aggregate rate at which τ may enter G f is strictly limited by
the sum of weights on the attack edges, which we denote by the volume vol(Ea).
Therefore, we aim to adjust the weights in the graph such that vol(Ea) ∈ (0, |Ea|],
without severely restricting trust propagation in Gr. We accomplish this by as-
signing smaller weights to edges incident to potential victims than other accounts.
In particular, each edge {vi,v j} ∈ E keeps the default weight w(vi,v j) = 1 if vi and

71

v j are both not potential victims. Otherwise, we modify the weight as follows:

w(vi,v j) = min
{

1,β ·
(
1−max{p(vi), p(v j)}

)}
, (3.4)

where β is a scaling parameter with a default value of β = 2. Now, as vol(Ea)→ 0
the portion of τ that enters G f reaches zero as desired.

For proper degree normalization, we introduce a self-loop {vi,vi} with weight
w(vi,vi) = (1−deg(vi))/2 whenever deg(vi)< 1. Notice that self-loops are con-
sidered twice in degree calculation.

Early Termination

In each iteration k, the trust vector Tk(V) = 〈Tk(v1), . . . ,Tk(vn)〉 describes the dis-
tribution of τ throughout the graph. As k→∞, the vector converges to a stationary
distribution T∞(V), as follows [5]:

T∞(V) =

〈
τ · deg(v1)

vol(V)
, . . . ,τ · deg(vn)

vol(V)

〉
, (3.5)

where the node-set volume vol(V) in this case is the sum of degrees of nodes in V .
In particular, Tk(V) converges after k reaches the mixing time of the graph, which
has been shown to be much larger than O(logn) iterations for various kinds of
social networks [21, 72, 83]. Accordingly, we terminate the propagation process
early before it converges after ω = O(logn) iterations.

Degree Normalization

As described in Equation 3.5, trust propagation is influenced by individual node
degrees. As k grows large, the propagation is expected to bias towards high degree
nodes. This implies that high degree fake accounts may collect more trust than low
degree real accounts, which is undesirable for effective user ranking. To eliminate
this node degree bias, we normalize the trust collected by each node by its degree.
We assign each node vi ∈V after ω = O(logn) iterations a rank value T ′ω(vi) that

72

is equal to its degree-normalized trust:

T ′ω(vi) = Tω(vi)/deg(vi). (3.6)

Finally, we sort the nodes by their ranks in a descending order.

Example

Figure 3.2 depicts trust propagation in a graph. In this example, we assume each
account has a vulnerability score of 0.05, except the victim E, which has a score
of p(E) = 0.95. The graph is weighted using α = 0.5 and β = 2, and a total trust
τ = 1000 in initialized over the trusted nodes {C,D}. Each value is rounded to its
nearest natural number. The values with parentheses represent the corresponding
degree-normalized trust (i.e., rank values).

In Figure 3.2b, after ω = 4 iterations, all real accounts {A,B,C,D,E} collect
more trust than fake accounts {F,G,H, I}. Moreover, the nodes receive the correct
ranking of (D,A,B,C,E,F,G,H, I), as sorted by their degree-normalized trust. In
particular, all real accounts have higher rank values than fakes, where the small-
est difference is T ′4(E)−T ′4(F) > 40. Notice that real accounts that are not vic-
tims have similar rank values, where the largest difference is T ′4(D)−T ′4(C)< 12.
These sorted rank values, in fact, could be visualized as a stretched-out step func-
tion that has a significant drop near the victim’s rank value.

If we allowed the process to converge after k > 50 iterations, the fakes collect
similar or higher trust than real accounts, following Equation 3.5, as shown in
Figure 3.2c. In either case, the attack edges Ea = {{E,G},{E,F},{E,H}} have
a volume of vol(Ea) = 0.3, which is 10 times lower than its value if the graph had
unit weights, with vol(Ea) = 3. As we show in Section 3.4, early-termination and
propagation rate adjustment are essential for robustness against social infiltration.

73

A(B(

C(D

E(F(

G

H

I(

0(

500(

0(
0(

500(

0(0(

0(

0(

High(=(1.0(Complementary(=(0.25(
(

Low(=(0.1(

(a) Initialization

A(B(

C(D

E(F(

G

H

I(

231(
(115)(

316(
(105)(

5(
(3)(46(

(46)(
129(
(117)(

13(
(4)(

237(
(113)(

13(
(4)(

10(
(5)(

(b) After 4 iterations

A(B(

C(D

E(F(

G

H

I(

103(

154(

103(
51(

56(

159(107(

159(

108(

(c) Stationary distribution

Figure 3.2: Trust propagation example

3.3.4 Selecting Trusted Accounts
Íntegro is robust against social infiltration, as it limits the portion of τ that enters
G f by the rate vol(Ea), regardless of the number of attack edges, |Ea|. For the case
when there are few attack edges so that Gr and G f are sparsely connected, vol(Ea)

is already small, even if one keeps w(vi,v j) = 1 for each attack edge {vi,v j} ∈ Ea.
However, Gr is likely to contain communities [71, 72], where each represents a
dense subgraph that is sparsely connected to the rest of the graph. In this case, the
propagation of τ in Gr becomes restricted by the sparse inter-community connec-
tivity, especially if Vt is contained exclusively in a single community. We therefore
seek a seed selection strategy for trusted accounts, which takes into account the
existing community structure in the graph.

74

Seed Selection Strategy

We pick trusted accounts as follows. First, before rate adjustment, we estimate the
community structure in the graph using a community detection algorithm called
the Louvain method [7]. Second, after rate adjustment, we exclude potential vic-
tims and pick small samples of nodes from each detected community at random.
Third and last, we inspect the sampled nodes in order to verify they correspond to
real accounts that are not victims. We initialize the trust only between the accounts
that pass manual verification by experts.

In addition to coping with the existing community structure in the graph, this
selection strategy is designed to also reduce the negative impact of seed-targeting

attacks. In these attacks, fake accounts befriend trusted accounts in order to ad-
versely improve their own ranking, as the total trust τ is initially distributed among
trusted accounts. By choosing the seeds at random, however, the attacker is forced
to guess the seeds among a large number of nodes. Moreover, by choosing multi-
ple seeds, the chance of correctly guessing the seeds is further reduced, while the
amount of trust assigned to each seed in lowered. In practice, the number of seeds
depends on available resources for manual account verification, with a minimum
of one seed per detected community.

Community Detection

We chose the Louvain method because it is both efficient and outputs high-quality
partitions. This method iteratively groups closely connected communities together
to greedily improve the modularity of the partition [93], which is one measure for
partition quality. In each iteration, each node represents one community, and well-
connected neighbors are greedily combined into the same community. At the end
of the iteration, the graph is reconstructed by converting the resulting communities
into nodes and adding edges that are weighted by inter-community connectivity.
Each iteration takes O(m) time, and only a small number of iterations is required
to find the community structure which greedily maximizes the modularity.

While one can apply community detection to identify fake accounts [122], do-

75

ing so hinges on the assumption that fakes always form tightly-knit communities,
which is not necessarily true [134]. This also means fakes can easily evade detec-
tion if they establish sparse connectivity among themselves [2]. With Íntegro, we
do not make such an assumption. In particular, we consider an attacker who can

befriend a large number of real or fake accounts, without any formal restrictions.

3.3.5 Computational Cost
For an OSN with n users and m friendships, Íntegro takes O(n logn) time to com-
plete its computation, end-to-end. We next analyze the running time in detail.

First, recall that users have a limit on how many friends they can have (e.g.,
5K in Facebook, 1K in Tuenti), so we have O(m) = O(n). Identifying potential
victims takes O(n logn) time, where it takes O(n logn) time to train an RF clas-
sifier and O(n) time to compute vulnerability scores. Also, weighting the graph
takes O(m) time. Detecting communities takes O(n) time, where each iteration of
the Louvain method takes O(m) time, and the graph rapidly shrinks in O(1) time.
Propagating trust takes O(n logn) time, as each iteration takes O(m) time and the
propagation process iterates for O(logn) times. Ranking and sorting users by their
degree-normalized trust takes O(n logn) time. So, the running time is O(n logn).

3.3.6 Security Guarantees
In the following analysis, we consider attackers who establish attack edges with
victims uniformly at random. For analytical tractability, we assume the real region
is fast mixing. This means that it takes O(log |Vr|) iterations for trust propagation
to converge in the real region. We refer the interested reader to Appendix A for a
complete analysis, including theoretical background and formal proofs.

Sensitivity to Mixing Time

The ranking quality of Íntegro does not rely on the absolute value of the mixing
time in the real region. Instead, it only requires that the whole graph has a longer

76

mixing time than the real region. Under this condition, the early-terminated prop-
agation process results in a gap between the degree-normalized trust of fakes and
real accounts. Ideally, the number of iterations that Íntegro performs is set equal
to the mixing time of the real region. Regardless of whether the mixing time of the
real region is O(logn) or larger, setting the number of iterations to this value re-
sults in an almost uniform degree-normalized trust among the real accounts [15].
If the mixing time of the real region is larger than O(logn), the trust that escapes to
the fake region is further limited. However, we also run at the risk of starving real
accounts that are loosely connected to trusted accounts. This risk is mitigated by
placing trusted accounts in many communities, and by dispersing multiple seeds
in each community, thereby ensuring that the trust is initiated somewhere close to
those real accounts, as described in Section 3.3.4.

Bound on Ranking Quality

The main security guarantee offered by Íntegro is captured by the following theo-
retical result:

Theorem 1: Given a social graph with a fast mixing real region and an attacker

who randomly establishes attack edges, the number of fake accounts that rank sim-

ilar to or higher than real accounts after O(logn) iterations is O(vol(Ea) logn).

Proof sketch. Consider a graph G = (V,E) with a fast mixing real region Gr. As
weighting a graph changes its mixing time by a constant factor [102], Gr remains
fast mixing after rate adjustment.

After O(logn) iterations, the trust vector Tω(V) does not reach its stationary
distribution T∞(V). Since trust propagation starts from Gr, the fake region G f gets
only a fraction f < 1 of the aggregate trust it should receive in T∞(V). On the other
hand, as the trust τ is conserved during the propagation process (Equation 3.3),
Gr gets c > 1 times higher aggregate trust than it should receive in T∞(V).

As Gr is fast mixing, each real account vi ∈Vr receives approximately identical
rank value of T ′ω(vi) = c · τ/vol(V), where τ/vol(V) is the degree-normalized

77

trust value in T∞(V) (Equations 3.5 and 3.6). Knowing that G f is controlled by
the attacker, each fake v j ∈ Vf receives a rank value T ′ω(v j) that depends on how
the fakes inter-connect to each other. However, since the aggregate trust in G f

is bounded, each fake receives on average a rank value of T ′ω(v j) = f · τ/vol(V),
which is less than that of a real account. In the worst case, an attacker can arrange
a set Vm ⊂Vf of fake accounts in G f such that each vk ∈Vm receives a rank value
of T ′ω(vk) = c · τ/vol(V), while the remaining fakes receive a rank value of zero.
Such a set cannot have more than (f/c) ·vol(Vf) = O(vol(Ea) logn) accounts, as
otherwise, f would not be less than 1 and G f would receive more than it should
in Tω(V).

Improvement over SybilRank

Íntegro shares many design traits with SybilRank. In particular, modifying Íntegro by
setting w(vi,v j) = 1 for each (vi,v j) ∈ E will result in a ranking similar to that
computed by SybilRank [15]. It is indeed the incorporation of victim classifica-
tion into user ranking that differentiates Íntegro from other proposals, giving it the
unique advantages outlined earlier.

As stated by Theorem 1, the bound on ranking quality relies on vol(Ea), re-
gardless of how large the set Ea grows. As we weight the graph based on the
output of the victim classifier, our bound is sensitive to its classification perfor-
mance. We next prove that if an OSN operator uses a victim classifier that is
uniformly random, which means each user account vi ∈ V is equally vulnerable
with p(vi) = 0.5, then Íntegro is as good as SybilRank in terms of ranking quality:

Corollary 1: For a uniformly random victim classifier, the number of fakes that

rank similar to or higher than real accounts after O(logn) iterations is O(|Ea| logn).

Proof. This classifier assigns each user account vi ∈ V a score p(vi) = 0.5. By
Equation 3.4, each edge {vi,v j} ∈ E is assigned a unit weight w(vi,v j) = 1, where
α = 0.5 and β = 2. By Theorem 1, the number of fake accounts that rank similar
to or higher than real accounts after ω = O(logn) iterations is O(vol(Ea) logn) =

O(|Ea| logn).

78

By Corollary 1, Íntegro can outperform SybilRank in its ranking quality by a
factor of O(|Ea|/vol(Ea)), given the used victim classifier is better than random.
This can be achieved during the cross-validation phase of the victim classifier,
which we thoroughly describe and evaluate in what follows.

3.4 Comparative Evaluation
We now present a comprehensive comparative evaluation of Íntegro and SybilRank.
First, we explain our choice of SybilRank (Section 3.4.1), after which we outline a
summary of the evaluation methodology (Section 3.4.2). This is followed by a de-
tailed description of the used datasets (Section 3.4.3) and system implementation
(Section 3.4.4). Next, we evaluate Íntegro for victim classification (Section 3.4.5),
and then systematically compare it to SybilRank in terms of ranking quality, sensi-
tivity to seed-targeting attacks, and real-world deployment (Sections 3.4.6–3.4.8).
Finally, we evaluate the scalability of Íntegro in terms of its execution time using
a synthetic benchmark of large OSNs (Section 3.4.9).

3.4.1 Compared System
We chose SybilRank for two reasons. First, SybilRank uses a similar power itera-
tion method albeit on an unweighted version of the graph. This similarity allowed
us to clearly show the impact of leveraging victim classification on fake account
detection. Second, SybilRank was shown to outperform known contenders [15],
including EigenTrust [60], SybilGuard [138], SybilLimit [139], SybilInfer [19],
Mislove’s method [122], and GateKeeper [118]. We next contrast these systems
to both SybilRank and Íntegro.

SybilGuard [138] and SybilLimit [139] identify fake accounts based on a large
number of modified random walks, where the computational cost is O(

√
mn logn)

in centralized setting like OSNs. SybilInfer [19], on the other hand, uses Bayesian
inference techniques to assign each user account a probability score for being fake
in O(n(logn)2) time per trusted account. The system, however, does not provide

79

analytical bounds on its ranking quality.
GateKeeper [118], which is a flow-based fake account detection approach, im-

proves over SumUp [117]. GateKeeper relies on strong assumptions that require
balanced graphs and costs O(n logn) time per trusted account or “ticket source.”

Viswanath et al. employed Mislove’s algorithm [82] to greedily expand a local
community around a set of trusted accounts in oder to partition the graph into two
communities representing real and fake regions [122]. This algorithm, however,
costs O(n2) time and its detection can be easily evaded if the fakes establish sparse
connectivity among themselves [2].

Compared to these systems, SybilRank provides an equivalent or tighter secu-
rity bound and is more computationally efficient, as it requires O(n logn) time re-
gardless of number of trusted accounts. Compared to SybilRank, Íntegro provides
O(|Ea|/vol(Ea)) improvement on its security bound, requires the same O(n logn)

time, and is robust against social infiltration, unlike all other systems.

3.4.2 Methodology
Our objective is to empirically validate system design from five different aspects:
Victim classification, ranking quality, sensitivity to seed-targeting attacks, large-
scale deployment, and scalability. To achieve this, we implemented and evaluated
both Íntegro and SybilRank using two real-world datasets recently collected from
Facebook and Tuenti. We also compared both systems through a production-class
deployment at Tuenti in collaboration with its “Site Integrity” team, which has 14
full-time account analysts and 10 full-time software engineers who fight spam and
other forms of abuse. In order to evaluate system scalability, we tested Íntegro us-
ing a benchmark of five synthetic OSNs with an exponentially increasing number
of users. We provide more details on our methodology in the following sections.

3.4.3 Datasets
We used two real-world datasets from two different OSNs. The first dataset was
collected from Facebook during the study described in Chapter 2, and contained

80

public user profiles and two graph samples. The second dataset was collected by
Tuenti from their production servers, and contained a day’s worth of server-cached
user profiles. We had to sign a non-disclosure agreement with Tuenti in order to
access an anonymized, aggregated version of its user data, with the whole process
being mediated by Tuenti’s Site Integrity team.

The Ground-truth

For the Facebook dataset, we used the ground-truth of the original study, which we
also re-validated for the purpose of this work, as we describe next. For the Tuenti
dataset, all accounts were manually inspected and labeled by its account analysts.
The inspection included matching user profile photos to its declared age and ad-
dress, understanding natural language in user posts and messages, examining the
user’s friends, and analyzing the user’s IP address and HTTP-related information.

Facebook

The dataset contained public profile pages of 9,646 real users who received friend
requests from fake accounts. Since the dataset was collected in early 2011, we
wanted to verify whether these users are still active on Facebook. Accordingly, we
revisited their public profiles in June 2013. We found that 7.9% of these accounts
were either disabled by Facebook or deactivated by the users. Therefore, we ex-
cluded these accounts, ending up with 8,888 accounts, out of which 32.4% were
victims who accepted a single friend request sent by a fake posing as a stranger.

The dataset also included two graph samples of Facebook, which were col-
lected using a stochastic version of the Breadth-First Search method called “forest
fire” [70]. The first graph consisted of 2,926 real accounts with 9,124 friendships
(i.e., the real region), 65 fakes with 2,080 friendships (i.e., the fake region), and
748 timestamped attack edges. The second graph consisted of 6,136 real accounts
with 38,144 friendships, which represented the real region only.

81

Tuenti

The dataset contained profiles of 60K real users who received friend requests from
fake accounts, out of which 50% were victims. The dataset was collected in Feb
10, 2014 from live production servers, where data resided in memory and no ex-
pensive, back-end queries were issued. For Tuenti, collecting this dataset was a
low-cost and easy process, as it involved reading cached user profiles of a subset
of its daily active users—users who logged in to Tuenti on that particular day.

3.4.4 Implementation
We developed two implementations for each of Íntegro and SybilRank. In the first
implementation, we used the SyPy framework—our open-source Python package
for single-machine comparative evaluation of graph-based Sybil accounts detec-
tion algorithms. We extended the framework by integrating SciKit-Learn,2 which
is a Python package for machine learning algorithms. We used this implementa-
tion for the evaluation presented in Sections 3.4.5–3.4.7. We refer the interested
reader to Appendix B for more details on SyPy.

In the second implementation, we used Mahout and Giraph, which are widely-
used, open-source distributed machine learning and graph processing systems. We
also publicly released the implementation as part of GrafosML, which provides an
open-source toolset for big data analytics on top of Mahout and Giraph. We used
this implementation for the evaluation presented in Sections 3.4.8–3.4.9.

3.4.5 Victim Classification
We sought to validate the following claim: An OSN can identify potential victims
with a probability that is better than random, using strictly low-cost features ex-
tracted from readily-available user profiles. We note, however, that it is possible
to achieve better classification performance, at the price of a higher computational
cost, by using advanced learning algorithms with temporal activity features [47].

2http://scikit-learn.org

82

http://scikit-learn.org

Features

As described in Table 3.1, we extracted features from both datasets to generate
feature vectors. The only requirement for feature selection was to have each fea-
ture value available for all users in the dataset, so that the resulting feature vectors
are complete. For the Facebook dataset, we were able to extract 18 features from
public user profiles. For Tuenti, however, the dataset was limited to 14 features,
but contained user features that are not publicly accessible.

In Table 3.1, the RI score stands for the relative importance of the feature,
which we define in the upcoming discussion. An RI score of “N/A” means the
feature was not available for the corresponding dataset. A k-categorical feature
means the feature can have one value out of k unique categories. For example,
boolean features are 2-categorical.

Classifier Tuning

The RF learning algorithm is an ensemble algorithm, where a set of decision trees
are constructed at training time. When evaluating the classifier on new data (i.e.,
unlabeled feature vectors), the decisions from all trees are combined using a ma-
jority voting aggregator [12]. Each decision tree in the forest uses a small random
subset of available features in order to decrease the generalization error, which
measures how well the trained classifier generalizes to unseen data [47]. As shown
in Figure 3.3, we performed parameter tuning to calibrate the RF classifier. In par-
ticular, we used the out-of-bag error estimates computed by the RF algorithm to
numerically find the best number of decision trees and the number of features for
each tree, so that the prediction variance and bias are controlled across the trees.
For the Facebook dataset, we used 450 decision trees, where each tree had 3 fea-
tures picked at random out of 18 features. For the Tuenti dataset, we used 500
decision trees, where each tree had 7 features picked at random out of 14 features.

83

Feature Brief description Type RI Score (%)

Facebook Tuenti

User activity:
Friends Number of friends the user had Numeric 100.0 84.5
Photos Number of photos the user shared Numeric 93.7 57.4
Feed Number of news feed items the user had Numeric 70.6 60.8
Groups Number of groups the user was member of Numeric 41.8 N/A
Likes Number of likes the users made Numeric 30.6 N/A
Games Number of games the user played Numeric 20.1 N/A
Movies Number of movies the user watched Numeric 16.2 N/A
Music Number of albums or songs the user listened to Numeric 15.5 N/A
TV Number of TV shows the user watched Numeric 14.2 N/A
Books Number of books the user read Numeric 7.5 N/A

Personal messaging:
Sent Number of messages sent by the user Numeric N/A 53.3
Inbox Number of messages in the user’s inbox Numeric N/A 52.9
Privacy Privacy level for receiving messages 5-categorical N/A 9.6

Blocking actions:
Users Number of users blocked by the user Numeric N/A 23.9
Graphics Number of graphics (photos) blocked by the user Numeric N/A 19.7

Account information:
Last updated Number of days since the user updated the profile Numeric 90.77 32.5
Highlights Number of years highlighted in the user’s time-line Numeric 36.3 N/A
Membership Number of days since the user joined the OSN Numeric 31.7 100
Gender User is male or female 2-categorical 13.8 7.9
Cover picture User has a cover picture 2-categorical 10.5 < 0.1
Profile picture User has a profile picture 2-categorical 4.3 < 0.1
Pre-highlights Number of years highlighted before 2004 Numeric 3.9 N/A
Platform User disabled third-party API integration 2-categorical 1.6 < 0.1

Table 3.1: Low-cost features extracted from Facebook and Tuenti

84

0.313

0.318

0.323

0.328

0.333

50 100 150 200 250 300 350 400 450 500

Ge
ne

ra
liz
aS

on
(e
rr
or
(

Number(of(decision(trees(

Facebook(
TuenS(

(a)

0.314

0.318

0.322

0.326

0.330

1 3 5 7 9 11 13 15 17

Ge
ne

ra
liz
aS

on
(e
rr
or
(

Number(of(features(in(each(tree(

Facebook(
TuenS(

(b)

Figure 3.3: Victim classifier tuning

Validation Method

To evaluate the accuracy of the victim classifier, we performed a 10-fold, strati-

fied cross-validation method [47] using the RF learning algorithm after parameter
tuning. First, we randomly partitioned the dataset into 10 equally-sized sets, with
each set having the same percentage of victims as the complete dataset. We next
trained an RF classifier using 9 sets and tested it using the remaining set. We re-
peated this procedure 10 times (i.e., folds), with each of the sets being used once
for testing. Finally, we combined the results of the folds by computing the mean
of their true-positive rate (TPR) and false-positive rate (FPR).

Performance Metrics

The output of the classifier depends on its operating threshold, which is a cutoff
value in the prediction probability after which the classifier identifies a user as a
potential victim. In order to capture the trade-off between TPR and FPR in single
curve, we repeated the cross-validation method under different threshold values
using a procedure known as receiver operating characteristics (ROC) analysis. In
ROC analysis, the closer the curve is to the top-left corner at point (0,1) the better
the classification performance is. The quality of the classifier can be quantified
with a single value by calculating the area under its ROC curve (AUC) [47], so

85

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tr
ue

(p
os
iS
ve
(ra

te
(

False(posiSve(rate(

TuenS(

Facebook(

Random(

AUC = 0.76

AUC = 0.7

AUC = 0.5

(a) ROC Analysis

0.747

0.749

0.751

0.753

0.755

0.757

0.759

0.761

10 20 30 40 50 60

M
ea
n(
ar
ea
(u
nd

er
(R
O
C(
cu
rv
e(

Dataset(size((thousands)(

(b) Sensitivity to dataset size

Figure 3.4: Victim classification using the RF algorithm

that an AUC of 1 means a perfect classifier, while an AUC of 0.5 means a random
classifier. The victim classifier has to be better than random with AUC > 0.5.

We also recorded the relative importance (RI) of features used for the classi-
fication. The RI score is computed by the RF learning algorithm, and it describes
the relative contribution of each feature to the predictability of the label—being a
victim or a non-victim—when compared to all other features [12].

Results

For both datasets, the victim classifier ended up with an AUC greater than 0.5,
as depicted in Figure 3.4a. In particular, for the Facebook dataset, the classifier
delivered an AUC of 0.7, which is 40% better than random. For the Tuenti dataset,
on the other hand, the classifier delivered an AUC of 0.76, which is 52% better
than random. Also, increasing the dataset size to more than 40K feature vectors
did not significantly improve the AUC in cross-validation, as show in Figure 3.4b.
This means an OSN operator can train a victim classifier using a relatively small
dataset, so fewer accounts need to be manually verified.

We also experimented with another two widely-used learning algorithms for
victim classification, namely, Naïve Bayes (NB) and SVM [47]. However, both
of these algorithms resulted in smaller AUCs on both datasets. In particular, for

86

the Facebook dataset, the NB classifier achieved an AUC of 0.63 and the SVM
classifier achieved an AUC of 0.57. Similarly, for the Tuenti dataset, the NB
classifier achieved an AUC of 0.64 and the SVM classifier achieved an AUC of
0.59. This result is not surprising as ensemble learning algorithms, such as the RF
algorithm, achieve better predictive performance in case individual classifiers are
“weak,” meaning they have small AUCs but are still better than random [47].

3.4.6 Ranking Quality
We compared Íntegro against SybilRank in terms of their ranking quality under
various attack scenarios, where ideally real accounts should be ranked higher than
fake accounts. Our results are based on the average of at least 10 runs, with error
bars reporting 95% confidence intervals (CI), when applicable. For this compari-
son, we picked the Facebook dataset because it included both feature vectors and
graph samples.

Infiltration Scenarios

We considered two real-world attack scenarios which have been shown to be suc-
cessful in practice. In the first scenario, attackers establish attack edges by target-
ing users with whom their fakes have mutual friends [10]. Accordingly, we used
the first Facebook graph which contained timestamped attack edges, allowing us
to replay the infiltration by 65 socialbots (n = 2,991 and m = 11,952). We refer
to this scenario as the targeted-victim attack.

In the second scenario, we attackers establish attack edges by targeting users
at random [15]. We designated the second Facebook graph as the real region.
We then generated a synthetic fake region consisting of 3,068 fakes with 36,816
friendships using the small-world graph model [130]. We then added 35,306 at-
tack edges at random between the two regions (n = 9,204 and m = 110,266). As
suggested in related work [137], we used a relatively large number of fakes and
attack edges in order to stress-test both systems under evaluation. We refer to the
this scenario as the random-victim attack.

87

Edge Weights

For each infiltration scenario, we deployed the previously trained victim classifier
in order to assign new edge weights. As we injected fakes in the second scenario,
we generated their feature vectors by sampling each feature distribution of fakes
from the first scenario.3 We also assigned edge weights using a victim classifier
that simulates two operational modes. In the first mode, the classifier outputs the
best possible victim predictions with an AUC≈1 and probabilities greater than
0.95. In the second mode, the classifier outputs uniformly random predictions
with an AUC≈0.5. We used this multi-mode classifier to evaluate the theoretical
best and practical worst case performance of Íntegro (see the legend in Figure 3.5).

Evaluation Method

To evaluate each system’s ranking quality, we ran the system using both infiltra-
tion scenarios starting with a single attack edge. We then added another attack
edge, according to its timestamp if available, and repeated the experiment. We
kept performing this process until there were no more edges to add. At the end of
each run, we measured the resulting AUC of each system, as explained next.

Performance Metric

For the resulting ranked list of accounts, we performed ROC analysis by moving
a pivot point along the list, starting from the bottom. If an account is behind the
pivot, we marked it as fake; otherwise, we marked it as real. Given the ground-
truth, we measured the TPR and the FPR across the whole list. Finally, we com-
puted the corresponding AUC, which in this case quantifies the probability that a

random real account is ranked higher than a random fake account.

3We excluded the “friends” feature, as it can be computed from the graph.

88

0.5

0.6

0.7

0.8

0.9

1.0

M
ea
n(
ar
ea
(u
nd

er
(R
O
C(
cu
rv
e(

Number(of(a9ack(edges(

IntegroYBest(
IntegroYRF(
IntegroYRandom(
SybilRank(

(a) Targeted-victim attack

0.5

0.6

0.7

0.8

0.9

1.0

M
ea
n(
ar
ea
(u
nd

er
(R
O
C(
cu
rv
e(

Number(of(a9ack(edges((thousands)(

IntegroYBest(
IntegroYRF(
IntegroYRandom(
SybilRank(

(b) Random-victim attack

Figure 3.5: Ranking quality under each infiltration scenario (CI=95%)

Seeds and Iterations

In order to make the chance of guessing seeds very small, we picked 100 trusted
accounts that are non-victim, real accounts. We used a total trust that is equal to n,
the number of nodes in the given graph. We also performed dlog2(n)e iterations
for both Íntegro and SybilRank.

Results

Íntegro consistently outperformed SybilRank in ranking quality, especially as the
number of attack edges increased. Using the RF classifier, Íntegro resulted in an
AUC which is always greater than 0.92, which is up to 30% improvement over
SybilRank in each attack scenario, as shown in Figure 3.5.

In each infiltration scenario, both systems performed well when the number
of attack edges was relatively small. In other words, the fakes were sparsely con-
nected to real accounts and so the regions were easily separated. As SybilRank lim-
its number of fakes that can outrank real accounts by the number of attack edges,
its AUC degraded significantly as more attack edges were added to each graph,
all the way down to 0.71. Íntegro, however, maintained its performance, with at
most 0.07 decrease in AUC, even when the number of attack edges was relatively

89

large. Notice that Íntegro performed nearly as good as SybilRank when a random
victim classifier was used, but performed much better when the RF classifier was
used instead. This clearly shows the impact of leveraging victim classification on
fake account detection.

3.4.7 Sensitivity to Seed-targeting Attacks
Sophisticated attackers might obtain a full or partial knowledge of which accounts
are trusted by the OSN operator. As the total trust is initially distributed among
these accounts, an attacker can adversely improve the ranking of the fakes by
establishing attack edges directly with them. We next evaluate both systems under
two variants of this seed-targeting attack.

Attack Scenarios

We focus on two main attack scenarios. In the first scenario, the attacker targets
accounts that are k nodes away from all trusted accounts. This means that the
length of the shortest path from any fake account to any trusted account is exactly
k+1, representing the distance between the seeds and the fake region. For k = 0,
each trusted account is a victim and located at a distance of 1. We refer to this
scenario, which assumes a resourceful attacker, as the distant-seed attack.

In the second scenario, attackers have only a partial knowledge and target k

trusted accounts at random. We refer to this scenario as the random-seed attack.

Evaluation Method

To evaluate the sensitivity of each system to a seed-targeting attack, we used the
first Facebook graph to simulate each attack scenario. We implemented this by
replacing the endpoint of each attack edge in the real region with a real account
picked at random from a set of candidates. For the first scenario, a candidate
account is one that is k nodes away from all trusted accounts. For the second
scenario, a candidate account is simply any trusted account. We ran experiments
for both systems using different values of k and measured the corresponding AUC

90

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

M
ea
n(
ar
ea
(u
nd

er
(R
O
C(
cu
rv
e(

Distance(from(the(fake(region(

IntegroYRF(
SybilRank(

(a) Distant-seed attack

0

0.2

0.4

0.6

0.8

1

1 10 20 30 40 50 60 70 80 90 100

M
ea
n(
ar
ea
(u
nd

er
(R
O
C(
cu
rv
e(

Number(of(vicSmized(trusted(accounts(

IntegroYBest(
IntegroYRF(
IntegroYRandom(
SybilRank(

(b) Random-seed attack

Figure 3.6: Ranking sensitivity to seed-targeting attacks (CI=95%)

at the end of each run.

Results

In the first attack scenario, both systems had a poor ranking quality when the dis-
tance was small, as illustrated in Figure 3.6a. Because Íntegro assigns low weights
to edges incident to victim accounts, the trust that escapes to the fake region is
less likely to come back into the real region. This explains why SybilRank had
a slightly better AUC for distances less than 3. However, once the distance was
larger, Íntegro outperformed SybilRank ,as expected from earlier results.

In the second attack scenario, the ranking quality of both systems degraded, as
the number of victimized trusted accounts increased, where Íntegro consistently
outperformed SybilRank, as illustrated in Figure 3.6b. Notice that by selecting a
larger number of trusted accounts, it becomes much harder for an attacker to guess
which account is trusted, while the gained benefit per victimized trusted account
is further reduced.

91

0(

200(

400(

600(

800(

1000(

0 500 1000 1500 2000 2500

N
um

be
r(o

f(f
rie

nd
s(

Days(since(joining(TuenS(

(a) Users connectivity

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

Po
rS
on

(o
f(e

xp
ec
te
d(
fr
ie
nd

sh
ip
s((
%
)(

Months(since(joining(TuenS(

(b) Friendship growth over time

Figure 3.7: Preprocessing for system deployment

3.4.8 Deployment at Tuenti
We deployed both systems on a snapshot of Tuenti’s daily active users graph in
February 6, 2014. The graph consisted of several million nodes and tens of mil-
lions of edges. We had to mask out the exact numbers due to a non-disclosure
agreement with Tuenti. After initial analysis of the graph, we found that 96.6%
of nodes and 94.2% of edges belonged to one giant connected component (GCC).
Therefore, we focused our evaluation on this GCC.

Preprocessing

Using a uniform random sample of 10K users, we found that new users have weak
connectivity to others due to the short time they have been on Tuenti, as shown in
Figure 3.7a. In particular, there was a positive correlation between number of days
since a user joined Tuenti and how well-connected the user is in terms of number
of friends (Pearson’s r = 0.36). In fact, 93% of all new users who joined Tuenti in

the last 30 days had weak connectivity of 46 friends or less, much smaller than the
average of 254 friends. If these users were included in our evaluation, they would
end up receiving low ranks, which would lead to false positives.

To overcome this hurdle, we estimated the period after which users accumulate
at least 10% of the average number of friends in Tuenti. To achieve this, we used

92

a uniformly random sample of 10K real users who joined Tuenti over the last 77
months. We divided the users in the sample into buckets representing how long
they have been active members. We then calculated the average number of new
friendships they made after every other month. As illustrated in Figure 3.7b, users
accumulated 53% of their friendships during the first 12 months. In addition,
18.6% of friendships were made after one month since joining the network. To
this end, we decided to defer the consideration of users who have joined in the last
30 days since Feb 6, 2014, which represented only 1.3% of users in the GCC.

Community Detection

We applied the Louvain method on the preprocessed GCC. The method finished
quickly after just 5 iterations with a high modularity score of 0.83, where a value
of 1 corresponds to a perfect partitioning. In total, we found 42 communities and
the largest one consisted of 220,846 nodes. In addition, 15 communities were rel-
atively large containing more than 50K nodes. Tuenti’s account analysts verified
0.05% of the nodes in each detected community, and designated these nodes as
trusted accounts for both systems.

Performance Metric

As the number of users in the processed GCC is large, it was infeasible to manu-
ally inspect and label each account. This means that we were unable to evaluate
the system using ROC analysis. Instead, we attempted to determine the percent-
age of fake accounts at equally-sized intervals in the ranked list. We accomplished
this in collaboration with Tuenti’s analysts by manually inspecting a user sample
in each interval in the list. This percentage is directly related to the precision

of fake account detection, which is a performance metric typically used to mea-
sure the ratio of relevant items over the top-k highest ranked items in terms of
relevance [51].

93

Evaluation Method

We utilized the previously trained victim classifier in order to weight a copy of
the graph. We then ran both systems on two versions of the graph (i.e., weighted
and unweighted) for dlog2(n)e iterations, where n is number of accounts in the
graph. After that, we examined the ranked list of each system by inspecting the
first lowest-ranked one million user accounts. We decided not to include the com-
plete range due to confidentiality reasons, because otherwise one could precisely
estimate the actual number of fakes in Tuenti. We randomly selected 100 users
out of each 20K user interval for inspection in order to measure the percentage of
fakes in the interval, that is, the precision.

Results

As illustrated in Figure 3.8a, Íntegro resulted in 95% precision in the lowest 20K
ranking user accounts, as opposed to 43% by SybilRank and 5% by Tuenti’s user-
based abuse reporting system. The precision dropped dramatically as we went up
in the list, which means our ranking scheme placed most of the fakes at the bottom
of the ranked list, as shown in Figure 3.8b.

Let us consider SybilRank’s ranking, as shown in Figures 3.8a and 3.8c. The
precision, starting with 43% for the first interval, gradually decreased until rising
again at the 10th interval. This pattern repeated at the 32nd interval as well. We
inspected the fake accounts at these intervals and found that they belonged to
three different, large communities. In addition, these fakes had a large number
of friends, much larger than the average of 254 friends. In particular, the fakes
from the 32nd interval onwards had more than 300 friends, with a maximum of
up to 539. Figure 3.8d shows the degree distribution for both verified fake and real
accounts. This figure suggests that fakes tend to create many attack edges with real
accounts, which confirms earlier findings on other OSNs such as Facebook [10].
Also, this behavior explains why Íntegro outperformed SybilRank in user ranking
quality; these high degree fakes received lower ranks as most of their victims were
identified by the classifier.

94

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Pe
rc
en

ta
ge
(o
f(f
ak
es
((%

)(

20K(node(interval(in(ranked(list(

IntegroYRF(
SybilRank(

(a) Precision at lower intervals

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Pe
rc
en

ta
ge
(o
f(f
ak
es
((%

)(

20K(node(interval(in(ranked(list(

IntegroYRF(
SybilRank(

(b) Precision over the inspected list

0

2

4

6

8

10

12

14

10 20 30 40 50

Pe
rc
en

ta
ge
(o
f(f
ak
es
((%

)(

20K(node(interval(in(ranked(list(

IntegroYRF(
SybilRank(

(c) Precision at higher intervals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

CD
F(

Number(of(friends((degree)(

Fake(
Real(

(d) Node degree distribution

Figure 3.8: Deployment results at Tuenti

SybilRank in Retrospect

SybilRank was initially evaluated on Tuenti, where it effectively detected a sig-
nificant percentage of the fakes [15]. The original evaluation, however, pruned
excessive edges of nodes that had a degree greater than 800, which include a
non-disclosed number of fakes that highly infiltrated Tuenti. Also, the original
evaluation was performed on the whole graph, which included many dormant ac-
counts. In contrast, our evaluation was based on the daily active users graph in
order to focus on active fake accounts that could be harmful. While this change
limited the number of fakes that existed in the graph, it has evidently revealed the
ineffectiveness of SybilRank under social infiltration. Additionally, the original

95

evaluation showed that 10–20% of fakes received high ranks, a result we also at-
test, due to the fact that these fake accounts had established many attack edges.
On the other hand, Íntegro has 0–2% of fakes at these high intervals, and so it
delivers an order of magnitude better precision than SybilRank.

3.4.9 Scalability
We next evaluate the scalability of Íntegro in terms of its execution time as the
number of users in the OSN increase. Accordingly, we used the distributed version
of our software implementation (Section 3.4.4), and deployed it on a commodity
computer cluster for benchmarking, as follows.

Benchmark

We deployed Íntegro on an Amazon Elastic MapReduce4 cluster. The cluster
consisted of one m1.small instance serving as a master node and 32 m2.4xlarge

instances serving as slave nodes. We employed the small-world graph model [130]
to generate 5 graphs with an exponentially increasing number of nodes. For each
one of these graphs, we used the Facebook dataset to randomly generate all feature
vectors with the same distribution for each feature. We then ran Íntegro on each
of the generated graphs and measured its execution time.

Results

Íntegro achieved a nearly linear scalability with the number of nodes in a graph,
as illustrated in Figure 3.9. Excluding the time required to load the 160M node
graph into memory, which is about 20 minutes for a non-optimized data format, it
takes less than 2 minutes to train an RF victim classifier and compute vulnerability
scores for nodes on Mahout. It also takes less than 25 minutes to weight the graph,
rank nodes, and finally sort them on Giraph. This makes Íntegro computationally
practical even for large OSNs such as Facebook.

4http://aws.amazon.com/elasticmapreduce

96

http://aws.amazon.com/elasticmapreduce

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10 60 110 160

Ex
ec
uS

on
(S
m
e(
(m

in
ut
es
)(

Number(of(nodes((millions)(

(a) Victim classification on Mahout

0

5

10

15

20

25

10 60 110 160

Ex
ec
uS

on
(S
m
e(
(m

in
ut
es
)(

Number(of(nodes((millions)(

(b) User ranking on Giraph

Figure 3.9: System scalability on distributed computing platforms

3.5 Discussion
As presented in Section 3.3.6, Íntegro’s security guarantee is sensitive to the per-
formance of the deployed victim classifier, which is formally captured by vol(Ea)

in the bound O(vol(Ea) logn), and can be practically measured by its AUC.

3.5.1 Robustness of User Ranking
As illustrated in Figure 3.5, improving the AUC of the victim classifier from ran-
dom with AUC≈ 0.5, to actual with AUC= 0.7, and finally to best with AUC≈ 1
consistently improved the resulting ranking in terms of its AUC. Therefore, a
higher AUC in victim classification leads to a higher AUC in user ranking. This
is the case because the ROC curve of a victim classifier monotonically increases,
so a higher AUC implies a higher true positive rate (TPR). In turn, a higher TPR
means more victims are correctly identified, and so more attack edges are assigned
lower weights, which evidently leads to a higher AUC in user ranking.

Regardless of the used victim classifier, the ranking quality decreases as the
number of attack edges increases, as shown in Figure 3.5. This is the case because
even a small false negative rate (FNR) in victim classification means more attack
edges, which are indecent to misclassified victims, are assigned high weights,

97

leading to a lower AUC in user ranking.

3.5.2 Maintenance and Impact
While an attacker does not control real accounts nor their activities, it can still
trick users into befriending fakes. In order to achieve a high-quality ranking, the
victim classifier should be regularly retrained to capture new and changing user
behavior in terms of susceptibility to social infiltration. This is, in fact, the case for
supervised machine learning when applied to computer security problems [104].
Also, as the ranking scheme is sensitive to seed-targeting attacks, the set of trusted
accounts should be regularly updated and validated in order to reduce the negative
impact of these attacks, even if they are unlikely to succeed (Section 3.3.4).

By using Íntegro, Tuenti requires nearly 67 man hours to manually validate the
20K lowest ranking user accounts, and discover about 19K fake accounts instead
of 8.6K fakes with SybilRank. With its user-based abuse reporting system that
has 5% hit rate, and assuming all fakes get reported, Tuenti would need 1,267
man hours instead to discover 19K fake accounts (18.9 times more man hours).
As such, this improvement has been useful to both Tuenti and its users.

3.5.3 Limitations
Íntegro is not a stand-alone fake account detection system. It is intended to com-
plement existing detection systems and is designed to detect automated fake ac-
counts that befriend many victims for subsequent attacks. In what follows, we
outline two limitations which are inherited from SybilRank [15] and similar ran-
dom walk-based ranking schemes [137].

Design is Limited to only Undirected Social Graphs

In other words, OSNs whose users declare lateral relationships are not expected
to benefit from our proposal. This is the case because directed graphs, in general,
have a significantly smaller mixing time than their undirected counterparts [84],

98

which means a random walk on such graphs will converge in a much small number
of steps, rendering short random walks unsuitable for robust user ranking.

Deployment Delays the Consideration of New User Accounts

This means that an OSN operator might miss the chance to detect fakes at their
early life-cycle. However, as shown in Figure 3.7a, only 7% of new users who
joined Tuenti in the last month had more than 46 friends. To estimate the number
of fakes in new accounts, we picked 100 accounts at random for manual verifica-
tion. We found that only 6% of these accounts were fake, and the most successful
fake account had 103 victims. In practice, the decision of whether to exclude these
account is operational, and it depends on the actions taken on low-ranking users.
For example, an operator can enforce abuse mitigation technique, as discussed
in Section 3.1.3, against low-ranking users, where false positives can negatively
affect user experience but slow down fake accounts that just joined the network.
This is a security/usability trade-off which we leave to the operator to manage. Al-
ternatively, the operator can use fake account detection systems that are designed
to admit legitimate new users using, for example, a vouching process [131].

3.6 Summary
Detecting fake accounts protects both OSN operators and their users from various
malicious activities. Most detection mechanisms attempt to classify user accounts
as real or fake by analyzing either user-level activities or graph-level structures.
These mechanisms, however, are not robust against adversarial attacks in which
fake accounts cloak their operation with patterns resembling real user behavior.

This work stemmed Findings 2 and 4 from Chapter 2, and demonstrated that
victims—real accounts whose users have accepted friend requests sent by fakes—
form a distinct classification category that is useful for designing robust detection
mechanisms. To start with, as attackers have no control over victim accounts and
cannot alter their activities, a victim account classifier which relies on user-level
activities to identify potential victims is relatively hard to circumvent. Moreover,

99

as fakes are directly connected to victims, a graph-based fake account detection
mechanism that leverages victim classification is robust against adverse manipu-
lations of the graph, social infiltration in particular.

To validate this new approach, we designed and evaluated Íntegro—a robust
and scalable defense system that leverages victim classification to rank most real
accounts higher than fakes, so that OSN operators can take actions against low-
ranking fake accounts. In particular, Íntegro starts by identifying potential victims
from user-level activities using supervised machine learning. After that, it anno-
tates the graph by assigning lower weights to edges incident to potential victims
than others. Finally, Íntegro ranks user accounts based on the landing probability
of a short random walk that starts from a known real account. As this walk is un-
likely to traverse low-weight edges in few steps and land on fakes, Íntegro achieves
the desired ranking.

We implemented Íntegro using widely-used, open-source distributed comput-
ing platforms, where it scaled nearly linearly. We also evaluated Íntegro against
SybilRank, which is the state-of-the-art in fake account detection, using real-world
datasets and a large-scale deployment at Tuenti—the largest OSN in Spain. We
showed that Íntegro significantly outperforms SybilRank in user ranking quality,
with the only requirement that the employed victim classifier is better than ran-
dom. Moreover, the deployment of Íntegro at Tuenti resulted in up to an order of
magnitude higher precision in fake account detection, as compared to SybilRank.

At the moment, Tuenti uses Íntegro in production in order to thwart fake ac-
counts in the wild, with at least 10 time better precision than their older detection
method and hundreds of hours less time spent for manual account verification.

100

Chapter 4

Discussion and Research Directions

We now discuss different directions in defending against automated fake accounts
in OSNs. We first elaborate that preventing social infiltration boils down to solving
a set of hard socio-technical challenges (Section 4.1). After that, we explore a new
defense direction which involves “risky” account admission control (Section 4.2).
Finally, we advocate that leveraging victim prediction in OSNs is a new security
paradigm which can benefit different defense mechanisms (Section 4.3).

4.1 Challenges for Preventive Countermeasures
When operated as part of a socialbot network (SbN), an OSN can defend against
large-scale social infiltration by following at least one of three defense strategies:
(1) preventing its operation in the first place, (2) detecting its operation as early as
possible, or (3) limiting the advantage an attacker gains from its operation.

Preventing SbN operation can be achieved by eliminating its enabling factors,
that is, by fixing at least one of the vulnerabilities outlined in Chapter 2. In what
follows, we demonstrate that doing so leads to a set of hard socio-technical chal-
lenges that relate to web automation, online-offline identity binding, and usable
security. This means that an OSN has more leverage in detecting and limiting the

abusive operation of an SbN rather than preventing its operation in the first place.

101

4.1.1 Web Automation
In order to simulate a user browsing an OSN platform (e.g., Facebook’s desk-
top website), the attacker can employ web automation techniques, which include
methods for solving CAPTCHAs, creating and populating multiple OSN accounts,
crawling the social graph, and executing online social activities. Preventing this
automation, however, requires solving at least one of the following challenges.

Challenge 1: Design a reverse Turing test that is usable and effective even against

“illegitimate” human solvers.

A reverse Turing test, such as CAPTCHA [124], is a challenge-response test
which is administered by a machine and is designed to tell humans and machines
apart. A perfect Turing test presents a problem that is easy enough for all humans
to solve, but is still impossible for a machine or an automation software to pass.
Unfortunately, even a perfect test is ineffective if humans are exploited to solve
the test in an illegitimate setting: The situation where human users are employed
or tricked into solving reverse Turing tests that are not addressed to them. Under
this setting, we refer to such a human solvers as illegitimate.

Eliminating the economic incentives for underground businesses that employ
illegitimate human solvers is a first step towards tackling this challenge [87], but
it does not solve it as legitimate users can be tricked and situated into illegitimate
settings, which is the case for the Koobface botnet [112]. This demands the design
of new reverse Turing tests that are resilient to even those illegitimate users, which
we believe is generally difficult to achieve.

Fast-response CAPTCHAs, for example, require the test to be solved in a rel-
atively shorter time, as opposed to typical implementations. This makes it more
difficult for automation scripts to pass the test, as they require extra time to relay
the test, solve it and respond back. Fast-response CAPTCHAs, however, are ex-
pected to put more pressure on legitimate users who require easy and fast access
to online services, and could potentially repel them away from using them.

Alternatively, authenticating users via their social knowledge (e.g., whether
they can identify their friends from photos), can be used as an effective test that

102

is challenging for illegitimate users to solve [136]. Other that its usability is-
sues, Kim et al. [65] show that it is relatively easy to circumvent such a social
authentication scheme by either guessing, automated face recognition, or social
engineering.

Challenge 2: Effectively limit large-scale Sybil crawls of OSNs without restrict-

ing users’ social experience.

A large-scale crawl is a malicious activity where an attacker manages to crawl
large portions of a target OSN, including both the social graph and all accessible
user attributes. Today, large-scale crawls are mitigated by employing a network-
wide audit service, which limits the number of profiles a user can view per account
or IP address in a given period of time [104]. This, however, can be circumvented
by creating a set of fake accounts and then performing Sybil crawling on a large
scale, typically using a botnet with multiple IP addresses [112].

To overcome this drawback, one can use the knowledge about the social graph
to effectively limit Sybil crawling. Genie [85], for example, is a system that mod-
els the trust between users in an OSN as a credit network, where a user can view
the profile of another user only if the path between them in the social graph has
enough credits to satisfy the operation. If an attacker who controls many fake ac-
counts attempts to crawl the OSN on a large scale, then Genie guarantees that the
attacker will exhaust all the credits on the paths connecting the fakes to the rest of
the network, thus limiting large-scale Sybil crawling. This approach, however, is
based on the assumption that it would be hard for an attacker to establish a large
number of social relationships with other users, which is not case as we showed
in Section 2.4.5.

Challenge 3: Detect abusive and automated usage of OSN platforms and social

APIs across the Web.

In concept, malicious automation represents the situation in which an attacker
scripts his way of consuming system’s resources in order to cause damage or harm
to the system itself or its users. Abusive automation, on the other hand, is less

103

severe because the attacker exploits the offered service in violation of the declared
terms of service (ToS). From OSN operator’s standpoint, all HTTP requests come
from either a browser or through the social API, which is intentionally provided to
support automation. Requests that are not associated with a browsing session, that
is, those that do not append the required session cookies, can be easily detected
and dealt with. With web automation, however, an attacker can simulate an OSN
user and make all requests look as if they originate from a browser. Moreover, the
patterns at which these requests are made can be engineered in such a way that
makes them fall under the normal traffic category. In order to uncover adversarial
campaigns, it is important to reliably identify whether such requests come from
a human or a bot, along with means to distinguish patterns of abusive activities,
even if the attacker has a knowledge of the used classification techniques.

Looking for regularities in the times at which requests are made, for example,
can be used to detect automation in OSNs [140]. This, however, can be easily
circumvented by simply mimicking the times and irregularities at which a human
user makes such requests.

4.1.2 Identity Binding
Most of the challenges we presented so far are difficult due to the capability of the
attacker to mount the Sybil attack. This leads us to the following challenge:

Challenge 4: Guarantee an anonymous, yet credible, online-offline identity bind-

ing in open-access systems.

Douceur [22] showed that without a centralized trusted party that certifies on-
line identities, Sybil attacks are always possible except under extreme and unreal-
istic assumptions of resource parity and coordination among participating entities.
Thus, limiting the number of fake accounts by forcing a clean mapping between
online and offline identities is widely recognized as a hard problem, especially
given the scalability requirements of today’s open-access OSNs.

Arguably, one way to tackle this challenge is to rely on governments for on-
line identity management, just as in offline settings. The open government ini-

104

tiative [111], for example, enables U.S. citizens to easily and safely engage with
U.S. government websites using open identity technologies such as OpenID. This,
however, requires creating open trust frameworks [111] that enable these websites
to accept identity credentials from third-party identity providers, a task that in-
volves solving challenging issues related to identity anonymity, scalability, secu-
rity, technology incentives and adoption [75, 110].

4.1.3 Usable Security
As part of computer security, usable security aims to provide the users with secu-
rity controls they can understand and privacy they can control [18]. In OSNs such
as Facebook, there appears to be a growing gap between what the user expects
from a privacy control and what this control does in reality [73]. Even if the most
sophisticated OSN security defense is in place, an OSN is still vulnerable to many
threats, such as social phishing [58], in case its users find it puzzling to make ba-
sic online security or privacy decisions. This gives us strong motives to study the
human aspect of the OSN security chain, which is by itself a challenge.

Challenge 5: Develop OSN security and privacy controls that help users make

informed decisions.

Designing security controls that better communicate the risks of befriending
a stranger, for example, might be effective against automated social engineering.
This, however, requires eliciting and analyzing the befriending behavior of users,
including the factors that influence their befriending decisions, in order to inform
a user-centered design for such controls.

Rashtian et al. [97] conducted qualitative and quantitative studies to explain
how various factors influence users when accepting friend requests in Facebook.
They found that few factors significantly impact the user’s decision, namely, know-
ing the requester in real world, having common hobbies or interests, having mu-
tual friends, and the closeness of mutual friends. The study, however, does not
evaluate how an OSN operator can utilize these factors to improve user controls
in order to limit the success of social infiltration in OSNs.

105

4.2 Account Admission Control in OSNs
As presented in Chapter 3, fake account detection represents a reactive defense
strategy, in which new accounts are admitted to the OSN and then classified. On
the other hand, admission control represents a proactive defense strategy, in which
accounts are provisioned and controlled based on user or OSN defined criteria, all
before being admitted to the OSN or given full access to its available services.
Although admission control can lead to more resilient defense mechanisms, it is
based on the presumption that “users are guilty until proven innocent,” which in-
troduces serious concerns related to user experience and the growth of the OSN
in terms of its user-base [104]. In what follows, we review prominent mecha-
nisms for admission control in OSN, which can be deployed along side other fake
account detection mechanisms, including Íntegro.

4.2.1 Vouching
Xie et al. proposed to identify newly registered, real accounts as early as possible
in order to grant them full access to available services [131]. The authors devel-
oped a vouching process that is resilient to attackers, where existing real accounts
vouch for new accounts. By carefully monitoring vouching via social community
structures, they were able to admit 85% of real accounts while reducing the per-
centage of admitted fake accounts from 44% to 2.4%, using a dataset provided by
Hotmail and another one collected from Twitter.

4.2.2 Service Provisioning
Mislove et al. were among the first to dynamically limit available OSN services to
unknown fake accounts by modeling lateral trust relationships between users as a
credit network [81]. The authors developed a technique that assigns credit values
to friendships such that an account is able to send a friend request, for example,
only if there is a path with available credit from the sender to the receiver. Mondal
et al. utilized this approach to limit large-scale crawls in OSNs [85].

106

4.2.3 User Education and Security Advice
Kim et al. proposed to visualize the trust between users in order to help them bet-
ter authenticate those who request their friendship in OSNs such as Facebook [66].
Based on prior social science research demonstrating that the social tie strength

is a strong indicator of trust, the authors developed a tool to visualize the so-
cial tie strength between the receiver and the sender of a friend request, based
on features of their mutual friends such as their interaction frequency, commu-
nication reciprocity, recency, and length. To validate their approach, the authors
conducted a survey with 93 participants who used their visualization tool. The
participants found that the tool helped them make better befriending decisions,
especially when they received requests from fake accounts.

Wang et al. employed known concepts from behavioral decision research and
soft paternalism in order to design mechanisms that “nudge” users to reconsider
the content and context of their online disclosures before committing them [129].
The authors evaluated the effectiveness of their approach with 21 Facebook users
in a three week exploratory field study and 13 follow-up interviews. Their results
suggested that privacy nudges can be a promising way to prevent unintended dis-
closures when, for example, one befriends a fake or shares a post with the public.

4.3 Leveraging Victim Prediction
In Chapter 3, we introduced a new and complementary approach to thwart fake
accounts in OSNs. In particular, we proposed to predict the potential victim of un-
known fakes, and then leverage this information in existing defense mechanisms.
In fact, Íntegro is one example of an application of this approach to graph-based
fake account detection.

We herein take the position that leveraging victim prediction represents a new

security paradigm by itself. To highlight the implication of this paradigm to exist-
ing defense mechanisms, we study two more security mechanisms that are widely-
used to defend against fake accounts in OSNs; namely, user-facing security advice

107

(§4.3.1) and honeypots (§4.3.2). In what follows, we discuss how each mechanism
can be improved by incorporating victim account prediction into its workflow.

4.3.1 User-Facing Security Advice
User education is the first line of defense against increasingly sophisticated social
engineering attacks, especially in OSNs [58, 107]. While many studies showed
that users tend to reject security advice because of low motivation and poor un-
derstanding of involved threats [1, 76], others asserted that users do so because it
is entirely rational from an economic viewpoint [34, 48]. In particular, the advice
offers to protect the users from the direct costs of attacks, but burdens them with
increased indirect costs in the form of effort. When the security advice is applied
to all users, it becomes a daily burden whose benefit is the potential saving of di-
rect costs to potential victims; the fraction that might become victims. When this

fraction is small, designing a security advice that is beneficial becomes very hard.
For example, it is not feasible to burden 1.2 billion Facebook users with a daily
task in order to spare 1% of them.

One way to increase the benefit of a security advice is to make it more usable,
which in effect reduces its indirect costs to users. This has been the focus of a
growing community of usable security researchers who consider user education
essential to securing socio-technical systems such as OSNs [18]. Another com-
plementary way to reduce indirect costs is to display the security advice to only
the fraction who might actually benefit from it.

We propose to achieve this reduction by displaying the security advice in an
informed, targeted manner. In particular, victim prediction provides an OSN with
a robust way to quantify how vulnerable each real account is, as some users are
more likely to be victims than others. The OSN can use this information to focus
only on the most vulnerable population, and accordingly, educate them using a
security advice while relieving the rest of the population from associated efforts.

108

4.3.2 Honeypots and User Sampling
Honeypots are accounts specially created or controlled to sample the activities of
user accounts, in particular, those who contact these honeypots by sending them
friend requests or by sharing content [108]. The sampled activities are then ana-
lyzed and used to maintain an up-to-date ground truth for fake account detection.
While honeypot accounts are often used by third parties, OSNs still perform sim-
ilar sampling albeit with direct access to user data [104]. Such a sampling tech-
nique, however, is inefficient as it is opportunistic if not completely random. For
example, Stringhini et al. used 300 honeypot accounts in Facebook to record user
activities over 12 months [108]. The collected dataset, however, was very small
relatively to the sampling period, with only 3,831 friend requests (4.5% fake) and
72,431 messages (5.4% fake). To some extent, this also suggests that attackers do
not necessarily target users at random.

Assuming that the percentage of fakes in the OSN is small, it is reasonable to
sample the users at random and expect to collect mostly benign content originat-
ing from real accounts. The problem, however, is when one samples for abusive

content, as the sampling has to be biased towards unknown fake accounts. For
example, Facebook has more than 600 million daily active users and they per-
form billions of actions everyday [94]. In contrast, the number of fake accounts
involved in an attack campaign is often on the order of thousands [16]. It is thus
desired to have a reliable way to inform the user sampling process.

As victims are connected to abusive fakes, we propose to achieve this property
by identifying potential victims of unknown fakes and then sampling the activities
of their friends. Along with uniform random sampling [99], an OSN can achieve a
desirable benign-to-abusive content ratio, which is important for effective feature-
based detection using machine learning techniques [47].

109

Chapter 5

Impact and Conclusion

The ease with which we adopt online personas and relationships has created a soft
spot that cyber criminals are willing to exploit. Advances in artificial intelligence
make it feasible to design “socialbots” that sense, think, and act cooperatively in
social settings just as in social robotics. In the wrong hands, these socialbots can
be used to infiltrate online communities and carry out various malicious activities.
From a computer security perspective, the concept of malicious socialbots is both
interesting and disturbing, for the threat is no longer from a human controlling or
monitoring a computer, but from exactly the opposite.

While the motivations for operating socialbots and the technical mechanisms
that enable them remain rich areas of research, this dissertation focused on two
research goals, which naturally divided the presentation into two parts:

1. Threat characterization: To understand and characterize what makes OSNs
vulnerable to cyber-attacks by malicious socialbots. In particular, we focus
on social infiltration at scale, in which malicious socialbots are used to con-
nect with a large number of legitimate users, in order to mount subsequent
attacks in the target OSN.

2. Countermeasure design: To design a new countermeasure to effectively and
efficiently defend against socialbots that infiltrate users on a large scale. In

110

particular, the countermeasure has to be robust against social infiltration and
scale to large OSNs consisting at least hundreds of millions of users.

In the fist part, we considered profit-driven attackers who infiltrate OSNs using
malicious socialbots. Our investigation was guided by the following RQs:

• RQ1: How vulnerable are OSNs to social infiltration?

• RQ2: What are the security and privacy implications of social infiltration?

• RQ3: What is the economic rationale behind social infiltration at scale?

To address these questions, we studied social infiltration as an organized cam-
paign run by a network of socialbots. We adopted the design of web-based botnets
and defined what we call a socialbot network (SbN)—a group of programmable
socialbots that are orchestrated by an attacker. We implemented an SbN proto-
type consisting of 100 socialbots and operated it on Facebook for 8 weeks in early
2011. The main findings of this study are:

1. OSNs such as Facebook suffer from inherent vulnerabilities that enable an
attacker to automate social infiltration on a large scale.

2. Some users are more likely to become victims than others, which partly
depends on factors related to their social structure.

3. Operating an SbN can result in serious privacy breaches, where personally
identifiable information is compromised.

4. Traditional OSN defenses are not effective at identifying automated fake
accounts nor their social infiltration campaigns.

5. In an economic context, an SbN ought to have a fixed size in terms of num-
ber of socialbots for it to be scalable in terms of number of attacked users.

6. Operating an SbN at scale is expected to be profitable, but it is not particu-
larly attractive as an independent business.

111

These findings resulted in a timely public education about the threat [56], and
has encouraged other researchers to replicate and extend this study on other OSNs
such as Twitter and LinkedIn [29, 125]. The main contributions of this part of the
dissertation are the following:

1. Demonstrating the feasibility of social infiltration in OSNs.

2. Economic analysis of social infiltration at scale.

In the second part, we built on top of earlier findings and considered attackers
who can run a social infiltration campaign at a large scale using a set of automated
fake accounts, or socialbots. We aimed to tackle the following question:

• RQ4: How can OSNs detect fakes that infiltrate users on a large scale?

To address this question, we designed Íntegro—a robust and scalable defense
system that helps OSNs detect automated fake accounts via a user ranking scheme.
Our design follows from previous findings, which shed light on the possibility of
predicting potential victims of fakes in OSNs. In particular, Íntegro uses super-
vised machine learning with features extracted from user-level activities in order
to identify potential victims in the OSN. By weighting the graph such that edges
incident to potential victims have lower weights than other accounts, Íntegro guar-
antees that most real accounts are ranked higher than fakes. These ranks are de-
rived from the landing probability of a modified random walk that starts from a
known real account. To our knowledge, Íntegro is the first detection system that
is robust against social infiltration, where fakes follow an adversarial strategy to
befriend a large number of accounts, real or fake, in order to evade detection.

We implemented Íntegro on top of widely-used distributed systems, in which
it scaled nearly linearly. We also evaluated Íntegro against SybilRank using our
open-source comparative evaluation framework under real-world datasets and a
production-class deployment at Tuenti. Our evaluation results showed that Íntegro
significantly outperforms SybilRank in ranking quality, with up to an order of
magnitude better precision in fake account detection. This part of the dissertation
makes the following contributions:

112

1. Leveraging victim classification for fake account detection.

2. Open-source implementation and evaluation framework.

Íntegro is currently used in production at Tuenti to thwart fakes in the wild with
at least 10 times higher precision, along side a proprietary feature-based detection
system and a user-based abuse reporting system. It is also publicly released as part
of an open-source project that is used by OSNs such as Facebook and Twitter.

Finally, we demonstrated that trying to prevent the threat of malicious social-
bots leads to a set of hard socio-technical challenges that relate to web automation,
online-offline identity binding, and usable security. Therefore, an OSN has more
leverage in detecting socialbots and limiting their abuse as early as possible, rather
than preventing their operation in the first place. In terms of future research, we
highlighted account admission control as one possible direction, albeit it suffers
from usability issues that discourage OSN operators from deploying it in practice.
Instead, we advocated that leveraging victim prediction in OSNs is a new secu-
rity paradigm, which can benefit different defense mechanisms, such as educating
users with a user-facing security advice or detecting fakes using OSN honeypots.

113

Bibliography

[1] A. Adams and M. A. Sasse. Users are not the enemy. Communications of
the ACM, 42(12):40–46, 1999. → pages 108

[2] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi. SoK: The
evolution of sybil defense via social networks. In Proceedings of the 34th
IEEE Symposium on Security and Privacy, pages 382–396. IEEE, 2013.
→ pages 5, 58, 62, 76, 80

[3] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker. Spamscatter:
Characterizing internet scam hosting infrastructure. In USENIX Security
Symposium, 2007. → pages 21

[4] R. Anderson. Security engineering. John Wiley & Sons, 2008. → pages 6,
17

[5] E. Behrends. Introduction to Markov chains with special emphasis on
rapid mixing, volume 228. Vieweg, 2000. → pages 72, 132

[6] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your contacts are
belong to us: automated identity theft attacks on social networks. In
Proceedings of the 18th international conference on World wide web,
pages 551–560. ACM, 2009. → pages 15, 17, 18, 21, 23, 58, 63

[7] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10), 2008. → pages 75

[8] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market.
Journal of Computational Science, 2(1):1–8, 2011. → pages 3, 15

114

[9] N. Bos, K. Karahalios, M. Musgrove-Chávez, E. S. Poole, J. C. Thomas,
and S. Yardi. Research ethics in the facebook era: privacy, anonymity, and
oversight. In CHI’09 Extended Abstracts on Human Factors in Computing
Systems, pages 2767–2770. ACM, 2009. → pages 32, 70

[10] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. The socialbot
network: when bots socialize for fame and money. In Proceedings of the
27th Annual Computer Security Applications Conference, pages 93–102.
ACM, 2011. → pages 35, 51, 53, 58, 69, 87, 94

[11] D. M. Boyd and N. B. Ellison. Social network sites: Definition, history,
and scholarship. Journal of Computer-Mediated Communication, 13(1):
210–230, 2008. → pages 1, 3

[12] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. →
pages 69, 83, 86

[13] G. Brown, T. Howe, M. Ihbe, A. Prakash, and K. Borders. Social networks
and context-aware spam. In Proceedings of the 2008 ACM conference on
Computer supported cooperative work, pages 403–412. ACM, 2008. →
pages 18

[14] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring
pay-per-install: The commoditization of malware distribution. In USENIX
Security Symposium, 2011. → pages 15, 16, 21

[15] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of
fake accounts in large scale social online services. In NSDI, pages
197–210, 2012. → pages 4, 12, 14, 41, 57, 61, 62, 63, 65, 77, 78, 79, 87,
95, 98

[16] Q. Cao, X. Yang, J. Yu, and C. Palow. Uncovering large groups of active
malicious accounts in online social networks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS’14, pages 477–488. ACM, 2014. → pages 61, 109

[17] CBC. Facebook shares drop on news of fake accounts, Aug 2012. URL
http://goo.gl/6s5FKL. → pages 4, 57

[18] L. F. Cranor. Security and usability: designing secure systems that people
can use. O’Reilly Media, Inc., 2005. → pages 105, 108

115

http://goo.gl/6s5FKL

[19] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using social
networks. In Proceedings of the 9th Annual Network & Distributed System
Security Symposium. ACM, 2009. → pages 12, 41, 79

[20] J. B. Davies, A. Shorrocks, S. Sandstrom, and E. N. Wolff. The world
distribution of household wealth. Center for Global, International and
Regional Studies, 2007. → pages 19

[21] M. Dellamico and Y. Roudier. A measurement of mixing time in social
networks. In Proceedings of the 5th International Workshop on Security
and Trust Management, Saint Malo, France, 2009. → pages 72

[22] J. R. Douceur. The Sybil attack. In Peer-to-peer Systems, pages 251–260.
Springer, 2002. → pages 2, 17, 104

[23] C. Dwork and M. Naor. Pricing via processing or combatting junk mail.
In Advances in Cryptology—CRYPTO’92, pages 139–147. Springer, 1993.
→ pages 18

[24] D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge University Press, 2010. →
pages 1, 26, 31

[25] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. Captcha smuggling:
hijacking web browsing sessions to create captcha farms. In Proceedings
of the 2010 ACM Symposium on Applied Computing, pages 1865–1870.
ACM, 2010. → pages 22

[26] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna. Compa: Detecting
compromised accounts on social networks. In NDSS, 2013. → pages 59

[27] N. B. Ellison, C. Steinfield, and C. Lampe. The benefits of facebook
“friends:” social capital and college students’ use of online social network
sites. Journal of Computer-Mediated Communication, 12(4):1143–1168,
2007. → pages 32

[28] N. B. Ellison et al. Social network sites: Definition, history, and
scholarship. Journal of Computer-Mediated Communication, 13(1):
210–230, 2007. → pages 15, 59

116

[29] A. Elyashar, M. Fire, D. Kagan, and Y. Elovici. Homing socialbots:
intrusion on a specific organization’s employee using socialbots. In
Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pages 1358–1365.
ACM, 2013. → pages 58, 63, 112

[30] Facebook. Investors relations: Annual earnings report.
http://investor.fb.com, October 2014. → pages 1, 32, 52

[31] Facebook. Whitehat program: Reporting security vulnerabilities.
https://facebook.com/whitehat/report, October 2014. → pages 33

[32] Facebook. Quarterly earning reports, Jan 2014. URL http://goo.gl/YujtO.
→ pages 57

[33] Facebook. Terms of service. https://www.facebook.com/legal/terms, May
2015. → pages 3, 4

[34] D. Florêncio and C. Herley. Where do security policies come from? In
Proceedings of the Sixth Symposium on Usable Privacy and Security,
page 10. ACM, 2010. → pages 108

[35] D. Florêncio and C. Herley. Where do all the attacks go? In Economics of
Information Security and Privacy III, pages 13–33. Springer, 2013. →
pages 19, 55

[36] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):
75–174, 2010. → pages 62

[37] M. Fossi, E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKinney,
M. K. Low, T. Adams, M. P. Laucht, and J. Gough. Symantec report on
the underground economy. Symantec Corporation, 2008. → pages 51, 52

[38] J. Franklin, A. Perrig, V. Paxson, and S. Savage. An inquiry into the
nature and causes of the wealth of internet miscreants. In ACM conference
on Computer and communications security, pages 375–388, 2007. →
pages 15

[39] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in
Facebook: A case study of unbiased sampling of osns. In Proceedings of
the 2010 IEEE International Conference on Computer Communications,
pages 1–9. IEEE, 2010. → pages 9, 34

117

http://investor.fb.com
https://facebook.com/whitehat/report
http://goo.gl/YujtO
https://www.facebook.com/legal/terms

[40] G. H. Golub and H. A. Van der Vorst. Eigenvalue computation in the 20th
century. Journal of Computational and Applied Mathematics, 123(1):
35–65, 2000. → pages 70, 130

[41] M. Goncharov. Russian underground 101. Trend Micro Incorporated
Research Paper, 2012. → pages 51

[42] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, et al.
Manufacturing compromise: the emergence of exploit-as-a-service. In
Proceedings of the 2012 ACM conference on Computer and
communications security, pages 821–832. ACM, 2012. → pages 21

[43] J. Grimmelmann. Saving facebook. Iowa Law Review, 94:1137–1206,
2009. → pages 4

[44] R. Gross and A. Acquisti. Information revelation and privacy in online
social networks. In Proceedings of the 2005 ACM workshop on Privacy in
the electronic society, pages 71–80. ACM, 2005. → pages 40

[45] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web spam
with trustrank. In Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, pages 576–587. VLDB Endowment,
2004. → pages 70

[46] E. Hargittai et al. Facebook privacy settings: Who cares? First Monday,
15(8), 2010. → pages 20

[47] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning: Data mining, inference, and prediction, second edition.
Springer, 2009. → pages 69, 70, 82, 83, 85, 86, 87, 109

[48] C. Herley. So long, and no thanks for the externalities: the rational
rejection of security advice by users. In Proceedings of the 2009 workshop
on New security paradigms workshop, pages 133–144. ACM, 2009. →
pages 108

[49] C. Herley. The plight of the targeted attacker in a world of scale. In The
9th Workshop on the Economics of Information Security. ACM, 2010. →
pages 18, 19, 22, 44, 54

118

[50] C. Herley and D. Florêncio. Nobody sells gold for the price of silver:
Dishonesty, uncertainty and the underground economy. In Economics of
Information Security and Privacy, pages 33–53. Springer, 2010. → pages
43, 47, 55

[51] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating
collaborative filtering recommender systems. ACM Transactions on
Information Systems (TOIS), 22(1):5–53, 2004. → pages 93

[52] C. J. Hernandez-Castro and A. Ribagorda. Remotely telling humans and
computers apart: An unsolved problem. In iNetSec 2009–Open Research
Problems in Network Security, pages 9–26. Springer, 2009. → pages 22

[53] T. Holz, C. Gorecki, F. Freiling, and K. Rieck. Detection and mitigation of
fast-flux service networks. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium, 2008. → pages 16, 21

[54] M. Huber, S. Kowalski, M. Nohlberg, and S. Tjoa. Towards automating
social engineering using social networking sites. In Computational
Science and Engineering, 2009. CSE’09. International Conference on,
volume 3, pages 117–124. IEEE, 2009. → pages 18, 29

[55] M. Huber, M. Mulazzani, and E. Weippl. Who on earth is “mr. cypher”:
Automated friend injection attacks on social networking sites. In Security
and Privacy–Silver Linings in the Cloud, pages 80–89. Springer, 2010. →
pages 25

[56] T. Hwang, I. Pearce, and M. Nanis. Socialbots: Voices from the fronts.
interactions, 19(2):38–45, 2012. → pages 1, 2, 5, 18, 59, 112

[57] D. Irani, M. Balduzzi, D. Balzarotti, E. Kirda, and C. Pu. Reverse social
engineering attacks in online social networks. In Detection of intrusions
and malware, and vulnerability assessment, pages 55–74. Springer, 2011.
→ pages 17, 18

[58] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer. Social
phishing. Communications of the ACM, 50(10):94–100, 2007. → pages 3,
18, 105, 108

[59] A. Jaimoukha. Circassian Proverbs & Sayings. Sanjalay Book Press,
2009. → pages iv

119

[60] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust
algorithm for reputation management in P2P networks. In Proceedings of
the 12th international conference on World Wide Web, pages 640–651.
ACM, 2003. → pages 12, 41, 79

[61] C. Kanich, N. Weaver, D. McCoy, T. Halvorson, C. Kreibich,
K. Levchenko, V. Paxson, G. M. Voelker, and S. Savage. Show me the
money: Characterizing spam-advertised revenue. In USENIX Security
Symposium, 2011. → pages 55

[62] A. M. Kaplan and M. Haenlein. Users of the world, unite! the challenges
and opportunities of social media. Business horizons, 53(1):59–68, 2010.
→ pages 1

[63] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu. Social
network-based botnet command-and-control: emerging threats and
countermeasures. In Applied Cryptography and Network Security, pages
511–528. Springer, 2010. → pages 15, 32

[64] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed computing, 48(1):
96–129, 1998. → pages 61

[65] H. Kim, J. Tang, and R. Anderson. Social authentication: harder than it
looks. In Financial Cryptography and Data Security, pages 1–15.
Springer, 2012. → pages 103

[66] T. H.-J. Kim, A. Yamada, V. Gligor, J. Hong, and A. Perrig. Relationgram:
Tie-strength visualization for user-controlled online identity
authentication. In In Proceedings of Financial Cryptography and Data
Security Conference, pages 69–77. Springer, 2013. → pages 107

[67] M. N. Ko, G. P. Cheek, M. Shehab, and R. Sandhu. Social-networks
connect services. Computer, 43(8):37–43, 2010. → pages 24, 34

[68] C. Lampe, N. B. Ellison, and C. Steinfield. Changes in use and perception
of facebook. In Proceedings of the 2008 ACM conference on Computer
supported cooperative work, pages 721–730. ACM, 2008. → pages 20, 32

[69] T. Lauinger, V. Pankakoski, D. Balzarotti, and E. Kirda. Honeybot, your
man in the middle for automated social engineering. In Proceedings of the

120

3rd USENIX Workshop on Large-Scale Exploits and Emergent Threats.
USENIX Association, 2010. → pages 29

[70] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 631–636. ACM, 2006. → pages 81

[71] J. Leskovec and E. Horvitz. Planetary-scale views on a large
instant-messaging network. In Proceedings of the 17th international
conference on World Wide Web, pages 915–924. ACM, 2008. → pages 31,
74

[72] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–123, 2009. → pages
62, 72, 74

[73] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove. Analyzing
facebook privacy settings: user expectations vs. reality. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement
conference, pages 61–70. ACM, 2011. → pages 21, 105

[74] D. Lowd and C. Meek. Adversarial learning. In Proceedings of the 11th
ACM International conference on Knowledge Discovery in Data Mining,
pages 641–647. ACM, 2005. → pages 5, 28, 35, 61

[75] E. Maler and D. Reed. The venn of identity. IEEE Security and Privacy, 6
(2):16–23, 2008. → pages 105

[76] M. Mannan and P. C. van Oorschot. Security and usability: the gap in
real-world online banking. In Proceedings of the 2007 Workshop on New
Security Paradigms, pages 1–14. ACM, 2008. → pages 108

[77] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver, C. Kreibich, B. Krebs,
G. M. Voelker, S. Savage, and K. Levchenko. Pharmaleaks:
Understanding the business of online pharmaceutical affiliate programs. In
Proceedings of the 21st USENIX Conference on Security Symposium.
USENIX Association, 2012. → pages 15, 21

121

[78] T. Merrill, K. Latham, R. Santalesa, and D. Navetta. Social media: The
business benefits may be enormous, but can the risks–reputational, legal,
operational–be mitigated? ACE Group, 2011. → pages 3

[79] D. Misener. Rise of the socialbots: They could be influencing you online.
http://goo.gl/TX7c1p, March 2011. → pages 2

[80] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social networks. In
Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 29–42. ACM, 2007. → pages 24, 54

[81] A. Mislove, A. Post, P. Druschel, and P. K. Gummadi. Ostra: Leveraging
trust to thwart unwanted communication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
pages 15–30. USENIX Association, 2008. → pages 106

[82] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who
you know: inferring user profiles in online social networks. In
Proceedings of the third ACM international conference on Web search and
data mining, pages 251–260. ACM, 2010. → pages 62, 80

[83] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing time of social
graphs. In Proceedings of the 10th annual conference on Internet
measurement, pages 383–389. ACM, 2010. → pages 72

[84] A. Mohaisen, H. Tran, N. Hopper, and Y. Kim. On the mixing time of
directed social graphs and security implications. In Proceedings of the 7th
ACM Symposium on Information, Computer and Communications
Security, pages 36–37. ACM, 2012. → pages 98

[85] M. Mondal, B. Viswanath, A. Clement, P. Druschel, K. P. Gummadi,
A. Mislove, and A. Post. Limiting large-scale crawls of social networking
sites. ACM SIGCOMM Computer Communication Review, 41(4):
398–399, 2011. → pages 103, 106

[86] T. Moore, R. Clayton, and R. Anderson. The economics of online crime.
The Journal of Economic Perspectives, 23(3):3–20, 2009. → pages 15

[87] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and
S. Savage. Re: Captchas-understanding captcha-solving services in an

122

http://goo.gl/TX7c1p

economic context. In Proceedings of the 2010 USENIX Security
Symposium, volume 10, pages 4–1. USENIX Association, 2010. → pages
16, 21, 22, 102

[88] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker.
Dirty jobs: The role of freelance labor in web service abuse. In
Proceedings of the 20th USENIX conference on Security, pages 14–14.
USENIX Association, 2011. → pages 15, 21, 22, 51, 53, 59

[89] R. Mourtada and F. Salem. Civil movements: The impact of facebook and
twitter. Arab Social Media Report, 1(2):1–30, 2011. → pages 1

[90] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh, P. Agarwal, and
N. Borisov. Stegobot: a covert social network botnet. In Information
Hiding, pages 299–313. Springer, 2011. → pages 32

[91] F. Nagle and L. Singh. Can friends be trusted? exploring privacy in online
social networks. In Proceedings of the IEEE/ACM International
Conference on Advances in Social Network Analysis and Mining, pages
312–315. IEEE, 2009. → pages 17, 31

[92] M. Nanis, I. Pearce, and T. Hwang. Pacific social architecting corporation:
Field test report. http://pacsocial.com, November 2011. → pages 18

[93] M. E. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences, 103(23):8577–8582,
2006. → pages 75

[94] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling memcache at Facebook. In Proceedings of the
10th USENIX Conference on Networked Systems Design and
Implementation, NSDI’13, pages 385–398. USENIX Association, 2013.
→ pages 109

[95] J. Nolan and M. Levesque. Hacking human: data-archaeology and
surveillance in social networks. ACM SIGGROUP Bulletin, 25(2):33–37,
2005. → pages 3, 15, 18, 40

[96] R. Potharaju, B. Carbunar, and C. Nita-Rotaru. iFriendU: Leveraging
3-cliques to enhance infiltration attacks in online social networks. In

123

http://pacsocial.com

Proceedings of the 17th ACM conference on Computer and
communications security, pages 723–725. ACM, 2010. → pages 17

[97] H. Rashtian, Y. Boshmaf, P. Jaferian, and K. Beznosov. To befriend or
not? a model of friend request acceptance on facebook. In Symposium on
Usable Privacy and Security (SOUPS), 2014. → pages 105

[98] J. Ratkiewicz, M. Conover, M. Meiss, B. Gonçalves, A. Flammini, and
F. Menczer. Detecting and tracking political abuse in social media. In
Proceedings of the 5th International AAAI Conference on Weblogs and
Social Media, 2011. → pages 3

[99] C. P. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer-Verlag, 2005. → pages 34, 109

[100] M. Scherer. Obama’s 2012 digital fundraising outperformed 2008.
http://goo.gl/pvYiQh, November 2012. → pages 1

[101] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles. Botnets: A survey.
Computer Networks, 57(2):378–403, 2013. → pages 7, 26, 33

[102] A. Sinclair. Improved bounds for mixing rates of Markov chains and
multicommodity flow. In Proceedings of the 1st Latin American
Symposium on Theoretical Informatics, pages 474–487. Springer-Verlag,
1992. → pages 77, 131

[103] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 81–90. ACM, 2004. → pages 65

[104] T. Stein, E. Chen, and K. Mangla. Facebook immune system. In
Proceedings of the 4th Workshop on Social Network Systems, page 8.
ACM, 2011. → pages 4, 5, 9, 17, 32, 55, 57, 58, 60, 63, 98, 103, 106, 109

[105] B. Stone-Gross, R. Abman, R. A. Kemmerer, C. Kruegel, D. G.
Steigerwald, and G. Vigna. The underground economy of fake antivirus
software. In Economics of Information Security and Privacy III, pages
55–78. Springer, 2013. → pages 15, 21

124

http://goo.gl/pvYiQh

[106] L. J. Strahilevitz. A social networks theory of privacy. The University of
Chicago Law Review, pages 919–988, 2005. → pages 4

[107] K. Strater and H. R. Lipford. Strategies and struggles with privacy in an
online social networking community. In Proceedings of the 22nd British
HCI Group Annual Conference on People and Computers: Culture,
Creativity, Interaction-Volume 1, pages 111–119. British Computer
Society, 2008. → pages 108

[108] G. Stringhini, C. Kruegel, and G. Vigna. Detecting spammers on social
networks. In Proceedings of the 26th Annual Computer Security
Applications Conference, pages 1–9. ACM, 2010. → pages 4, 60, 109

[109] G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and
B. Y. Zhao. Follow the green: growth and dynamics in twitter follower
markets. In Proceedings of the 2013 conference on Internet measurement
conference, pages 163–176. ACM, 2013. → pages 43, 56, 64

[110] S.-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov. A billion keys, but
few locks: the crisis of web single sign-on. In Proceedings of the 2010
workshop on New security paradigms, pages 61–72. ACM, 2010. →
pages 105

[111] D. Thibeau and D. Reed. Open trust frameworks for open government:
Enabling citizen involvement through open identity technologies. White
paper, OpenID Foudation and Information Card Foudation, 2009. →
pages 105

[112] K. Thomas and D. M. Nicol. The Koobface botnet and the rise of social
malware. In Proceedings of the 5th International Conference on Malicious
and Unwanted Software, pages 63–70. IEEE, 2010. → pages 3, 102, 103

[113] K. Thomas, C. Grier, and V. Paxson. Adapting social spam infrastructure
for political censorship. In Proceedings of the 5th USENIX workshop on
Large-Scale Exploits and Emergent Threats, pages 13–23. USENIX
Association, 2012. → pages 3, 15

[114] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson. Trafficking
fraudulent accounts: The role of the underground market in twitter spam
and abuse. In Proceedings of the 22nd USENIX Conference on Security,
pages 195–210. USENIX Association, 2013. → pages 3, 20, 21, 43, 51, 56

125

[115] Threat landscape research lab. Fortinet report on the anatomy of a botnet.
Fortinet Corporation, 2013. → pages 52

[116] S. T. Tong, B. Van Der Heide, L. Langwell, and J. B. Walther. Too much
of a good thing? the relationship between number of friends and
interpersonal impressions on Facebook. Journal of Computer-Mediated
Communication, 13(3):531–549, 2008. → pages 30

[117] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online
content voting. In NSDI, volume 9, pages 15–28, 2009. → pages 80

[118] N. Tran, J. Li, L. Subramanian, and S. S. Chow. Optimal sybil-resilient
node admission control. In INFOCOM, 2011 Proceedings IEEE, pages
3218–3226. IEEE, 2011. → pages 12, 41, 79, 80

[119] Twitter. Investors relations: Annual earnings report.
http://investor.twitterinc.com, October 2014. → pages 1

[120] J. Tygar. Adversarial machine learning. IEEE Internet Computing, 15(5),
2011. → pages 61, 69

[121] H. R. Varian and W. Norton. Microeconomic analysis, volume 2. Norton
New York, 1992. → pages 46, 47, 54, 55

[122] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An analysis of
social network-based sybil defenses. In Proceedings of ACM SIGCOMM
Computer Communication Review, pages 363–374. ACM, 2010. → pages
12, 13, 62, 65, 75, 79, 80

[123] B. Viswanath, M. Mondal, A. Clement, P. Druschel, K. P. Gummadi,
A. Mislove, and A. Post. Exploring the design space of social
network-based sybil defenses. In In proceedings of the 4th International
Conference on Communication Systems and Networks, pages 1–8. IEEE,
2012. → pages 5, 62

[124] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha: Using
hard ai problems for security. In Advances in Cryptology—EUROCRYPT
2003, pages 294–311. Springer, 2003. → pages 21, 102

[125] C. Wagner, S. Mitter, C. Körner, and M. Strohmaier. When social bots
attack: Modeling susceptibility of users in online social networks. In
Proceedings of the WWW, volume 12, 2012. → pages 58, 63, 64, 112

126

http://investor.twitterinc.com

[126] G. Wang, C. Wilson, X. Zhao, Y. Zhu, M. Mohanlal, H. Zheng, and B. Y.
Zhao. Serf and turf: crowdturfing for fun and profit. In Proceedings of the
21st international conference on World Wide Web, pages 679–688. ACM,
2012. → pages 21

[127] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and B. Y. Zhao.
You are how you click: Clickstream analysis for sybil detection. In
Proceedings of the 22nd USENIX Conference on Security, pages 241–256.
USENIX Association, 2013. → pages 4, 60

[128] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng, and
B. Y. Zhao. Social turing tests: Crowdsourcing sybil detection. In
Proceedings of the 20th Annual Network & Distributed System Security
Symposium. ACM, 2013. → pages 63

[129] Y. Wang, P. G. Leon, K. Scott, X. Chen, A. Acquisti, and L. F. Cranor.
Privacy nudges for social media: an exploratory facebook study. In
Proceedings of the 22nd international conference on World Wide Web
companion, pages 763–770. International World Wide Web Conferences
Steering Committee, 2013. → pages 107

[130] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world
networks. nature, 393(6684):440–442, 1998. → pages 87, 96

[131] Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, J. Walter,
J. Huang, and Z. M. Mao. Innocent by association: early recognition of
legitimate users. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 353–364. ACM, 2012. →
pages 99, 106

[132] G. Yan, G. Chen, S. Eidenbenz, and N. Li. Malware propagation in online
social networks: nature, dynamics, and defense implications. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, pages 196–206. ACM, 2011. → pages 3, 15

[133] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu. Analyzing
spammers’ social networks for fun and profit: a case study of cyber
criminal ecosystem on twitter. In Proceedings of the 21st international
conference on World Wide Web, pages 71–80. ACM, 2012. → pages 64

127

[134] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. Uncovering
social network sybils in the wild. In Proceedings of the 2011 ACM
SIGCOMM Internet Measurement Csonference, pages 259–268. ACM,
2011. → pages 60, 63, 76

[135] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. Uncovering
social network sybils in the wild. ACM Transactions on Knowledge
Discovery from Data (TKDD), 8(1):2, 2014. → pages 4, 30

[136] S. Yardi, N. Feamster, and A. Bruckman. Photo-based authentication
using social networks. In Proceedings of the first workshop on Online
social networks, pages 55–60. ACM, 2008. → pages 63, 103

[137] H. Yu. Sybil defenses via social networks: a tutorial and survey. ACM
SIGACT News, 42(3):80–101, 2011. → pages 3, 5, 30, 41, 58, 62, 65, 87,
98

[138] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard:
defending against sybil attacks via social networks. ACM SIGCOMM
Computer Communication Review, 36(4):267–278, 2006. → pages 12, 62,
79

[139] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A
near-optimal social network defense against sybil attacks. In Proceedings
of IEEE Symposium on Security and Privacy, pages 3–17. IEEE, 2008. →
pages 12, 41, 62, 79

[140] C. M. Zhang and V. Paxson. Detecting and analyzing automated activity
on twitter. In Passive and Active Measurement, pages 102–111. Springer,
2011. → pages 104

128

Appendix A

Security Analysis of Íntegro

In what follows, we provide the required background on random walks after which
we analyze the main security guarantee of Íntegro.

A.1 Background
Let G = (V,E) be an undirected graph with n = |V | nodes and m = |E| undirected
edges. Also, let w : E → R+ be a function that assigns each edge (vi,v j) ∈ E a
weight w(vi,v j)> 0. The transition matrix P is an n×n matrix, where each entry
pi j ∈ [0,1] represents the probability of moving from node vi ∈V to node v j ∈V ,
as defined by:

pi j :=

w(vi,v j)

deg(vi)
if (vi,v j) ∈ E,

0 otherwise.
(A.1)

The transition matrix P might not be symmetric but it is right-stochastic, as P is a
square matrix of non-negative real numbers and for each node vi ∈V ,

∑
(vi,v j)∈E

pi j = 1. (A.2)

The event of moving from one node to another in G is captured by a Markov

129

chain representing a random walk over G. In turn, a random walk W = 〈v1, . . . ,vi〉
of length i ≥ 1 over G is a sequence of nodes that starts at the initial node v1

and ends at the terminal node vi, following the transition probability defined in
Equation A.1. The Markov chain is called ergodic if it is irreducible and aperiodic.
In this case, the Markov chain has a unique stationary distribution to which the
random walk converges as i→ ∞. The stationary distribution π of a Markov
chain is a probability distribution that is invariant to the transition matrix, that is,
whenever πP = π . The stationary distribution of the Markov chain over G is a
1×n probability vector, and is defined by:

π :=
[

deg(v1)

vol(V)
. . .

deg(vn)

vol(V)

]
, (A.3)

where π(v j) is the jth entry in π and represents the landing probability of node
v j ∈V , and vol(U) is the volume of a node set U ⊆V , which is defined by:

vol(U) := ∑
v j∈U

deg(v j). (A.4)

The marginal distribution πi of the Markov chain over G is a 1× n probability
vector, where πi(v j) is the landing probability of node v j ∈ V at step i of the
random walk. Given an initial distribution π0, the marginal distribution πi can be
iteratively defined by:

πi := πi−1P = π0Pi, (A.5)

and accordingly, πi(v j) can be computed by [40]:

πi(v j) = ∑
(vk,v j)∈E

πi−1(vk) ·
w(vk,v j)

deg(vk)
. (A.6)

The total variation distance ||πi−π||TV between the marginal and stationary

130

distributions is a measure of how “close” these distribution are, and is defined by

||πi−π||TV :=
1
2 ∑

v j∈V
|πi(v j)−π(v j)|. (A.7)

The mixing time T (ε) of the Markov chain over G, when parametrized by a
relative variation error ε > 0, is the minimal length of the random walk required
for the marginal distribution to be ε-close to the stationary distribution in total
variation distance, and is defined by

T (ε) := min{i : ||πi−π||TV ≤ ε} . (A.8)

It thus follows that if i≥ T (ε), we have πi = π .

A.2 Mathematical Proofs
We next start by proving that reassigning edge weights in an undirected graph
changes its mixing time by only a constant factor. We subscript the used notation
in order to differentiate between different graphs when necessary. For a given
OSN, we refer to its social graph after rate adjustment as the defense graph D.

Lemma 1: Given a social graph G with a mixing time TG(ε), the corresponding

defense graph D after rate adjustment has a mixing time TD(ε) = O(TG(ε)).

Proof. Recall that the mixing time of an undirected graph G = (V,E) is bounded
by [102]:

λ

2(1−λ)
log
(

1
2ε

)
≤ T (ε)≤

log(n)+ log
(1

ε

)
1−λ

, (A.9)

where λ ∈ (−1,1) is the second largest eigenvalue of the transition matrix P of
the graph G. For a social graph G and its defense graph D, we have

TD(ε)

TG(ε)
≤ 1−λG

1−λD
= O(1),

131

and thus, TD(ε) = O(TG(ε)).

Given the bound in Equation A.9, a Markov chain over a graph G is fast mix-

ing if T (ε) is polynomial in logn and log(1/ε). In the context of fake account
detection, we consider the stricter case when ε = O(1/n), and so we call G fast
mixing if T (ε) = O(logn).

Let us refer to the landing probability πi(v j) of a node v j ∈V as its trust value

so that πi is the trust distribution in step i.1 Moreover, let the expansion χ(U) of a
node set U ⊆V be defined by

χ(U) :=
vol(∂ (U))

vol(U)
, (A.10)

where ∂ (U) = {(vi,v j) ∈ E : vi ∈U, v j ∈ V \U} is the edge boundary of U . In
our threat model, we have ∂ (Vr) = ∂ (Vf) = Ea, where edges in Ea are established

at random.
We now prove that during a random walk on the defense graph D = (V,E),

where the walk starts from a known real node picked at random in the real region,
the expected aggregate trust in the fake region D f monotonically increases by

diminishing increments until it converges to its stationary value.

Lemma 2: Given a defense graph D with g = |Ea| randomly established attack

edges, n0≥ 1 trusted real nodes, a total trust τ ≥ 1, and an initial trust distribution

π0(v j) =

τ/n0 if v j is a trusted node,

0 otherwise,

the expected aggregate trust over the fake region in the (i+1)-th iterations in-

creases by an amount of (χ(Vr) · τ)
(
1−χ(Vr)−χ(Vf)

)i for each i≥ 0.

Proof. We prove the lemma by induction. We use the iterative method described
in Equation A.5 to compute trust distribution for a random walk that starts from

1In Chapter 3, we denoted the trust value πi by Ti. The reason we use πi herein is because it is
the standard notation used in analyzing stochastic processes [5].

132

a trusted node. We first define some notation. Let πi(Vr) be the aggregate trust in
the real region Dr after iteration i, as defined by

πi(Vr) := ∑
v j∈Vr

πi(v j). (A.11)

Similarly, let πi(Vf) be the aggregate trust in D f after iteration i. As defined
by π0, initially, we have π0(Vr) = τ and π0(Vf) = 0. Moreover, the total trust τ is
reserved during the iterations, that is, πi(Vr)+πi(Vf) = τ for each i≥ 0.

In each iteration i, the total trust is redistributed in the graph. Consider itera-
tion i+1. For each vi,v j ∈Vr, the edge (vi,v j)∈E carries w(vi,v j)(πi(Vr)/vol(Vr))

trust on average. As the |∂ (Vr)| attack edges are established at random, it is
expected that vol(∂ (Vr))(πi(Vr)/vol(Vr)) trust, that is, χ(Vr) · πi(Vr), is passed
through these edges to the fake region. The same also holds for the fake region,
which means we can model the trust exchange between Dr and D f by

πi+1(Vr) = πi(Vr)+χ(Vf) ·πi(Vf)−χ(Vr) ·πi(Vr) and

πi+1(Vf) = πi(Vf)+χ(H) ·πi(Vr)−χ(Vf) ·πi(Vf),

where the total trust τ is conserved throughout the process, as follows:

πi+1(Vr)+πi+1(Vf) = πi(Vr)+πi(Vf) = τ.

We now consider the base case of this lemma. Initially, for iteration i = 0, we
have χ(Vr) ·π0(Vr) = χ(Vr) · τ and χ(Vf) ·π0(Vf) = 0. Therefore,

π1(Vf)−π0(Vf) = χ(Vr) · τ.

We next state the induction hypothesis. For each i ≥ 1, let us assume the
following statement is true:

πi(Vf)−πi−1(Vf) = (χ(Vr) · τ)
(
1−χ(Vr)−χ(Vf)

)i−1
.

133

Now, let us consider the trust exchange in iteration i+1:

πi+1(Vf)−πi(Vf) = χ(Vr) ·πi(Vr)−χ(Vf) ·πi(Vf)

By substituting πi(Vr) by πi−1(Vr)+ χ(Vf) ·πi−1(Vf)− χ(Vr)τi−1(Vr), and doing
similarly so for πi−1(Vf), we get

πi+1(Vf)−πi(Vf) = χ(Vr)
(
(1−χ(Vr)) ·πi−1(Vr)+χ(Vf) ·πi−1(Vf)

)
−

χ(Vf)
((

1−χ(Vf)
)
·πi−1(Vf)+χ(Vr) ·πi−1(Vr)

)
=
(
χ(Vr) ·πi−1(Vr)−χ(Vf) ·πi−1(Vf)

)(
1−χ(Vr)−χ(Vf)

)
.

We know that πi(Vf) = πi−1(Vf)+χ(Vr) ·πi−1(Vr)−χ(Vf) ·πi−1(Vf), and so

πi+1(Vf)−πi(Vf) =
(
πi(Vf)−πi−1(Vf)

)(
1−χ(Vr)−χ(Vf)

)
.

Finally, by the induction hypothesis, we end up with

πi+1(Vf)−πi(Vf) = (χ(Vr) · τ)
(
1−χ(Vr)−χ(Vf)

)i
,

which, by induction, completes the proof.

Corollary 2: In the i-th iteration, the expected increment of aggregate trust in the

fake region in upper bounded by (χ(Vr) · τ)(1−χ(Vr))
i for each i≥ 0.

We next bound the aggregate trust in the fake region πi(Vf) after β iterations,
where 1≤ β ≤ T (ε)−∆ and ∆ > 1 is a positive natural number. We achieve this
by directly comparing πβ (Vf) to its stationary value πT (ε)(Vf), where T (ε)≥ β +

∆. In fact, this result holds as long as there is at least a constant difference between
the mixing time T (ε) and β , or in other words, whenever T (ε)−β = Ω(1) and
T (ε) is not arbitrarily large.

Lemma 3: Given a defense graph D with a mixing time T (ε) ≥ 1 and a posi-

tive integer β ∈ [1,T (ε)−∆] where ∆ > 1, the aggregate trust in the fake region

134

πβ (Vf) after β iterations gets a fraction f ∈ (0,1) of that in the stationary distri-

bution, that is, πβ (Vf) = f · τ ·
(
vol(Vf)/vol(V)

)
, where

f =
β ·∑0≤i≤β−∆

(
1−χ(Vr)−χ(Vf)

)i

T (ε) ·∑0≤i≤T (ε)−∆

(
1−χ(Vr)−χ(Vf)

)i (A.12)

Proof. By Lemma 2, we know that the aggregate trust in the fake region mono-
tonically increases with the number of iterations in the process defined by Equa-
tion A.5. For iteration i = β , where 1≤ β ≤ T (ε)−∆, we have

πβ (Vf) = ∑
0≤i≤β−∆

(χ(Vr) · τ)
(
1−χ(Vr)−χ(Vf)

)i

= (β ·χ(Vr) · τ) ∑
0≤i≤β−∆

(
1−χ(Vr)−χ(Vf)

)i
.

Similarly, for iteration i = γ , where γ = T (ε)≥ β +∆, we have

πγ(Vf) = ∑
0≤i≤γ−∆

(χ(Vr) · τ)
(
1−χ(Vr)−χ(Vf)

)i

= (γ ·χ(Vr) · τ) ∑
0≤i≤γ−∆

(
1−χ(Vr)−χ(Vf)

)i
.

Now let us consider the ratio πβ (Vf)/πγ(Vf). We have

πβ (Vf)

πγ(Vf)
=

(β ·χ(Vr) · τ)∑0≤i≤β−∆

(
1−χ(Vf)−χ(Vf)

)i

(γ ·χ(Vr) · τ)∑0≤i≤γ−∆

(
1−χ(Vr)−χ(Vf)

)i .

By multiplying both side by πγ(Vf), we get

πβ (Vf) =
β ·∑0≤i≤β−∆

(
1−χ(Vr)−χ(Vf)

)i

γ ·∑0≤i≤γ−∆

(
1−χ(Vr)−χ(Vf)

)i ·πγ(Vf). (A.13)

Now, recall that πγ(v j) = τ ·π(v j) = τ ·
(
deg(v j)/vol(V)

)
for each v j ∈Vf , where

135

π is the stationary distribution of the graph D (see Equation A.3), Accordingly,

πβ (Vf) =
β ·∑0≤i≤β−∆

(
1−χ(Vr)−χ(Vf)

)i

γ ·∑0≤i≤γ−∆

(
1−χ(Vr)−χ(Vf)

)i · τ ·
vol(Vf)

vol(V)

= f · τ ·
vol(Vf)

vol(V)

Finally, as β ≤ γ −∆, we have β/γ ≤ (γ −∆)/γ . As γ is not arbitrarily large,
β/γ < 1 holds. Therefore, f < 1.

As the total trust τ is conserved, Corollary 3 below directly follows.

Corollary 3: For a positive number ∆ > 1, if the aggregate trust in the fake re-

gion after 1 ≤ β ≤ T (ε)−∆ iterations is a fraction f ∈ (0,1) of that in the sta-

tionary distribution, then the aggregate trust in the real region during the same

iteration is c > 1 times of that in the stationary distribution, that is, πβ (Vr) =

c · τ · (vol(Vr)/vol(V)), where c = 1+(1− f)
(
vol(Vf)/vol(Vr)

)
.

Given a fraction f > 1 and a multiplier c > 1, as defined by Lemma 3 and
Corollary 3, the trust distribution over nodes in D after β iterations is defined by

πβ (v j) =

f · τ · deg(vi)

vol(V)
< 1 if v j ∈Vf ,

c · τ · deg(vi)

vol(V)
> 1 if v j ∈Vr.

(A.14)

Moreover, let π̄β (v j) = πβ (v j)/deg(vi) be the degree-normalized trust for each
v j ∈V , as derived from Equation A.14. We next prove that at most (f/c) ·vol(Vf)

fake nodes can have degree-normalized trust or rank values higher than or equal
to (c · τ)/vol(V).

Lemma 4: Consider a defense graph D with a mixing time γ = T (ε), a fraction

f < 0, and a multiplier c> 1 such that πβ (Vr) = c ·πγ(Vr) and πβ (Vf) = f ·πγ(Vf)

after 1 ≤ β ≤ T (ε)−∆ power iterations for some ∆ > 1. Regardless to how an

attacker organizes the fake region, there can be only a set U ⊂ Vf of at most

136

(f/c) ·vol(Vf) fake nodes such that each v j ∈ U has a degree-normalized trust

π̄β (v j)≥ (c · τ)/vol(V).

Proof. For an attacker, the optimal strategy to maximize the cardinality of the set
U is to assign (c · τ)/vol(V) degree-normalized trust to as many fake nodes as
possible, and then leave the rest of the fake nodes with zero trust.

We now prove by contradiction that |U | ≤ (f/c) ·vol(Vf). Assume the oppo-
site, where |U |> (f/c) ·vol(Vf). Since each node v j ∈U is connected to at least
another node vk ∈U , or otherwise it would be disconnected and π̄β (v j) = 0, then
the aggregate degree-normalized trust π̄β (Vf) in the fake region is

π̄β (Vf) = |U | ·
c · τ

vol(V)
(A.15)

>
f
c
·vol(Vf) ·

c · τ
vol(V)

(A.16)

> f · τ ·
vol(Vf)

vol(V)
, (A.17)

which by Lemma 3 is a contradiction.

Finally, we prove an upper bound on (f/c) ·vol(Vf), as follow.

Theorem 2: Given a social graph with a fast mixing real region and an attacker

that randomly establishes attack edges, the number of fake nodes that rank similar

to or higher than real nodes after β = O(logn) iteration is O(vol(Ea) · logn).

Proof. Consider a social graph G and its defense graph D. By Lemma 1, we know
that re-weighting G changes its mixing time by only a constant factor. Therefore,
we have TD(ε) = O(TG(ε)) and TDr(ε) = O(TGr(ε)). As Gr is fast mixing, we
also have TGr(ε) = O(logn) by definition. This also means TDr(ε) = O(logn). As
Vf 6= /0, then by the bound in Equation A.9, we have TD(ε)−TDr(ε) = Ω(1). So,
TD(ε)−β = Ω(1) as β = TDr(ε) = O(logn). Finally, by Lemma 4, we know that
at most (f/c) ·vol(Vf) fake nodes can rank same or equal to real nodes. We now
attempt to prove an upper bound on this quantity.

137

As the total trust τ is conversed after β = O(logn) iteration, we have

f · τ ·
vol(Vf)

vol(V)
+ c · τ · vol(Vr)

vol(V)
= τ·

That is,

f
c
·vol(Vf) =

vol(Vr)

vol(V)

f ·vol(Vf)
−1
·

By Lemma 3, we have

f
c
·vol(Vf) =

vol(Vr)

(τ/πβ (Vf))−1
· (A.18)

Now, by Lemma 2 and Corollary 2, we have:

πβ (Vf) = ∑
0≤i≤β−1

(χ(Vr) · τ)
(
1−χ(Vr)−χ(Vf)

)i

< ∑
0≤i≤β−1

(χ(Vr) · τ)(1−χ(Vr))
i

= ∑
0≤i≤β−1

τ ·
(
(1−χ(Vr))

i− (1−χ(Vr))
i+1
)

= τ ·
(

1− (1−χ(Vr))
β
)

(A.19)

By combining Equations A.18 and A.19, we get:

f
c
·vol(Vf)< vol(Vr)

(
(1−χ(Vr))

−β −1
)

By replacing (1−χ(Vr))
−β with 1+β ·χ(Vr)+o

(
χ2(Vr)

)
, which is its Maclaurin

138

series, we end up with the following

f
c
·vol(Vf)< vol(Vr)

(
(1−χ(Vr))

−β −1
)

= vol(Vr) ·O(χ(Vr)) ·β

= vol(Vr) ·O(χ(Vr)) ·O(logn)

= O(vol(∂ (Vr)) · logn)

= O(vol(Ea) · logn) ,

which completes the proof.

139

Appendix B

Evaluating Sybil Node Detection
Algorithms with SyPy

SyPy is a Python package for Sybil node detection in social and information net-
works. We designed SyPy to evaluate the effectiveness of graph-based Sybil node
detection algorithms on a small scale, that is, networks which consist of thousands
of nodes and can fit into a single commodity machine’s memory. The package is
not designed to benchmark the efficiency of these algorithms on a large scale, as
there are existing distributed systems which better support large-scale evaluations.

B.1 Framework
SyPy provides an extensible framework to design, implement, and evaluate graph-
based Sybil node detection algorithms. For example, SyPy includes 8 off-the-shelf
algorithms for fake account detection in online social networks (OSNs), including
Íntegro and SybilRank. In what follows, we describe the main abstractions defined
in this framework.

140

B.1.1 Graphs and Regions
A region has a well-defined graph structure and is either Sybil (i.e., fake) or honest
(i.e., real). For example, one can create a Sybil region consisting of 100 nodes that
are fully-connected (i.e., a complete graph) as follows:

import sypy

sybil_region = sypy.Region(

graph=sypy.CompleteGraph(num_nodes=100),

name="SybilCompleteGraph",

is_sybil=True)

SyPy supports many random graph models, such as scale-free and small-world
graphs. For example, one can create an honest region to model a community of
5000 users as follows:

honest_region = sypy.Region(

graph=sypy.SmallWorldGraph(

num_nodes=5000,

node_degree=100,

rewiring_prob=0.8),

name="HonestSmallWorldGraph")

In order to specify known honest accounts, one can pick nodes at random from
the honest region as follows:

honest_region.pick_random_honest_nodes(num_nodes=10)

B.1.2 Networks
A network always consists of two regions: The honest region positioned to the left,
and the Sybil region positioned to the right. The regions can have any graph struc-
ture, and initially, they are disconnected. We can “stitch” the two regions together

141

in any way that resembles how Sybils connect with honest nodes in real-world
networks (e.g., using a random or targeted infiltration strategy). For example, one
can use the regions defined above to create a network and connect ten randomly
picked pairs of nodes—one node from each region in each pair—as follows:

social_network = sypy.Network(

left_region=honest_region,

right_region=sybil_region,

name="OnlineSocialNetwork")

social_network.random_pair_stitch(num_edges=2)

B.1.3 Detectors
After the network is created, one can run any of the supported graph-based Sybil
node detectors and compute their detection performance. For example, we can
use SybilRank for fake account detection in OSNs as follows:

detector = sypy.SybilRankDetector(social_network)

results = detector.detect()

print "sensitivity={0:.2f}, specificity={1:.2f}".format(

results.sensitivity(),

results.specificity())

B.2 Benchmarks
SyPy offers a set of benchmarks to evaluate the effectiveness of detectors using
ROC analysis, given a suitable operating threshold such as a pivot along a ranked
list of nodes. Benchmarks also compute the curve’s AUC, and are generally used
to perform sensitivity analysis.

142

ranking_benchmark = sypy.MultipleDetectorsBenchmark(

detectors=[sypy.SybilRankDetector, sypy.IntegroDetector],

network=social_network,

thresholds=["pivot", "pivot"])

ranking_benchmark.run()

ranking_benchmark.plot_curve(file_name="roc_analysis.pdf")

for benchmark in ranking_benchmark:

print "detector={0}, auc={0:.2f}".format(

benchmark.detector,

benchmark.auc)

SyPy also supports advanced benchmarks that allow evaluating detectors against
a dynamic network, where graph structures can change such as the establishment
of new attack edges. One can benchmark detectors under different number of at-
tack edges as follow, where the output is a curve comparing the number of attack
edges to the AUC of each detector.

edges_benchmark = sypy.AttackEdgesDetectorsBenchmark(

multi_benchmark=ranking_benchmark,

values=[1,10,100,1000,10000]) # attack edges

edges_benchmark.run()

edges_benchmark.plot_curve(file_name="edges_vs_auc.pdf")

B.3 Extensibility
SyPy is built on top of NetworkX,1 and hence it can support most of NetworkX
functionality, which also means it is easily extensible. For example, one can visu-
alize any region or network as follows:

1http://networkx.github.io

143

http://networkx.github.io

Figure B.1: SyPy network visualization

sybil_region.visualize()

sybil_region.visualize(file_path="{0}.pdf".format(sybil_region.name))

social_network.visualize()

social_network.visualize(file_path="{0}.pdf".format(network.name))

Figure B.1 depicts how a network visualization in SyPy looks like. Notice
that SyPy color-codes the important elements of the network, along with a useful
legend. In addition, one can zoom in and out, move the graph left or right, and
save the visualization in many formats interactively.

144

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Problem Overview
	1.1.1 What is the Threat?
	1.1.2 What is at Stake?
	1.1.3 Who is Liable?
	1.1.4 Why is the Threat Hard to Mitigate?

	1.2 Goals and Methodology
	1.3 Research Summary
	1.3.1 Threat Characterization
	1.3.2 Countermeasure Design

	2 Social Infiltration in OSNs
	2.1 Background and Related Work
	2.1.1 Online Social Networks
	2.1.2 Sybil Attacks and Social Infiltration
	2.1.3 Social Engineering, Automation, and Socialbots
	2.1.4 Online Attacks in a Web of Scale
	2.1.5 The Cyber-Criminal Ecosystem for OSN Abuse

	2.2 Vulnerabilities in OSN Platforms
	2.2.1 Ineffective CAPTCHAs
	2.2.2 Fake Accounts and User Profiles
	2.2.3 Crawlable Social Graphs
	2.2.4 Exploitable Platforms and APIs

	2.3 Design of a Social Botnet
	2.3.1 Overview
	2.3.2 Threat Model
	2.3.3 Requirements
	2.3.4 Socialbots
	2.3.5 Botmaster
	2.3.6 C&C Channel

	2.4 Empirical Evaluation
	2.4.1 Ethics Consideration
	2.4.2 Methodology
	2.4.3 Implementation on Facebook
	2.4.4 Experimentation
	2.4.5 Analysis and Discussion

	2.5 Economic Feasibility
	2.5.1 Methodology
	2.5.2 Model and Assumptions
	2.5.3 Scalability of Social Infiltration
	2.5.4 Profit-Maximizing Infiltration Strategies
	2.5.5 Case Study: Social Infiltration in Facebook
	2.5.6 Discussion

	2.6 Summary

	3 Infiltration-Resilient Fake Account Detection in OSNs
	3.1 Background and Related Work
	3.1.1 Threat Model
	3.1.2 Fake Account Detection
	3.1.3 Abuse Mitigation and the Ground-truth
	3.1.4 Analyzing Victim Accounts

	3.2 Intuition, Goals, and Model
	3.2.1 Intuition
	3.2.2 Design Goals
	3.2.3 System Model

	3.3 System Design
	3.3.1 Overview
	3.3.2 Identifying Potential Victims
	3.3.3 Ranking User Accounts
	3.3.4 Selecting Trusted Accounts
	3.3.5 Computational Cost
	3.3.6 Security Guarantees

	3.4 Comparative Evaluation
	3.4.1 Compared System
	3.4.2 Methodology
	3.4.3 Datasets
	3.4.4 Implementation
	3.4.5 Victim Classification
	3.4.6 Ranking Quality
	3.4.7 Sensitivity to Seed-targeting Attacks
	3.4.8 Deployment at Tuenti
	3.4.9 Scalability

	3.5 Discussion
	3.5.1 Robustness of User Ranking
	3.5.2 Maintenance and Impact
	3.5.3 Limitations

	3.6 Summary

	4 Discussion and Research Directions
	4.1 Challenges for Preventive Countermeasures
	4.1.1 Web Automation
	4.1.2 Identity Binding
	4.1.3 Usable Security

	4.2 Account Admission Control in OSNs
	4.2.1 Vouching
	4.2.2 Service Provisioning
	4.2.3 User Education and Security Advice

	4.3 Leveraging Victim Prediction
	4.3.1 User-Facing Security Advice
	4.3.2 Honeypots and User Sampling

	5 Impact and Conclusion
	Bibliography
	A Security Analysis of Íntegro
	A.1 Background
	A.2 Mathematical Proofs

	B Evaluating Sybil Node Detection Algorithms with SyPy
	B.1 Framework
	B.1.1 Graphs and Regions
	B.1.2 Networks
	B.1.3 Detectors

	B.2 Benchmarks
	B.3 Extensibility

