
FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ENGINEERING ACCESS CONTROL FOR

DISTRIBUTED ENTERPRISE APPLICATIONS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Konstantin Beznosov

2000

Titl e Page



ii

To: Dean Arthur W. Herriott
College of Arts and Sciences

This dissertation, written by Konstantin Beznosov, and entitled Engineering Access Con-
trol for Distributed Enterprise Applications, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

_______________________________________

Geoffrey Smith

_______________________________________

Raimund K. Ege

_______________________________________

Ravi S. Sandhu

_______________________________________

Yi Deng, Major Professor

Date of Defense: July 18, 2000

The dissertation of Konstantin Beznosov is approved.

_______________________________________

Dean Arthur W. Herriott
College of Arts and Sciences

_______________________________________

Dean Richard L. Campbell
Division of Graduate Studies

Florida International University, 2000

Approval Page



iii

 Copyright 2000 by Konstantin Beznosov

All rights reserved.

Copyright Statement



iv

DEDICATION

To Alla, Vladimir, Valerij, Olga, and Alissa

Dedication



s con-

t, I had

tects

. He

ific. His

rney.

ylistic

thing.

ash,

rous

 to me

 and I

Luis,

g the

 the

lped

tion

Acknowledgments
ACKNOWLEDGMENTS

Kent Wreder directed my original steps towards addressing the problem of acces

trol for distributed enterprise applications. Thanks to his encouragements and suppor

a very quick start. Eric Butler and Eric Navarro introduced me to the work of IT archi

and were great colleagues.

My advisor, Yi Deng, was an unending source of useful and pragmatic advice

helped me to see the problems more broadly and at the same time be more spec

patience, compassion and belief in me were instrumental in the completion of this jou

Thanks also to him for reading my dissertation and suggesting structural and st

changes that made it much more valuable and comprehendible. Yi, thanks for every

I would like to thank Yi’s students -- Suresh Chegireddy, Banaglore Gururprak

Luis Espinal, Manish Mahajan and Nathan Vuong -- for their input during our numo

discussions on CAAS. Luis deserves special thanks for he has been a great help

throughout my research, we did most of CAAS design and implementation together,

enjoyed working with him very much. SCS Computing Support, directed by Steven 

was excellent in providing necessary help with the computing environment durin

course of my study and research.

The framework for implementing RBAC using CORBA Security was motivated by

communications with the participants of RBAC workshops of 1997-1999, who also he

me to gain insights of the RBAC model. My understanding of the CORBA authoriza
v



Hart-

alth-

y, Bob

nd a

ould

l solu-

med

 on the

 their

chool.

re the

se and

ith

ance

Smith

ations
model was largely influenced by active OMG SecSIG members -- Bob Blakley, Bret 

man, Polar Humenn, and Jishnu Mukerji.

The RAD architecture was invented during the work on the proposal to OMG’s He

care Resource Access Control RFP and was developed together with John Barkle

Blakley and Carol Burt throughout numerous e-mail rounds, conference calls, a

number of very productive and enjoyable meetings. Without them, the architecture w

not exist in its current form. They also taught me a great deal about designing practica

tions and writing specifications. Other members of the OMG’s SecSIG and CORBA

were an extensive source of the comments and feedback on stating the problem and

architecture.

Finally, special thanks go to my parents and my brother for supporting me with

love and understanding while I was applying to and during my years in graduate s

Thanks to Dina Evans for the support and love she gave me. Olga and Alissa we

source of my inspiration, encouragement and love last year, which was the most inten

demanding period of the work on the dissertation.

Kim Lumpkin from FIU Learning Center provided invaluable help by spending w

me many hours on converting my “Russglish” into proper English. Without her guid

the dissertation would be unreadable. Thanks to his very careful reading, Geoffrey 

pointed at many typos and errors in the text.

My research was funded by the National Science Foundation and mainly by don

from Baptist Health Systems of South Florida.
vi



cks on

 some

ors in

-wide

eware

mbed-

ith

 and

. The

Abstract
ABSTRACT OF THE DISSERTATION

ENGINEERING ACCESS CONTROL FOR

DISTRIBUTED ENTERPRISE APPLICATIONS

by

Konstantin Beznosov

Florida International University, 2000

Miami, Florida

Professor Yi Deng, Major Professor

Access control (AC) is a necessary defense against a large variety of security atta

the resources of distributed enterprise applications. However, to be effective, AC in

application domains has to be fine-grain, support the use of application-specific fact

authorization decisions, as well as consistently and reliably enforce organization

authorization policies across enterprise applications. Because the existing middl

technologies do not provide a complete solution, application developers resort to e

ding AC functionality in application systems. This coupling of AC functionality w

application logic causes significant problems including tremendously difficult, costly

error prone development, integration, and overall ownership of application software

way AC for application systems is engineered needs to be changed.
vii
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In this dissertation, we propose an architectural approach for engineering AC mecha

to address the above problems. First, we develop a framework for implementing the

based access control (RBAC) model using AC mechanisms provided by CORBA 

rity. For those application domains where the granularity of CORBA controls and

expressiveness of RBAC model suffice, our framework addresses the stated problem

In the second and main part of our approach, we propose an architecture for an aut

tion service, RAD, to address the problem of controlling access to distributed applic

resources, when the granularity and support for complex policies by middleware

mechanisms are inadequate. Applying this architecture, we developed a CORBA-

application authorization service (CAAS). Using CAAS, we studied the main prope

of the architecture and showed how they can be substantiated by employing CORB

Java technologies. Our approach enables a wide-ranging solution for controllin

resources of distributed enterprise applications.
viii
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1Introduction

Software systems today are increasingly integrated and interconnected to a

organization-wide, agency-wide and industry-wide automation and interoperation. 

integration results in enterprises that consist of autonomous, heterogeneous and dis

systems called enterprise software systems. Applications within each enterprise m

developed independently and based on different design and technology. National de

industry, commerce and health care are increasingly dependent on the function of the

tems [Sumner 1999]. 

Because of the magnitude and complexity of distributed systems and inform

resources interconnected by the Internet and/or enterprise networks, designing s

mechanisms that protect the systems and resources becomes an increasingly com

difficult challenge. This is why it is an essential concern to every enterprise [NSF 19

The problem of securing information enterprises has been the focus of intensive e

from industry. As a result, several well-known security system architectures and mod

network, operating, DBM, and middleware systems have been developed for constr

scalable and flexible security for distributed environments. This represents signi

progress yet it is only the first step for attaining the goal. The issues that remain are t

lowing: handling complex and fine-grained security policies; supporting changes no

in application systems and their underlying platforms, but also in business proces
1
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security policies, as well as in user population and their roles; supporting dynamic c

uration of enterprise applications without affecting security integrity; and achie

required performance.

In this dissertation, we consider one particular security functionality -- access co

(AC) [Sandhu 1994]. It is a necessary defense against a large variety of security atta

information enterprise resources. However, the control of access to application res

more and more needs to be fine-grain and support the use of application-specific fac

authorization decisions. It must also consistently and reliably enforce organization

authorization policies across enterprise applications.

The existing network, OS, DBMS, and middleware technologies are inadequa

doing such control, and they will never be because they are designed for general p

usage, and their controls are too coarse and concern only certain resources [CIS

1999]. Because of this, application developers resort to embedding AC functional

application systems in order to support complex, fine-grain and context dependent 

rization policies.

The coupling of AC functionality with application logic causes significant proble

Enterprise security administrators end up having to configure AC logic on applicatio

application basis [Beznosov 1998a]. This application-based multiple point AC m

enterprise security administration tremendously difficult, costly and error prone [Bezn

1997, Wilson 1997], makes it harder to change security policies and control mecha

and makes it difficult to develop, change and dynamically reconfigure application sof

[Beznosov 1999b, Grimm 1999, Hale 1999].
2
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The way application systems are constructed needs to be changed so that the p

of protecting application resources is addressed and yet the systems can be develop

grated, and managed in the enterprise computing environment in a cost-effective wa

1.1 Objectives of the Work

In this dissertation, we propose an architectural approach for engineering AC m

nisms capable of addressing the problem of controlling the access to enterprise app

resources. The approach is twofold. First, we develop a framework for implementing

based access control (RBAC) model using AC mechanisms provided by CORBA Se

For those application domains where the granularity of CORBA controls and expre

ness of RBAC model suffice, our framework addresses the stated problem. The seco

main part of our approach develops an architecture for an authorization servic

addresses the problem of controlling access to distributed application resources, wh

granularity and the support for complex policies in middleware AC mechanisms are

equate and application developers embed additional AC functionality in their system

1.2 Summary of the Main Results

Security provided by middleware technologies is important and necessary for pr

ing distributed applications and their resources. Therefore, it is important to have mea

modeling authorization policies using middleware AC mechanisms in order to fully u

them. We define a configuration of the CORBA protection system state. Using the d

tion language, we specify an algorithm for authorization decisions in CORBA security

configuration along with the authorization algorithm mathematically define the state

the behavior of the CORBA Security authorization system.
3
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Using the previously defined configuration of the CORBA protection system, we s

how RBAC models could be supported by the CORBA Security service. We provide

nitions of RBAC0 and RBAC1 implementations in the language of CORBA Security. F

thermore, we describe what is required from an implementation of the CORBA Se

service in order to support RBAC0-RBAC3 models. Our approach allows an implemen

tion compliant with the CORBA Security specification to support RBAC models. T

work advances the understanding of the CORBA AC mechanism’s capabilities and b

maximizes their utility, which is vital to the use of middleware in protecting applica

resources. 

Our main contribution is the resource access decision service (RAD) -- a novel 

tectural approach for constructing authorization mechanisms that are functionally ade

for protecting fine-grain application resources using application-specific informatio

authorization decisions. The approach allows separation of application and authori

logic, which makes application development, deployment, and management more

effective. It also enables consistent enforcement of organizational policies across m

applications. We show its functional capabilities by modeling authorization policies

require the use of such application-specific information as the relationship between th

and the resource owner.

Through the prototype implementation of the CORBA-based application authoriz

service (CAAS), which was constructed according to RAD architecture, we gained 

important insights on the design of RAD-based authorization services. In addition

showed how the main features of RAD architecture, such as flexibility, configurability,
4
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extensibility, can be substantiated using standard CORBA middleware and Java pro

ming technologies. Our experience of developing CAAS provides a guideline to the d

of RAD-based services.

Using CAAS as a test-bed, we obtained quantitative estimates of CAAS perform

for different compositions of its components. We found that depending on the ratio 

application execution time to the number of authorization requests and the perform

constraints, one or the other CAAS configuration can deliver the required performan

1.3 Dissertation Content

In the next chapter, we give background information on the subject of access c

in computer systems, explain main concepts and terms, and then introduce the area o

cation-level access control. Then we state in detail the problem addressed in this d

tion. Finally, we define a framework for evaluating the existing technologies, related 

and our approach.

Chapter 3 provides an overview and analyses of the technologies, where we sho

the existing middleware technologies are important and necessary for protecting res

of distributed enterprise systems but are not sufficient. The chapter also contains a 

of the related work conducted in the research community.

In Chapter 4, we propose CORBA protection system configuration that form

defines the state of the system. Using the definition, we specify an algorithm for m

AC decisions in CORBA, and show how RBAC models could be supported using CO

Security.
5



, we

cture

S, and

hould
Chapter 5 introduces our main contribution -- RAD service architecture. There

also demonstrate its utility on examples with complex access control policies.

We present a design of CAAS and show how the main features of RAD archite

can be substantiated using CORBA and Java in Chapter 6.

Chapter 7 discusses performance experiments, which we conducted using CAA

draws conclusions from the results.

We conclude in Chapter 8 by discussing the achieved results and outlining what s

be done next in the problem area.
6
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2Background and Problem 
Statement

Before stating the problem addressed by this dissertation in detail, it is necess

give background information on the subject of access control in computer systems, e

main concepts and terms, and then introduce the area of application-level access c

This chapter’s objective is to provide all of the above. 

In addition, we define criteria for critiquing existing technologies, related work, 

for analyzing the solution we propose. In short, the criteria are the granularity of prot

resources, the support for policies specific to the application domain, the variety of 

mation available for making authorization decisions, the use of application-specific i

mation in authorization decisions, the consistency of policies across multiple applica

the support for application and enterprise evolution, and performance and adminis

scalability.

2.1 Background Information and Terminology

Security of modern software systems is conventionally achieved via protection and

assurance, as shown in Figure 2-1. The former is usually provided by some security

systems or mechanisms, which are designed to protect the system from specific threats. A

threat is any potential occurrence that can have an undesirable effect on the ass

resources associated with a computer system [Amoroso 1994]. Protection is based
7
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premise that it is possible to list most of the threats which can happen in a computer s

and it is possible to build mechanisms which can prevent the threats [Blakley 1999

protection mechanisms can be classified in three groups: accountability, availabilit

authorization. Accountability mechanisms make sure that users (or programs execute

behalf of them) -- conventionally called subjects -- are held accountable for their action

towards the system resources and services. Sometimes, subjects are also called principals.

We will use these two terms interchangeably. Availability mechanisms ensure either se

vice continuity or service and resource recovery after interruption. Authorization mecha-

nisms ensure that the rules governing the use of system resources and services are e

They are further qualified as either access control or data protection ones. Access control

(AC) mechanisms allow system owner to enforce those rules when rules check and e

ment are possible. The term “authorization” also implies the process of making AC

Figure 2-1. Main Concepts of Computer Security
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sions. When checking and/or enforcement of the rules are not possible, data pro

mechanisms, such as data encryption, are used.

The structure of traditional AC mechanisms can be viewed using the conceptual 

of reference monitor [Anderson 1972]. A reference monitor is a part of the security s

system, responsible for mediating access by subjects to system resources (tradi

called objects), as illustrated in Figure 2-2. The mediation consists of making authoriza

decisions, by checking access requests against authorization rules from the autho

database -- a storage of such rules -- and enforcing them. A set of the rules is som

called a policy. Conventionally having subject-action-object structure, authorization r

specify what subject(s) can perform what action(s) on what object(s). Permitted actio

also called access rights. Thus a subject has a particular access right to an object if it

perform the action, defined by the right, towards that object. Furthermore, all authoriz

Figure 2-2. Reference Monitor

Authorization
Database

Reference
monitor

Objects

Authorization

Rules

Subjects Access Control
Mechanism

actions
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rules can be conceptualized into access matrix [Lampson 1971], where there is a row fo

each subject and a column for each object, and each cell specifies access rights gr

the subject for the corresponding object.

In order to make an authorization decision, a reference monitor takes as its 

authorization rules and three groups of information: 1) about the access request, 2

the subject who made the request, and 3) about the object to be accessed. It is nece

discuss what information is in these groups because we will use it for stating the pro

evaluating the existing and analyzing our work. 

The information about access request usually carries the request type, for ex

“read” in a request for reading a file. However, some application domains have a ne

AC decisions based on additional attributes of the request. For instance, a banking 

might deny a withdrawal request if its amount exceeds a pre-determined threshold. 

Information about the subject can be divided in two types -- related and unrela

security. Originally, only security-related information was used in AC decisions. C

trolled by security or user administrators, this information describes subject’s ide

group membership, clearance, and other security attributes. Some times, we will use term

privilege attributes to refer to those security attributes that are intended to be used for 

ing else but AC. 

In some application domains, security-unrelated information about the subject 

to be taken into account. For example, access to rated materials in public libraries co

granted according to the age of the accessing user. Another example is information d
10
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from the organizational work-flow process. This information is not controlled by sec

or user administrators and it is not always provided to the reference monitor in the fo

subject security attributes. The monitor needs to obtain it via other means. The inform

about the object to be accessed can also be divided into the related and unrelated to s

An example of an object security attribute is its security level. All this information is u

for evaluating authorization rules.

Depending on the capabilities of a particular AC mechanism and the availabili

information about the subject, request and object, either only limited or elaborate inf

tion can be accessible for making authorization decisions. This information availability

be used as a criterion for evaluating expressiveness (or power) of AC mechanisms.

AC mechanisms are part of most operating, database management (DBM), an

dleware systems. They are also present in such control systems as firewalls, and

applications.

2.2 Controlling Access to Application Resources

Application resources can be in the form of data processed by applications, the

vices (e.g. Telnet [Postel 1983], SMTP [Postel 1982] or WWW servers), particular o

tions performed on them (e.g. GET access requested from a WWW server via 

protocol, operation invocation on a CORBA-based application server), or even men

the application interface.

Some application resources, such as files, database records, or network sockets

protected by an operating, DBM, or middleware system. However, there are resourc
11
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are application-specific and not recognized by anything except the application itself [C

NRC 1999], for example the execution of particular parts of the application business

In other words, the granularity of application-specific resources is finer than of genera

pose computing systems. Figure 2-3 illustrates the difference in the scope of middl

and application-level AC. This is one essential distinction between application-leve

general purpose AC.

Another vital difference is that authorization rules used for application-level 

require the use of such information about access operations, subjects, or objects, tha

cific to the application domain or more elaborate (more expressive) than the inform

used by AC mechanisms of general purpose systems.

In order to meet the requirements, applications commonly have their own AC m

nisms in addition to the use of those provided by the underlying general purpose sy

And this practice is becoming more and more commonplace than exceptional.

Figure 2-3. Separation of Access Control Scope between Middleware and Applicat
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2.2.1 Examples

Let us present fragments of actual interfaces brought from formal OMG specific

of Person Identification Service (PIDS) [OMG 1998b]. They illustrate the need to exe

AC on the level of method argument and/or return values. Each PIDS-compliant ap

tion server must provide access to its functionality and data via interfaces defined in

specification. Let us consider some operations specified by PIDS interfaces.1

First we demonstrate the need to control what values of operation arguments 

used by different subjects. The processing of invocations on the operations sho

Figure 2-4 require access control on the level of input argument values. 

get_profile()  operation returns a profile, which is a collection of traits describin

person, or its subset available to the PIDS service. The traits provided as input arg

indicate what subset of the profile is required by the client [OMG 1998b]. 

update_traits()  is used to modify an already existing profile by adding new tr

and overwriting any values for existing traits that are also passed in. Any traits al

stored for that person but not mentioned in the provided profile are left intact [O

1.  The interfaces are from module org/omg/PersonIdService. We omit some elements of operation d
tions, such as exceptions, since their presence does not contribute in the discussion. Also, only relev
ations are reproduced in the definitions.

interface DemographicAccess : IdentificationComponent 
{ 
  Profile get_profile  ( in PersonId person_id, 

in SpecifiedTraits specified_traits);
  
  void update_traits ( in PersonId id, in Profile the_profile ); 
}; 

Figure 2-4. PIDS DemographicAccess  Interface
13
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1998b]. Because different person traits could have different confidentiality level it is 

istic to foresee security policies that require PIDS-compliant server to control what su

can access what traits of what person in what mode (e.g. “read” or “modify”).

Second, we show that control over data returned to the client has to be enforce

Operation get_all_ids()  in Figure 2-5 returns profiles for all patients the servi

knows about that match one of the provided “states.” The returned profiles contain the

indicated by the “state” parameter. The service is not supposed to return those prof

which the subject does not have access even though it might list them in the operation

2.3 Problem Statement

The central problem we address in this dissertation is inadequacy of the archite

solutions for controlling access to enterprise distributed applications and their resour

order for an AC mechanism to be sufficient it must support functional requiremen

addition, the mechanism architecture must support and be supported by the architec

the information enterprise where the system is installed. The current solutions are 

quate because they are either functionally deficient in protecting fine-grain applic

resources according to the application-specific policies or do not support the objecti

the information enterprise architectures, or both.

interface SequentialAccess : IdentificationComponent 
{ 
 ProfileList get_all_ids ( in TraitNameSeq traits_requested, 

in IdStateSeq states_of_interest);
}; 

Figure 2-5. PIDS SequentialAccess  Interface
14
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In this section we define the problem. First, we expand on the subject of inform

enterprise architecture problems and their causes and show what architectural prop

system must have in order to support the enterprise architecture. Then, we zoom i

discussion of the requirements for controlling access to application resources at the 

scope. Finally, we substantiate the general discussion with real-life example of a heal

enterprise and describe concrete issues with AC in it. We complete the problem def

with a summary.

2.3.1 Information Enterprise Perspective

It is necessary to place the problem of engineering access control to applic

resources in a larger context in order to discuss the requirements and the validity

work. Such a context is the architecture of information enterprises (IE) because distr

applications are parts of them, and the goals of engineering distributed applications 

support the goals of IEs.

We must clarify the notion of an enterprise before discussing the problems tha

to be addressed at this level. An intuitive perception of an IE tells us that it is a syst

information systems. Such a description, although correct, is far from rigorous. We w

the following more precise definition of an enterprise as “an organizational scope 

which a common set of information technology policies can be imposed” [Mowbray 19

The technological scope of IE is defined by the following hierarchy: object, module,

lection of modules, framework, program, application, system, department, enterprise

glomerate enterprise, industry enterprises, and global infrastructure.
15
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We discuss extensively the problems of information enterprise architectures (

[Beznosov 2000]. Here we merely summarize the main results for the sake of briefnes

major problems encountered in the IEA construction are low semantic compatibili

resulted systems, high re-alignment and maintenance cost, and its exponential incr

the increase in the number of deployed applications [Zachman 1997]. In addition, 

prise modeling takes too long and becomes outdated too soon [Fowler 1997]. The

causes of the problems are the lack of efficient solutions to manage changes accum

across an enterprise; the lack of an efficient and precise way to describe, analyze, an

municate the architecture; architectural mismatch; poor abstraction; and poor supp

legacy, component-based and multi-paradigm systems. The main constraints a

amount and nature of change on the enterprise level [DeBoever 1997, Mowbray 199

the necessity to reuse the existing information infrastructure [DeBoever 1997, F

1997].

Clearly, the main goal of an enterprise, which must be supported by constituent 

cations, as any other informational construction, is to satisfy its functional and non-

tional requirements. For an enterprise, the former is the business work-flow it is to su

Today, business work-flow changes more and more rapidly. The rate of change has

from a full cycle period of approximately 7 years in the 1970s and 1980s to 12-18 m

in the 1990s [DeBoever 1997]. Essentially, the non-functional goal is not only to alig

enterprise with the business work-flow but also “to have such an enterprise that will 

quick re-aligning when the business work-flow changes” [DeBoever 1997]. Ano

important goal for an enterprise is to allow the gradual migration towards new techno

with the retirement of old ones as well as the evolution of systems comprising the 
16
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prise. We define a well constructed IE as one that fully supports business work-flow a

allows sufficiently quick re-alignment according to the work-flow changes while requi

only a reasonable amount of resources to maintain and manage the enterprise. In ea

the notion of quick and reasonable has to be determined.

Therefore, we suggest that the architecture of a system or a service functioning

enterprise environment must aim to 1) reduce the amount of change associated with

other systems, 2) reduce the cost associated with maintaining and re-aligning it and

systems, and 3) enable solutions that scale well with the increase in the number of de

applications.

For instance, solutions currently available in the industry control access to applic

protected resources at several points, as Figure 2-6 shows. They are network (e.g. fir

middleware, database and operating system controls. Making all these controls to w

concert and consistently enforce enterprise-wide access control policies is a dauntin

when there are hundreds of application and supporting systems (e.g. operating sy

Such solutions considerably increase the amount of change associated with admin

authorization policies and applications, increase the maintenance and re-alignmen

and do not scale well with the increase of the number of applications.

2.3.2 System Perspective

The main problem at the system level is that middleware AC mechanisms do no

tect fine-grain resources or they provide limited capabilities for handling complex pol

which is required in some application domains, e.g. health care [Beznosov 1997, W

1997]. In addition, there is a need for domain-specific factors (e.g. relationship betwe
17
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user and the patient [Barkley 1999], emergency context) to be used in access contr

cies. This complexity and granularity level often force application designers to em

domain-specific authorization logic inside their applications. Some even document pa

of designing “application security” [Yoder 1997]. As a result, this increases the compl

of software design and makes it difficult to ensure system integrity and quality. It als

nificantly increases the difficulty and cost of system administration and managemen

2.3.3 Problems with Access Control in a Health Care Enterprise

In the previous sections, we outlined general problems that architectures of info

tion enterprises face, suggested what architectural properties enterprise systems a

vices should have. We also showed what functional requirements mechanisms con

Figure 2-6. Points of Access Control
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access to application resources should have. Now we substantiate our discussion w

ticular problems in AC for the information enterprise of a health care organization -- Ba

Health Systems of South Florida (BHS). BHS is the largest non-for-profit healthcare 

nization in South Florida, which is comprised of six major hospitals and clinics. Due t

technical and historical reasons BHS information enterprise is referred as Comput

Patient Record (CPR). We will use this name through out the section. Parts of the s

are based on the materials from [Beznosov 1998a, Beznosov 1998b].

2.3.3.1 Introduction

CPR enterprise is and will be a heterogeneous environment for long time if not fo

Legacy computing technologies and architectures, such as stovepipe systems [Mo

1995], are going to co-exist with new component-based systems as well as with new

dleware and other technologies such as CORBA and its services, common and v

domain facilities. The enterprise will always have to accommodate emerging techno

with old disappearing ones. The main goal for CPR security architecture is to prov

security environment where the view of an enterprise user will be consistent across

components, and AC decisions will be made according to one set of enterprise-speci

icies. We list the main issues that make this goal difficult to achieve and maintain

present our vision on how a CPR enterprise architecture can be designed so t

described problems can be addressed in the realm of existing constraints. The proble

cussed here are based on the experience from the ongoing project of designing CP

rity architecture at BHS.1

1.  More information about BHS can be found at htttp://www.baptisthealth.net
19
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In order to facilitate understanding of the issues and constraints, we first provide 

ground information on CPR enterprise and describe its specifics next.

2.3.3.2 CPR Enterprise

CPR is a long-term initiative at BHS. Wreder et al. [Wreder 1998] describe its ultim

goal as to provide the mechanism to capture, manage and present information re

throughout the continuum of care in a manner that optimizes the business process by

advantage of distributed object computing technologies. BHS’s CPR can be viewed a

of object services and clients distributed across a healthcare enterprise. Since all 

and some business services are eventually expected to be integrated into the CP

structure, it is considered as an enterprise itself. CPR architecture is being construc

lizing the Object Management Architecture described in [Soley 1996]. CORBA-comp

ORBs constitute a distribution backbone for CPR components.

All deployed application systems are selected according to the criteria of the b

for a particular business process they serve and according to the mandatory require

comply with CPR architecture. Particularly, application systems and services are re

to provide CORBA-compliant interfaces to their main functionality and to use serv

available within CPR enterprise to avoid redundancy. For example, any application s

and service that has a notion of patient is required to utilize a CORBA-compliant P

Identification Service (PIDS) [OMG 1998b] and expose any data related to clinical o

vations via interfaces compliant with Clinical Observation Access Service (COAS) [O

1997] standard from the OMG. The very first CORBA-based CPR service was deplo

BHS in February 1998. The service provides access to clinical transcription records
20
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is in the process of deploying a Master Patient Index service that will provide PIDS a

other services. An anatomic pathology system that will be using PIDS and will also pr

access to its data via COAS-compliant interfaces is expected to be deployed as wel

Even though all new components deployed in CPR enterprise are based on C

technology, there are legacy systems that have to be integrated in CPR architecture 

point. Also, some new non-CORBA-compliant services will be deployed within C

enterprise. Such systems and services have to be integrated in CPR enterprise inclu

security infrastructure. We will discuss the issues of designing CPR security architec

the next sections.

CPR enterprise has its own features that affect its architecture. Some are com

any enterprise, some are specific to health care, and others are BHS distinctive. The

as constraints to the enterprise, including its security infrastructure. We identified th

lowing significant features:

• As we discussed in Section 2.3.1, like with any other IE, due to the increasing r

information enterprises growth and the replacement of conventional monolithic, m

purpose solutions by component-based specialized ones, the amount of maint

and administration is rapidly increasing. The increase of enterprise size and comp

exacerbates all other factors.

• CPR business processes change much faster than they used to do. This forc

enterprise configuration to be adjusted at the same rate. For a security architectu

means decentralized administration and extensive delegation of administration 

leges, as well as more frequent AC policy changes driven by business processes
21
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• Many different application systems are used across the enterprise. Y2K inve

revealed about 200 different applications from word processor to multi-million d

clinical systems.

• Some products come from narrow niches with few vendors, which eliminates fair 

petition of products forcing customers to select sub-optimal solutions or contract c

tions.

• Heterogeneous operating system (OS) environments serve different needs of di

departments. The heterogeneity is also due to tight coupling between application

the underlying OS. Major clinical applications are available only on particular O

even hardware platforms.

• Vendors are oriented towards numerous more conservative customers. Those c

ers are usually technically less educated and, as a consequence, concerned only 

functional properties of the products.

• Outside visitors have the potential for physical access to desktops and network

structure. Unlike financial or manufacturing enterprises, in health care organiza

patients, and often their guests, have access to most facilities thus making it a

impossible to introduce the notion of trust boundary dividing the facilities.

• Different departments have different levels of urgency and different requiremen

confidentiality and service availability. This makes security protection of the same

strength unjustifiable and some times even conflicting with the support of bus

practice specific to the particular department.
22
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• The information technology (IT) department cannot afford in-house developmen

to the lack of resources and qualified staff, which mandates the use of COTS ap

tions, external consulting, integration and outsourcing services.

2.3.3.3 Security Architecture Issues

Given the general constraints imposed on CPR, we discuss the issues related 

to its security infrastructure, and first present four groups of issues related to the CPR

rity architecture. We limit our discussion to the issues only directly related to access

trol. Its full version can be found in [Beznosov 1998a, Beznosov 1998b]. To eas

understanding of how the groups relate to each other, we place them on a discrete 2-

sional space depicted in Figure 2-7. The horizontal dimension identifies if the issue c

found generally in any information enterprise or only in a CPR enterprise. The ve

dimension identifies if the issue is related to any technology or it is specific to COR

based enterprises.
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Any Enterprise CPR Enterprise

Figure 2-7. CPR Security Issues Space
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General issues are propagated into more specialized areas. For example, thos

lems that exist in any information enterprise are propagated also into a CPR enterpr

illustrate it, we present the same issue space in the propagation pyramid shown on Fi

8. More general problems and requirements at the foundation of the pyramid, 

addressed, would propagate to the upper layers. We discuss the problems in groups

from generic to specific.

 Any Enterprise Based on Any Distributed Computing Technology

Coupled AC logic. Conventional applications have their own AC decision lo

tightly coupled with an application itself. Enterprise security administrators end up ha

to configure such logic on application-by-application basis, which brings tremen

administration overhead and highly increases chances of human error.

Decisions about which users can have what access to what assets of the infor

enterprise should ideally depend only on the following factors: user privilege attrib

Figure 2-8. Propagation of Problems

CPR / CORBA

CPR / Any Any / CORBA

Any Enterprise / Any Technology
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enterprise security policies, business workflow and its constraints. All these items are

erties of a particular enterprise and not of any application in it. Also, AC models must

a common denominator to map enterprise security policies and business workflow

straints uniformly into particular authorization rules. Therefore, all access decisions s

be foreign to an application service and native to the enterprise security infrastruct

well as the enterprise business workflow.

No standard administration interface. Among those applications that have their ow

AC mechanisms, each has its own proprietary interface to administrate the mech

This makes it impossible to administrate AC and other security mechanisms for mu

applications using a single administration environment. Therefore, the automation o

administration is a very resource-consuming and error-prone task.

Inconsistent AC models. Due to the replication of security information over applic

tions and coupling of authorization and application logic, multiple inconsistent AC mo

co-exist in the same information enterprise. In this case, it is highly difficult to insure

sistency of AC rules across the enterprise. Most of the time, security administrators e

having no guarantee, whatsoever, that authorization rules and, especially, changes 

are consistent across all application systems and comply with organizational policie

 CPR Enterprise Based on Any Distributed Computing Technology

YES/NO AC. It is hard to draw exact borders between what a care giver, as a u

medical systems, is supposed to have access to and what he/she is not. Some scen

clear (e.g., a registration clerk trying to change lab test results of a patient) and so

not (e.g., emergency room physician browsing encounter history of a patient). The
25
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need for, so called, “soft AC” when a principal is granted access; however, audi

(maybe even) non-repudiation “alarms” go off for later investigation. Meanwhile, the

is warned that they are accessing information they are not supposed to. Such “so

notion is missing from most models including CORBA Security. Additional abstractio

needed in security administration solutions to accommodate “soft AC.”

Vanilla security administration.  A low-level generic security administration mode

where authorization (and other) rules are expressed in terms of security attributes o

jects and (maybe groups of) objects/interfaces, does not support needed abstractio

cific to the business process. Domain-specific AC languages that abstract the access

to the level of business model are necessary.

 CPR Enterprise Based on CORBA Technology

Heavy security policy domains. Ideally, the notion of security policy domains shou

be used actively in order to leverage AC mechanisms of CORBA Security service

information about a patient can be represented as a collection of objects that belong

same AC policy domain. When a new patient is registered and his/her record is crea

data about the patient is accumulated in the objects belonging to the patient’s doma

AC (as well as other security) policies are instantiated appropriately. Consider a co

situation when a healthcare enterprise serves thousands of patients. We do not have

ical knowledge but it seems that the current security technologies (e.g. SESAME an

beros) used for CORBA Security implementation would not scale to scenarios

thousands of security policy domains.
26
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Coarse-grain AC. Preliminary modeling of a CPR AC [Beznosov 1997, Wilson 199

shows that the basic CORBA Security AC model does not take into account such imp

for a healthcare enterprise factors of authorization decisions as the content of reque

replies, and the context of client/server interactions.

2.3.3.4 Goals for CPR Architecture

Not all the issues are as urgent in the short term period or as important in the lon

period as others. Some of them are highly critical for CPR enterprise success. Belo

state the goals that we believe will impact significantly the way CPR enterprise se

architecture will evolve.

 Long Term Most Important Goals

Achieving long term goals will enable integration of applications with CPR secu

infrastructure. The goals are difficult to implement quickly because they require re-s

turing of the infrastructure and re-design of the applications. However, once realized

will enable creation of a well constructed CPR enterprise which will support organization

work-flow and its changes. Besides generic goals, CPR security infrastructure has s

specific long term objectives in the area of AC.

Enterprise-wide logically single repository of user security attributes is paramou

any well structured organizational security infrastructure. It will provide a single view

user no matter what underlying security technology and applications are used. When

initializes a session, information from the repository is used for their identification

authentication. The main advantage is, however, the existence of logically single lo

for security information related to the user which allows inherent coherence of any ch
27
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to it. Such a repository will allow significant reduction of enterprise-wide user sec

information administration.

Second goal is the realization of fine-grain uniform access controls across all ap

tions. Otherwise complete CPR automation will risk a health care organization to fac

bilities of various degree. For instance, breaching the regulations on patient inform

privacy and confidentiality [DHHS 1999], which are part of health insurance portab

and accountability act (HIPAA) [USA 1996] imposed on US health care industry, w

jeopardize the company ability to compete on the market and could bring legal a

against its administration. The keys here are the granularity and uniformity of AC. Wi

needed granularity, service-based health care applications would not provide prot

necessary for controlling access on the need-to-know basis. On the other hand a lack

formity would introduce inconsistencies in AC enforcement thus considerably decre

its usability, manageability, and maintainability.

Another important goal is the use of domain-specific high-level abstraction for ad

istering security in general and AC in particular. We describe below those factors

should be used to make elaborate authorization decisions in order to comply with p

information discloser requirements.

Affiliation  -- what subsidiary of the health care system a particular care giver w

for or is a partner with. Due to frequent mergers and to the fact that many physicians c

in several hospitals, this factor affects authorization decisions.
28
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Role -- what role the user is assigned to in the current session. This factor is imp

to use because the same user can act in different roles performing his or her respons

and because RBAC decreases security administration overhead. However, mode

health care AC policies shows us that the type of relationship between the user a

patient is also used very extensively in making authorization decisions.

Relationship -- what is the relationship between the user and the patient whose re

are to be accessed. Today health care practise increasingly employs shared care a

in which the patient is managed by a team of care professionals each specializing

aspect of care [Grimson 2000]. Some types of relationships that need to be manage

healthcare context are: patient's primary care provider; admitting, attending, referri

consulting physician of a particular patient; part of the patient care team; healthcar

explicitly assigned to take care of the patient; patient's immediate family; patient's

counsel or guard; personal pastoral care provider.

Location -- where the user is accessing information services from. Location info

tion is used in several types of authorization policies. One type is represented by t

lowing example of an AC policy: a nurse should have access to medical records of a 

if the nurse is currently working on the same “floor” as the patient. Another type uses

tion to identify the trust domain where the user is accessing information services fro

reasonable policy would deny access to any sensitive information for anyone acces

from untrusted areas or via unprotected communication channels. Location can a

used to derive the emergency level of access. A policy can allow read access to all 
29
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information of all patients for any user assigned to the role physician and accessi

information from an emergency room.

Time -- when access is requested. The time factor is useful for authorization rul

users assigned to shift-related positions such as nurses and for task-based AC [T

1994] when access to patient records is granted for the task duration to the users resp

for accomplishing it.

All this information is essential in order to make authorization decisions at health

enterprises. To achieve integral use of the described factors, an effective domain-s

authorization language that would incorporate the concepts of role, affiliation, loca

relationship and time is needed.

Putting all these goals together, we believe that if the security infrastructure of a h

care enterprise can be designed in such a way that AC can be enforced at fine level o

ularity, in a uniform way across the enterprise, and a domain-specific high-level auth

tion language is used, then CPR security infrastructure can be well structured. 

We used CPR security architecture at BHS as a concrete example for illustrati

context in which the problem of engineering access control in distributed applicatio

stated. Familiarity with the context will help to the understanding of the problem req

ments and its solution proposed in this dissertation. We outlined the main issues i

structing CPR security architecture. In addition, we grouped them into four categ

according to the type of information enterprise (general or healthcare) they can app

and the type of distributed computing technology they characterize (any or CORBA
30
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cific). Finally, we defined most important long and short term goals for CPR security i

structure.

2.3.4 Summary

The issues central to the problem of controlling access to the resources of distr

enterprise applications are of two types: functional and architectural. The functional 

the granularity of protected resources, 2) the enforcement of policies specific to the

ness domain of the enterprise, and 3) the decisions based on elaborate security-rela

unrelated information about the accessing subject, the access operation and the obje

but not least, ways must be provided to ensure the consistency of policy enforcement

multiple applications.

Architecturally attractive solutions must effectively support the evolution of enterp

systems, i.e. changes to existing applications, their insertion or deletion, changes in

ness processes and security policies, changes in hardware/software platforms, etc

qualities need to be achieved at reasonable cost during the development, operati

evolution of application systems and the enterprise they comprise. Above all, the so

shall scale well with the number of applications.

2.4 Evaluation Criteria

Before proposing our solution to the problem, we will review the state of the pra

and research in the next chapter. In this section, we define a framework containing c

for evaluating the existing technologies and related work, as well as for analyzin

approach.
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Any existing or proposed solution should be evaluated on the basis of its adequ

addressing the problem. Therefore, the problem statement is the main source for th

ria. Particularly, how well does it address the following main issues?

1. Granularity of protected resources. If a technology or solution does not allow auth

rization decisions on fine-grain resources, then it cannot be used for protecting ap

tion resources. We will use the following granularity hierarchy: application, interf

method, arbitrary resource.

2. Support for policies specific to the organization application domain. There is a

wide range of supported AC models and policies, as it will be shown in Chapter

one end there are AC mechanisms that support only one model (and the corresp

policies), for example lattice-based mandatory AC (MAC) [Bell 1975]. At the ot

end are solutions that allow implementation of any authorization logic and their su

for policies is limited only by the interface to the logic. In general, the more AC po

types a mechanism can support the easier it is to configure for required organiza

policies. When applying this criterion we will look at the range of supported AC m

els.

3. The variety of information available for making authorization decisions. As we

discussed above, authorization decisions are made by evaluating rules with the

information about the subject and object, as well as the operations to be perform

the former on the latter. The available information is limited. For example some 

nologies allow obtaining only authenticated identity of the subject but not the info
32
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tion about group membership or activated roles, which ultimately limits the functi

capabilities of the AC mechanism based on such a technology. We will look into 

information is available and what information is used in authorization decisions.

4. The use of application-specific information. The use of information which is applica

tion-specific and becomes available only while the application processes the 

request is critical for some application domains (e.g. health care). If a solution do

allow the use of such information, then full automation of protecting applica

resources would not be possible.

5. Support for consistency of policies across multiple applications. It was discussed

earlier that in the enterprise environment, the issue of consistent policy enforcem

a critical one. We will consider the support for enterprise-wide consistent AC p

enforcement while examining the available and proposed approaches.

6. Support for insertion and deletion of applications, changes in policies and the

computing environment. No matter how functionally perfect the support for the A

of application resources is, if it is highly ineffective to accommodate all these cha

then it is of no good in enterprise settings. Most available approaches suppo

changes to some degree. We will evaluate how good the support is. Unfortun

there are not any objective quantitative criteria for determining the level of sup

This is why we compare the solutions with each other in regards to this criterion.

7. Solution scalability. Performance and administration scalability highly affects 

approach utility. Regardless of all other merits, if an approach does not scale well

not be more then just an academic exercise. Since there is not any benchmark av
33
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for evaluating the scalability of AC solutions, we will use common knowledge to 

son about the scalability. For instance, when it is possible, we will examine the am

of data that needs to be modified, in order to accommodate a policy change. An

commonly known measure that we will use is the communication complexity, whi

still regarded as the major factor in the performance of distributed systems.
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3Related Work

This chapter provides a survey and analyses about available solutions in the area

dissertation, i.e. controlling access to the resources of distributed enterprise applicati

sections 3.1 and 3.2, we survey the existing work in detail, then summarize the disc

in Section 3.3.

The idea of treating authorization logic as an independent component of softwar

tems is not new. An abstract model of a reference monitor [Anderson 1972] is a cla

example of authorization decisions being made and enforced outside of application

concept has being employed in the AC design of operating systems from the early d

computer security. Most operating systems implement authorization logic in the se

part of their kernels [Benantar 1996, Curry 1992, DEC 1989, Gligor 1986, Grampp 1

Heydon 1994, Hommes 1990, Karger 1991, Luckenbaugh 1986, McCauley 1979, M

ney 1999, Mullender 1990, Pfleeger 1989, Quarterman 1985, Saltzer 1974, Walker 

Among special-purpose ad-on security software packages, Computer Assoc

Access Control Facility 2 (CA-ACF2) [CA 1998a] and CA-Top Secret [CA 1998b], as 

as IBM’s Resource Access Control Facility (RACF) [Benantar 1996, IBM 1976] are

most known ones. RACF is a security system for MVS and VM operating systems. I

as a central control point that mediates access to various system resources by authe

users. The operating system’s resource managers send user requests to RACF for
35
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tion. Computer Associates’ packages are integrated in operating systems and work in

similar to RACF. As a matter of fact, MVS installations have the option to use CA-

Secret or CA-ACF2 as their choice of access control software package [Benantar 

which underlines the separation of AC mechanisms from application and even ope

system functions.

3.1 Access Control for Distributed Applications: State of 
the Practice

In this section, we review the capabilities and discuss what the main-stream tec

gies provide for engineering of AC in distributed software applications. We evaluate

fitness by applying the criteria described in Section 2.4. Ideally, all security function

should be engineered outside of an application system, therefore making it, so 

“security unaware.” This is why we also examine if the distributed security technolo

can enforce AC externally to the application.

In general, there are two types of technologies used for securing distributed so

systems. One type is the technologies that merely provide party authentication, com

cation protection, and AC independently of the underlying communication layers. The

Kerberos [IETF 1993, Neuman 1994a], GAA API [Ryutov 2000a], and SESAME [Kai

1998, Parker 1995]. Application developers deliver inter-application communication

other means (e.g. ONC RPC [Bloomer 1992]). This enables the use and mix of any d

communication protocols and media. However, developers are overburdened wi

efforts to integrate security with the underlying communication technology.
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Another type is middleware technologies, such as CORBA [OMG 1996b], DCE [

tler 1995], Java [Lai 1999], and DCOM [Microsoft 1998], that provide an underlying c

munication infrastructure along with the security subsystem, thus enjoying reaso

integration of both and much more seamless use of the former by developers. Mor

some of them (CORBA and DCOM) enable basic AC completely outside of an applic

system because access decision and enforcement occur before the remote call is dis

to the application.

3.1.1 Java Authentication and Authorization Service

The release of the Java 2 platform introduced a new security architecture [Gong 

which uses a security policy to decide about granting access permissions to the r

code. It uses factors relevant to the code for authorization decisions, such as where t

is coming from and whether it is digitally signed and, if so, by whom. Such a code-so

centric style of AC is very different from user-centric authorization policies supporte

conventional computing environments. Java has recently become widely used in ent

application systems where different users run the same code. The Java Authenticat

Authorization Service (JAAS) [Lai 1999] is designed to provide a framework and stan

programming interface for authenticating users and for assigning privileges to users.

JAAS together with Java 2, an application can provide code-source-centric, user-cen

a combination of both types of authorization.

In Java 2 and JAAS (we will refer to the combination as “JAAS”), AC is enforced

the security subsystem only on Java Virtual Machine (JVM) protected resources, s

files, sockets, etc. Java objects or other application resources are not protected, so 
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to be implemented by an application itself. Application developers can program again

same authorization API as the one used for the rest of Java 2 run-time if they employ

authorization.

For an application to use the JAAS authorization mechanism, it needs to 1) con

an instance of class java.security.Permission  representing the protecte

resource(s) in question, 2) locate global instance of Policy object, 3) obtain permissions

granted to the code and the subject via Policy::getPermissions() ,1 and 4) deter-

mine if the returned collection of granted permissions contains the required one.

JAAS supports any level of resource granularity because it specifies a flexible m

nism for defining application-specific protected resources. This is done via access 

which are permissions in the terminology of Java security architecture. Java permiss

are classes with the common ancestor java.security.Permission . Depending on

the semantics of a permission, a group of resources could be associated with it. For e

java.io.SocketPermission  is associated with all port numbers in the exam

policy in Figure 3-1. There are several pre-defined permissions. They are file,

1.  An application can obtain permissions for processing a client request only once as long as the su
privilege attributes, code base, and code signer do not change.

//JAAS principal-based policy
grant

Codebase  “http://bar.com”,
Signedby  “bar”,
Principal  bar.Principal “duke” 
{

permission java.io.FilePermission “/cdrom/duke”, “read”;
permission java.io.SocketPermission “*”, “connect”;

}

Figure 3-1. Example of JAAS Policy Entry (adopted from [Lai 1999])
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socket, property, runtime, AWT, net, reflect, serializable,

and security . New subclasses of Permission  can be defined in order to implemen

new types of permissions, including those which are application-specific.

JAAS model defines a generic concept of authorization engine via abstract 

java.security.Policy , implementations of which are responsible for determin

what permissions are granted to the code source executing on behalf of the given s

The main method of this class, getPermissions(subject,codesource) ,

returns a collection of permissions granted to the subject with privilege attributes pres

in argument subject , and executing code that came from codesource . A subclass of

Policy  can implement a different authorization policy, which should comply with 

class definition. Therefore, the main constraint on such an implementation would b

syntax of getPermissions()  method. JAAS provides a default subclass Policy-

File , which supports authorization decisions according to the source code base, th

tity of the code signer, and the value of privilege attributes possessed by the subject

all are used to determine permissions for a particular resource. The flexibility of J

comes from the property that the authorization logic can be implemented in various

without deviating from the JAAS AC model. Since Policy  is an abstract class and it

main method getPermissions()  could be implemented in many different ways, JAA

does not constrain implementers to any particular authorization model, which enable

port for policies specific to the organization or to the application domain. It is up to

implementers of Policy  instances to achieve performance and administration scalab
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JAAS has a generic and extensible support for different authorization factors. Priv

attributes are not limited to the predefined ones. New attributes can be easily defin

new Java classes. Moreover, JAAS supports the composition of privilege attribute

hierarchies, which is important for implementing AC models with relationships betw

attributes, for example role-based AC (RBAC) with role hierarchies [Sandhu 1996]. O

other hand, even semantically the same attributes, if they are implemented as di

classes, are considered dissimilar by JAAS, which introduces a basis for confus

notion of an attribute type, as in CORBA or SESAME, would sufficiently address the p

lem.

JAAS architecture does not explicitly support the consistency of authorization 

sions across multiple applications because Policy  instances used for authorization dec

sions must be local to the application. However, this does not preclude an implemen

of Policy  to delegate authorization decisions to a remote service.

JAAS architecture is relatively adaptable to the changes in applications, authori

policies, and computing environment. Changes to the policies can be accommoda

the replacement of the Policy  object. Java’s dynamic loading mechanism allows 

addition and removal of applications as well as adaptation to various changes in the

puting environment.

Because JAAS architecture is defined as a set of several Java abstract classes a

faces, allowing the implementations of very different scalability, we can only analyz

scalability constrained by the interfaces to its components. We found that the seman

Policy::getPermissions() , which returns the amount of data proportional to t
40
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number of all permissions in the system granted to the subject, can cause performan

ability problems for policies of some types. Consider for example an implementati

Policy , which supports, or maps to, an owner-based discretionary AC (DAC) p

[NCSC 1987], similar to UNIX file permissions. In such systems, there is a set of pe

sion bits declaring access rights for the owner, the members of the primary and other 

of each file. Thus getPermissions()  should return permissions to all files that the us

has. This is justified only when an application needs to make many authorization dec

for the same subject running the same code. However, when only one authorization

sion is needed in order to process a request or when the code base or signer change

ing all permissions granted to the subject seems inefficient. A more scalable solution 

be a one in which the result of the authorization decision is returned instead.

3.1.2 Distributed Computing Environment

The Open Software Foundation’s (OSF) Distributed Computing Environment (D

[Kong 1995], is an underlying RPC infrastructure and a collection of integrated ser

that support the distribution of applications on multiple machines. The functionalities

vided by DCE security services include: user authentication, secure data communic

to protect data communicated by an application to other applications over DCE infra

ture, and authorization for applications [Gittler 1995].

DCE Security is based on Kerberos [IETF 1993, Neuman 1994a], which perf

authentication of users and applications based on cryptographic keys so that comm

ing parties can trust the identity of each other. DCE augments Kerberos with a way to
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fer additional privilege attributes to a server that may choose to perform AC based on

attributes. 

The service does not control access to applications or their resources, and DCE

cations are expected to enforce and provide administrative access to authorization p

on their own. To do so, an application has to implement AC functionality, includin

access control list (ACL) manager and an ACL storage, as shown in Figure 3-2. In

for an application to use DCE security service for AC, it needs 1) to determine the

object ID (OID) of the resource in question, and 2) to obtain authorization decision fro

ACL manager using the OID. 

If an application uses the DCE ACL model for authorization, it associates an ACL

a protected resource via OIDs, which are used by the ACL manager to determine

ACLs. The exact definition of “resource” is entirely at the discretion of the application

Figure 3-2. Authorization Process and ACL Management in DCE-based Applicatio
Systems (from [Caswell 1995])
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example, an object could be an item of stored data (such as a file), or could be a pure

putational operation (such as matrix inversion). Thus, the concept of OIDs enable

granularity of protected resources.

DCE ACLs support a limited number of privilege attribute types -- only identitie

the user, who is the resource owner, the owner group, and other group(s). There a

distinctions between:

• “local” and “foreign” (from another DCE cell) subjects, 

• those acting as delegates and primary invokers, and 

• entries that specify specific and default policy, i.e. in the absence of any other 

cable ACL entry (ACLE). 

DCE ACL language is also considerably limited allowing security administrator

either explicitly grant or deny rights to the subject based only on its identity or g

attributes. The language capability to support policies specific to application or orga

tion remains to be seen.

The following simple example from [Caswell 1995] demonstrates (Figure 3-2) 

AC is expected to be implemented by an application system. User jane  makes a reques

to withdraw $100.00 from her account number 1234  (step 1). The application interfac

passes this information to the ACL manager asking for an authorization decision (s

The ACL manager retrieves the authorization policy for account 1234  from the ACL data-

base (3) and applies the policy to derive the answer (4). If user jane  is authorized, the

withdrawal is performed (5 and 6).
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In order for an ACL associated with application resources to be administered, 

applications are expected to provide a means for it. They can implement DCE sta

ACL administration interface (rdacl ). When Jane’s account is first set up, a ba

employee would use an administrative tool to give user jane  the permission to withdraw

money from account 1234 . The editing interface enables the ACL manager to change

policy. An ACL manager changes a policy by retrieving the current policy, modifyin

and writing it back to the ACL database. Rdacl  interface seems to be the only means

ensuring the consistency of authorization policies across application boundaries 

access to the ACL database is implemented as a global service. In the latter case, po

application changes could also be accommodated by the DCE environment easier 

the basic configuration shown in Figure 3-2.

As seen from the discussion above, DCE security service provides rudimentary h

applications to make AC decisions, and it enforces no AC externally to an applic

Comparatively to its predecessor, Kerberos, it advances privilege attribute managem

enabling attribute types other than subject identity in EPACs. However, the expressiv

of DCE ACL language is fairly limited, and we could not determine how application-

cific factors could be used in authorization decisions if the mechanisms of DCE ACL

utilized. It seems that the increase of the application client or server population wou

drastically affect overall DCE-based enterprise performance because AC decisio

made using local data. However, administration scalability is poor because policy ch

have to be reflected in the ACL database of every application unless the database is 

ized. Then the performance scalability would suffer.
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3.1.3 Microsoft Distributed Component Object Model

The Distributed Component Object Model (DCOM) [Grimes 1997, Rubin 1999] 

middleware technology from Microsoft, which extends the Component Object M

(COM) to support communication among COM objects on different computers run

some flavor of MS Windows OS. A schematic representation of DCOM middlewa

shown in Figure 3-3. DCOM protocol, known as “Object RPC” or ORPC, extends the

dard DCE RPC protocol. At the wire level, ORPC uses standard DCE RPC packets

additional DCOM-specific information.

Since DCOM RPC is a derivation of DCE RPC, it is not surprising that its sec

model resembles DCE security. ACLs, with the language similar to the one in DCE

used to code authorization policies. In DCOM, they are named Discretionary A

Figure 3-3. DCOM Middleware (from [Microsoft 1998])

Client ComponentProxy Object

DCE RPC

Protocol Stack

Stub

DCOM network-
protocol

Security
Provider

DCE RPC

Protocol Stack

Security
Provider

S C M S C M

OLE32

"CoCreateI
nstance"

(Remote)
Activation

"CoCreateInstance"
45



Ls

 the

e the

ide of

dvan-

ment,

urces

era-

 exter-

efault

h and

e these

ompo-

e to

wn

, and

sed to

ws the

om-
(DACL) to signify the default right of the object owner to modify DACL entries. DAC

can be configured using DCOMCNFG configuration tool or programmatically using

Windows NT registry and Win32 security functions. However, these do not chang

essence of the model. What does, though, is the capability of enforcing policies outs

a DCOM object, and the presence of a hierarchy of policies. This is a considerable a

tage over the DCE AC model, where no control is enforced by the security environ

and an application has to implement its own.

DCOM provides two choices for controlling access to applications and their reso

[Eddon 1999]. With “declarative security,” DCOM can enforce AC without any coop

tion on behalf of the object or the object's caller; the policies for an application can be

nally configured and enforced. The declarative security policies can be divided into d

policies and component-specific ones. A default policy specifies the default launc

access settings for all components running on the local machine that do not overrid

settings. Component security settings can be used to provide security for a specific c

nent, thereby overriding the default security settings. 

With another, “programmatic security,” DCOM exposes its security infrastructur

the developer via security APIs1 so that both clients and objects can enforce their o

application-specific authorization policies in regards to resources of any granularity

using any information as input for the decisions. Programmatic security can be u

override both default and component security settings in the registry. Figure 3-4 sho

hierarchy of DCOM authorization policies: 1) policy encoded in the behavior of the c

1.  For example, calling subject identity can be obtained using methods 
IObjectContext::IsCallerInRole()  and ISecurityProperty::GetCallerSID().
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ponent implementation, 2) the declarative process-specific, and 3) the declarative ho

cific policies. Policies 2 and 3 are enforced before the call is dispatched to the 

method. In this hierarchy, the inner policies override the outer ones in the following 

before the invocation reaches the method implementation, statements, if any, from pr

wide policy override corresponding statements in the host-wide policy. If the invocat

allowed, then it will be dispatched to the method implementation, which will be ab

exercise its own AC policy (policy 3), if any. 

A significant hindrance to the authorization model is the granularity of “compon

specific” declarative policy (policy type 2 shown in Figure 3-4). The granularity is per

process, and there is no distinction among different object methods. That is, the polic

the same DACL to control access to all objects and methods on those objects that a

process implements. However, if an application needs to have finer level of granulari

still use the DACL mechanism, it can achieve it, though with more effort and not tran

ently to the application logic. An application can associate its fine-grain resource w

protected resource of the operating system, such as an MS Windows registry key, a

the identity of the subject, and try to access the OS resource. If this access fails, the a

subject did not have permission to access the resource.

Figure 3-4. The Hierarchy of DCOM Authorization Policies and their Scope

3. Host-wide Declared Authorization Policy

2. Process-wide Declared Authorization Policy

1. Method-wide Programmed Authorization Policy
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Process-wide and host-wide policies (types 2 and 3) implicitly introduce the noti

access policy domains for DCOM objects. Unfortunately, the partitioning of objects c

only according to their locations and not according to their sensitivity or the value of 

parameters. The limitation of authorization policy domains to the host boundaries re

the administration scalability of DCOM-based distributed applications because it has

performed individually on each host or even for each process.

As we have shown, no application-specific information can be used or application

cific policies are enforced when declarative AC is exercised. Declarative authorizatio

icies and their changes have to be administered on a machine-by-machine basis

hinders administration scalability and rules out automatic policy consistency across 

cation boundaries unless applications are located on the same host.

3.1.4 SESAME

Secure European System for Applications in a Multi-vendor Environment (SESA

is an European research and development project, which was started in late the 198

also the name of the technology that came out of that project. This technology [K

1998, Parker 1995] defines components of a security architecture providing the unde

bedrock upon which full managed security products1 can be built using the following ser

vices defined by the architecture: authentication, authorization, confidentiality, inte

and audit.

1.  Examples of such products are ICL's Access Manager [McMahon 1995] and Bull SA's Integrated S
Management AccessMaster [BullSoft 1995].
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The work of SESAME components (shown in Figure 3-5) could be described i

following way. The user logs in the SESAME environment by interacting with a user s

sor (US) client, which then contacts the authentication server (AS) via the authenti

privilege attribute (APA) client. The US authenticates itself to the AS, and then con

the privilege attribute server (PAS) and receives from it a privilege attribute certif

(PAC) containing the subject privileges used for AC decisions. The user is now aut

cated and has a PAC, which can be used when starting application clients. The PAC

a user to access applications on a computer, which knows nothing about the user, 

verify the user privileges from the PAC. If the user wants to start an application, th

contacts the secure association context manager (SACM) for the application clien

client SACM then contacts the server SACM and they exchange subjects’ crede

Figure 3-5. SESAME Components
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Next, server SACM contacts the PAC validation facility (PVF) to validate the subje

PAC. Finally, the user can start the application client and exchange data with the se

A PAC can be used more than once at more than one target application. It is di

signed to prevent it being undetectably tampered with. Privilege attributes can have 

the following syntax representations: access identity, role(s), primary group, and seco

group(s).

SESAME technology is not a middleware. Rather it is an architecture for security

vices. It does not provide a means for communication such as ORB bus in CORBA, o

layer in DCE or DCOM. Thus it cannot control pre/post invocation events. This is why

and other security functionality has to be specifically invoked by an application sys

This prevents SESAME from providing AC external to an application, as in DC

“declarative security” or CORBA. On the other hand, authorization logic is provided t

application by SESAME-compliant infrastructure, as opposed to DCE where an applic

even has to implement ACL storage as well as run-time and management functiona

Authorization decisions in SESAME are made by the SACM of the target applica

which is responsible for receiving Generic Security Service (GSS) token and passin

the SACM using GSS API [Linn 1997]. The target SACM passes the incoming sec

information to the PVF for analysis and validation. If all is valid, the SACM receives

integrity and confidentiality dialog keys from the PVF for protecting exchanges betw

the client and the target application. But if the PAC checks made by the PVF fail, the

rity context is not made available to the application. 
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Even if the checks succeed, besides routine checks of matching initiator and PAC

tities, the SACM performs an additional AC check according to authorization rules [P

1995] represented as a set of access control entries (ACE) compliant with POSIX.6 

]. An entry can specify a certain application or “all applications,” to be accessible o

accessible by either an identity, a role, a group or “all initiators.”

The smallest unit of AC check in SESAME is an application system. Therefore, e

access is granted to the whole system or any access is denied at all. For distribute

cations, which commonly expose their functionality via several operations with diffe

AC requirements, such a level of AC granularity is frequently insufficient. Consequ

an application system has to implement additional functionality in order to exercise

operation AC. Also, the architecture lacks the capability of applying one authoriz

policy to several applications thus requiring each application to be configured individ

to support the policy.

The concept of domain in SESAME pertains to various authorities that manage

identities and privilege attributes. SESAME domains affect AC in the way that the 

user can be granted different identity and privilege attributes in different domains, an

attributes can be mapped with restriction [Ashley 1997] thus influencing decisions 

by the target SACM. Identity and privilege attribute domains make user security adm

tration more scalable for large or multi-organizational environments.

The lack of external AC, coarse granularity of authorization decisions, and the ne

administer the policies on application-by-application basis make SESAME less attra

then JAAS, DCE, DCOM or CORBA technologies for AC in enterprise distributed ap
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cations. However, SESAME can be deployed over most communication technologie

is known for its advanced model of privilege attributes management and propag

which is best suitable for large multi-domain heterogeneous environments [Ashley 1

These make it indispensable for building heterogeneous, multi-vendor, high-perform

distributed application systems that require the use of different communication layer

authorization based on privilege attributes other than user identity.

3.1.5 CORBA Security

The Common Object Request Broker Architecture (CORBA) technology, includ

CORBA Security Service, provides a general-purpose infrastructure for developing

deploying distributed object-based systems in a broad range of specialized appli

domains. All entities in the CORBA computing model are identified with interfaces def

in the OMG Interface Definition Language (IDL) [OMG 1999a]. A CORBA interface i

collection of three things: operations, attributes, and exceptions. An implementatio

CORBA interface is called a CORBA object. Hence, we use “CORBA object” or 

“object” to mean “implementation of a CORBA interface,” where it does not cause co

sion. Object functionality is exposed to other CORBA-based applications only throug

corresponding interfaces. Objects have object references by which they can be refe

An object reference is a handle through which one requests operations on the corresp

object.

3.1.5.1 Security Model Overview

CORBA Security (CS) standard [OMG 1996b] defines the following functionali

visible to application developers and security administrators: identification and authe
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tion, authorization and AC, auditing, message integrity and confidentiality protec

authentication of clients and target objects, optional non-repudiation, administrati

security policies and related information. One of CS objectives is to be totally unobtr

to application developers. Security-unaware objects should be able to run securel

secure ORB without any active involvement on the site of application objects. In the m

time, it must be possible for security-aware objects to exercise stricter security policie

the ones enforced by CS. In the CS model, all object invocations are mediated by the

priate security functions in order to enforce various security policies such as AC.

Every user authenticates when he/she logs into the CS environment. The main

of authentication is a set of security-related data -- Credentials . The information in

Credentials  constitute the identity of the new subject, which initiates requests

CORBA objects on behalf of the user. Authenticated security attributes are part of the

mation stored in the Credentials  object and are used for the purpose of enforcing v

ious security policies. Because CS defines advanced concepts of privilege attri

similar to SESAME, it enables AC policies based on roles, groups, clearance, and an

security-related attributes of subjects.

CS architecture achieves performance and administration scalability by the me

policies and policy domains, where any security policy is associated with a policy do

(or just “domain”). Policies of more than one type could be associated with the 

domain and each object can belong to more than one policy domain. Domains co

organized in federations, hierarchies or be completely unrelated. AC decisions co

specific for each object, if the object is located in a separate domain, or a large gr
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objects could be associated with one policy domain. This means that the model sca

terms of performance as well as administration) very well without loosing fine granula

Unlike DCOM, CORBA objects residing on different computers can be associated wi

same domains.

As in DCOM Security, AC can be enforced completely outside of an applica

system because the enforcement occurs at the ORB level. Everything, including obt

information necessary for making authorization decisions, is done before the method

cation is dispatched to the target object. As Figure 3-6 shows, policy enforcement c

executed inside of CS enforcement sub-system, when a message from client applic

a target object is passed through the ORB. Executed at the client ORB as well as

target ORB, the enforcement code uses three sources of information for making de

before it enforces them. First is the policy of the domain(s) to which the target bel

Second is the information from credentials of the client. In case of AC policy enforcem

these are client privilege attributes (such as access identity, group membership, ro

Figure 3-6. Enforcement of Policies in CORBA Security (from [Blakley 1999])
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clearance). The third source of information is the message itself which, in case o

enforcement, is a request to invoke an operation on the target object.

CS controls access by clients to object methods. Objects, in their turn, are placed

policy domains, which allow the same policy to govern access to the methods of a

domain members. CS allows stating AC policies in terms of subject and object se

attributes as well as operations implemented by those objects. Operations are grou

rights required for invoking them. The rights granted to a subject according to its priv

attributes should match the required rights of the operation. AC policies control wha

jects can invoke what operations on what objects in the domain the policies are defin

The expressive power of CORBA AC mechanisms was analyzed by [Karjoth 1998], w

it was shown to support lattice-based mandatory AC (MAC) [Bell 1975]. We discu

greater detail the CS authorization model in Chapter 4. We also show there that it is

ble to configure CORBA AC mechanisms to support role-based access control (R

models, which means that DAC models can be also supported, as Sandhu and M

show in [Sandhu 1998a].

User grouping via privilege attributes, object grouping via policy domains, and me

grouping via the concept of required rights enable high scalability of CS administra

which is an important factor in object-oriented enterprise distributed environments

there will be applications, in which additional AC has to be exercised (a so called security-

aware application). A security-aware application can do so with the help of CORBA S

rity interfaces. For enforcing conventional AC policies, an application system nee

know who, wants to access, what protected resource, and in what way. CORBA Se
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provides to an application a means to find out “who.” Interfa

SecurityLevel1::Current , available to an application, defines metho

get_attributes()  for obtaining subject security attributes.

3.1.6 Generic Authorization and Access Control API

Generic Authorization and Access Control API (GAA API) is published as an IE

Internet draft authored by Ryutov and Neuman in [Ryutov 2000a]. It defines a frame

for application authorization aiming to address the lack of standard authorization AP

applications using GSS API. Kerberos [IETF 1993, Neuman 1994a] was the first se

technology providing GSS API functionality, and it did influence the model behind G

API. Kerberos had only rudimentary support for AC in networked applications: if a c

did not have an authenticated ticket for a particular network server, then it could not 

lish a connection with it thus being denied access.

The GAA API model is based on the assumption that the distributed nature of Inte

based computing requires interactions between entities across autonomous and m

suspicious security domains. The authors also put in the front corner a requiremen

mechanism which provides authorization decisions on fine-grained resources for a

range of systems.

The framework consists of two major parts: a programming interface for obta

authorization decisions by application systems, and a “universal” language for AC p

representation, Extended ACL (EACL) [Ryutov 2000c], which is an extension of the t

tional ACL model. The subject of our discussion is the API itself, which goals are 1) to

port the needs of most applications, thus allowing application developers to refrain
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designing their own authorization mechanisms, 2) to allow better integration of mu

mechanisms with application servers (for example, GSS API [Linn 1993] and GAA

can be integrated to provide authentication of an invoking subject and authorization

sions).

GAA API does not enforce AC externally to an application. Instead, it provides au

rization decisions which can be described as follows [Ryutov 2000a]. An authentic

service performs authentication of users and supplies limited credentials, in the fo

GAA API security context, to the application via authentication API, as shown in ste

and 2 in Figure 3-7. Then, the application calls GAA API routines (steps 3, 4, and 

check authorization against the policies. The API routines obtain subject identity 

authenticated credentials of the client (step 4a) as well as policies (steps 3a and 4b

local files, distributed authorization servers, or by some other means. They combine

and distributed authorization policies and information. For example, it is possible i

GAA API model to combine global EACL with the machine or application-specific 

Figure 3-7. Sequence of Events in GAA API Model
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which enables the use of application-specific policies. The way the combination happ

not defined in [Ryutov 2000a] and depends on the concrete implementation of GAA

which means that changes in the computing environment and the policies behind th

gramming API are not supported in a standard way and are implementation-specific

For the purpose of our discussion, the most important API function

gaa_check_authorization() , which provides applications with authorizatio

decisions, or indicates if additional checks are required, in regards to the requested

tion(s). Its inputs are 1) a handle1 to the data structure containing rules governing acces

the resource in question, 2) security context containing privilege attributes of the acc

subject, 3) operations for authorization, and 4) parameters for a parameterized ope

The output consists of short, yes/no/maybe, and detailed answers. Specifying additiona

conditions which have to be met or time limits of the decision, the concept of det

answer is unique to GAA API and provides capabilities required in many applic

domains. It is a data structure, used only when the short answer is “maybe,” that con

time window, during which the answer is valid, and a list of zero or more rights grant

denied to perform requested operations. Each right can be accompanied by the corre

ing conditions, if any. Each condition is marked as evaluated or not evaluated. An eva

condition could be also marked as met, not met or “further evaluation or enforcem

required.” This tells the application which policies must be enforced. 

The application must understand the conditions that are returned unevaluated

must reject the request from the client. If understood, the application checks the con

1.  It is supposed to be obtained prior to the invocation via function gaa_get_object_policy_info() des
below.
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against the information about the request, the protected resource, or environmental

tions to determine whether the conditions are met. The enforcement of the returned 

tions is up to the application. An example of condition enforcement is the use of 

utilization. It could be specified in the policy that processing of the client request ca

performed as long as the CPU is utilized less than 20%. Such a requirement could

enforced by an authorization service. In the GAA API model, it would be passed 

application as a condition expected to be further enforced. Some other examples of

tions are printer load, provision of payment for access to the resource, and location

subject [Ryutov 2000a]. As it can be seen, these authorization conditions give subs

flexibility for enforcing application-specific policies. Still, it remains to be seen if the c

cept will not cause tight semantic coupling of authorization service implementation

the application systems it serves.

The detailed answer may also mean that authorization is not completed yet, and

tional privilege attributes are required. The application requires them from the c

because GAA API attempts to build an authorization model that would fit into the exis

and, we believe, outdated1 model of GSS API implemented first by Kerberos. It reuses K

beros’s authentication model, in which only authenticated subject identity is provided

is why the GAA API model assumes group membership service, the definition of wh

left beyond the scope of the model. A group server furnishing group membership 

mation is the only way by which subject privilege attributes can be obtained. In ord

do it, the client should request group (non)membership certificates from the s

1.  We believe GSS API is outdated because some other architectures, such as SESAME, attempted
extend it. This indicates that the API does not satisfy the needs any more.
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explicitly. The server is not part of the specification [Ryutov 2000a], although it was in

duced earlier by Neuman in [Neuman 1993] and is described in Section 3.2.3.2 as 

the discussion of the authorization service from the University of Texas at Au

Because the client is asked to provide group certificates after it already made an a

tion request, it is possible to use application and even request-specific informatio

authorization decisions, which gives advantage to GAA API over other authoriz

solutions.

However, the use of a group server has significant drawbacks. First a communi

scalability problem is created because some policies might require an undeter

number of interactions with the server causing possibly remote communications, w

are usually expensive, unless the server and the client are co-located. But such a c

tion means that the number of group server instances should be proportional 

number of clients, which is an obvious performance, maintenance and administ

scalability problem. Second, it is very inefficient to obtain subject privilege attrib

over and over even when they are the same during user session.

Another drawback of the approach is that the service, or at least its proxy, sho

co-located in the same process because the only language binding available as of M

is defined in C language [Ryutov 2000b]. The main advantage of the API over the

reviewed models is the support for a very flexible and powerful concept of additional

ditions that should be enforced by the application or met by the client. 

GSS API provides very generic low-level abstraction, the use of which by applic

developers requires significant integration efforts. This prompted new generations of
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rity technologies for distributed application systems such as CORBA and DCOM, in w

an application can be developed without any notion of underlying security, including

unless it requires the enforcement of complex policies. However, if an application do

bare GSS API and it requires the authorization on fine grain resources or enforcem

complex AC policies, then GAA API, not the EACL, meets most authorization need

such applications.

3.2 Access Control for Distributed Applications: 
State of Research

There are three main research directions in addressing the problem of contr

access to the resources of distributed enterprise application systems. They are

agents, interface proxies and interceptors, and enterprise-wide authorization servers

section, we describe and critique each of them.

3.2.1 Policy Agents

By the term “policy agents,” we refer to a direction in the area of AC distributed a

cations, the approaches of which suggest the enforcement of AC policies by the me

native mechanisms available locally in the computing infrastructure of each applic

system, as shown in Figure 3-8. They could be the OS AC or add-on packages, A

vided by the middleware (Section 3.1), by DBMS security layers, or even by AC me

nisms of the application integrated environment. The main feature of these approac

achieving the consistency of authorization policies across application boundaries b

means of centralized AC management via translation of authorization rules into lang

supported by local mechanisms, and the distribution of the rules across application sy
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This is achieved with the help of policy agents. The distributed management archit

based on such agents provides the infrastructure necessary to map domain-wide au

tion rules into rules specific to particular mechanisms.

All approaches under this direction have the following advantages:

• Inherent fault tolerance. If a mechanism responsible for AC decisions 

enforcement fails, only the application system protected by the mecha

becomes affected, while all other systems remain protected.

Figure 3-8. Policy Agents
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• For an intruder to gain unauthorized access to all protected resources in a 

domain, either all AC mechanisms or the policy management, mapping

distribution infrastructure have to be subverted. Since the latter can

implemented using off-line techniques, it can be secured much more, wi

penalizing run-time performance.

• Locality of the decision making process. In a distributed architecture base

policy agents, all AC decisions are made locally and this allows achie

minimum performance penalty.

• Performance scalability. Since the authorization process is naturally distrib

over the computing environments of application systems, authorization i

issue local for those environments. Thus a greater number of applications

not cause longer response latency experienced by each application client.

The main challenges facing the approaches are as follows: 1) automation of ma

a global policy into various representations specific to local AC mechanisms, where

for the same AC model there could be different implementations and configurations, 

consistency of the enforced global policy, as Hale et al. point out in [Hale 1999], and 

preservation of policy semantics when they are mapped into local mechanisms, sim

the problem of translating a program written in a high-level language into architecture

cific binary code.

As the author’s experience of performing similar mappings with such commercia

tems as Unicenter/TNG [CA 1999] from Computer Associates shows, the proce

administering the mapping of the subject’s global credential information into local cre
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tials could be so costly and resource-consuming that only very advanced IT depar

could afford it. There might be no other way to solve the problem of managing AC in e

prise applications when they are already deployed. 

Approaches based on policy agents also suffer from a number of inherent limita

First, the granularity and expressiveness of AC policies in a policy domain can be o

good as those supported by its most coarse-grain and least expressive mechanism.

policy changes can be very slow. For example, on some operating and DBM system

vation of such changes requires re-initialization of system components or even the

system, which makes policy changes an expensive and prone to temporary incons

and frequent downtime periods. This can easily make policies based on periodic auth

tions [Bertino 1996a] unaffordable. Because of these challenges and limitations, we b

it is very difficult to support a positive answer to the question of whether this appr

employed for new applications is best. Below we describe in details one of the appro

representing the direction of policy agents.

3.2.1.1 Security Policy Mediators from the University of Tulsa

Hale et al. propose in [Hale 1999] an approach for the coordination of security po

and subject credentials across heterogeneous information systems with the focus on

coupled federations, where no central authority for federation management is po

Their approach is twofold. The first part is a ticket-based simple authorization mod

which a number of authorization models (owner-based DAC [NCSC 1987], lattice-b

MAC [Bell 1975], RBAC [Sandhu 1996], TBAC [Thomas 1994]) are shown to be map

This enables the employment of a single language for authorization rules. The part o
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work we are interested in is an architecture for authorization process and the policy

ation, which enables the consistency of enforced authorization policies.

In the model, each enterprise manages its own policy mediators [Weiderhold 199

security mediator is installed on each computer system that manages protected en

resources, as well as on the client systems from which subjects access those resourc

jects hold a partially implicit and potentially heterogeneous collection of rights to va

information resources to which they need to have access. When subject access re

across organizational boundaries, they are called “foreign subjects.” Security med

determine access rights according to the global policy. In case of foreign subjects, the

ators translate subject credentials according to trans-organizational authorization p

Each mediator installed on the server host contains the following: a model of the da

containing resources, to whom the local system provides access; global security 

expressed in the language of simple authorization model, which Hale et al. develo

part of their work; and coordination policy for managing access by foreign subjects. C

dination policies can take different forms -- mapping foreign subjects to local sub

assigning local proxies to act as trusted delegates of foreign subjects, requesting vouchers

from trusted sources for foreign subjects, or mandating joint authorization with local

jects.

Client mediators bundle subject credentials with query fragments to distribute

query to remote systems. Mediators at the application systems, translate the inc

requests into local requests according to the database model of the local system res

apply their coordination policy to the incoming requests based on the received crede
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and then authorize the requests according to the global security policy. The author

might be performed by the application AC mechanism.

The major advantage of this approach to the problem of controlling access to ap

tion resources is the support of multiple AC models where each system or enterpri

enforce a model most suitable for its own environment without requiring any chang

what already exists, while continuing the enforcement of the organization-wide auth

tion policy. Such a global policy is mapped into a concrete authorization model. 

enables high adaptability to the changes in applications and computing environm

although it does not accommodate changes in policy types well. 

Another significant advantage is that mediators can hide from the application the

cess of correlating foreign and local subject privilege attributes. This solves the probl

multiple inconsistent subject privilege attribute sets maintained independently in 

commercial systems today, and the problem of accessing application systems acros

nizational boundaries. However, security technologies like SESAME already 

addressed this problem by the means of single sign-on when a subject has one set 

lege attributes used for accessing multiple applications.

The approach of security policy mediators inherits all the disadvantages of p

agents direction. In addition, the use of mediators on the clients makes it less sca

because the amount of change becomes not proportional to the number of applicatio

ers but to the number of clients, which is usually significantly larger.
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3.2.2 Proxies and Interceptors

The approach of proxies and interceptors, or just “proxy approach” for short, is d

the obvious desire to add new functionality, AC in this case, on top of the old one. This

existing applications can be enhanced with new features and behavior without chan

their internals. Most capable security services such as CORBA and DCOM follow

approach by using invocation interception in order to enforce various security policie

The idea is based on either proxing an application interface or intercepting com

cations between interacting application systems by some other means. Access to a

cation is controlled externally to it because authorization decisions are made be

system gains control and/or after it dispatches an invocation to another system. In o

achieve it, invocations are intercepted either in the communication or middleware la

as illustrated in Figure 3-9. Interception can also occur at the application layer, w

system is “wrapped” into its interface surrogates, or additional code is inserted by a

piler or other similar tool.

Figure 3-9. Proxies and Interceptors

     Proxy Applicat ionAccess

Policies
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The main advantage of the direction is that it requires hardly any changes to the

cation system since the reference monitor is implemented externally to it. Another a

tage is the ability to make all the decisions locally because interceptors and proxies 

deployed even in the same process space. Also, if authorization decisions are made

and use local data, the approach features inherent performance scalability.

There are a number of significant limitations however. First, AC granularity cann

finer than the method level and its arguments (but only when the arguments can be

preted outside of the method implementation). That is, no approach under this dir

allows the control of access to the resource other than interface instances, methods 

on them, and arguments. Second, authorization decisions cannot be made just-i

They always have to be made either before or after an application system is in the p

sion of execution control. Third, because of the above reasons, variables, whose 

become available at some point after the method is invoked but before the decision

to be made, cannot be used in authorization rules. 

The main disadvantage is that insuring the consistency of enforced policies as w

the coherency of data used for authorization decisions becomes a challenge,1 since there

are as many instances of access controls as application systems. The administra

proxy-based AC mechanisms will have significant overhead and a high human erro

unless thoroughly automated, which brings us back to the main objective of the p

agents. 

1.  Although it can be partly solved using the policy agents approach.
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We describe and analyze several main approaches following this direction: view

resented as objects and used for enforcing AC, role classes, SafeBots, AC in Legio

tems and security meta objects.

3.2.2.1 Views as Objects

Hailpern and Ossher describe a model in which application objects can have m

“views” [Hailpern 1990] whereas each view represents a certain set of methods invok

by a specified collection of clients. They suggest the model of views for controlling a

of clients to servers in object-oriented systems. Even though their approach was orig

made in the context of local inter-object invocations, views can be used in distribute

erogeneous application systems.

One of the proposed methods for implementing views is to materialize views as o

(view objects) [Hailpern 1990]. Specifically, all method invocations are addressed to 

ticular view with the server, client, and method selector as arguments. The view objec

checks if the client has access permissions for the given server and method. If the

succeeds, it invokes the server on behalf of the client using a primitive form of invoc

not available to the client. View objects act as proxies for server objects, and perfor

enforce authorization decisions. The approach is a common representative of the dir

3.2.2.2 Role Classes

Similar to views as objects, Barkley suggests to use proxies (“role classes” acco

to his terminology) in order to implement (role-based) AC for application systems [Ba

1995]. Having methods with the same signatures as the original classes, proxy o

mediate invocation requests. Barkley deviates from a simple proxy model by introd
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another layer of proxies -- now on the client side (“client proxies”). Client proxies are 

in order to determine what AC proxy should be used and to direct the call to that pro

is assumed that client proxies can be automatically produced and linked to the client

cation, hence making it completely transparent to the client developers and users

environment used for client-server communications cannot determine the right prox

direct the invocation to it, then some mechanism similar to client proxies must be im

mented.

3.2.2.3 SafeBots

SafeBots [Filman 1996a, Filman 1996b] is a concept based on software, po

mobile, security agents. According to its vision, software security controls are active a

that “wrap” insecure components, communicate with each other, and are smart eno

adapt their actions to the local and global interaction contexts. These agents monito

munications by wrapping an application’s components and can be programmed to p

authentication, AC, intrusion detection, or other security controls. They can be struc

either as wrappers for application components, or as independent SafeBot agenc

support the coordination of SafeBot activities, and may confederate with each other f

ferent purposes.

In order to use SafeBots as security wrappers, the authors make a number of a

tions: application systems have well-defined interfaces, can be sequestered (i.e. ca

invoked directly without going through SafeBots), and can be substituted. They propo

automation of application system wrapping.
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SafeBots approach attempts to marry mobile agent technology with security co

and brings advantages and disadvantages of the former to the latter. SafeBots ena

implementation of cost-effective, redundant, extendable security controls including

The authors themselves list several inherent limitations [Filman 1996b]: it is difficu

wrap application systems with complex or rich interfaces (e.g., applications with com

GUIs, shells or other programming scripts and environments); SafeBots complicat

increase enterprise security administration; subverting a SafeBot could become a 

attack systems; and inept security designers could design SafeBots that actually 

overall system security; at a time of crisis, SafeBot activity could tie up a system whe

resources are most needed. In addition to these limitations, change of policies requ

deployment of SafeBots over all systems affected by the change, which is very exp

and lengthy in large enterprise settings.

3.2.2.4 Legion

The Legion system [Grimshaw 1998, Grimshaw 1997, Wulf 1996], developed a

University of Virginia, defines a software architecture designed to support the use of

collections of heterogeneous computing resources distributed across local- and wid

networks as a single, seamless virtual machine. Legion’s components include a ru

system, Legion-aware compilers that target this run-time system, and programmin

guages that provide application programmers with a high level abstraction of the sy

The system itself creates, schedules, and utilizes distributed objects to execute the a

tion programs.
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Legion security architecture follows the overall design philosophy of the project --

single policy or static set of policies will satisfy every user, so users must be allow

determine their own priorities and to implement their own solutions as much as pos

[Grimshaw 1998]. The architecture requires that every class defines a special membe

tion MayI , which has default behavior granting access. Legion security automatically

this function before any method invocation, and permits the invocation only if MayI  grants

access. The approach supports mandatory AC via implementation inheritance or d

tion. In order to exercise MAC, an implementation of the MayI  method must either dele

gate its behavior to or inherit it from an organization-wide implementation of MayI . This

raises the question of performance scalability. DAC policies are supported via cu

implementation of MayI  for a class. Class implementers can resort to the default im

mentation of MayI , granting access unconditionally, or inherit implementation from a c

they trust, or write a new one. The code for implementing the security policy is loca

to the MayI  method rather than distributed among the member methods. Method IWan-

tTo , a counterpart of MayI , is invoked by Legion security mechanisms every time 

object makes an invocation on other objects. This enables the enforcement of lattice

mandatory security policies [Bell 1975], which control the flow of information to and fr

objects.

By enabling nominal initial overhead with simple AC policies, Legion security des

features minimality principle. The use of class-specific MayI  and IWantTo  methods

makes the implementation of arbitrary discretionary policies on class-by-class basis

However, the enforcement of mandatory policies or those discretionary policies tha

to be consistent across several systems, seem to be difficult because security admin
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do not have control over what logic is implemented by application objects launche

users. Futhermore, the change of enterprise policies requires changes in implemen

of MayI  and IWantTo  methods, which is not a realistic requirement for contempor

enterprises with large-scale deployments of service-based and object-based applic

This can be avoided by using only one instance of these methods across multiple a

tions but then the performance should be addressed. Also, implementation inherita

delegation requires control over the implementation of an application system, w

becomes less and less realistic with advances of COTS and component systems p

by various vendors.

3.2.2.5 Security Meta Objects

Security meta objects (SMOs) [Riechmann 1997, Riechmann 1998] is a paradigm

posed recently by Riechmann and Hauck from the university of Erlangen-Nurnberg

many. The area of its application is strictly object-based systems. 

They propose to “attach” one or more special objects to an object reference. The

cial objects are invoked for each security-relevant operation on the object referenc

special objects are not visible to the application; that is, protected and unprotected

references look the same to it. Such special objects can be considered as meta objec

1987]. SMOs are attached on a per-reference basis. There may be many referenc

object which are not protected or protected by a different SMO. If a client invokes a m

via a protected reference, a special check method of the meta object is implicitly inv

This method gains access to some meta information, such as name and paramete

method to be invoked. The check method can decide whether it wants to grant acc
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not. To grant access, it returns control to the run-time system, which continues wi

method invocation. If access is to be denied, an exception is raised or the invocation

minated with an error result. If several SMOs are attached to the same reference, th

are “asked” sequentially before access is granted. A single SMO can be used to prote

tiple references. It is not possible to detach SMOs from a reference unless the

removes itself.

Meta objects can be used for enforcing arbitrary AC policies as well as for implici

transitive AC of object references passed as a parameter or result. Another advantag

approach is that it allows the development of SMOs totally independent of the object

protect and vice versa.

The approach provides flexibility lacking from other paradigms in this direction, s

as Legion (Section 3.2.2.4). In particular, it allows “attaching” multiple SMOs to the s

object reference so that several policies or additional functionalities can be compose

is very similar to CORBA request interceptors [OMG 1996a], which are invoked befo

invocation is scheduled on an interface implementation by the ORB or before it is pre

to be sent to another CORBA object. However, SMOs are “attached” to an object refe

Whereas, CORBA interceptors are “attached” to an instance of an interface implemen

identified by an object key in the scope of the object adapter. Thus, the same interc

are used to control access to an object, as opposed to the SMO paradigm, where d

SMOs can be attached to different object references that “point” to the same object.

In addition to the general limitations of proxies and interceptors direction discuss

Section 3.2.2, SMO paradigm has a number of its own drawbacks. First, in order f
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SMO approach to be realistic, support for meta-objects is needed in the desired midd

technology. SMO authors use MetaJava system [Kleinoder 1996] to prototype the co

However, to the best of our knowledge contemporary industrial middleware systems

as CORBA, DCE, Java, and DCOM do not support attachment of (meta) objects to 

references. Second, they assume that object references are safe, that is, the refere

only generated and controlled by a trusted run-time system and cannot be tampere

It is a very restricting assumption. Third, we cannot find a solution for the problem w

the policies governing access to an object change, in such a way that new SMOs nee

added or old ones removed or replaced, after the object’s reference has been releas

means that policies for an object cannot be changed after an object reference is rele

the world. This renders SMO-based solutions unusable for the real-life computing 

prises, unless the limitation is somehow addressed.

3.2.3 Authorization Servers

The third direction in AC for distributed application systems is based on authoriz

services. Such a service is logically one per policy domain, even though its instanc

be replicated in order to achieve desired level of availability, fault tolerance, perform

and scalability. Authorization decisions are made by an instance of the service -- au

zation server. An application system enforces decisions made by an authorization s

without knowing how they have been made, as shown in Figure 3-10. Thus both the

cation and the authorization server are part of a reference monitor [Anderson 1972].

We consider a research project on generalized framework for AC (GFAC) [Abr

1991, Abrams 1990a, Abrams 1989, Abrams 1990b] at the MITRE Corporation as 
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decessor of all other attempts to develop the concept of authorization service. The 

endeavored to build a theoretical framework that explicitly recognizes the main info

tion components for AC -- subject and object security-related attributes, access co

authorities, and rules, where they showed that “the rules for AC are an entity that is se

from, although necessarily related to, the model of the trusted computing base (TCB)

face” [LaPadula 1990]. Moreover, La Padula concludes that in a networking environ

“one can conceive of an access control engine realized as a server, with access reque

dled via a remote procedure call mechanism” [LaPadula 1990].

The main advantages of approaches based on the concept of an authorization

are:

• Logical centralization of AC rules, which gives inherent consistency 

coherency of authorization policies enforced throughout a policy domain.

Figure 3-10. Authorization Servers

Applicat ion
Authorizat ion Service

Access Access Decision

Pol ic ies
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• Ease of policy change and update because authorization is made in a log

single place.

• Since authorization logic is centralized and decoupled from the applica

logic, it is possible to replace a policy with a new one of a different t

without affecting application systems.

• Centralization of authorization rules naturally features single point 

administration for all systems belonging to one AC policy domain, significa

lowering the cost of administration.

• Since an application system decides when to obtain an authorization de

from the server, it can do so right at the time when such a decision is nee

• Authorization decisions on resources of any level of granularity can be obta

from the server because an application uses the server while it is proces

request. This lifts the limitation of the other approaches, namely Proxies

Interceptors, in which the granularity can be only as fine as a method o

interface instance.

For this approach to be feasible, several important issues must be addressed. F

much more challenging to design an implementation of such a server so that it do

become a bottleneck in terms of performance. Second, if the server fails, all applicatio

tems served by it will have to resort to a simplistic and very limiting policy such as “alw

deny” or “always grant,” which would render systems un-operational. Thus provisio

high degree fault-tolerance needs to accompany such servers. We describe in de
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reported work on authorization servers since it directly relates to the subject of this d

tation.

3.2.3.1 Authorization Server from HP

The design principles described by Varadharajan et al. in [Varadharajan 1998]

used in the development of Praesidium Authorization Server [HP 1996], which is a

based authorization facility for distributed application systems. The work, according 

paper, began in 1993, although the paper, apparently the first research reporting the

appeared in 1998. This is one of the first works in the area of authorization service pr

design and implementation for distributed systems that has been reported in the lite

Varadharajan et al. outline several design principles for authorization in distrib

systems that some architects of enterprise security systems might find useful, alt

these principles are not supported with any study on their validity. The authors prop

classify security information in a two-dimensional space: one dimension is the gene

and the other is the dynamics of the information. Hence, they identify three groups of 

mation: generic and static, specific and static, and specific and dynamic. Using this 

fication, they suggest to design distributed security infrastructure in such a way th

information is stored either in a central server and is “pushed” to the target by the clie

near or on the target and “pulled” at the time of the decision process. The design s

tions outline three main parts of an authorization infrastructure: 1) a domain-wide c

authority storing and managing generic-static security information, 2) a domain-wide

tral authority dealing with specific-static information, and 3) a per target (or per a gro

related targets) component dealing with specific-dynamic information.
78



ecks.

 the

eck if a

nction

III).

n lan-

s.

uted

e such

esen-

 infor-

access

cation

s eval-

d the

minis-

 (fur-

 of pre-
Another contribution of the work is the location and the types of authorization ch

Although it is not a novel point of view, we did not encounter similar considerations in

literature. The paper suggests considering three points of authorization checks: a ch

subject should access an application at all (Level I), then a check on the type of the fu

to be performed (Level II), and a check from within the application program (Level 

We believe that the value of this classification is in the establishment of the commo

guage and conceptual points for reasoning about authorization in distributed system

The authors distinguish between two stages in the functionality of their distrib

authorization service: the administration phase and the “run-time” phase. They mak

a delineation because they bring forward two arguments for maintaining distinct repr

tations of authorization information in the service. The arguments are the existence of

mation captured during the administration phase that can be compiled before 

decision time for the performance purposes, and the possibility to use different repli

strategies for the administrative information versus the information needed for acces

uation decisions at the application servers. This premise is the driving force behin

design of the authorization server, which considers the system as two domains -- ad

tration (the management of privileges and profiles granted to subjects) and run-time

nishes authorizations to applications).

The run-time domain consists of an evaluation engine and the run-time database

compiled rules. The authorization decisions are made in regards to the following:

Level I DCE IDL interface name (process names for GSS-API),
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Level II Name of the procedure specified by the DCE IDL file (applicatio

defined for GSS-API),

Level III authorization rule.

The service design outlines several elements and approaches that have been em

in other similar works including Adage (Section 3.2.3.3 on page 86) and the 

described in this dissertation. The main elements are the encapsulation of author

functionality into a service available in the distributed environment and the explicit 

sion of the server into administrative and run-time domains.

The main drawback of the reported work is the lack of any study on the validati

the design principles and evaluation of the authorization service proposed in the pap

research analyzing the suggested approach is in the paper or published separately.

3.2.3.2 Distributed Authorization Service from the University of Texas

Woo and Lam from the University of Texas at Austin researched the theory and

tice of constructing a distributed authorization service [Woo 1993a, Woo 1993b, 

1993c, Woo 1993d, Woo 1998]. As as result, they designed such a service [Woo 1

Woo 1998], the key features of which are a language-based approach for specifying

rization rules and authenticated delegation. Their design is based on the prior w

Neuman [Neuman 1993], where he outlines an authorization protocol for distributed 

cation systems.

They observe that most existing application systems perform their own authentic

authorization, accounting and auditing [Woo 1993c]. Even though authorization is 
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perceived to be tightly coupled with an application and hence cannot be easily abst

Woo and Lam suggest that a better approach would be to factor these functions o

implement them separately as a set of core services. The set can in turn be used a

for building other generic services and application systems.

The main motivation of their research was to study two problems in the constru

of an authorization service for distributed systems: (1) how to identify the commona

in authorization requirements of application systems and to design an appropriate a

representation to capture these commonalities, as well as (2) what secure protocols

be used for off-loading authorization from application systems to authorization serve

for interactions among various enterprise entities. Apparently they identify these pro

by drawing an analogy with authentication services in distributed systems [Burrows 

Lampson 1991, Woo 1992], where common representation of user credentials and i

tion protocols for secure exchange of authentication information are the distinguishin

tors of various architectures [IETF 1993, Molva 1992, Neuman 1994b, OMG 1996b,

1996, Schiller 1988, Tardo 1991]. However, it is not evident that those are really the

problems in constructing a distributed authorization service. An application system

example, might just use RPC over secure (i.e. authenticity, confidentiality, and inte

protection) channel to obtain an authorization decision from an authorization s

[Beznosov 1999b, Varadharajan 1998, Zurko 1998] thus avoiding the issue of the in

tion protocols. 

The authors claim the following advantages of a separate authorization service

1993c]: 1) savings in re-implementation effort for each application system, 2) applic
81



t, 3) a

 deci-

rvice

secu-

e of a

e uni-

trib-

 Lam,

ion

zation

milar

heir

l as

alf

 the

r this
systems are relieved of the authorization task, which can lead to higher throughpu

specialized authorization service can afford the use of better methods in making AC

sions than would be justified for individual application systems, 4) an authorization se

can be verified to be secure once and for all, reducing the complexity in verifying the 

rity of an application system, 5) anonymity (if desired) can be achieved with the us

trusted authorization service, 6) a uniform authorization service can contribute to th

formity of accounting and auditing functions, hence facilitating the construction of dis

uted accounting and auditing services.

The architecture of the distributed authorization service, proposed by Woo and

consists of five main entities:

1. Service Locator. It responds to a client's request with a list of applicat

systems that implement the requested service, and possibly a list of authori

servers for the application systems. In its functions, such a locator is very si

to CORBA directory or trader services.

2. Authentication server. An authentication server authenticates users during t

initial sign-on and supplies them with an initial set of credentials, as wel

enables mutual authentication between clients and servers.

3. Authorization server. An authorization server performs authorization on beh

of an application system if the system elects to off-load its authorization to

server. To do so, an application needs to contract an authorization server fo
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purpose using a contracting protocol. An authorization server provides cl

with authorization certificates which are to be forwarded by clients 

applications along with their requests.

4. Group server. A group server maintains and provides clients with gro

membership information in the form of (non)membership certificates to

forwarded to the authorization server together with the client’s requests. 

5.  System monitor. By the means of several processes executing a distrib

algorithm, a system monitor tracks the values of system predicates indic

overall system status. It is not clear why Woo and Lam included a sy

monitor, pertaining more to the network management then to security, in

architecture of an authorization service.

The entities are services that in concert provide the functionality required for an a

cation system to delegate authorization and to monitor the systems. While being log

disjoint, all or some of them can be integrated into one server.

Woo and Lam designed a protocol enabling the interaction among the five entitie

are going to omit a detailed description of the interaction and the supporting pro

which can be found in [Woo 1993c]. Here, we will point to the key features of the inte

tion required for the successful use of authorization in the model.

Application system E locates, possibly through a service locator, an authoriza

server A, and, after mutual authentication via authentication service, contracts it to a

rize access to E. The contract is enacted using a contracting protocol at the end of wh
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has an authorization specification, which is a description of authorization poli

expressed in generalized ACL (GACL), governing access to E services. Upon success i

contracting, E notifies service locator that A is delegated to perform authorization foE.

From now on, every client is responsible for obtaining a reference to A from a service loca-

tor, and acquiring an authorization certificate from A, before E will serve the client. A group

service comes into play, when a client requests an authorization certificate from A, which

might require the client to obtain one or more (non)membership certificates from a 

server, before A can authorize the client. 

The ideas used by Woo and Lam (we will refer to it as WL architecture/service

very similar to the ones in Kerberos -- a client goes to a trusted third party (TGS in

beros, and authorization service in WL work) and gets a ticket (session key in the f

and authorization certificate in the latter) in order to access a server. The work seem

an effort to cure Kerberos and provide authorization service that would be in harmon

it. Kerberos lacks the management of subject privilege attributes and does not assu

Figure 3-11. Authorization-related Interactions (from [Woo 1993c])
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middleware infrastructure in place. This is why such different functionalities and c

sponding services, as authentication, privilege attribute management (via group se

location discovery, authorization, and even system monitoring are mixed into WL arc

ture.

The concept of a group service deviates from the traditional model where subjec

ilege attributes (including group membership ones) are identified during authentic

phase, and fixed during the session lifetime. The group service allows the use of au

cation technology that is not capable of identifying all privilege attributes of the su

during authentication phase. This can potentially make the authorization process ver

ficient, if the client has to interact additionally with the remote group server for each a

cation request.

The granularity of authorization decisions in WL solution cannot be fine because

to contacting an application, the client needs to know exactly for what authorizat

should ask the authorization service. For example, in a health care organization tha

service allowing various queries of type “give me records of those patients that

attribute X,” the client would have to obtain authorizations for accessing records 

patients selected by the query, which is not possible to know before the query is perfo

In some cases, a client knows at most the application and its function that it wants to i

and the invocation arguments, and not what resources have to be accessed in orde

form that function. This makes WL authorization service architecture useful only for 

network services as Telnet [Postel 1983], FTP [Postel 1985], etc., where the only au
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zation required is to open a session with the server. The rest is controlled via ope

system AC mechanisms.

Another critique about WL approach is the contracting protocol between an ap

tion system and the authorization server. The authors assume that the application

owner and the source of its authorization policies. However, in most mid to large size

nizations, authorization policies are enterprise-specific, and not application-specific. 

the policies should not reside on the application. An application ideally should n

involved in policy management, administration, or distribution.

WL architecture cannot be used in those distributed computations which requ

invocation chain with the delegation of client privileges to the intermediate serv

because the client is involved in obtaining authorization for any invocations on its b

This limits the approach to those invocations where there are no delegated seque

calls among remote application servers.

Overall, the WL approach to application authorization achieves its goals listed a

However, it has significant limitations that render the applicability to only simple dis

uted systems that have Kerberos as their primary security technology, and do no

requirements for fine-grain AC or invocation with delegation of client privileges.

3.2.3.3 Adage

Zurko et al. report on the design and their studies made on the Authorization tool

Distributed Applications and Groups (Adage) [Zurko 1998], which is mainly an autho

tion service for distributed computing environments. Adage architecture was based 
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following principles: user-centered design, policy neutrality, modularity and the us

RBAC foundation. The primary goal of their work was to prototype an authorization

vice for use with distributed applications whose emphasis was on the usability of its a

istrative interface and tools.

The Adage system consists of a policy definition client for administering policies

a policy decision server for furnishing authorization decisions. The client contains the

and Authorization Language (AL) interpreter and communicates with the Authoriza

Decision Server (ADS) through the administration API. The GUI and AL can be repl

with other clients. Applications wishing an authorization decision access the ADS thr

the authorization API. Administration and authorization APIs are defined using CO

IDL and implemented via CORBA technology.

The ADS stores policy information supplied by the administrative clients in a data

called the User Authorization Database (UAD). The ADS contains a translator for t

forming the information in the UAD into a form more suitable for making fast authoriza

decisions. This database is called the Engine Authorization Database (EAD). The a

zation engine is the other major piece of the ADS, which uses the EAD to find rules 

cable to a given decision.

The main research objective of Adage project is to design an authorization servi

distributed application systems that would enable the use of administrative and appli

interfaces constructed according to the principles of psychological acceptability and u

ity and to perform usability study of the system. Such a goal is orthogonal to the goal 
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work described in Chapter 2. Hence, we believe that studies reported in this dissertat

complemented by the results reported by the Adage project.

3.3 Chapter Summary

The idea of authorization decisions being separated from application logic is not

An abstract model of a reference monitor [Anderson 1972] is a classical example of a

rization decisions being made and enforced outside of applications. The industry ac

considerable results in regards to the control of access to operating system and midd

resources. Most operating systems implement authorization logic in the security p

their kernels. There are also special-purpose ad-on security software packages that

authorization decisions to operating systems [Benantar 1996, CA 1998a, CA 1998b

1976].

Middleware technologies provide several means to control the use of distribute

vices exposed via application interfaces. There are two groups of technologies us

securing distributed software systems. One group is the technologies that merely p

party authentication, communication protection, and access control independently 

underlying communication technology: Kerberos [IETF 1993, Neuman 1994a], SES

[Kaijser 1998, Parker 1995] and GAA API [Ryutov 2000a]. This enables using and m

any desired communication protocols and media, but developers are overburdene

significant efforts to integrate the security technology with the underlying communicat

Another group is middleware technologies, such as CORBA [OMG 1996b], DCE 

tler 1995], Java [Lai 1999], and DCOM [Microsoft 1998], that provide the underlying c
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munication infrastructure along with the security subsystem, thus enjoying reaso

integration of both and much more seamless use of the former by developers. Mor

some of them enable basic access control completely outside of an application s

because access decision and enforcement occur before the remote call is dispatche

application server.

The Java Authentication and Authorization Service (JAAS) is designed to prov

framework and a standard programming interface for authenticating users and for ass

privileges to users. Access control is enforced only on system resources, such as file

ets, etc. but not on Java objects and other application resources. JAAS has very gen

extensible support for different privilege attributes which can be easily defined via

classes. The source code base, the identity of the code signer, and the value of the

privilege attribute are passed to the authorization code via Policy  class interface for

authorization decisions. JAAS allows any granularity of authorization decisions, a

does not constrain implementers of authorization policies to any particular mechan

to the information used for the decisions. It also enables seamless change of policies

ever, the architecture does not address the consistency of authorization policies acro

tiple applications. Nor does it have any provisions for achieving performance

administration scalability.

In the DCE, application systems are expected to enforce and provide administ

access to authorization policies themselves. An application system can use DCE 

control list (ACL) but it has to implement most of access control functionality, includ

ACL storage and manager, and its administration. DCE Security supplies an appli
89
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only with the caller’s subject and group identities. Cross-application administratio

authorization logic is not directly supported although administrative interface for doin

administration on per-application basis is defined, yet it is not a scalable solution.

The security model of DCOM resembles DCE security. As with DCE, ACLs are 

to code authorization policies. The main advance of DCOM is the capability of enfo

policies outside of objects with the presence of process and host-specific policies in

tion to the capability for an application to use DCOM Security API for its own AC. 

authorization model is significantly hindered by the granularity of the so-called “com

nent-specific” policy where there is no distinction among different objects and their m

ods in the same OS process. Component- and host-wide policies implicitly introduc

notion of access policy domains; still it is not clear if such domain partitioning is an ad

istratively scalable and functionally successful solution. The administration has to b

formed individually on each host or even for each process, which is better than in DC

still limited. Although DCOM Security provides ways for application systems to exer

fine grain AC in an application-specific way, application-specific policies canno

enforced and only security-related attributes of subjects and objects can serve as in

external AC.

SESAME is an architecture for security services which does not specify a comm

cation layer. Thus it cannot control pre/post invocation events. This is why AC and 

security functionality has to be specifically activated by an application. This prev

SESAME from providing AC externally to applications. Another drawback of SESA

authorization is the lack of support for applying one policy to several application sys
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located on separate hosts. The unit of authorization check is an application syste

these, especially the granularity of AC, make SESAME less attractive then JAAS, 

DCOM or CORBA technologies for engineering access control to application resou

However, SESAME is neutral to the underlying communication protocols, and is kn

for its advanced model of privilege attributes management and propagation. This m

indispensable for building heterogeneous, multi-technology and multi-organization di

uted applications that require authorization based on privilege attributes, other tha

identity, and the use of different communication technologies.

In CORBA Security, access control can be enforced completely outside of an ap

tion system. AC decisions are based on subject privilege attributes, required rights

method, and the access control policies of the domains to which the object belongs. T

model scales very well without losing fine granularity, for the decisions could be spe

to each object, if the object is located in a separate domain, or a large group of object

be associated with one policy domain. Unlike DCOM, CORBA objects residing on di

ent computers can be associated with the same policy domains. Because CS 

advanced concepts of privilege attributes, it enables AC policies based on roles, g

clearance, and any other security-related attributes of subjects. User grouping via pr

attributes, object grouping via policy domains, and method grouping via the conce

required rights enable high administration and performance scalability of AC mechan

If an application system is to enforce its own AC, it can do so with the help of CO

Security API, which allows it to obtain subject security attributes, including privil

attributes. However, application-specific policies are difficult to enforce and the us

application-specific information in the CORBA AC is limited.
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Generic Authorization and Access Control API (GAA API), published as an IE

Internet draft, defines a framework for application authorization. The API aims to ad

the lack of standard authorization interfaces for those applications which use the g

security service (GSS) API. This is why GAA API’s authorization model specifically 

into the existing GSS API. If an application uses GSS API, which provides very ge

low-level abstraction, and it requires the protection of fine grain resources or the en

ment of complex authorization policies, then GAA API defines interface with enough c

bilities for most applications. The main advantage of the API over the other revie

models is the support for the very flexible and powerful concept of additional condi

that can support application-specific policies. The drawbacks of the API are that it

defines the interface between an application and an authorization mechanism, a

model addresses neither administration scalability nor the consistency of authorizatio

icies across multiple applications.

Ideally, all security functionality should be engineered outside of an application

tem, therefore making it so called “security unaware.” However, this is difficult to ach

for the majority of application systems, where access control, and other security po

are too complex, or require too fine control, to be supported by the general-purpose s

technologies. This is why fine-grain control of distributed application resources is don

ditionally in an ad-hoc manner [Wilson 1997], and there are no automated means to 

enterprise-wide consistency of such controls.

The research community has being working towards systematic ways of contr

access to resources in distributed heterogeneous application systems. There are thr
92
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research directions in addressing the problem. They are policy agents, interface prox

interceptors, as well as enterprise-wide authorization services.

The direction of policy agents is motivated mainly by the goal of accommodatin

existing body of products and technologies already deployed in organizations. Th

property of the direction is centralized AC management via the translation of authoriz

rules into languages supported by local mechanisms, and the distribution of the rules

systems, which is achieved with the help of policy agents residing on computers h

applications systems.

Approaches under this direction have a number of advantages: there is inheren

tolerance; enterprise security is naturally compartmentalized without penalizing run

performance; the architecture facilitates achieving nominal performance overhead; t

high degree of run-time autonomy -- a trait essential for achieving performance scala

and fault tolerance.

The main challenges facing the approaches are the consistency of enforced glob

icies and automation of mapping a global policy into various instances of AC mecha

languages and representations. The approaches also suffer from a number of inher

itations. First, the granularity and expressiveness of AC policies in a policy domain c

only as good as the policies supported by the most coarse-grain and least express

mechanism in that domain. Second, distribution of policy updates can be very slow, 

would easily make policies based on periodic authorizations un-affordable. The dire

of policy agents becomes irreplaceable, if other approaches, such as proxies and au

tion services, fail in those circumstances when application systems are already dep
93



ewly

eption

xter-

and/or

ns are

ges to

s size

tive to

ations.

ptors

ocally

 AC

ethod

r before

values

eeds to

 many

nforced
The question if it is the best way to address the problem of application-level AC for n

developed systems remains opened.

The approaches under another direction employ either interface proxies or interc

of inter-application communications. Access to an application system is controlled e

nally. Authorization decisions are made before an application system gains control 

after it dispatches an invocation to another system. In order to achieve it, invocatio

intercepted either in the communication, middleware, or at the application layer.

The main advantages of the direction are that it does not require almost any chan

the application system, the reference monitor is implemented externally to it, and it

can be controlled by security developers. This makes the direction a good alterna

policy agents approach for controlling access to resources of already deployed applic

Moreover, if an existing application lacks any AC mechanism, proxies and interce

become the only choice. Another advantage is the ability to make all the decisions l

to an application system, which facilitates performance scalability.

There are a number of significant limitations though. First, the granularity of

cannot be finer than method and, when arguments can be interpreted outside of m

implementation, its arguments. Second, the decisions always have to be made eithe

or after an application system is in possession of control. Third, variables, whose 

become available at some point after the method is invoked but before a decision n

be made, cannot be used in authorization decisions. Fourth, since there are as

instances of access controls as application systems, insuring the consistency of e
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policies as well as the coherency of data used for authorization decisions becomes 

lenge.

Another direction is based on authorization services. Decisions provided b

instance of the service, authorization server, are enforced by an application system

an application system and an authorization server constitute a reference monitor,

requires an application system to be trusted to enforce AC decisions.

The goal of authorization services is to factor common AC decision functions o

application systems and implement them separately as an infrastructure service. Th

advantages of the direction are inherent consistency and the coherence of authorizat

icies; the ease of policy changes and updates because authorization is made in a l

single place; the ability to change policies and their policy types without affecting app

tion systems; the relatively low cost of access control administration; the ability to o

authorization decisions just when they are needed; and potentially any level of gran

of protected resources.

However, in order to construct a successful architecture for a distributed authoriz

service, one must address several key problems. They are performance, fault tol

scalability, security of communicating authorization information, the guarantee of aut

zation decisions being enforced, and the common representation of information us

making the decisions.

We expect that successful architectural solutions most probably will employ a co

nation of proxies, interceptors, policy agents, and authorization services because so
95
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from all three groups complement each other. For systems with existing AC mecha

tightly integrated into applications, policy agents is the only choice. In those existing sy

tems where AC mechanisms are missing, weak, or have too coarse granularity, interceptors

and proxies, combined with the ideas from policy agents and authorization services could

cure the problem. New applications with requirements for fine-grain access control,

plex or very dynamic authorization policies or to be deployed in organizations of diffe

types (e.g. military, government, finance, health care, telecommunications) and size

be best constructed with the use of the authorization server approach.
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4Supporting RBAC Using 
CORBA Security

We surveyed the AC mechanisms of the existing middleware technologies in th

vious chapter and showed that they are inadequate for solving the problem of cont

access to application resources completely. However, some of the mechanisms, su

CORBA and DCOM, allow the enforcement of authorization policies outside of app

tions. In addition, they are very well integrated with the corresponding services. Thes

factors make the use of middleware AC mechanisms, when they are sufficient, more

able than application-level control. The latter is used when the mechanisms are funct

inadequate. Before a system architect opts to employ application-level AC, it is imp

to take maximum advantage of middleware AC. This is why the study of middleware

capabilities is crucial for engineering the protection of application resources. 

In this chapter, we make two contributions. First, we show the capabilities o

CORBA AC mechanism by providing a detailed and illustrative description. More im

tantly, we propose a CORBA protection system configuration which formally defines

state of the system. Using the definition, we specify an algorithm for making authoriz

decisions in CORBA. In addition to the precise explanation of the CS AC semantic

algorithm fills in the gap in the specification [OMG 1996b], which uses only English p

to explain how AC decisions are performed. Second, we show how role-based acce

trol (RBAC) models could be supported using the CORBA Security service. Using
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defined configuration of the CORBA protection system, we provide definitions of RB0

and RBAC1 models in the language of CORBA Security. Furthermore, we describe 

is required from an implementation of the CORBA Security service in order to sup

RBAC0-RBAC3 models. Our approach allows an implementation compliant with CS s

ification to support RBAC0. Additional functionality, which is beyond the scope of C

specification, should be implemented in order to support RBAC1 and/or RBAC2. This work

advances the understanding of CORBA AC mechanisms’ capabilities, which is vital 

use of middleware in protecting application resources. The content of this chapter is

on the materials from [Beznosov 1999a].

4.1 Overview of RBAC and Motivations

RBAC [Sandhu 1996] is a family of reference models in which permissions are 

ciated with roles and users are assigned to appropriate roles. A role can represent 

tency, authority, responsibility or specific duty assignments. Some variations of R

include the capability to establish relations between roles, between permissions and

and between users and roles. There are four established RBAC reference models: u

roles (RBAC0), role-hierarchies (RBAC1), user and role assignment constraints (RBAC2),

and both hierarchies and constraints (RBAC3). RBAC supports three security principles

least privilege, separation of duties and data abstraction.

A major purpose of RBAC is to facilitate access control administration and rev

RBAC is a promising approach to address the needs of the commercial enterprises

than lattice-based mandatory access control (MAC) [Bell 1975] and owner-based d

tionary access control (DAC) [Lampson 1971]. Recent series of papers describe w
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model or implement RBAC using the technologies employed by the commercial u

Oracle [Notargiacomo 1995], NetWare [Epstein 1995], Java [Giuri 1998], DG/UX [Me

1997], object-oriented systems [Barkley 1995], object-oriented databases [Wong 1

MS Windows NT [Barkley 1998], and enterprise security management systems [Awis

1997]. Evidence of RBAC recognition in the US government is the fact that the prop

rules on security from the Department of Health and Human Services [DHHS 1

include RBAC as one of the required choices for access control.

At the same time, the commercial market is experiencing the spread of systems

on CORBA technology. Due to its general nature, CORBA Security (CS) is not tailor

any particular access control model. Instead, it defines a general mechanism which 

posed to be adequate for the majority of cases and could be configured to support 

access control models. For example, it was shown how to implement lattice-based

using the CORBA authorization model [Karjoth 1998]. In the next few years we expe

witness significant financial investments in the enterprise-wide deployment of CS in 

mercial and government organizations, including those who will construct their sec

policies utilizing RBAC concepts. It is important to foresee if CS will fully support RB

models. However, we are not aware of any work in the research community tha

explored the potential of CS for the support of RBAC reference models.

4.2 CORBA Access Control Mechanisms

First, we give a detailed, though informal, description of the CORBA AC mechan

Then we formulate a CORBA protection state configuration and define the authoriz
99
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algorithm. We will use the language of the configuration later in the chapter to discu

support of RBAC by CORBA Security.

4.2.1 Informal Description

We introduced the main concepts of CORBA Security in Chapter 3. Before we go

detailed discussion of CS AC mechanisms, let us briefly review CS. In short, all o

invocations are mediated by the appropriate CS functions for the enforcement of v

security policies. The functions are tightly integrated with the ORB because all mes

between CORBA objects and clients are passed through the ORB. 

CS authentication architecture is very much similar to the one of SESAME. A 

uses a user sponsor to authenticate to the CS environment. A user sponsor is a logica

of client application. It authenticates on behalf of a user with and obtains authenticate

dentials from an instance of interface SecurityLevel2::PrincipalAuthenti-

cator , as shown in Figure 4-1. Instances of user sponsor implement user inte

Figure 4-1. Execution Context Creation

ORB
Security Enforcement Subsystem

Execution Context

Credential

Identity
Privileges

Client Application

Principal
Authenti

cator

User Sponsor

U ser
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specific to the authentication method supported by the concrete implementation of C

example, for password-based authentication, it prompts the user for user name an

word. For authentication based on smart-cards, it interacts with a smart-card read

(probably) prompts the user to insert the card in the reader. CS standard does not m

any particular authentication method. What it does specify is the interface of Principa-

lAuthenticator . An instance of PrincipalAuthenticator  conducts the actua

authentication and creates Credentials  object for a new subject. Based on the authe

tication data it received from a user sponsor and on the underlying security techn

(Kerberos, SESAME, or any other capable technology) as well as on any rules it a

to, PrincipalAuthenticator  instantiates Credentials  with various informa-

tion. The information in Credentials  constitute the identity of the new subject, whic

initiates requests on CORBA objects on behalf of the user. Authenticated security attr

are part of the information stored in the Credentials  object.

Access control and other protection in CS is policy-based. There are several ty

policies. One of them is AC policy. Any policy is associated with a domain, which is c

policy domain in CS terminology. A policy domain is an abstraction that allows secu

administrators to group objects in groups and assign policies to the groups. Objec

have common security requirements are grouped in the same security policy do

Domains allow the application of AC policies to security-unaware objects without re

ing changes to their implementations or interfaces. Figure 4-2 illustrates the conce

domains and policies. It shows that a policy domain is associated with a policy. And o

(small circles) are grouped in the domain. They are governed by the policy. Polic

more than one type could be associated with the same policy domain and each obj
101
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belong to more than one policy domain. Domains could be organized in federations

archies or be completely unrelated. 

The policy enforcement code uses three sources of information: the policy o

domain(s) to which the target belongs, the information from the client’s credentials, an

message itself which specifies target object and the name of the method to be invo

the remainder of this section, we discuss in detail the AC mechanisms available in C

For illustrating our discussion, we will use Figure 4-3. The concept of a user is a

from the CS AC model. Instead a principal represents the user completely. The term prin-

cipal in the CS model is equivalent to subject in traditional AC terminology. We will use

these two terms interchangeably in this discussion. The notion of a session is indistinguish-

able from the notion of a principal. Thus multiple principals can act on behalf of a s

user. They all potentially have different sets of credentials and therefore exist in CS a

pletely independent entities. Among other data, principal credentials contain se

attributes. Hereafter, we understand attribute to mean “security attribute.” From the C

model point of view, a principal is nothing but an unordered collection of authentic

attributes. An attribute is a four-tuple a = {t, a, v, ds} with certain type t, defining authority

Figure 4-2. Domains and Policies in CORBA Security

Domain

Domain
Policy
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a, value v, and delegation state ds. Where  and state i indicates attribute

possessed by the immediate invoker, and d -- by the intermediate one. Attribute types a

partitioned into two families: privilege attributes and identity attributes. The family of p

ilege attributes enumerates attribute types that identify principal privileges. These 

include access identifier, primary and secondary groups the principal is a member of,

ance, capabilities, etc. Identity attributes, if present, provide additional information a

the principal. Examples of their types are audit id, accounting id, and non-repudiati

reflecting the fact that a principal might have various identities used for different purp

Principal credentials may contain zero or more attributes of the same type. An exam

security attributes assigned to authenticated principals is provided in Table 4-1. One

Figure 4-3. Relationships Among the Key Elements of CORBA AC Mechanisms
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standard CORBA attribute types is role. Due to the extensibility of the schema for de

security attributes, an implementation of CS can support attribute types that are not d

by the CORBA Security standard. Although the normative part of CS does not manda

way the attributes are managed, assignment of such attributes to users is meant to

formed by user administrators.

All a principal does in the CORBA computational model is invoke operations on

responding objects. In order to make a request one needs to know two things: objec

ence, which uniquely identifies an object, and operation name. CORBA interface

inherit from other interfaces via interface inheritance. An operation name is unique f

interface. Thus, any operation is uniquely identified by its name and by the name 

interface in which it is defined. Here, we use notation ikmn, to refer to n-th operation on k

th interface.

There is a global set of required rights for each operation. This set, together with a

binator (all or any rights), defines what rights a principal has to have in order to invoke

operation. Table 4-2 provides an example of required rights for operations on three

faces i1, i2, and i3. It is assumed that required rights are defined and their semantics ar

cisely documented by application developers who know the best semantics of

operation. Depending on the access policy (DomainAccessPolicy) enforced in a particular

Principal Attributes
p1 a1

p2 a2, a6

p3 a2, a3

p4 a4, a5

Table 4-1. Security Attributes Possessed by Authenticated Principals
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AC policy domain, a principal is granted different rights (GrantedRights) according to what

privilege attributes it has. Each DomainAccessPolicy (DAP) object defines what rights ar

granted for each security attribute. An example of a mapping between principal priv

attributes and granted rights is provided in Table 4-3. Security administrators are res

ble for defining what rights are granted to what security attributes in what delegation

on domain per domain basis. Whenever a principal attempts an operation invocation

cipal's effective rights are computed via operation AccessPol-

icy::get_effective_rights() . CS specification purposefully does not defin

how the operation combines rights granted through different privilege attribute e

shown in Table 4-3. The specifiers let CS implementers define the operation's in

behavior ([OMG 1996b, p. 122]). A simplest implementation 

O p era tions
Required 

Rights
Combinator Meaning

i1m1 r1 all
Only a principal who is granted right r1can invoke the 
operation.

i1m2 r1, r2 any
Any principal who is granted either r1 or r2 right can 
invoke the operation.

i2m1 r2, r3 all
Only a principal who is granted both r 2 and r 3 rights 
can invoke the operation.

i2m2 r2, r3, r4 all
Only a principal who is granted all r2, r3, r4 rights can 
invoke the operation.

i3m1 r1, r2, r3, r4 any
Any principal who is granted either of r1, r2, r3, r4 
rights can invoke the operation.

Table 4-2. Required Rights Matrix

Attributes

Granted Rights

Domain

d1 d2

a1 r1 r2
a2 - r1
a3 r2, r3 -

a4 r3 r1, r4
a5 r1, r2, r3 r2, r3, r4
a6 r6 r1

Table 4-3. Granted Rights Per Attribute
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get_effective_rights()  could be such that the set of rights granted to a princ

is a union of rights granted to every security attribute the principal has. For our exa

we will assume exactly this implementation of the operation. If we use our example of

rity attributes assigned to principals p1, p2, p3, and p4 (Table 4-1), and the examples o

required (Table 4-2) and granted (Table 4-3) rights, then Table 4-4 shows what righ

principals are granted in each domain. Therefore, the principals can invoke operati

shown in Table 4-5. Note that because principal p2 is granted only right r6 in domain d1, it

is not permitted to invoke any operation because right r6 is not sufficient for invoking any

operation according to the Required Rights Matrix (Table 4-2).

4.2.2 CORBA Protection State Configuration

Having informally discussed the CS AC model, we define the protection state co

uration of a CORBA system in Defintion 4-1. An implementation of security service c

pliant with CS is supposed to yield the same access control decision as the one de

Principal

Granted Rights

Domains
d1 d2

p1 r1 r2
p2 r6 r1
p3 r2, r3 r1
p4 r1, r2, r3 r1, r2, r3, r4

Table 4-4. Granted Rights Per Principal

Principal

Permitted Operations

Domains
d1 d2

p1 i1m1, i1m2, i3m1 i1m2, i3m1

p2 - i1m1, i1m2, i3m1

p3 i1m2, i3m1 i1m1, i1m2, i3m1

p4 i1m1, i1m2, i3m1, i1m2, i2m1 i1m1, i1m2, i3m1, i1m2, i2m1, i2m2

Table 4-5. Operations Permitted to Principals
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by Algorithm 4-1. Function effective_rights looks up GRM to obtain granted rights for eac

attribute in all domains to which object o belongs. It combines those rights according to

implementation and returns effective rights for each domain. Results returned from 

Definition 4-1.  CORBA System Protection State Configuration

A configuration of a CORBA system protection state is the thirteen-tuple (A, IM, O,

R, D, C, RRM, DS, IDM, GRM, effective rights, combine, interface operation) interpret

as follows:

• A is the set of privilege attributes.

• IM is the set of operations uniquely identified by interfaces that they are defined o

• O is a set of distinguishable interface instances.

• R is the set of rights.

• D is the set of access policy domains.

• C = {all, any} is a set of rights combinators.

• RRM is the required rights matrix, with a row for every interface operation from 
and two columns. For the first column (Required Rights), we have 
For the second column (Combinator), we have .

• DS = { i, d} is a set of delegation states.

• IDM is the matrix of domain membership for interface instances with a row for e
domain from D and a column for every interface instance from O. We denote the
tents of (D, O) cell of IDM by [D,O]. We have ,a .

• GRM is the granted rights matrix, with a row for every attribute from A and a colu
for every access policy domain from D. We denote the contents of the policy do
from D. We denote the contents of the .

• effective_rights: , a function mapping a set a1,a2,...al of privilege
attributes (where ) in a domain  to a set of righ
r1,r2,...rp (where ) that are in effect for the given set o
attributes.

• combine:  a function mapping sets of rights returned fro
effective_rights for every domain in D the interface instance is a member of, to a set
effective rights.

• interface_operation:  a function mapping an operation name m and an

interface instance  into an interface operation uniquely identified on the in

face, which o implements.

a. T stands for true and F stands for false.

IM, Rights[ ] R⊆
[IM, Combinator] C∈

[D, O] {T, F}⊆ [d, o] T≡ o d∈⇒

A, D[ ] R⊆
D 2

A× 2
R→

i∀ s.t.1, i l  ai A∈,< < dj D∈
i∀ s.t.1, i p  ri R∈,< <

D 2
R→( ) 2

R→

M O× IM→

o O∈
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Algorithm 4-1. Authorization Decision in CORBA

Decide authorization for principal p = {a1,a2,...an} accessing operation with name m on

interface instance o where , m is a string that names an operation, an

.

Require: 

1:  {Empty an array of rights}

2: for all  d s.t. IDM[d,o] == T do

3:

4: end for

5:  {Combine effective rights into one set}

6:

7: if  RRM[i, Combinator] == any then

{Any right is required}

8: for all  r in RRM[i, Rights] do

9: if  then

10: return  T

11: end if

12: end for

13: return  F

14: else

{All Rights are required}

15: for all  r in RRM[i, Rights] do

16: if   then

17: return  F

18: end if

19: end for

20: return  T

21: end if

a1 ... an, , A∈

o O∈

interface_operation(m, o) IM∈

DER ∅←

DER[d] effective_rights(d, p)←

ER[d] combine DER( )←

i interface_operation(m, o)←

r ER∈

r ER∉
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tive rights serve as input parameters for the function combine. The latter combines them

according to its implementation. Rights returned by combine are checked against RRM. If

the match succeeds, then access is granted. Otherwise, access is denied.

Table 4-5 shows what operations can be invoked by the principals from our exa

For each domain, an access matrix from [Lampson 1971], such as in Table 4-6, co

constructed.

Three general observations are worth noting for an access matrix constructed f

CS system. First, subjects cannot be objects, i.e. the CORBA access control does n

the concept of operations on principals. It only has the concept of operations on inte

which are objects according to the terminology of the access matrix [Lampson 1971]

ond, since  (i.e. just  is not enough for ), a

in Table 4-6, the semantics of operations in a general case might be different. Thus, fo

subject s and object o, the content of cell [s,o] is specific to the object, i.e. no operation

permitted on one object could be permitted on another object because operatio

semantically different for every interface unless interfaces are related via inherit

Third, all implementations of the same interface in a given access policy domain are 

sented by the same object in the access matrix; therefore, implementations of the

Principal
Objects

i1 i2 i3
p1 i1m2 -  i3m1

p2 i1m1, i1m2 -  i3m1

p3 i1m1, i1m2 -  i3m1

p4 i1m1, i1m2 i2m1, i2m2  i3m1

Table 4-6. Operations Permitted to Principals

ikmp i lmq≡ k l≡ p q≡∧⇔ p q≡ ikmp i lmq≡
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interface are indistinguishable from the access control point of view. This is one of th

sons policy domains are important in the CORBA access control model.

4.3 Support of RBAC by the CORBA

4.3.1 Access Control Model

Among the four RBAC reference models defined by Sandhu et al. [Sandhu 1

RBAC0 is the base model. It requires only that a system has notions of users, roles, p

sions and sessions. There are no constraints on the assignment of permissions to r

users to roles. RBAC1 has hierarchies of roles in addition to everything RBAC0 has.

RBAC2 has constraints on the assignment of users to roles and permissions to roles 

tion to everything RBAC0 has. RBAC3 combines RBAC1 and RBAC2. In this section, we

define RBAC0 and RBAC1 using the language of Defintion 4-1 for CORBA protectio

state configuration. This will help us show the correctness of our approach to config

a CORBA system for supporting various RBAC models. But first we introduce the orig

RBAC definitions.

4.3.2 Original Definitions of RBAC models

According to the RBAC model, each session is a mapping of one user to possibly

roles. When a user establishes a session, he or she activates a subset of roles assig

user by the user administrator(s). The permissions available to the user are the union

missions from all roles activated in that session. RBAC treats permissions as uninter

symbols because their semantics is implementation and system dependent.
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Definition 4-2. RBAC0

The RBAC0 model has the following components:

• U, R, P, and S (users, roles, permissions and sessions respectively),

• , a many-to-many permission to role assignment relation, 

• , a many-to-many user to role assignment relation, 

• user: , a function mapping each session si to the single user user(si) (constant 

for the session’s lifetime), and

•  a function mapping each session si to a set of 

 (which can change with time) and session si has 

the permissions 

Definition 4-3. RBAC1

The RBAC1 model has the following components:

• U, R, P, S, PA, UA, and user are unchanged from RBAC0,

•  is a partial order on R called the role hierarchy or role dominance rel

tion, also written as , and 

•  is modified from RBAC0 to require 

 and session si has granted rights 

 (which can change with time) and ses-

sion si has the permissions 

PA P R×⊆

UA U R×⊆

S U→

roles : S 2
R→

roles si( ) r  |  user si( ) r( , ) UA∈{ }⊆

p  |  p r( , ) PA∈( ){ }
r roles si( )∈

∪

RH R R×⊆

  ≥

roles : S 2
R→

roles s
i

( ) r   |  r'∃ r≥( ) users s
i

( ) r'( , ) UA∈[ ]{ }⊆

r  |  a″∃ a≤( ) r a″( , ) PA∈[ ]{ }
a roles pi( )∈

∪

p  |  r″∃ r≤( ) p r″( , ) PA∈[ ]{ }
r roles si( )∈

∪
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We reproduce definitions of RBAC0 (Defintion 4-2) and RBAC1 (Defintion 4-3)

models from [Sandhu 1996] to help the reader in understanding the rest of the chap

4.3.3 RBAC0: Base Model

For the base model RBAC0, the four sets of identities are represented in CS as 

lows:1 users in RBAC map to users in CS; roles are represented by set A of privilege

attributes of type role; permissions are equivalent to the set of rights R in CS; sessions are

equivalent to principals which are nothing but sets of security attributes, from the C

point of view. RBAC0 in the language of CS is formally defined in Defintion 4-4.

1.  We do not mention CS AC domains because, as it will be shown in the example below, RBAC mo
can be supported in CORBA using a single domain.

Definition 4-4. RBAC0 in the Language of CORBA Security

• U, A, R, P (users, attributes of type role, rights, and principals, respectively)

•  a many-to-many assignment of granted rights to security attribute

type role relation.

•  a many-to-many user to security attributes of type role assignment 

tion.

• user: , a function mapping each principal pi to the single user user(pi), constant

for the principal lifetime, and

• roles:  a function mapping each principal pi to a set of privilege attributes

type role roles(pi)  and principal pi has the

granted rights .

PA R A×⊆

UA U A×⊆

P U→

P 2
A→

roles pi( ) a  |  user pi( ) a( , ) A∈( ){ }⊆

r  |  r a( , ) PA∈( ){ }
a roles pi( )∈

∪
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It is easy to see that the definition describes a system compliant with the RBAC0 def-

inition provided in [Sandhu 1996]. Given the definition, we will show how a CORBA p

tection system specified by a configuration language from Defintion 4-1 could be us

implement a security system compliant to this definition of RBAC0. PA relation is specified

by the granted rights matrix GRM. UA relation is managed by user administrators in CS t

define what values of attributes of type role are assigned to users. However such m

ment functionality is beyond the scope of CS specification, which means that functio

defined by UA relation is implementation-specific. An implementation of Principal-

Authenticator 1 initializes new principal credentials with security attributes accord

to UA. An example is provided in Table 4-1, where attributes a1 through a6 have the type

role. The value of the principal privilege attribute of the type AccessId is equivalent to the

return value from the function user. An implementation of PrincipalAuthentica-

tor  should initialize principal credentials according to the function roles. Since a user in

RBAC0 can activate any subset of roles to which the user is assigned, implementa

UA ensures implementation of RBAC0. Thus, we have shown that all relations, functio

and sets specified in Defintion 4-4 can be directly supported by CS-compliant imple

tations. In order for a CS implementation to support RBAC0 it should:

1. comply with CS standard, and 

2. provide a means to administrate user-to-role assignment relation UA, and 

1.  As it was described in Section 3.1.5, a PrincipalAuthenticator  conducts the actual authentica-
tion and creates Credentials object for a new principal.
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3. provide a means for users to select through user sponsor a set of roles with which they

would like to activate the new principal, and

4. implement PrincipalAuthenticator  which creates principal credentials con-

taining privilege attributes of type role according to relation UA, and

5. implement PrincipalAuthenticator  which creates principal credentials con-

taining one and only one privilege attribute of type AccessId.

A straightforward implementation of RBAC0 in CS would be the one that uses priv

lege attributes of only type role for constructing granted rights tables, such as Table 4-

4.3.4 RBAC1: Role Hierarchies

RBAC1 is RBAC0 with role hierarchies. RBAC1 in the language of CS is formally

defined in Defintion 4-5.

Function roles is to be implemented and enforced by a PrincipalAuthentica-

tor  (Figure 4-1). A user provides to a user sponsor a set of roles with which they want th

Definition 4-5. RBAC1 in the Language of CORBA Protection System

• U, A, R, P, PA, U A and user are unchanged from RBAC0.

•  is a partial order on R called the role hierarchy, written as . It is th

same as in [Sandhu 1996].

•  is modified from RBAC0 to require

 and principal pi has granted rights

.

RH A A×⊆   ≥

roles : P 2
A→

roles pi( ) a  |  a'∃ a≥( ) users pi( ) a'( , ) UA∈[ ]{ }⊆

r  |  a″∃ a≤( ) r a″( , ) PA∈[ ]{ }
a roles pi( )∈

∪
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principal to be activated. The PrincipalAuthenticator , during the authentication

with the user sponsor, creates new credentials of the principal. The credentials have r

requested by user, provided that they satisfy the definition of function roles for RBAC1.

A valid implementation of RBAC1 could be one that allows a user to specify any r

junior to those of which the user is a member. In this case, an implementation of Princi-

palAuthenticator  activates all roles which are junior to the specified role.

In order for a CS implementation to support RBAC1 it should:

1. implement RBAC0, and 

2. provide a means to administrate the role hierarchy relation RH, and

3. implement PrincipalAuthenticator  which creates principal credentials con-

taining privilege attributes of the type role according to relations UA and RH, as well as 

function roles.

4.3.5 RBAC2: Constraints

Constraints in RBAC are predicates that apply to UA and PA relations, as well as to

functions user and roles [Sandhu 1996]. Constraints on UA relation are to be enforced b

an implementation of user administrator tools. Constraints on functions user and roles are

the responsibility of PrincipalAuthenticator  implementation. Constraints on PA

relation are to be enforced by an implementation of security administrator tools.

In order for a CS implementation to support RBAC2 it should:

1. implement RBAC0, and
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2. implement the support of constraints on UA relation by user administrator tools, and

3. implement PrincipalAuthenticator  with the support of constraints on func-

tions user and roles, and

4. enable enforcement of constraints on PA relation by security administrator tools.

4.3.6 RBAC3: RBAC1 + RBAC2

RBAC3 is a combination of RBAC1 and RBAC2 along with possibly additional con

strains on the role hierarchy. It can be implemented in CS as well. Obviously, in ord

a CS implementation to support RBAC3 it should:

1. implement RBAC1, and

2. implement RBAC2, and

3. implement possible additional constrains on the role hierarchy. 

The requirements for the support of RBAC1 and RBAC2 by CORBA Security service

implementation have already been discussed. The implementation of additional stat

strains on the RBAC1 role hierarchy is to be done by user administrator tools. For the 

port of dynamic constraints, additional functionality in the implementation 

PrincipalAuthenticator  is required, in addition to the administrator tools.

4.4 Examples

To illustrate the points made in the previous chapter, we describe a protection

(defined by Defintion 4-4) of a CORBA system that implements an example role hiera

We show how a CORBA-based distributed system could be configured to support R1
116



ccess

 role

ttom,

 per-
with an example hierarchy from [Sandhu 1998b] shown on Figure 4-4 and to protect a

to the implementations of CORBA interfaces shown in Figures 4-5 and 4-6. In RBAC

hierarchies, the convention is to depict junior roles (with less permissions) at the bo

and senior roles (with permissions inherited from the junior ones in addition to the new

Figure 4-4. An Example Role Hierarchy (from [Sandhu 1998b])

Figure 4-5. EngineeringProject Interface

Director (DIR)

Project  Lead 1 (PL1)

Product ion
Engineer 1

(PE1)

Engineer 1 (E1)

Project 1

Engineer ing Department  (ED)

Employee

Qual i ty
Engineer 1

(QE1)

Project  Lead 2 (PL2)

Product ion
Engineer 2

(PE2)

Engineer 2 (E2)

Project 2

Qual i ty
Engineer 2

(QE2)

En gineer ingProjec t

m ake_changes()
review_changes()
inspect_quality ()
report_problem ()
c lose_problem ()
create_new_release()
get_descr iption()
c lose()

<<Int erface>>
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missions) at the top. The following access control policies describe what action

allowed. All other actions are denied.

Authorization Policies

1. Anyone can look up an employee’s name and experience. 

2. Everyone in the engineering department can get a description of and report probl

regarding any project. 

3. Engineers, assigned to projects, can make changes and review changes related 

projects. 

4. Quality engineers can inspect the quality of projects they are assigned to. 

5. Production engineers can create new releases. 

6. Project leaders can close problems. 

7. The director can manage employees (assign/un-assign them to/from projects, ad

records to their experience, and fire) and close engineering projects.

Figure 4-6. Employee Interface

Em ployee

get_nam e()
ass ign_to_projec t()
unass ign_from _projec t()
add_experience()
get_experience()
fire()

<<Int erface>>
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We define that function effective_rights returns a union of granted rights per attribu

and combine returns a union of rights granted in each domain.

The intent of CORBA access policy domains is somewhat confusing. To help in u

standing it, we provide two solutions for enforcing these policies. The first uses a s

access policy domain. The second uses multiple domains.

4.4.1 Single Access Policy Domain Solution 

In order to implement the role hierarchy in CS without using access policy dom

we introduce two new interfaces EngineeringProject1  and

EngineeringProject2 , as shown in Figure 4-7. The following system protecti

state configuration could be used:

• A = {e, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dir}. All these attributes have type role.

Figure 4-7. EngineeringProject  Interface Hierarchy

EngineeringProject

m a ke_changes()
review_changes()
i nspect_q uality ()
report_problem ()
c lose_problem ()
c reate_new_release()
get _descript ion()
c lose()

<< Interface>>

EngineeringProjec t1
<< Interface>>

EngineeringProjec t2
<< Interface>>
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• IM = {Employee::get_name, Employee::assign_to_project, 

Employee::unassign_from_project, Employee::add_experience, 

Employee::get_experience, Employee::fire, EngineeringProject1::inspect_quality,

EngineeringProject1::make_changes, EngineeringProject1::report_problem, 

EngineeringProject1::review_changes, EngineeringProject1::close, 

EngineeringProject1::close_problem, EngineeringProject1::create_new_release, 

EngineeringProject1::get_description, EngineeringProject2::inspect_quality, 

EngineeringProject2::make_changes, EngineeringProject2::report_problem, 

EngineeringProject2::review_changes, EngineeringProject2::close, 

EngineeringProject2::close_problem, EngineeringProject2::create_new_release, 

EngineeringProject2::get_description}.

We do not use any implementations of interface EngineeringProject . Only 

derived interfaces are used.

• O = {e, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dir, prj1, prj2}. prj1 is an instance o

EngineeringProject1 , and prj2 is an instance of EngineeringProject2 . 

All other elements of O are instances of interface Employee .

• R = {gn, atp, ufp, ae, ge, f, mc1, rc1, iq1, rp1, cp1, cnr1, gd1, c1, mc2, rc2, iq2, rp

cp2, cnr2, gd2, c2}1

• D = {d1}

• C = {all} - we use only one combinator. 

1.  We used first letters of each operation to create a corresponding right.
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• RRM is shown in Table 4-7. We omitted column with rights combinators because 

required rights for all operations have the same combinator - “all.”1

• DS = {i, d}

• In the IDM, all interface instances are the members of the only access policy dom

• GRM is shown in Table 4-8. 

1.  We could have used “any” as well. When an operation’s required rights set consists of only one rig
effect of either combinator is the same.

Operations Rights

Employee::get_name gn

Employee::assign_to_project atp

Employee::unassign_from_project ufp

Employee::add_experience ae

Employee::get_experience ge

Employee::fire f

EngineeringProject1::get_description gd1

EngineeringProject1::inspect_quality iq1

EngineeringProject1::make_changes mc1

EngineeringProject1::review_changes rc1

EngineeringProject1::report_problem rp1

EngineeringProject1::close_problem cp1

EngineeringProject1::create_new_release cnr1

EngineeringProject1::close c1

EngineeringProject2::get_description gd2

EngineeringProject2::inspect_quality iq2

EngineeringProject2::make_changes mc2

EngineeringProject2::review_changes rc2

EngineeringProject2::report_problem rp2

EngineeringProject2::close_problem cp2

EngineeringProject2::create_new_release cnr2

EngineeringProject2::close c2

Table 4-7. Required Rights Matrix for Single Domain Solution
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•  -- union of 

granted rights per attribute.

•

The CORBA protection system configuration described above allows enforceme

the sample policies listed on page 118. For example, a lead of project 1 with role pl

vated is able to invoke operations get_name and get_experience on all implementations of

interface Employee  as well as all but close operations on all implementations of interfac

EngineeringProject1 .

From observing the configuration of the CORBA protection system in this solu

significant administrative overhead could be noticed. The overhead is due to the gra

use of a separate interface (EngineeringProject(1,2) ) per project . This is becaus

we purposefully limited our solution to a single access policy domain. It is shown b

Privilege Attribute Granted Rights

e gn, ge

ed gd1, gd2, rp1, rp2

e1 mc1, rc1

pe1 cnr1

qe1 iq1

pl1 cp1

e2 mc2, rc2

pe2 cnr1

qe2 iq1

pl2 cp1

dir atp, ufp, ae, f, c1, c2

Table 4-8. Granted Rights Matrix for Single Domain Solution

effective_rights dj a1 a2 …, , , al( , ) r  |  r GRM ai dj[ , ]∈{ }
ai 1 i l≤ ≤,

∪⊆

combiner1 d1, r2 d1, … r l d1, … r1 dp, r2 dp, … rm dp,, , , , , , ,( , )

r  |  r r1 d1, … rm dp,, ,
 
 
 

∈
 
 
 

 -- union of rights granted in each domain.
in each domai d

∪

⊆
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how the unnecessary redundancy of the protection system configuration data is elim

by using multiple access policy domains and a hierarchy of such domains.

4.4.2 Multi-domain Solution

Once we have an access policy domain per project, we can go back to usin

EngineeringProject  interface for all projects. We also take advantage of the 

capability to compose domains in various hierarchies. We choose a limited and e

understand tree-like hierarchy shown in Figure 4-8. The following configuration 

system protection state could be used:

• A, O, C, DS, effective_rights, and combine are the same as in the single domain solu

tion. 

• IM = {Employee::get_name, Employee::assign_to_project, 

Employee::unassign_from_project, Employee::add_experience, 

Employee::get_experience, Employee::fire, EngineeringProject::inspect_quality, 

EngineeringProject::make_changes, EngineeringProject::report_problem, 

Figure 4-8. Domain Hierarchy for Multi-domain Solution

Company (C)

Engineer ing Department (ED)

Engineering Project 1 (EP1) Engineering Project 2 (EP2)
123



.

hild 

em-
EngineeringProject::review_changes, EngineeringProject::close, 

EngineeringProject::close_problem, EngineeringProject::create_new_release, 

EngineeringProject::get_description}.

• R = {gn, atp, ufp, ae, ge, f, mc, rc, iq, rp, cp, cnr, gd, c}.

• D = {C, ED, EP1, EP2}

• RRM is shown in Table 4-9. It is the same as in Table 4-7 except one interface Engi-

neeringProject  is used instead of two identical interfaces with different names

• IDM is shown in Table 4-10. As illustrated in Figure 4-9, if an object belongs to a c

domain, according to the domain hierarchy shown in Figure 4-8, then it is also a m

ber of all the parental domains.

• GRM is shown in Table 4-11.

Operations Rights

Employee::get_name gn

Employee::assign_to_project atp

Employee::unassign_from_project ufp

Employee::add_experience ae

Employee::get_experience ge

Employee::fire f

EngineeringProject::get_description gd

EngineeringProject::inspect_quality iq

EngineeringProject::make_changes mc

EngineeringProject::review_changes rc

EngineeringProject::report_problem rp

EngineeringProject::close_problem cp

EngineeringProject::create_new_release cnr

EngineeringProject::close c

Table 4-9. Required Rights Matrix for Multi-domain Solution
124



nt of

 there

.

m can

t lead-

rvision

ct (we

 repre-

. Also,
The CORBA protection system configuration described above allows enforceme

the same policies as the configuration in the solution for a single domain. This time,

is no need either in having separate EngineeringProject(1,2)  interfaces per

project or in having redundant rights. In addition, RRM and GRM are more comprehensible

Due to the hierarchy structure of the access policy domains, the described syste

also support more flexible policies. For example, the GRM in Table 4-11, in addition to the

sample policies already described on page 118, supports a policy which allows projec

ers to add experience (right ae) to the records of the employees working under supe

of the leaders. In order to enable it, whenever an employee is assigned to a proje

assume each employee works on one project at a time) an interface implementation

senting the employee is moved to access policy domain of the corresponding project

Interface 
Instance

Domains

C ED EP1 EP2

e X

ed X X

e1 X X X

pe1 X X X

qe1 X X X

pl1 X X X

e2 X X X

pe2 X X X

qe2 X X X

pl2 X X X

dir X

prj1 X X X

prj2 X X X

Table 4-10. Interface Instance Domain Membership Matrix (IDM) for Multi-domain 
Solution
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Figure 4-9. Interface Instance Domain Membership

Privilege Attribute

Granted Rights

Domains

C ED EP1 EP2

e gn ge - -

ed - gd, rp - -

e1 - - mc, rc -

pe1 - - cnr -

qe1 - - iq -

pl1 - - cp, ae -

e2 - - - mc, rc

pe2 - - - cnr

qe2 - - - iq

pl2 - - - cp, ae

dir atp, ufp, ae, f, c - - -

Table 4-11. Granted Rights Matrix for Multi-domain Solution

C

E D

EP1 EP2

dir

e

ed

e1

qe1

pe1

prj1

pl1

e2

pl2
qe2

pe2
prj2
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the GRM enforces finer grain policy which allows only colleagues from the same de

ment to look up employee experience (right ge) .

4.5 Conclusions 

The understanding of middleware AC mechanisms is critical for protecting reso

of enterprise applications. In this chapter we not only described in details AC mech

of one of the most capable middleware security technologies -- CORBA Security -- bu

defined a configuration of the CORBA protection system. Using the configuration de

tion, we suggested an algorithm which formally specifies the semantics of authoriz

decisions in CS.

We defined RBAC0 and RBAC1 models in the language of CS and described h

RBAC0-RBAC3 could be implemented using CS. We discussed what functionality n

to be implemented, besides compliance with CS standard, in order to support RBA

illustrated the discussion with a single access policy domain and multi-domain examp

the CS protection system configuration, which supports a sample role hierarchy and 

policies.

Implementations compliant with the CS specification can support RBAC0-RBAC3.

However, additional functionality not specified by CS is required. Implementation

PrincipalAuthenticator  interface and user sponsor need to support roles and the

hierarchies (RBAC1). To support constraints (RBAC2), a PrincipalAuthenticator

has to enforce them. Tools to administer user-to-role and role-to-rights relations ar

required.
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This chapter develops a framework for implementing as well as for assessing i

mentations of RBAC models using CS. It provides directions for CS developers to re

RBAC in their systems and gives criteria to users for selecting such implementation

support models from the RBAC0-RBAC3 family. This work advances the understanding

the CORBA AC mechanism’s capabilities and by this maximizes its utility which is v

to the use of middleware in protecting application resources.

Although RBAC is shown to supersede major AC models, its capabilities are lim

and there could be authorization policies that would be challenging to model with it. 

the granularity of the CORBA AC mechanism is still limited to the level of interface o

ation. This is why we believe that the use of RBAC and CORBA does not address the

of all application domains. The rest of this dissertation discusses the second part 

approach, which addresses those cases when the RBAC model and CORBA mechan

inadequate.
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5Resource Access Decision Service

In the previous chapters we stated the problem of controlling access to the res

of enterprise distributed applications and reviewed available technologies along

related work. For those application domains where authorization policies can be sup

by RBAC and the granularity of the CORBA AC mechanism is sufficient, the framew

for implementing RBAC models using CORBA Security developed in last chapter c

be an adequate solution. But what to do with the applications whose AC needs canno

pletely be addressed by either the RBAC model or CORBA Security? In this chapte

introduce an approach which meets the requirements of other applications -- an archi

for resource access decision (RAD) service. Furthermore, we demonstrate its util

examples with complex access control policies. Some sections of the chapter are ba

the material from [Beznosov 1999b].

RAD defines a conceptual architecture that encapsulates authorization logic 

authorization service which is external to the application and is also independent of th

cific security models and policies. Such an architecture not only significantly simp

both application and security system development but also allows organizations t

formly manage and enforce their security policies.

The RAD approach addresses most other issues important for protecting appli

resources in enterprise distributed applications. It is possible to use as many types of 
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security attributes for authorization decisions as the underlying authentication techn

provides. The service architecture allows the use of information obtained from work

systems and other sources, thus supporting policies specific to the application dom

also enables the use of application-specific information in AC decisions. Due to the e

sulation of authorization logic into a separate service, which can be implemented as

work server, consistency of AC policies enforcement across applications can be 

achieved. In addition, the architecture supports the multi-policy authorization mode

it enables security administrators and application developers to maintain a clear sep

of responsibilities. To achieve these benefits, our design requires application-level en

ment of authorization decisions and assumes agreement on the semantics of resourc

between the application developer and the owner.

RAD architecture is mostly independent of the underlying security technol

although the current design takes advantage of the CORBA-compliant security infra

ture and compliments it with the capability of more sophisticated authorization. Note

it is by no means a replacement or substitution of standard CORBA Security service [

1996b]. Still, the RAD approach can be applied to most distributed computing env

ments.

Moreover, we show that the decoupling of authorization logic from application ca

done without complicated interactions between an application and the authorization s

and without significant communication overhead. Factors specific to the applic

domain can be supported by authorization systems using the traditional access 

[Lampson 1971] as an underlying implementation.
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5.1 RAD Architecture

The main objective of RAD is to decouple application-level authorization logic fr

application logic. As discussed above, the finest granularity level of AC provided b

main middleware technologies is at the level of operations on middleware objects

authorization service is to make decisions for access to those information and com

tional resources that are not first class objects or their operations. Thus, the service c

ments middleware AC mechanisms. It relies on and uses the middleware se

environment for secure authenticated communications (i.e. message authenticity, con

tiality and integrity protection) between the service and the applications as well as a

the service components. It also assumes that the underlying security provides a me

an application to obtain security attributes of the accessing subject. As we show

Chapter 3, these assumptions are valid for most middleware security technologies. 

5.1.1 Interface Between Application Systems and RAD Service

The RAD approach is a representative example of authorization services dire

described in Section 3.2.3. Like most of these services, RAD provides authorization

sions to an application system (AS). Authorization logic is encapsulated into RAD se

external to the application, which is traditionally part of an application program. Sinc

service can be logically centralized, the approach allows applications to enforc

according to the same enterprise-wide set of authorization policies thus naturally en

policy consistency. In our approach, the authorization decision is obtained after the m

on the object is invoked. Hence, an application can exercise access control of any gr

ity level by associating a resource name with protected elements of any size and sem
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The flow of interactions between application client, application system and an ins

of authorization service is depicted in Figure 5-1. The sequence of the interaction is 

lows:

1. A client of the application system invokes an operation on the application. 

2. While processing the invocation, the application requires an authorization dec

from the authorization service. 

3. The service makes a decision, which is returned to the application. 

4. The application enforces the decision. If access was granted by the authorizatio

vice, the application returns the expected results of the invocation. Otherwise, it 

returns partial results or raises an exception.

Simple interfaces between the application and the authorization service are us

application developer only needs to program a single invocation on the authorizatio

Figure 5-1. Interactions among Client, Application System, and RAD Service

1. Application  Request

           Target
Object

(ADO client)

Access Decision 
Object

Client

2. Authorization  request

3. Reply to authorization request4. Reply to application request

Application Client Authorization 
Service

Middleware

Application
System
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vice in order to obtain a decision. Each authorization request consists of client subjec

rity attributes, the name of the resource to be accessed, and the name of the operati

performed on the resource. The security attributes of the invoking subject are suppo

be obtained by the application from the middleware security infrastructure. The applic

is expected to compute the resource and operation names as part of its application lo

each authorization request, it receives back a binary (yes/no) decision. An appli

obtains an authorization decision only from one instance of RAD. It is the contract be

the application and its enterprise environment to request an authorization decision 

enforce it. 

A nominal amount of data is passed between the application and the authorizatio

vice in order to make authorization decisions. When making an authorization reque

application passes the following three parameters: a sequence of name-value pairs

senting a name of the resource to be accessed; name of the access operation (e.g. 

“read,” “write,” “use,” “delete”); and authenticated security attributes of the subjec

behalf of which the client is requesting access to the named resource.

Security attributes here are regular attributes of the current user session. Of t

parameters passed by the client, the first two (resource name and access type) a

worthy of discussion. We introduce an abstraction called “protected resource name” 

“resource name,” used to abstract application-dependent semantics of entities, the a

which is controlled by the application. A resource name can be associated with any

able asset of the application owner, the access to which is controlled according 

owner's interests. For example, electronic patient medical and billing records in a ho
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are usually its valuable assets. The hospital administration is interested in contr

access to the records due to various legal, financial and other reasons. Therefore, t

pital administration considers such records as protected resources. Moreover, di

information in those records counts as different resources, examples of which c

records from different visits or episodes for one patient. At the same time, a resource

can be associated with less tangible assets, such as computer system resources, i

CPU time, file descriptors, sockets, etc. The RAD service does not attempt to interp

semantics of the resource name. We will show in the discussion of the RAD design 

uses the resource name only to obtain additional security attributes and to look up a

policies governing access to the resource associated by an application system w

resource name.

Access operation abstracts the semantics of access to resource(s) associat

resource name. An application may manipulate patient records on behalf of differen

givers, or may provide different hierarchies of menus to different lab technicians. In e

case, it is up to the application system developers and the enterprise security admini

to agree on the semantics of the operation name used for each access. RAD does n

pret the semantics of access operation as shown in the description of the RAD desig

A system can communicate application-specific information to RAD service by en

ing it in resource and/or operation names. For example, withdrawal of $500 from a

account can be represented as an operation with the name “withdrawal:$500,” a

resource name carrying the account number. Simple and yet very generic data struct
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operation (arbitrary string) and resource name (a list of string name-value pairs) hav

expressive capabilities for this task.

Before an application requests a RAD server for an authorization decision, it is

posed to identify what the resource name and the access operation name are associa

servicing the client request. There is no particular algorithm defined for performing 

an association because for every application, or at least for every application doma

method of associating protected entities with abstract resource names can be differe

Our approach is very similar to most solutions based on authorization services 

way the client, AS and the RAD server interact, but it is different in the internal com

tion of its elements.

5.1.2 Logical Composition of RAD

RAD architecture aims to enable implementation of its components by various ve

due to the diversity in the requirements to AC policies, performance, scalability and

system properties from different government and commercial markets. Components

following types comprise a RAD service (Figure 5-2): The AccessDecisionObject

(ADO) serves as the interface to RAD clients and coordinates the interactions betwe

RAD components. Zero or more PolicyEvaluators  (PEs) perform evaluation deci

sions based on the AC policies governing the access to protected resource

DecisionCombinator  (DC) combines the results of the evaluations made by po

tially multiple PEs into a final authorization decision by applying certain combination 

icy. The PolicyEvaluatorLocator  (PEL), for a given access request to a protec

resource, keeps track of and provides references to a DC and potentially several PEs
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are collectively responsible for making the authorization decision. 

DynamicAttributeService  (DAS) collects and provides dynamic attributes abo

the client in the context of the intended access operation and resource name.

The components are only logically disjointed while in practice they can be co-loc

in the same process or host. This feature is provided to further the support for dynami

position and re-configuration, as well as for high availability and fault tolerance of the

vices based on RAD architecture.

Figure 5-2 shows interactions among components of authorization service. The

the following:

Figure 5-2. Interactions among RAD Components

Access Decision 
Object

Application System

 Policy

EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: * evaluate

RAD
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1. The authorization service receives a request via the ADO interface. 

2. The ADO obtains object references to those PEs and DC which are associated w

resource name in question. 

3. The ADO obtains dynamic attributes of the subject (client) in the context of

resource name and the intended access operation to be performed. 

4. The ADO delegates an instance of DC for polling the PEs (selected in Step 1) and

bining multiple results of evaluations made by PEs into a final decision. This is be

there can be several PEs responsible for making authorization decision.

5. The DC obtains decisions from PEs and combines them according to the combi

policy. The decision is forwarded to the ADO, which in turn returns the decision to

application.

To clarify the work of RAD components, we provide a short example of processin

authorization request in Figure 5-3. It shows the sequence of invocations among RAD

Figure 5-3. Interaction Diagram for Hypothetical Case

ADAS

access_allowed({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver, role=nurse})

PE RBAC PEDCDA

get_policy_decision_evaluators({patient_id=29984329,record_part=PN})

get_dynamic_attributes({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse})

combine_decisions({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse }, {RBAC PE})

evaluate({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse })

RAD

role caregiver
can read
patient_name
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ponents in a hypothetical case. For the sake of illustration, let us assume that ther

authorization policy containing a statement that a user can read the patient’s name 

the user is performing role caregiver. In this example, AS is requesting authorization to p

form access operation read on resource patient name. The resource is part of the medic

record on the patient with ID 29984329. Access is to be performed for a user with user

d, who activated role nurse which is senior to caregiver. The ADO obtains a list of refer-

ences to PEs and DC, which should be used for making an authorization decisio

resource with name {patient_id=29984329, record_part=PN}. The PEL returns a reference

to the DC and a reference to one PE – RBAC PE. The DAS does not change the list of sec

rity attributes, which specifies that the user ID is d and the roles the user activated are car-

egiver and nurse. RBAC PE implements authorization based on roles. According to 

authorization rules, users acting as caregiver have access to the names of all patients. T

the PE returns “yes” and the DC returns the same answer to the ADO, which authoriz

AS to access the name of the patient with ID 29984329 on behalf of user d.

RAD architecture is such that all its components could be replaced dynamically b

ferent implementations as long as they comply with the interface specifications.

enables the support for insertion and deletion of applications, changes in policies a

computing environment. For instance, if application insertion introduces new resour

be protected, a new PE (or even a set of PEs) can be dynamically added and PEL is

figured to use them. We will illustrate the support for changes in authorization polici

Section 5.2, where we discuss sample authorization policies and show how RAD ca

port them and their changes.
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Unlike most authorization services [Simon 1997, Varadharajan 1998, Woo 19

RAD architecture does not restrict its implementations in the type of supported auth

tion policies. This is why the scope of authorization policy representation is beyon

scope of RAD architecture, as shown in Figure 5-4. Each PE can be administered u

different interface and AC rules written in a different language. Such a design enabl

Figure 5-4. Main Run-time Elements and Their Appurtenance to the Architecture Sc
(from [OMG 1999c])
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use of the existing policy engines, which were not originally developed to be PEs

RACF [Benantar 1996]), and the support for future ones.

One authorization engine (supporting a particular policy) per request is used in A

[Jonscher 1995] to evaluate requested access. The introduction of multiple evaluato

a combinator in RAD provides ways for more than one policy (even of different type

govern authorization decisions for the same request. This is similar to [Bertino 19

where Bertino et al. define an explicit authorization model with conflict resolution 

overriding rules. In RAD architecture, such rules are implemented by a particular DC

One of RAD’s distinguishing architectural elements is the use of DAS. It enable

support of policies based on the factors whose value can change from request to req

is determined by the state of organizational work-flow. These factors are furnished by

in the form of dynamic attributes, syntactically equivalent to subject security attrib

ADO obtains them from DAS before it passes the request to the corresponding DC an

Dynamic attributes are attributes whose value can be determined only at the time w

request for an authorization decision takes place. Thus they are specific to the req

question. Examples of such attributes are relationships between physicians and pat

a hospital [Barkley 1999]. The introduction of DAS in RAD architecture increases the 

ety of information available for making authorization decisions, and enables the use

traditional access matrix [Lampson 1971] to support complex and dynamic AC pol

We will illustrate the benefit of DAS in Section 5.4.
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All RAD components, in addition to the run-time interfaces described above, 

interfaces to administer them. Those interfaces constitute the RAD administrative m

the scope and main elements of which are shown in Figure 5-5. 

Figure 5-5. Administrative Elements and Their Appurtenance to the Architecture Sc
(from [OMG 1999c])
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Even though RAD architecture purposefully does not provide a means of spec

authorization policies and their representation, it allows RAD administrators to apply

icies defined via implementation-specific PE interfaces to protected resources. This 

ried through with the notion of policy name and with administrative interfaces for PE

PEL. A policy name is employed to associate the policy with a resource name for thos

that can evaluate more than one policy. By naming a policy and avoiding a definiti

policy representation, we keep RAD architecture open to the multitude of existing

future authorization languages.

Run-time and administrative interfaces and the supporting data structures, all d

in OMG IDL, along with prose description of their semantics, constitute RAD architec

Its computational view is showed in Figure 5-6. The administrative part of RAD arch

Figure 5-6. Computational Part of RAD Architecture
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ture is designed to allow replaceable RAD objects within an implementation. For inst

AccessDecisionAdmin  interface contains operations for inspecting and specifying

reference to PEL. Operation set_policy_evaluator_locator()  allows a RAD

administrator to “point” the ADO to a different instance of PEL. After the change, the A

will use the new PEL. This is an example of how we address the goal of supporting ch

in policies and the computing environment.

5.2 Example

RAD conceptual architecture is very generic, and the role of RAD components a

as the interactions among them could be hard to understand. This section prov

detailed example for illustrating RAD architecture and its capabilities. The example fu

clarifies RAD concepts. It also shows how policies based on roles and relationships 

supported by a RAD service.

We consider a set of simplified but typical access control policies in the health

domain which has arguably one of the most complex AC requirements. Consider a h

computing enterprise consisting of many distributed systems, which are used for re

tion and billing, collecting results of laboratory tests and transcribed X-ray images, a

as for storing all other clinical information about patients including records of their v

to the hospital (for out-patients) and their stay over night, when they have compli

cases (for in-patients). 

Hospital employees involved in the care process are called caregivers for short. A car-

egiver accesses many of those clinical, laboratory, transcription and financial sy
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either directly with specialized client software or via general-purpose application 

grams. Such programs interact with several application servers in order to provide ca

ers with information needed for patient diagnosis and treatment. Access to p

information (patient records) is controlled by AC mechanisms employed by the comp

enterprise. 

5.2.1 Initial Policies

Let us assume that the hospital adopts the policy listed in Table 5-1 to co

employee access to the patients’ medical records. Let us also assume that all patient

consist of the parts shown in Table 5-2.

This policy is coarse-grain in regards to the classes of users. The policy allow

nurse to read regular records of any patient in the hospital; technicians have full ac

test results of all patients in the hospital; physicians have full access, except menta

mation, of the patients who have ever received care at the hospital. In addition, the 

does not reflect the fact that patients have relatives, guardians and other represen

Rule 
No.

Rule Definition

P1.1 Any caregiver can read patient’s name.
P1.2 Registration clerk can modify patient name and demographic information

P1.3
Nurse can read patient’s name and demographic information, modify cur-
rent episode demographic information, read current episode regular recor
and test results.

P1.4 Technician can modify current episode regular and sensitive test results.

P1.5
Physician Assistant, in addition to what a nurse can do, can also read all 
regular records of patients.

P1.6
Physician, in addition to what a physician assistant can do, can also modif
current episode regular and sensitive records, as well as read regular, se
tive records and test results from previous episodes.

P1.7
Psychiatrist, in addition to what a physician can do, can also modify menta
information.

Table 5-1. Access Control Policy (Policy 1)
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that are eligible to know some information about the status of their patient. Nonethele

us assume that the healthcare organization in our example has such privacy requir

that Policies 1 suffices. We will consider a new policy to deal with more complex AC d

sions later in Section 5.4.

5.3 Modeling Policies

Policy 1 can be implemented using the RBAC model with role hierarchy -- RB1

[Sandhu 1996]. In order to define the configuration of an RBAC1 system, one needs to

specify role hierarchy, user-to-role and permission-to-role relations, as well as func

user and roles. We define the role hierarchy (RH) in Figure 5-7. According to this hie

chy, for example, role physician assistant has as many permissions as role nurse plus its

own permissions, because physician assistant is senior to nurse. User-to-role assignmen

relation (UA) is shown in Table 5-3, where we can see that user g is assigned to role care-

giver, and user d is assigned to roles nurse and technician. This means that, when user d

logs into the system, the user can activate either role caregiver, nurse or technician,

whereas user g can only activate role caregiver. This because, according to the role hiera

Part name Abbreviation
Patient name PN
Demographic data DD
Current episode demographic data CDD
Current episode regular records CRR
Current episode sensitive records CSR
Current episode regular test results CRT
Current episode sensitive test results CST
Regular records from previous episodes PRR
Sensitive records from previous episodes PSR
Regular test results from previous episodes PRT
Sensitive test results from previous episodes PST
Mental information from all episodes AMD

Table 5-2. Parts of Patient Medical Records
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chy, a user can act in any role junior to the one he or she is assigned. If user d activates role

nurse, then the subject will be granted all permissions assigned to roles caregiver and

nurse. The permission-to-role assignment relation (PA) is presented in Table 5-4, ac

ing to which a nurse is assigned permissions to read demographic data (DD), curren

sode regular records (CRR), and current episode regular test results (CRT), as well 

and write current episode demographic data (CDD).

The configuration of a RAD server that performs authorization according to

RBAC1 system defined by the above PA, UA and RH relations, is depicted in Figure

Figure 5-7. Role Hierarchy (RH relation)

Roles
Users

a b c d e f g

Psychiatrist +
Physician +
Physician Assistant +
Nurse +
Registration Clerk +
Technician + +
Caregiver +

Table 5-3. User to Role Assignment Relation (UA)

Psychiatrist

Physician

Physician Assistant

Nurse

Caregiver

Registration Clerk Technician
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ADO obtains a reference for the DC and the only PE (RBAC PE) from the PEL, w

always returns the same references. The DAS returns the same list of security attribu

it received from the ADO. RBAC PE evaluates authorization requests using PA rel

The DC denies access if the PE returns “unknown” as the result of evaluation (for ex

if the resource name is not found in the PA table), otherwise it returns whatever th

returns.

Role

Resource

P
N

D
D

C
D

D

C
R

R

C
S

R

C
R

T

C
S

T

P
R

R

P
S

R

P
R

T

P
S

T

A
M

D

Psychiatrist RW
Physician W RW R R R
Physician 
Assistant

R R

Nurse R RW R R
Registration 
Clerk

W RW

Technician RW RW
Caregiver R

Table 5-4. Permission-to-role Assignment Relation (PA)

Figure 5-8. RAD Configuration for Role-based Policies
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We assume the availability of a distributed security environment which supports

vation of roles by users during the authentication process with enforcement of UA an

relations, and implementation of functions user and roles. This means that roles are imple

mented by the underlying security environment. There are security technologies cap

fulfilling this assumption. For example, we showed in Chapter 4 that CORBA security

vice [OMG 1996b] can support RBAC0-3 models. This is why in our example, an applic

tion making authorization request to a RAD service supplies a list of principal sec

attributes which contains all roles activated by the user. The list, as described ear

obtained by the AS from the distributed security environment. 

Another way of modeling the policy with RAD using RBAC1 would be to assign the

task of determining the user roles to the DAS or to RBAC PE itself. We preferred the

choice to the latter two because activated roles are security attributes managed b

administrators. They persist throughout the user session and should be activated du

authentication phase when the user logs into the system. This choice also supports d

separation of duties,1 a commonly required RBAC feature. 

One of our claims is that RAD architecture supports policy changes in a scalable

Let us inspect how policy changes affect a RAD service. Changes to Policy 1 can 

result in the replacement of the authorization model supporting the policy, or in chan

the system configuration which is defined via UA, RH, PA relations and functions user and

roles. We will discuss in Section 5.4 how a RAD service can be reconfigured whe

1.  Separation of duties is achieved by ensuring that mutually exclusive roles must be invoked to com
sensitive task [Sandhu 1996]. Dynamic separation of duties is enforced in RBAC via constraints on ro
vation so that a user will not be able to activate mutually exclusive roles simultaneously even though e
them can be activated by the user.
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authorization model is replaced. Now, we show what has to be done when only the s

configuration is to be updated. 

Only minimal alterations are required to accommodate RBAC re-configura

Changes in UA, RH, user and roles do not affect RAD components because in our conf

uration they are entirely implemented by the underlying middleware security ser

Changes to PA will result in different evaluations made by RBAC PE. For example, i

P.1.5 in Table 5-1 was modified to allow physician assistants to read current episod

sitive records (CSR) of patients, then PA would be modified to have PA[Physiscian Assis-

tant, CSR] = {R}. This would result in RBAC PE granting access for reading CSR

anyone whose list of activated roles contains “Physician Assistant.” 

5.4 Advanced Policies

RAD architecture provides good support for changes not only in the policy conten

also in its type. In this section, we show how a RAD service can be re-configured to su

a more complex policy.

The policy listed in Table 5-1 (from now on called role-based policy) allow an

employee to access records of all patients, regardless of whether the employee is in

in the provision of care to the patient or not. The principle of least privilege1 is not fully

supported. Let us assume that a new legislation requires the hospital to ensure that

records are accessed not only according to the employee functions but also depen

whether the employee is actually involved in the patient care process. For example

1.  The principle of least privilege requires that users should only be granted privilege for some activi
they have a justifiable need for its associated authorizations [Amoroso 1994].
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the attending physician is now allowed to modify current episode records of the pa

Also, let us assume that now the patient’s relatives, guardians and designated repr

tives have the right to limited access of the patient's records. To become compliant w

new regulations, the hospital replaces the old policy with the new one listed in Table

The policy requires that only caregivers who are related to the treatment proces

given patient can have access to the corresponding parts of the patient record acco

their job description. The new policy follows the least privileged security principle m

closely then the old one. However, authorization decisions for such a policy can be

Rule 
No.

Rule Definition

P2.1 Any caregiver can read patient’s name.
P2.2 Registration Clerk can modify patient name and demographic information.
P2.3 Nurse can read patient’s name and demographic information.

P2.4
Attending Nurse, in addition to the rights of any other nurse, can modify cur
rent episode demographic information, can read current episode regular rec
and test results.

P2.5
Technician can read patient’s name and modify current episode regular tes
results.

P2.6
Related Technician, in addition to the rights of any other technician, can mo
ify current episode sensitive test results.

P2.7
Attending Physician Assistant, in addition to what an attending nurse can do
can also read all (i.e. from the current and previous episodes) regular recor
and all regular test results, as well as modify current episode regular record

P2.8
Attending Physician, in addition to the rights of an attending physician assis
tant, can modify current episode sensitive regular records and can read all 
lar and sensitive records from previous episodes.

P2.9
Attending Psychiatrist, in addition to what an attending physician can do, ca
also modify mental information.

P2.10
Patient Relative can read patient’s current episode demographic and patien
name.

P2.11 Patient Guardian can read previous episode regular data.
P2.12 Patient Spouse can read previous episode sensitive data.

P2.13
Patient Representative can read previous episode regular data provided tha
patient gives a consent.

Table 5-5. New Policy (Policy 2)
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only if the relationship between the patient and the user is taken into account. It is ver

lenging to make authorization decisions if only the RBAC model is employed. This m

that, without more expressive authorization mechanisms, additional control must be

cised via manual procedures in the medical records department, which would se

inhibit the automation of the hospital health care process. To avoid this situation, the

tionship between the user and the patient should be computed each time an autho

decision is to be made.

When AC logic is tightly coupled with application logic, the main challenge is

modify authorization logic in all clinical applications of the hospital so that they reflec

changes in hospital policy. This is a tremendously difficult, time consuming, expensiv

error-prone process! For example, in order to accommodate the new policy, our hyp

ical hospital would have to make changes in all its application systems that access 

records. With RAD, however, such changes can be made by dynamically reconfiguri

authorization service without any changes to the applications.

In order to enforce the new policy, we configure RAD service with new DAS and 

as well as two different PEs. One PE is RBAC PE (the same as before). The other P

relationships instead of roles while making authorization decisions. For the sake of b

we employ name RelBAC to signify the use of relationships in authorization decisio

Therefore, the other is RelBAC PE. The new configuration is shown in Figure 5-9.

state of the authorization system for the new policy is described by 1) a role hiera

which is the same as the one shown in Figure 5-7, 2) a new PA relation (Table 5-6
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relationship hierarchy (RSH) (Figure 5-10), and 4) a relationship to permission assign

(RSPA) (Table 5-7).

We outlined the support for such dynamic factors as relationships with RBAC me

nisms in [Barkley 1999]. Here we give a more concrete example of how the support o

tionships can be implemented using the RBAC model and RAD service. Putting it si

RelBAC is the same as RBAC1 except that in RelBAC, role hierarchies should be view

Figure 5-9. RAD Configuration for Relationship-based Policies
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Table 5-6. Permission Assignment (PA) Relation for Role Hierarchy (New Policies

Access Decision 
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Application System

Policy EvaluatorLocator

PolicyEvaluator

DynamicAttributeService
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4: combine_decisions

1: access_allowed

5: evaluate

RAD
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RBAC

Logical OR

PolicyEvaluator
RelBAC
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in the context of a particular resource owner. In our example, relationship hierarchi

patient-centric, and they represent “roles” towards the patient. For instance, attending phy-

sician is a relationship that could be between a hospital physician and a patient. Rolphy-

Figure 5-10. Relationship Hierarchy Relation (RSH)
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sician is an attribute of a user session, which persists through all actions undertaken 

the session, whereas the value of the relationship between the user and the patient is

determined when a request to access patient data is authorized. A distinguishing fea

supporting RelBAC by RAD is that every time a request is to be authorized, the dyn

attribute service determines the relationship between the user and the patient whose

the user requested to access. The relationship information is added to the list of s

attributes as new attributes of type relationship and values listing all the relationships junio

to the one in question.

The two PEs work in concert coordinated by the DC. RBAC PE grants access o

those users who perform roles authorized to access patient data according to the PA 

showed in Table 5-6. For example, a user acting in role physician assistant is granted access

to read demographic data (DD) for all patients in the hospital. On the other hand 

acting in role physician is denied access for reading patient current episode sens

records (CSR) unless the user is determined to have attending physician relationship with

the patient whose CSR records are to be accessed. The RelBAC PE grants such a

by basing its evaluation decision on RSPA (Table 5-7) and the value of relationship

attributes inserted by DAS. The DC invokes RBAC and RelBAC PEs, and grants acc

any of the two do so. Otherwise, it denies access, i.e. DC implements logical OR.

Let us walk through with a sample authorization request for the new policy. For 

tration purposes, assume that a nurse with user_id d attends a patient with patient_id

29984329. Consider an authorization request for operation read on current episode regula
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records (CRR) associated with patient_id 29984329 on behalf a user with user_id d, who

activated role nurse. The event sequence, illustrated in Figure 5-9, is the following: 

1. The ADO receives the authorization request from the application.

2. The ADO obtains a list of references to PEs and DC, which should be used for m

authorization decisions on resource with name {patient_id=29984329,

record_part=CRR}. The PEL returns a reference to the DC and two PEs – RBAC PE

and RelBAC PE. 

3. The DAS adds two new attributes of type relationship with values attending nurse and

related caregiver to the list of existing attributes which already has user id d and roles

caregiver and nurse. 

4. The ADO delegates the DC to make the decision.

5. RBAC PE denies access because, according to its PA relation (Table 5-6), neithe

nurse nor caregiver has permission to read CRR data. The decision reflects the

authorization rules (P2.1 and P2.3 in Table 5-5) that do not allow reading CRR by

one unless that person acts as physician assistant and attends the patient. 

6. The DC requests RelBAC PE to evaluate the request. The PE uses its RSPA rela

(Table 5-7) to determine that the access should be granted because RSPA[attending

nurse, CRR] contains permission R. Thus the PE grants access.

Finally, the DC (implementing logical union) returns to ADO the same answer, an

ADO authorizes the application to access current episode regular records of patient w

29984329 on behalf of user d.
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Now the RBAC and the RelBAC PEs work together to enforce the new authoriz

policy. However, it is possible to assign each rule from the policy to a specific PE bas

its distinguishing function. By checking the Policy 2 (Table 5-5), we can find that r

P2.1, P2.2, P2.3 and P2.5 are suitable to be evaluated by the RBAC PE, while the R

PE evaluates all other rules.

5.5 Discussion and Conclusions

In this chapter we presented an approach to separating authorization and appl

logic for those distributed applications which resort to application-level access contro

decoupling is a means to achieve the established earlier objectives of controlling ac

the resources of enterprise distributed applications.

Our approach is formulated as an authorization service architecture -- RAD. The 

tecture is simple, generic and yet capable of supporting authorization decisions for

variety of application domains. The main property, separation of authorization and 

cation logic, is maintained when RAD approach is used because application del

authorization decisions RAD-based authorization service. The architecture can supp

level of protected resource granularity because of the generic data structure represe

resource name, which is used by applications for referring to the resources in questio

architecture is policy-neutral as opposed to other authorization service archite

[Varadharajan 1998, Zurko 1998], which allows implementation of various types of 

cies. For example, we demonstrated how role-based policies can be supported by R
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The architecture is also neutral to the nature of information used for making au

zation decisions, as long as the information can be syntactically represented in the f

principal security attributes. This feature allows RAD-based services to support wide

ety of authorization information. Moreover, the introduction of dynamic attribute ser

(DAS) defines a standard way to utilize request-specific information. We showed

RBAC policy engine can be combined with DAS that supplies user-patient relations

in order to support policies based on caregiver-patient relationships in health care o

zations. Because authorization requests to RAD-based services are invoked from 

applications, the applications can provide the service with information available only 

the application processes the client request, which is not supported, for example, by

1998]. Because the architecture enables encapsulation of authorization logic into a 

which can serve more than one application, the consistency of policies enforced acros

tiple applications is inherently supported. 

New applications can be added and removed from the enterprise computing en

ment without affecting such a server. Changes to authorization policies, as we sh

cause re-configuration of RAD components or their composition and possibly replace

of some of them, which theoretically can be done dynamically without shutting dow

server. The architecture enables administration scalability because changes to autho

policies can be done in one location. We will show in Chapter 5 using a CORBA-base

totype that RAD architecture enables component replacement with minimum affect o

work of the server. The above substantiates our earlier claim that RAD approach is 

able to frequent changes in policies, applications, computing environment, and user
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The design of Adage [Zurko 1998] follows a pattern similar to that of our work. T

Authorization Decision Server (ADS) is encapsulated into a separate entity in the d

uted environment with administrative and authorization interfaces. They are exposed

management clients and the application servers via CORBA interfaces. In each auth

tion request to ADS, an application specifies the name of the accessing subject, the

of the resource (target in Adage terminology), and the action to be performed o

resource.

There are also many differences in the design. The foremost difference is in the

tioning of the authorization service into internal components. In Adage, an RBAC au

zation engine, two rule databases and a translator are predefined and built into the

Also Adage’s authorization language syntax and semantics are fixed and predefined

language interpreter. RAD architecture, on the other hand, allows different evalu

engines with their own rule languages and administrative interfaces to co-exist as lo

few simple obligations for integrating those engines are fulfilled. This is achieved by d

ing not only interfaces for RAD clients and administrators but also interfaces for p

evaluators, decision combinators and other RAD internal components. The definiti

RAD internal interfaces allows dynamic installation of third party RAD-compliant com

nents in a RAD server. Furthermore, Adage authorization server can be used as one 

policy evaluators.

RAD re-uses CORBA Security service infrastructure. It relies on the service to pro

all other security functionalities such as user security administration (group membe

role assignment, etc.), authentication, communication integrity and confidentiality, 
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and non-repudiation. The authorization engine and ADS administrative tools in Ad

however, are meant to be tightly integrated with user administration and authentic

parts of the security infrastructure in order to evaluate activation rules used when a 

entering or leaving a role. This is needed to maintain static and current cardinalities o

role and the current labels of each subject if the enforced policies require static and dy

separation of duties [Gligor 1986]. Moreover, the engine is designed to perform part

user administration work (to enforce static separation of duty) and authentication 

(dynamic separation of duty). Another difference is the existence of two logically dis

databases in Adage ADS. One is used to store Adage policy objects defined through 

interpreter. Another stores a compiled form of the AL definitions that is optimized for e

uation by the authorization engine.

The body of work described in this chapter has been served as a foundatio

Resource Access Decision Facility specification [OMG 1999c] from the Object Man

ment Group which shows its practical usability. However, no matter how promising

approach is, it is important to establish its functional and performance feasibility. T

why we have developed a prototypical authorization service according to RAD arc

ture. We describe the service and the results of our studies in the next chapters.
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6CAAS -- Prototypical 
Implementation of RAD

In the previous chapter, we proposed a solution to the problem of controlling acc

the resources of distributed enterprise applications -- an architecture for an appli

authorization service, RAD. We also showed that the architecture features key bene

enables the separation of application and authorization logic; it supports AC on fine

resources; it can be configured to implement different AC models, particularly RBA

supports the use of factors specific to the application domain or to the organizational

flow, such as relationships between the user and the resource owner; it enables the

authorization engines created by different developers and administered by disparate 

ities; and its distributed nature enables the consistency of authorization decisions 

enterprise applications. 

However, it is an open issue as to how one can design and implement a flexib

responsive to the changes in policies and conditions), extendable (i.e. capable of acc

dating new functionality), and portable authorization server based on the conceptual

tecture of RAD and what performance implications arise from employing such

approach. Answering these questions is critical in order to understand the validity 

and any other approach in this problem area. To the best of our knowledge, no rese

authorization mechanisms for application systems reported in the literature, which w
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veyed in Chapter 3, examined the aspects of designing, constructing, and addressi

formance in such mechanisms.

In order to study these issues, we designed and implemented an experimental t

-- CORBA-based Application Authorization Service (CAAS). It adheres to RAD archi

ture, and serves as a framework for our research on the RAD approach. Besides dev

CAAS to serve as a test-bed, we also wanted to gain an understanding of the princip

constructing application authorization services.

This chapter is devoted to the design and implementation of CAAS. The main d

requirements were flexibility, extensibility, portability and configurability. We actively u

lized design patterns which provided us with simple and elegant solutions to genera

lems of constructing object-oriented component-based distributed security service

service is based on CORBA and Java technologies, and utilizes CORBA Naming se

We showed by the means of implementation that RAD architecture is feasible a

computational model, defined in IDL, is correct. Besides the feasibility proof, we ga

more understanding of the design and implementation of an authorization service fo

tributed applications. 

The chapter is organized as follows. The next section gives an extensive overv

CAAS design and explains the main elements of its components. We illustrate the 

of the section by describing in detail designs of DC and PE in Sections 6.2 and 6.3. W

cuss the results of designing and developing CAAS and conclude the chapter in Secti
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6.1 Overview of CAAS Design

As mentioned earlier, the main goals for CAAS construction were proving R

approach feasibility, and developing an experimental framework for further research 

support of application-specific fine-grain, complex and dynamic access control pol

while providing a necessary degree of usability, fault tolerance, scalability and availa

This is why, besides making CAAS design confirm to RAD architecture, we strive

achieve its configurability, implementation affordability, portability, as well as flexibil

and extensibility sufficient for the current and future research. In this section we gi

overview of CAAS main design elements that allowed us to achieve the objectives.

6.1.1 Middleware Technology

To make CAAS implementation portable and extendable, we used standard tec

gies as much as possible. CORBA became the middleware technology of choice. Its

rity service provided the functionality necessary to model different authorization poli

CORBA Naming service allowed CAAS distributed components to discover each oth

a platform-independent way. We were free to choose any implementation langua

each CAAS component. The choice of CORBA influenced the overall composition o

service’s main elements, shown in Figure 6-1. All of them interact via Interoperable I

Figure 6-1. CAAS Main Elements

ClientClient ASAS CAAS

CORBA ORB

NamingObject
Resolver

CAASASClient
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ORB Protocol (IIOP) [OMG 1999a], which is a standard communication protoco

CORBA-based systems communicating over TCP/IP. The next major design decisio

about the interfaces CAAS components should provide.

6.1.2 Component Interfaces

IDL interfaces defined in RAD architecture expose functionality common to all 

vices based on the architecture. CAAS design is required to provide additional functio

exposed via interfaces. The functionality should allow run-time interfaces to obtain 

ences to administrative interfaces and enable graceful shutdown of the components.

fore, we introduced extensions to RAD run-time and administrative interfaces list

Table 6-1. These extensions allow the implementation of additional functions without a

ing the RAD interfaces. Due to CORBA IDL interface inheritance capability, ne

defined interfaces were seen by CAAS clients as base RAD interfaces unless addit

defined operations and attributes were used.

RAD 
Component

IDL Interface Defined by RAD 
Architecture

Extended IDL Interface Defined by 
CAAS Design

ADO AccessDecision AccessDecisionExt

AccessDecisionAdmin AccessDecisionAdminExt

PEL PolicyEvaluatorLocator

PolicyEvaluatorLocatorAdmin

PolicyEvaluatorLocatorBasicAdmin PolicyEvaluatorLocatorAdminExt

PolicyEvaluatorLocatorNameAdmina

PolicyEvaluatorLocatorPatternAdmina

DAS DynamicAttributeService DynamicAttributeServiceExt

DynamicAttributeServiceAdminExt

DC DecisionCombinator

PE PolicyEvaluator PolicyEvaluatorExt

PolicyEvaluatorAdmin PolicyEvaluatorAdminExt

Table 6-1. Correspondence Between IDL Interfaces Extended by CAAS Design and 

a. Not implemented in the current version of CAAS
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6.1.3 Implementation Language

The next design decision was about the implementation language. It was influenc

two requirements -- the implementation portability and the ease of programming for 

uate students, mostly unprofessional developers. To address them, we used Jav

implementation language. Implementations of Java Virtual Machine (JVM) are avai

for most operating systems, and the language provides several advantages for rapid

opment such as object-orientation, thread and garbage collection support. Java al

vides dynamic loading of classes, and this allows great flexibility in configuring 

changing CAAS behavior at boot- and run-time, and loading of Java classes comp

with underlying ORB middleware.1 

However, Java imposed several constraints. Most CAAS components provide mu

IDL interfaces -- run-time and administrative. Run-time interfaces are used during the

putation of authorization decisions. Administrative interfaces define operations thr

which the behavior of CAAS components can be configured. Given that, we decide

each CAAS component to implement both types of IDL interfaces using a single Java

as shown in CAAS architecture in Figure 6-2. For example, Java class DynamicAt-

tributeService  implements both IDL interfaces DynamicAttributeService-

Ext  and DynamicAttributeServiceAdminExt . In Java, an IDL interface is

implemented using a class which defines public methods corresponding to the ope

and attributes of the IDL interface [OMG 1999b]. However, we could not use inherit

1.  For the time of developing CAAS only few ORB vendors had Portable Object Adapter (POA), whi
precluded us from using POA in order to achieve complete code portability on the server side.
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for implementing run-time and administrative IDL interfaces because Java does not s

multiple class inheritance.

To work around the single-inheritance restriction of Java, we implemented co

nents using a delegation mechanism known as the Tie approach [Pedrick 1998]. In this

approach, a single tie class implements a number of CORBA interfaces. However, thetie

only implements the minimum mechanisms needed to interact with the ORB environ

The actual implementation of the component’s operations is done in a delegate class imple-

menting the ComponentOperation  interface, as shown in Figure 6-3. With th

approach, we obtained greater flexibility in composing objects since the delegate c

not restricted to inherit from any particular class. The only requirement is that the de

class implements the ComponentOperation  interface.1

Figure 6-2. CAAS Architecture

1.  One drawback of delegation is that systems relying on object composition may be more difficult to
prehend [Gamma 1995].
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Current versions of Java ORBs support concurrent invocations by executin

instances of a CORBA object in more than one thread. Although a performance bene

feature requires carefulness in changing an object state. To address this issue, we 

in the current version to use fully synchronized methods for the implementation of C

Although this property does not guarantee that the system will be free of liveliness fa

such as deadlocks and resource starvation, it does guarantee consistency of value

object level. This design solution allows synchronized method implementations to be

in concurrent settings [Lea 1996]. However, this introduced unnecessary synchroni

which can affect overall run time performance because calls to synchronized metho

more expensive, than to un-synchronized ones. Also, synchronized operations on 

components are of a coarse granularity which can cause threads to block and u

unnecessarily. 

Figure 6-3. Implementing a CORBA Object Using the Tie Approach
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6.1.4 Design Extensibility

During the design process, it became evident that different instances of the

CAAS component, such as DC and PE, must implement different logic. For instance

can combine results from multiple PEs in more than one way. One solution would 

implement one class per component behavior. However, this would create many r

classes that differ only slightly in their functionality. The solution we chose was base

the design pattern Strategy [Gamma 1995].

In Strategy pattern, a Context class implements the logic common to all other imp

mentations, and a Strategy class provides behavior specific to the concrete implementat

as illustrated in Figure 6-4. The pattern allowed us to implement families of algorithm

related to each CAAS component (strategy classes) and common functionality (c

classes).

Since Java was our implementation language, we defined strategies as Java inte

In this case, component contexts are Java classes implementing the services publi

Figure 6-4. Implementing a server using Strategy pattern
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S trategy  P at tern

theS trategy

S trate gy Im pl em entat ion

s ervic e Logic ( )
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the strategy interfaces. With the implementation of the strategies for the DC and PE

ponents, we took a step further: their implementation is based on a design pattern kn

the Template Method [Gamma 1995]. The idea (illustrated in Figure 6-5) behind the pat

is to define an outline or skeleton of an algorithm in a base class while leaving some

to be defined in subclasses.

Template Method pattern was used in the design of DC and PE because implem

tions of each of these components tend to share a common functionality. For exa

implementations of DC need to resolve references to PE objects received from the

regardless of the decision combination policy being implemented. Similarly, PE imple

tations need to maintain associations of policies to resource names independently 

the policies are stored and evaluated. Such a common functionality can be impleme

an abstract strategy class (Figure 6-5). This class is later refined to obtain specific 

mentations (strategies A, B, C in the example in Figure 6-5).

Figure 6-5. Applying Template Method Pattern
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6.1.5 General Component Structure

We structured all components in the same fashion, as shown in Figure 6-6. This

the design and coding faster, because the former could be re-used and the develop

to learn only one structure in order to understand the principles of work for each co

nent. It was also easier to see the differences. For example, PEL does not have an e

to its administrative interface, whereas DC lacks an administrative interface due to it

plicity.

6.1.6 Component Initialization and Discovery

We wanted to study CAAS performance under different configurations and load

so would require CAAS to provide a number of capabilities: to use different policy e

ators and/or decision combinators; to allow the deployment of different components 

Figure 6-6. Structure Common to Most CAAS Components
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ferent locations on the network and in the system by co-locating components in the

process or host; and to change its configuration with relative ease and repeat the

experiments over time. For example, it should be possible to combine applicatio

authorization logic in one process, as shown in Figure 6-7, or to load each CAAS co

nent in a separate process (Figure 6-8). Moreover, we wanted to have the capability o

ing the service in different configurations without recompiling the source code.

In order to ease the process of booting CAAS components in different configura

we introduced two techniques. First is the use of a component loader, shown in Figu

which enables any number of instances of the same component to be loaded in one p

All the information needed by the loader was provided via either configuration file o

command line parameters. However, once the components are loaded, it is neces

them to discover each other, i.e. obtain corresponding object references, no matter

are located in one process, on one machine or on different network nodes. It wa

desired to avoid the use of the middleware when process co-located components c

nicate with each other, in order to avoid unnecessary overhead. This is why the secon

nique -- uniform URL-like representation of component references -- was introduced

technique allowed us to choose the ways of posting and obtaining object references

components by simply changing the content of the symbolic readable reference rep

Figure 6-7. Reference Configuration

C lien t
C A A S
L o g ic

A p p lica tio n
L o g ic

C lien t H o st S erv e r H o st

A p p lica tio n  P ro cess
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tations, specified in the configuration file or command line, and to avoid superfluous u

middleware when both the client and the target are located in the same process.

For discovering components located in different processes, either interoperable 

reference (IOR) stored in the stringified form in a text file, or CORBA Naming service

be used. The latter is most convenient when the components are located on di

machines. Since CORBA Interoperable Naming Service [OMG 1998a] implementa

were not available at the time of the development, we utilized object locator app

(shown in Figures 6-1 and 6-2) similar to the one in TAO [Schmidt 1998] and discuss

[Schmidt 1999]. The main benefit of the locator is the complete portability in loca

naming service. It is done by sending a UDP broadcast to a predefined port. If the l

instance is available on the network, it will respond with a stringified IOR for the nam

service root context, which is sufficient for finding a component IOR by its name in

naming hierarchy. The design is sufficiently generic to discover IORs of other CO

objects.

To illustrate CAAS design elements discussed above, we discuss DC and PE

next two sections. Although other components are equally important, their design is s

to DC and PE. A more detailed description of ADO, PEL and DAS can be found in [Es

2000].

Figure 6-8. CAAS Configuration with Each Component in a Separate Process

Client

CAAS Processes

Application
Process

Client Host Server Host

ADO DAS
DAS

DC
DC

PELPEL PEPE
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6.2 Decision Combinator

DC encapsulates the “decision combination” logic which is delegated to an o

implementing DecisionCombinatorStrategy  interface (Figure 6-9). DC only has

a run-time interface in the current version of CAAS, the DecisionCombinator  with

DecisionCombinatorContext  as the class implementing the IDL interface. Non

theless, the design of DecisionCombinatorContext  uses the Tie approach to

accommodate the introduction of future administrative interfaces.

DC features the simplest design of all CAAS components. However, DC object

exhibit different behavior. For instance, a DC can combine results from multiple P

more than one way, e.g. one type of DC can combine multiple results using a logical

combination policy, whereas another type can combine multiple results using a ma

vote policy. These two forms of policy, however, do not necessarily change the way

consults the PEs; that is, in both cases a DC may not need to consult all of them. 

Figure 6-9. DecisionCombinator Design
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these issues into account, we designed DC using the Strategy pattern. With this pattern, a

DecisionCombinatorContext  class implements functionality required to consu

PEs handed by ADO. Different decision combination policies are then delegated 

object implementing the DecisionCombinatorStrategy  Java interface. One of the

interface implementations is class AbstractAndOrCombinator . The class is further

refined (using the Template pattern) into two classes, OpenWorldAndOrCombina-

tionPolicy  and CloseWorldAndOrCombinationPolicy . With the former pol-

icy, a DC grants access if no PE object denies access, and with the latter it implem

stricter combination policy -- it grants access only if all PE objects do so.

Having described the simplest component -- DC -- we will discuss the design o

which is the most complex.

6.3 Policy Evaluator

The function of a PE is to evaluate one or more of the authorization policies in re

to a resource given a list of principal security attributes, the resource and operation n

The PE has run-time and administrative IDL interfaces -- PolicyEvaluator  and Pol-

icyEvaluatorAdmin . The two are extended with PolicyEvaluatorExt  and

PolicyEvaluatorAdminExt  IDL interfaces (see Figure 6-10). For their implemen

tion, we use a single Java class, PolicyEvaluatorContext .

As mentioned in Section 6.1, an IDL interface is implemented in Java with an imple-

mentation class [OMG 1999b], and thus inheritance cannot be used for implementing

tiple IDL interfaces. Because of this constraint, we used the Tie approach for implementing
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PolicyEvaluatorExt  and PolicyEvaluatorAdminExt  IDL interfaces. In the

case of PE, PolicyEvaluatorContext  delegates the functionality of its operations 

objects that implement the PolicyEvaluatorExtOperations  and PolicyEval-

uatorAdminExt  Java interfaces (see Figure 6-10).

Different instances of PE can exhibit different behavior. For instance, a CAAS se

may utilize PE components implementing policy evaluation mechanisms based on fi

tem permissions, RBAC, or even default evaluation policies which always grant or

access. However, most of these instances of PE may use the same mechanisms to 

resource names to access control policies. 

To avoid the introduction of many related PE classes that differ only in their evalu

policy, we use a solution based on the Strategy pattern. With this pattern, PolicyEval-

uatorContext  implements functionality common to most other implementations of 

For example, addition and removal of authorization policies is not likely to change bet

Figure 6-10. PolicyEvaluator Design
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PE instances. Different evaluation policies are then delegated to an object implement

PolicyEvaluatorStrategy  Java interface (see Figure 6-10). Similarly, the mana

ment of resource name associations for accessing policies may vary between PE ins

Consequently, PolicyEvaluatorContext  delegates the implementation of suc

functionality to objects implementing the PoliciesByResourceNameMap . By using

this interface, the association can be implemented by employing any form of storag

able to the current needs independently of PolicyEvaluatorStrategy  implementa-

tion.

Implementations of PolicyEvaluatorStrategy  interface are further refined

using the Template Method pattern, as shown in Figure 6-10, which allows extension

modifications to policy evaluation mechanisms with relative ease as the needs for dif

evaluation logic change during the system life cycle.

Another pattern we used in the design of CAAS components is the Null Object pattern

[Grand 1998]. With this pattern, developers can provide “do-nothing” versions of cla

for which no particular implementations exist during execution. In the case of PE de

it was used to define the NullPoliciesByResourceNameMap  class as the defaul

implementation of PoliciesByResourceNameMap  interface (see Figure 6-10). Th

class relieves PolicyEvaluatorContext  from testing for null values before acces

ing the interface methods.
175



per-

es,

sing

rvice.

 and

indi-

, we

ause

verall

 poli-

 com-

lexity

 some

xity of

t as

access

E and

nstrate

wn,

erent
6.4 Discussion and Conclusions

We claimed in the previous chapter that RAD architecture has the following pro

ties: simplicity, flexibility and generality. Simplicity is achieved by using simple interfac

by requiring AS to make simple operation invocations on RAD service, and by u

simple structures for exchanging information between applications and a RAD se

Simplicity is also achieved by using encapsulation principles in RAD architecture

CAAS design. The programming complexity of making authorization decisions for an 

vidual policy is encapsulated in PEL, DAS, and PE objects. While constructing CAAS

found that DC greatly contributes to the simplification of CAAS design. This is bec

DC encapsulates decision combination policies which can completely change the o

authorization logic of CAAS. Total complexity increases only when complex access

cies are added to CAAS, yet such complexity is still contained within the appropriate

ponents. Increased complexity within PE implementation does not increase the comp

encapsulated by DAS or PEL and vice versa. However, it might be possible that in

cases, the introduction of more complex policy evaluators could increase the comple

decision combinators.

Flexibility is another property present in CAAS. Changes in CAAS would manifes

changes in access control policies, policy evaluations and dynamic attributes; new 

control polices, for example, can be implemented by changing or replacing existing P

DC objects, as we showed it in the example of the previous chapter. In order to demo

the extensibility and flexibility of RAD, we designed CAAS to support run-time shut do

re-initialization, or replacement of its components. For example, we implemented diff

versions of DC, and showed that those versions can be replaced “on the fly.”
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More evidence of RAD architecture flexibility is the support for different configu

tions of CAAS components. For conducting performance experiments using CAAS d

ent configurations, we designed it to support the deployment of the components, w

changing source code, co-located in a process, computer or distributed over a netwo

Figure 6-11 for examples). This configurability allows such CAAS deployments that m

imum performance (by avoiding ORB middleware and network overhead), availabilit

flexibility (by having any component in any system in the network) are achieved. 

After designing and implementing CAAS, we find RAD architecture sufficiently g

eral in the sense that it can be implemented for different environments, with diff

requirement and design priorities. A straight-forward implementation, intended for 

ronments with tolerant requirements, could be done with few lines of code without u

of design patterns. On the other hand, a RAD service can be implemented using a c

design to achieve fault-tolerance, high-performance and scalability. Our current imple

tation of CAAS tries to obtain a balance with a simple design which allows it to be flex

extendable and configurable.

Figure 6-11. CAAS under different configurations
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By utilizing standard technologies, namely CORBA and Java, we have develo

concrete implementation of RAD architecture -- CAAS. The implementation is flex

configurable, extendable and portable. The design and implementation of compo

available in CAAS is covered with more detail in our technical report [Espinal 2000].

The main contribution of the work presented in this chapter is a concrete desig

prototype (CAAS) of RAD architecture. The design is sufficiently flexible to deploy CA

under different configurations, and to experiment with different authorization policie

different granularity and complexity. We showed that RAD architecture is feasible an

computational model, defined in IDL, is correct. Besides the feasibility proof, we ga

important insights into the design and implementation of an authorization service fo

tributed applications. 

During our work on CAAS we actively utilized design patterns, which provided

with simple and elegant solutions to general problems of constructing object-oriented

ponent-based distributed information systems. CAAS design and implementation

required step towards a comprehensive study on support of application-specific fine-

complex and dynamic access control policies in heterogeneous distributed enterprise

cations that are to constitute current and future information enterprises. The initial g

using CAAS was to study the implications of RAD architecture on the system end-to

performance. We report on the study and its results in the next chapter.
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7CAAS Performance Measurements

One of the main concerns about RAD-based authorization services is the o

system performance. Regardless of how attractive the approach is, if the resulting 

mentation impedes the application capability to comply with its performance constr

the approach would not be of much help to the developers. In this chapter we report 

studies about CAAS performance.

The main question with the performance of authorization services based on 

architecture is not whether a performance fee has to be paid but how much it is. One

expect middleware and communication overhead to affect the application response ti

most. However, we need to qualify and quantify the overhead. Because RAD archit

defines multiple components that can be located in the same process, in the same h

different hosts in a network environment their different compositions will affect ove

run-time performance to various extent.

Another question is what features of RAD architecture or the design based on it 

ently affect the performance of application systems. The third, equally important, que

is what application domains can absorb the performance penalty, since not all the a

tions have the same strict constraints on their response time or the time is determi

other factors more then by the authorization delay. Knowing the performance penalt

we identify the application groups where such a penalty is acceptable? So far, we ha
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seen any reports in the literature about studies on either the performance trade-o

authorization services or other questions stated above. In this chapter, we discuss h

addressed these questions.

We used CAAS as a test-bed. The focus of the experiments was the run-time p

mance of application systems that obtain authorization decisions from CAAS. We 

sured the performance under various configurations, loads and server-side applicatio

delays using a simple performance model. 

The main contributions of the work are our performance measurements and th

clusions we have drawn from them. We identified factors affecting run-time perform

of systems using CAAS and possible solutions for improving the performance of au

zation services based on RAD approach. Moreover, we believe the performance resu

be used to measure and reason about the performance of authorization servers in 

We also gained the understanding of how the amount of time spent on executing appl

logic affects the performance penalty experienced by an application. This helped us to

ify the applicability of CAAS and similar implementations to the different applicat

domains.

The organization of this chapter is as follows. The next section discusses the p

mance model. We describe CAAS configurations used for the experiments in Sectio

The test environment and the experimental procedures are explained in sections 7.3 

respectively. We report on the data and interpret it in Section 7.5. Based on the expe

tal data interpretation, we suggest the ways for achieving adequate performance for

based services in Section 7.6. Conclusions are drawn Section 7.7.
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7.1 Measurement Model

It was crucial to define the model for our experiments, which would enable answ

the stated questions. A measurement model determines the scope of an experimen

results could be obtained, and how they should be interpreted. It also determines th

plexity and affordability of experiments. Since performance studies are not the centra

tribution of our research, we decided to follow a minimalistic approach, i.e. to use s

model that would allow us to obtain required performance measurements with the sim

and most affordable experimental framework.

While defining the framework, the first question for us to answer was if we should

absolute or relative performance measurements. Absolute measurements could b

preted correctly only in the context of a standard benchmark with strictly defined im

mentation platform, language, middleware technology, and many other factors. Sin

were not aware of any standard benchmark that would fit our goals, we saw little va

reporting absolute times to anybody who uses different implementation languages, 

etc. or even their versions. Therefore, we decided to collect measurements relative t

erence model implemented with exactly the same programming and communication

nologies as well as execution platforms.

The reference model we choose was an application system (AS) that has coupled

cation and authorization functionalities in one process with the former having exact

same computational complexity as in the experimental configurations. Thus, by comp

performance of this and an experimental system, where authorization mechanism is 

sulated in CAAS, we could measure the difference in their performance.
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The second question was about the meaning of performance in the context o

study. System performance has many meanings and multiple aspects. The way syst

formance is measured depends on how it is defined. If we defined the performanc

number of authorization requests served per a unit of time, or the latency time for

request, then we could have used time Tcaas (Figure 7-1-b), when CAAS completes the pro

cessing of an authorization request, as the measure of CAAS performance. Howe

besides other reasons, would not allow us to have a reference model because ther

be nothing to refer to. Nor did we decide to use time Tas, when an AS finishes processin

an application request, which in turn contains time Tcaas. Instead, we chose to measu

response time Tc perceived by clients since it included response times at the other

points, and it was the main concern from the performance point of view, when authoriz

decisions were computed by CAAS. This is why our performance metric for CAAS is

to-end response time that a client observes while interacting with an AS. 

The definition of performance and the time representing it determined the refe

model and the reference time shown in Figure 7-1-a. Using measured times Tc, and Te, we

calculated the percentage of response time increase I in the case of external authorizatio

(a) Reference Model (b) Response Times for Configurations with 
CAAS

Figure 7-1. Times for Measuring Performance

UserUser

Te

Client AS
UserUser

using CAAS

CAASASClient

Tc Tas Tcaas
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for each configuration of CAAS with respect to embedded access control using the fo

ing formula:

(1)

Since CAAS first design was not optimized for concurrent access, we decided to

performance scalability experiments outside of these experiments’ scope. This is w

this study we measured run-time performance of CAAS in the presence of only one 

which sent requests to a single application system in a sequential manner as sh

Figure 7-1-b. That is, the client waited until it received the reply from its previous req

before it made a new one.

We expected that, given the same complexity of authorization logic, the numb

remote invocations made per each authorization request would effect the overall s

performance the most. In its turn, the number depended on the composition of CAAS

ponents and their location relatively to each other. For that reason we used different 

configurations to see how the composition of CAAS components affected the res

time observed by the client.

7.2 CAAS Configurations

Given the multitude of different configurations that can be composed out of C

components, we needed to determine which of them should be used in the experi

CAAS configurations determine the boundaries crossed by the messages sent dur

computation of an authorization request. There are three types of these boundaries:

process, and host. Note that whenever a message crosses process boundaries, it in

I
Tc

Te

----- 1– 
  100×=
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goes through the ORB layer too. Thus ORB and process boundaries are considered 

atomic layer. Whenever host boundaries are crossed, the messages travel over net

well. Thus by “crossing host boundaries” we imply traveling over network.

Another general observation important for understanding our choice of CAAS co

urations is illustrated in Figure 7-2. Messages between CAAS components can tra

three ways: 1) from object to object in the same process, 2) from object in one proc

an object in another process, and 3) between objects located in different processes,

in their turn, are running on different hosts. There is a hierarchy of the boundaries: o

process, host. When a boundary is crossed, then all boundaries lower in the hierar

also crossed.

Figure 7-2. Boundaries Crossed by Messages
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Messages cross object boundaries when components are co-located in the s

address space and use direct method calls through JVM to communicate. Message

process boundaries when communicating components are co-located in the same ho

run in their own processes. In this case, communication takes place through the OR

dleware, which is why we also call these boundaries as middleware boundaries. This form

of communication, however, can take place using other mechanisms such as IPC

1997, Stevens 1993]. Finally, messages cross host boundaries when components reside 

separate hosts; this involves middleware and communication subsystem overhead. 

CAAS can be deployed in many different configurations. When composing CA

configurations, the main choice is the boundaries crossed between different compo

We wanted to measure a wide range of boundary crossing configurations. On the o

of the range is a configuration when all CAAS components are collocated in one pr

and messages among them cross only object boundaries, which, we expected, woul

most efficient but the quantitative answer was not known. To highlight this, the corres

ing CAAS configurations (shown in A, B, and D in Figure 7-3) end with word “Obje

On the other end is the composition, in which all CAAS components are running on d

ent hosts, which should yield the best flexibility and the worst overall performance. A

we wanted to give a quantitative answer about the performance. We decided not to m

such a configuration because it seemed unlikely that anybody would use the service

way. Instead, we tested cases when all the components are in separate processes, 

in C, E and G. We also anticipated the use of a PE located on a separate host in case

policy engine is utilized as a PE (configurations F and G).
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We expected that application performance is affected not only by the type of bo

aries the messages among CAAS components cross but also by the communicatio

head associated with the messages between the AS and CAAS. This is why we me

the performance for configurations where CAAS is located on the same (B and C) an

ferent (D--G) hosts as the application. To stress this difference, the names of the 

sponding configurations begin with either “Process” or “Host.”

(A) Reference Model

(B) Process/Object (C) Process/Process

(D) Host/Object (E) Host/Process

(F) Host/Object/PE-Host (G) Host/Process/PE-Host

Figure 7-3. Reference Model and Experimental CAAS Configurations
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In order to produce relative performance measurements we needed a reference 

uration that would have the authorization logic, with the same computational comp

as in all other configurations, coupled with the application logic. For this, we simulate

Reference Model by co-locating all CAAS components within the application proce

shown in Figure 7-3-A. Our reasoning was based on the assumption that even thou

code responsible for application and authorization logic could be highly coupled, it c

re-arranged into the equivalent code in such a way that it will allow for every com

operation to identify whether it contributes to application or authorization perform

overhead. Once identified, it should be possible to encapsulate the authorization ins

tions into a separate application module.

Having the rationale behind CAAS configurations outlined, let us walk through

explain each of them. With Process/Object configuration, AS and CAAS are co-located a

independent processes in the same server host, and CAAS components are co

within the same process as illustrated in Figure 7-3-B. Messages between AS and 

are transmitted via ORB middleware (process boundaries) whereas CAAS compo

communicate using native method calls using the JVM (object boundaries). Figure

shows Process/Process configuration where CAAS components are deployed in their o

processes (process boundaries). In Host/Object configuration shown in Figure 7-3-D

CAAS components are co-located in the same process; however, AS and CAAS are

ferent hosts. That is, messages between AS and CAAS are delivered through the OR

dleware and communication subsystem (host boundaries) while messages among

components cross only object boundaries.
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In Host/Process (Figure 7-3-E), AS and CAAS are on different hosts, and CAAS co

ponents are in their own processes in the same host. Figure 7-3-F illustrates Host/Object/

PE-Host configuration. This configuration is similar to Host/Object except that PE compo-

nent runs in a different host. Communication among CAAS components incur objec

host boundaries. Finally, in Host/Process/PE-Host configuration (Figure 7-3-G), PE is

located in a host other than the authorization host while the other CAAS componen

in different processes co-located in the authorization host. It is important to note that

two components exchange messages through process boundaries, message 

involves middleware overhead and possibly context switch overhead at the host whe

two reside. Host boundaries, on the other hand, do not involve such context switch

head since the communicating components do not compete with each other for exe

time.

This configurability allows developers and administrators to deploy CAAS in a wa

obtain maximum performance (by avoiding ORB middleware and network overhea

flexibility (by having any component in any system in the network). For example, ad

istrators may deploy CAAS using Host/Object configuration to avoid middleware and ne

work overhead. However, in an organization where one or more PE componen

remotely located (perhaps in a different subnet), CAAS can be deployed using Host/Object/

PE-Host or Host/Process/PE-Host configurations. Host/Process or Process/Process con-

figurations can be used to deploy CAAS components developed by third parties, whi

not enabled to run in the same address space with other components. In a real scen

expect to see most components be co-located in the same process or host while one

components, possibly PE, be deployed in remote locations.
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After defining the measurement model, the reference and experimental configura

the next question was what environment for conducting experiments should be use

is discussed in the next section.

7.3 Test Environment

Our test environment was composed of 4 Gateway E-4200 400MHz Pentium III

running Windows NT Workstation 4.0 service pack 4. Each workstation had 128M

physical memory, 139MB of swap space and its performance properties were set to

mum boost for foreground applications. Also, each workstation was equipped with an

PRO/100+ Management network adapter. These workstations interoperated on an 

Ethernet with one hub, and connected to the rest of the campus network through a 

switch. Furthermore, during testing we used JDK 1.1.7 and Visibroker 3.3 ORB, an

java classes and jar files were located on the local hard-drives. We used CORBA N

service located on a separate host to discover the CAAS components and applicati

carried out the performance measurements only when network utilization was less th

to minimize the effects of unrelated network load.

7.4 Experiment Procedure

Our experiment setting consisted of a client, an AS, and an instance of CAAS

posed of one Access Decision Object (ADO), a Policy Evaluator Locator (PEL), a Dyn

Attribute Service (DAS), a Decision Combinator (DC), and a Policy Evaluator (PE).

goal of the performance measurements was to estimate a worst case performance

experienced by clients when CAAS serves authorization requests. We measur

response time  experienced by the client when external access control is implemTc
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using CAAS. Then, the response time  was measured. Using these two numbers, 

culated the response time increase I percentagewise using Equation 1. The DC obj

implemented logical AND combination policy while the PE object always granted acc

This procedure was repeated using all six configurations described in Sectio

Other parameters for our performance measurements were application processing (

ness) logic time B and the number of authorization requests N generated for each clien

request. Application processing time represents delays experienced by an AS while s

client requests and enforcing authorization decisions returned by ADO. It does not in

processing time incurred by CAAS. Although we used one client during the experime

an actual system, a client request can trigger any number of authorization requests

This was simulated using a variable number of authorization requests per each

request.

It was an open question what authorization policies should be used for perform

experiments. Since our goal was to measure a worst case performance penalty rel

the Reference Model, we used computationally least expensive combination and eva

policies. This is because more complex authorization policies would increase compu

overhead without increasing middleware and communication overhead, provided th

new inter-component messages are introduced. The increase in the computational ov

would occur within embedded authorization logic for the Reference Model as we

within CAAS while communication overhead would remain unaltered. The change c

illustrated by Equation 2, where  is the increase associated with the additional com

tional complexity of authorization logic. This means that  < I, because Tc > Te and .

Te

∆

I ′ ∆ 0>
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For our performance experiments we did not use caching techniques. Caching w

considered since it reduces communication overhead and therefore reduces r

response time increase I. We did not utilize secure communications for remote invocati

because the overhead due to the communication security is something we cannot c

Moreover, communication protection is application and implementation dependent. D

ent applications require different levels of protection, and different security products

different performance. As a result, we decided not to employ communication prote

and estimate a worst case response time increase strictly in terms of middleware an

munication due to RAD architecture.

7.5 Measurement Results

The measurements were carried out using CAAS configurations shown in Figur

and the results are illustrated in Figure 7-4. We calculated the increase of the respon

as a function of application processing time per authorization request. For example,

case of configuration Host/Object (Figure 7-3-D), the response time increased compa

tively to the Reference Model by 31%, when the application was executing applic

logic for 10 ms each time before it would make an authorization request.

Two groups of CAAS configurations can be observed. The group with the best p

mance results consists of those configurations, in which all or most CAAS compo

were process co-located. Even when configured with the PE located on a host, se

from the one with all other CAAS components, CAAS performed better than in any 

configuration from the second group. This group consists of CAAS configurations, w

I ′
Tc ∆+

Te ∆+
--------------- 1– 

  100×=
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all the components interacted with each other via messages crossing process bound

is worth noting that we used no ORB optimization for interprocess communications o

same host, although some ORBs have them.

The results imply that the amount of time spent executing application logic per 

authorization request drastically affects the relative performance experienced by the

cation client. Its increase in the order of magnitude causes relative performance in

anywhere between 2 and 10 times in both groups. The results also revealed that thos

cations, which do not actively use the authorization service and spend one second o

executing application logic for each authorization request, are almost insensitive to C

configurations. This makes them the primary candidates for employing CAAS. But 

more authorization-intensive applications can utilize such an authorization servi

CAAS, if all the components are process co-located and the application owners can

10% decrease in the performance in return for all the benefits of RAD approach.

Figure 7-4. Response Time Increase for Various CAAS Configurations (Error size: ±
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7.6 Performance Considerations

Our performance experiments suggest that in order to develop and utilize succe

RAD-based authorization services using current middleware technologies, several c

implications on the overall system performance should be considered. We summari

findings in Table 7-1.

First, the pattern of using the authorization service by the application must be st

As Table 7-1 shows, if the usage is mild (i.e. no more than one authorization requ

every 10 seconds or so), then such applications (last column) can use RAD-based s

configured in any reasonable way. Second, the performance constraints imposed 

application should be used to understand where the application and the service sh

located relatively to each other and how the service should be composed. For ex

applications that can afford an increase of the response time due to the use of autho

service by more than 30% do not have to be host-collocated with the service, and t

vice can be configured in any way. On the other hand, applications intensively usin

Limitations on 
Response Latency 
Increase

 Authorization Service Usage (app. logic time per request)

Intensive
(10ms or less)

Medium
(between 100ms and 1s)

Mild
(10s or more)

Strict (5% or less)
Authorization and appli-
cation functions located 
in one process

CAAS components in 
one process

Any configuration or 
location

Medium (between 10% 
and 30%)

1.CAAS components in 
one process
2.CAAS and applica-
tion on the same host

Any configuration or 
location

Any configuration or 
location

Lax (over 30%)
Any configuration or 
location

Any configuration or 
location

Any configuration or 
location

Table 7-1. Recommended CAAS Configurations Depending on Application 
Requirements
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service by making 100 or more authorization requests per second of application logi

cution, and having strict performance constraints affording no more than 5% perform

degradation, should have authorization and application logic process co-located.

The configuration and location requirements can be relaxed if some techniqu

increasing performance in distributed systems are applied. For example, communi

overhead can be minimized by using ORBs with communication layer optimized

objects located on the same host. Another technique is the caching of results pre

obtained from the service components. The technique can be very helpful when auth

tion requests repeat over time.

The deployment and implementation of RAD-based authorization services shoul

into consideration the interactions among components. That is, described optimi

techniques should be applied to components that have a high rate of interaction. For

ple, evaluations of policies that require more than one PE can be optimized by co-lo

corresponding PEs with the appropriate DC in the same process.

Performance in the presence of concurrent requests is another aspect that sh

taken into account. Although processing of concurrent requests were not part of our p

mance measurements, it is an aspect that warrants further research. Concurrency 

trivial issue to handle in component-based systems. Safety preservation, the insuran

all objects in a system maintain valid states in the presence of concurrent access, r

the avoidance of read/write and write/write conflicts [Lea 1996]. To address this issu

decided in the current implementation of CAAS to use fully synchronized meth

Although this property does not guarantee the system to be free of liveliness failure
194



 level of

rent set-

verall

ensive,

ularity

 block

ork, is

plica-

uffi-

ance.

nd that

 factors

ber of

these

as high

t differ

up, we

-based
as deadlocks and resource starvation, it does guarantee consistency of values at the

Java language object. Synchronized object instances are ready to be used in concur

tings [Lea 1996] but this introduces unnecessary synchronization, which can affect o

run time performance because invocations of synchronized methods are more exp

than to regular ones. If operations on CAAS components are synchronized, the gran

of synchronization should be carefully considered. Otherwise it can cause threads to

and unblock unnecessarily. The research issue, which is beyond the scope of this w

the design of a RAD-based service optimized for concurrent access by multiple ap

tions.

7.7 Conclusions

The main question about the feasibility of RAD approach, after its functional s

ciency, is whether RAD-based authorization services can deliver required perform

We have used CAAS to study the performance aspects of RAD architecture and fou

there is no simple answer to the question. The experiments suggest that the two main

affecting the performance are the ratio of the application execution time to the num

authorization requests and CAAS distribution configuration. Due to the variations of 

factors the overall response time experienced by the application clients can increase 

as 600% and drop to as little as 1%. We identified several groups of applications tha

in their use of authorization service and the performance constraints. For each gro

determined what is required in order to assure adequate performance when RAD

authorization service is used.
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The service performance can be improved further if well-known techniques for 

mizing distributed systems are used. For instance, utilization of the ORBs that opt

communications between objects located on the same host have the potential to 

cantly improve the response time. In situations when this is not possible, co-locating

CAAS components in the same address space in order to avoid middleware overhe

improve the performance as well. Also, caching the results previously obtained from

ous CAAS components will enhance the performance. These optimizations should

on components with high rate of interaction such as DC and PE components. Howev

performance might degrade when such properties as security of middleware comm

tions are imposed.

Our measurements results are not only relevant to CORBA-based systems usin

approach. The performance results for Process/Object and Host/Object configurations

(Figure 7-3-B,D) can be used to estimate the response time increase for authorizatio

ers in general.
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8Conclusions

Existing middleware technologies are necessary but not sufficient for effectively

tecting the resources of distributed enterprise applications. In this dissertation, we pro

a two-tier approach that allows a comprehensive solution to the problem.

Foremost, we showed the adequacy of the CORBA authorization mechanism f

support of RBAC0--RBAC3 models and developed a framework for implementing th

using CORBA Security. This delivers all the advantages of the external, scalable a

comparatively fine-grain AC of CORBA Security along with the well studied powe

modeling concepts of RBAC. But our solution does not stop here because there are

cations with more advanced requirements.

For those applications which require finer granularity than operation level and/or

tection according to the policies that are difficult or impossible to model using just RB

we developed an architecture, RAD, for furnishing authorization decisions to such ap

tions. It was shown via modeling, prototypical implementation, and performance ex

ments that the architecture features a number of important characteristics. These 

separation of application and authorization logic, arbitrary granularity of prote

resources, the use of information specific to the application domain, policy-neutr

inherent consistency of AC enforcement across multiple applications, and high adapt

to various changes experienced by the enterprise environment.
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Achieved via the use of either the CORBA authorization mechanism or a RAD-b

service, the separation of authorization and application logic simplifies the developm

both distributed systems and their security functions, and therefore makes it ea

enhance their quality. Equally important, it paves the way for uniformly utilizing auth

zation mechanisms across (heterogeneous) system boundaries, as well as for cen

enterprise security administration and management, traditionally time consuming, 

and error prone processes.

By defining the state of the CORBA protection system, mapping it into RBAC mo

and developing RAD approach for application-level authorization, we created a stru

foundation for modeling authorization architectures, which are central to the desi

secure distributed enterprise applications.

8.1 Open Problems

Although our approach addresses the needs of most applications, the problem o

neering access control for distributed enterprise application resources is far from 

solved. There are numerous open questions and opportunities for future research. H

suggest some.

We developed two separate yet related steps. Each addresses the needs of a p

application group. An important question is how to integrate AC administration in uni

way if both solutions are employed. We can see two distinct ways. One is the use of a

based service to furnish authorization decisions not only to application systems but 

middleware layers, and maybe even network, DBM and operating systems. Anothe
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lows the approach of policy agents where authorization rules are administered in a 

location and then propagated into middleware and application AC mechanisms wi

help of agents. Which of these two, or maybe some other, approaches is more attra

When authorization decisions are delegated to a service, one more potential p

mance and availability bottleneck emerges. New research is needed in order to und

how and what distribution techniques can be applied for achieving performance scal

and availability of authorization services based on RAD architecture.

The RAD approach is valuable for the solutions based on most middleware tech

gies. We implemented and conducted performance experiments with a CORBA-base

totype. Because information enterprises usually use more than one middleware techn

it is interesting to see how complex a design of multi-technology authorization se

could be?

As with any complex software systems, the composition of applications with R

based services is not only to make constituent components work together, but also to

that the composition as a whole behaves consistently and guarantees certain end

properties. Although this goal is beyond the scope of this dissertation, it is critical to m

and design such compositions with the properties guaranteed even before the actu

tems are deployed and composed. 

The RAD approach has been proposed in the context of access control. Howev

believe the approach can be applied to other security functionalities, for instance audi

repudiation, and communication protection. Can the architecture be re-used witho
199
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significant changes? If not what should be different? Can a unified solution be pro

that would uniformly and comprehensively support the decisions regarding not onl

but most security functionalities that tend to be re-implemented in applications?
200



lson, 
g 
on-

en-
he 
t 

 for 
 

zed 
 

r 
72.

 
rup 

tion 
 

8.

t 
Bibliography

[Abrams 1991] M. Abrams, J. Heaney, O. King, L. J. LaPadula, M. Lazear, and I. O
“A Generalized Framework for Access Control: Towards Prototypin
the Orgcon Policy,” In Proceedings of National Computer Security C
ference, 1991, pp. 257-266.

[Abrams 1990a] M. D. Abrams, K. W. Eggers, L. J. LaPadula, and I. W. Olson, “A G
eralized Framework for Access Control: an Informal Description,” T
MITRE Corporation, McLean, Virginia, USA MP-90W00043, Augus
1990.

[Abrams 1989] M. D. Abrams, A. B. Jeng, and I. M. Olson, “Generalized Framwork
Access Control: An Informal Description,” The MITRE Corporation,
Springfield, VA, USA MTR-89W00230, September 1989.

[Abrams 1990b] M. D. Abrams, L. J. LaPadula, and I. M. Olson, “Building Generali
Access Control on UNIX,” In Proceedings of USENIX workshop on
UNIX Security, Portland, Oregon, USA, 1990, pp. 65-70.

[Amoroso 1994] E. Amoroso, Fundamentals of Computer Security Technology. Prentice 
Hall, 1994.

[Anderson 1972] J. Anderson, “Computer Security Technology Planning Study,” Ai
Force Electronic Systems Division ESD-TR-73-51, Vols. I and II, 19

[Ashley 1997] P. Ashley, “Authorization for a Large Heterogeneous Multi-Domain
System,” In Proceedings of Australian Unix and Open Systems Go
National Conference, 1997.

[Awischus 1997] R. Awischus, “Role Based Access Control with Security Administra
Manager (SAM),” In Proceedings of the Second ACM Workshop on
Role-Based Access Control, Fairfax, Virginia, USA, 1997, pp. 61-6

[Barkley 1995] J. Barkley, “Implementing Role-based Access Control Using Objec
Technology,” In Proceedings of The First ACM Workshop on Role-
Based Access Control, Fairfax, Virginia, USA, 1995, pp. 93-98.
201



in 
 of 
, 

ips 
rk-
pp. 

 

s: 

odic 
rol,” 
ta 

ss 
 
nia, 

, 

rized 
on 
 

 Per-
er-
[Barkley 1999] J. Barkley, K. Beznosov, and J. Uppal, “Supporting Relationships 
Access Control Using Role Based Access Control,” In Proceedings
ACM Role-based Access Control Workshop, Fairfax, Virginia, USA
1999, pp. 55-65.

[Barkley 1998] J. Barkley and A. Cincotta, “Managing Role/Permission Relationsh
Using Object Access Types,” In Proceedings of The Third ACM Wo
shop on Role-Based Access Control, Fairfax, Virginia, USA, 1998, 
73-80.

[Bell 1975] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Unified
Exposition and Multics Interpretation,” MITRE, Bedford, MA, USA, 
Technical Report ESD-TR-75-306, March 1975.

[Benantar 1996] M. Benantar, R. Guski, and K. M. Troidle, “Access control system
From host-centric to network-centric computing,” IBM Systems Jour-
nal, vol. 35(1), pp. 94-112, 1996.

[Bertino 1996a] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “Supporting Peri
Authorizations and Temporal Reasoning in Database Access Cont
In Proceedings of 22th International Conference on Very Large Da
Bases, Mumbai (Bombay), India, 1996, pp. 472-483.

[Bertino 1996b] E. Bertino, S. Jajodia, and P. Samarati, “Supporting Multiple Acce
Control Policies in Database Systems,” In Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland, Califor
1996.

[Beznosov 1997] K. Beznosov, “Applicability of CORBA Security to the Healthcare 
Problem Domain,” Object Management Group corbamed/97-09-11
September 1997.

[Beznosov 1998a] K. Beznosov, “Issues in the Security Architecture of the Compute
Patient Record   Enterprise,” In Proceedings of Second Workshop 
Distributed Object Computing Security, Baltimore, Maryland, USA,
1998.

[Beznosov 1998b] K. Beznosov, “Requirements for Access Control: US Healthcare 
Domain,” In Proceedings of Third ACM Workshop on Role-Based 
Access Control, Fairfax, Virginia, USA, 1998, pp. 43.

[Beznosov 2000] K. Beznosov, “Information Enterprise Architectures: Problems and
spectives,” School of Computer Science, Florida International Univ
sity, Miami technical report 2000-06, June 2000.
202



sed 
f 
-

urce 
In 
, 

h 

,” 

al, 

s 

 
ess, 

-

l 
[Beznosov 1999a] K. Beznosov and Y. Deng, “A Framework for Implementing Role-ba
Access Control Using CORBA Security Service,” In Proceedings o
Fourth ACM Workshop on Role-Based Access Control, Fairfax, Vir
ginia, USA, 1999, pp. 19-30.

[Beznosov 1999b] K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A Reso
Access Decision Service for CORBA-based Distributed Systems,” 
Proceedings of Annual Computer Security Applications Conference
Phoenix, Arizona, USA, 1999, pp. 310-319.

[Blakley 1999] B. Blakley, CORBA Security: an Introduction to Safe Computing wit
Objects, First ed. Addison-Wesley, 1999.

[Bloomer 1992] J. Bloomer, Power Programming with RPC. O'Reilly & Associates, 
1992.

[BullSoft 1995] BullSoft, “AccessMaster,”  Bull Soft, 1995.

[Burrows 1990] M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication
ACM Transaction on Computer Systems, vol. 8(1), pp. 18-36, 1990.

[CA 1998a] CA, “CA-ACF2 for OS/390,”  Computer Associates International, 
1998.

[CA 1998b] CA, “CA-Top Secret for OS/390,”  Computer Associates Internation
1998.

[CA 1999] CA, “Unicenter TNG: Product Information,”  Computer Associates 
International, 1999.

[Caswell 1995] D. L. Caswell, “An Evolution of DCE Authorization Services,” 
Hewlett-Packard Journal: technical information from the laboratorie
of Hewlett-Packard Company, vol. 46(6), pp. 49--54, 1995.

[CIST-NRC 1999]CIST-NRC, Trust in Cyberspace. Committee on Information Systems
Trustworthiness, National Research Council. National Academy Pr
1999.

[Curry 1992] D. A. Curry, UNIX System Security: A Guide for Users and System 
Administrators. Addison-Wesley, 1992.

[DeBoever 1997] L. R. DeBoever, “Concept of “Highly Adaptive” Enterprise Architec
ture,” In Proceedings of Enterprise Architecture Conference, 1997.

[DEC 1989] DEC, “Guide to VAX/VMS System Security --- Version 5.2,”  Digita
Equipment Corporation, 1989.
203



le,”  
8.

r-
es, 

ty 

sed 

, 

n of 
d 

-
uc-
-91.

rity 
ke 

ro-
rol, 

W. 
e 
[DHHS 1998] DHHS, “Security and Electronic Signature Standards; Proposed Ru
45 CFR Part 142, Department of Health and Human Services, 199

[DHHS 1999] DHHS, “Standards for Privacy of Individually Identifiable Health Info
mation; Proposed Rule,”  Department of Health and Human Servic
1999.

[Eddon 1999] G. Eddon, “The COM+ Security Model Gets You out of the Securi
Programming Business,” Microsoft Systems Journal, vol. 1999(11), 
1999.

[Epstein 1995] J. Epstein and R. Sandhu, “NetWare 4 as an Example of Role-Ba
Access Control,” In Proceedings of Proceedings of the First ACM 
Workshop on Role-Based Access Control, Gaithersburg, Maryland
USA, 1995, pp. 71-82.

[Espinal 2000] L. Espinal, K. Beznosov, and Y. Deng, “Design and Implementatio
Resource Access Decision Server,” Center for Advanced Distribute
Systems Engineering (CADSE) - Florida International University, 
Miami technical report 2000-01, January 2000.

[Filman 1996a] R. Filman and T. Linden, “Communicating Security Agents,” In Pro
ceedings of The Fifth Workshop on Enabling Technologies: Infrastr
ture for Collabarative Enterprises, Stanford, CA, USA, 1996, pp. 86

[Filman 1996b] R. Filman and T. Linden, “SafeBots: a Paradigm for Software Secu
Controls,” In Proceedings of New Security Paradigms Workshop, La
Arrowhead, CA USA, 1996, pp. 45-51.

[Fowler 1997] M. Fowler, Analysis Patterns: Reusable Object Models, First ed. Addi-
son Wesley Longman, 1997.

[Gamma 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Design. Addison-Wesley, 1995.

[Gittler 1995] F. Gittler and A. C. Hopkins, “The DCE Security Service,” Hewlett-
Packard Journal, vol. 46(6), pp. 41-48, 1995.

[Giuri 1998] L. Giuri, “Role-Based Access Control in Java,” In Proceedings of P
ceedings of the Third ACM Workshop on Role-Based Access Cont
Fairfax, Virginia, USA, 1998, pp. 91-99.

[Gligor 1986] V. Gligor, C. Burch, R. Chandersekaran, L. Chanpman, M. Hecht, 
Jiang, G. Luckenbaugh, and N. Vasudevan, “On the Design and th
Implementation of Secure Xenix Workstations,” In Proceedings of 
204



02-

 
 in 
-

ia, 

,” 

 

ent 
-

chi-
b-
y of 

e 

tion 

 

rdi-
 
na, 

rity 
IEEE Symposium on Security and Privacy, Oakland, CA, 1986, pp. 1
117.

[Gong 1997] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going
Beyond the Sandbox: An Overview of the New Security Architecture
the Java Development Kit 1.2,” In Proceedings of The USENIX Sym
posium on Internet Technologies and Systems, Monterey, Californ
1997, pp. 103-112.

[Grampp 1984] F. T. Grampp and R. H. Morris, “UNIX Operating System Security
AT& Bell Laboratories Technical Journal, vol. 63(8), pp. 1649-1672, 
1984.

[Grand 1998] M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns
Illustrated with UML, vol. 1. Wiley Computer Publishing, 1998.

[Grimes 1997] R. Grimes, Professional DCOM Programming. Wrox Press Inc., 1997.

[Grimm 1999] R. Grimm and B. Bershad, “Providing Policy-Neutral and Transpar
Access Control in Extensible Systems,” Lecture Notes in Computer Sci
ence, pp. 317-338, 1999.

[Grimshaw 1998] A. S. Grimshaw, M. J. Lewis, A. J. Ferrari, and J. F. Karpovich, “Ar
tectural Support for Extensibility and Autonomy in Wide-Area Distri
uted Object Systems,” Department of Computer Science, Universit
Virginia CS-98-12, 1998.

[Grimshaw 1997] A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwid
Virtual Computer,” Communications of the ACM, vol. 40(1), pp. 39-45, 
1997.

[Grimson 2000] J. Grimson, W. Grimson, and W. Hasselbring, “The System Integra
Challange in Health Care,” Communications of the ACM, vol. 43(6), pp. 
48-55, 2000.

[Hailpern 1990] B. Hailpern and H. Ossher, “Extending Objects to Support Multiple
Interfaces and Access Control,” IEEE Transactions on Software Engi-
neering, vol. 16(11), pp. 1247-1257, 1990.

[Hale 1999] J. Hale, P. Galiasso, M. Papa, and S. Shenoi, “Security Policy Coo
nation for Heterogeneous Information Systems,” In Proceedings of
Annual Computer Security Applications Conference, Phoenix, Arizo
USA, 1999, pp. 219-228.

[Heydon 1994] A. Heydon and J. D. Tygar, “Specifying and Checking UNIX Secu
Constraints,” Computing Systems, vol. 7(1), pp. 9-12, 1994.
205



US 

 
e

n

le 
l 

,”  

on-
 

hn, 

O-

 

A, 

ut-

en-
 
na, 
[Hommes 1990] R. Hommes, “VMS Security Architecture,” In Proceedings of DEC
Europe Symposium, Cannes, France, 1990.

[HP 1996] HP, “HP Adds Value to DCE Security Framework with Praesidium
Authorization Server,” DCE application development trends Magazin, 
1996.

[IBM 1976] IBM, Resource Access Control Facility (RACF). General Informatio. 
IBM Red Books, 1976.

[IEEE ] IEEE, IEEE P1003.6.1 Standard for Information Technology: Portab
Operating System Interface (POSIX): Protection, Audit, and Contro
Interfaces. IEEE Computer Society Press.

[IETF 1993] IETF, “RFC 1510, The Kerberos Network Authentication Service, V5
Internet Engineering Task Force, 1993.

[Jonscher 1995] D. Jonscher and K. R. Dittrich, “Argos -- A Configurable Access C
trol System for Interoperable Environments,” In Proceedings of IFIP
WG11.3 Ninth Annual Working Conference on Database Security, 
Rensselaerville, NY, 1995, pp. 39-66.

[Kaijser 1998] P. Kaijser, “A Review of the SESAME Development,” Lecture Notes in 
Computer Science, vol. 1438, pp. 1-8, 1998.

[Karger 1991] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Ka
“A Retrospective on the VAX VMM Security Kernel,” IEEE Transac-
tions on Software Engineering, vol. 17(11), pp. 1147-1165, 1991.

[Karjoth 1998] G. Karjoth, “Authorization in CORBA Security,” In Proceedings of 
Fifth European Symposium on Research in Computer Security (ES
RICS), 1998, pp. 143-158.

[Kleinoder 1996] J. Kleinoder and M. Golm, “MetaJava: An Efficient Run-Time Mete
Architecture for Java,” In Proceedings of Fifth IEEE International 
Workshop on Object-Orientation in Operating Systems, Seattle, W
USA, 1996.

[Kong 1995] M. M. Kong, “DCE: An Environment for Secure Client/Server Comp
ing,” Hewlett-Packard Journal, vol. 46(6), pp. 6-15, 1995.

[Lai 1999] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers, “User Auth
tication And Authorization In The Java Platform,” In Proceedings of
Annual Computer Security Applications Conference, Phoenix, Arizo
USA, 1999, pp. 285-290.
206



n in 
 
e 

fer-
37.

 

t-

ber 

der-
x,” 
86.

cure 
ce, 

gs 
ss 

ht 
ro-
[Lampson 1991] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authenticatio
Distributed Systems: Theory and Practics,” In Proceedings of ACM
Symposium on Operating Systems Principles, Asilomar Conferenc
Center, Pacific Grove, California, 1991, pp. 165-182.

[Lampson 1971] B. W. Lampson, “Protection,” In Proceedings of 5th Princeton Con
ence on Information Sciences and Systems, Princeton, 1971, pp. 4

[LaPadula 1990] L. J. LaPadula, “Formal modeling in a Generalized Framework for
Access Control,” In Proceedings of Computer Security Foundation 
Workshop III, 1990, pp. 100-109.

[Lea 1996] D. Lea, Concurrent Programming in Java: Design Principles and Pa
terns. Addison-Wesley, 1996.

[Linn 1993] J. Linn, “Generic Security Service Application Program Interface,” 
Internet Engineering Task Force, Internet Draft RFC 1508, Septem
1993.

[Linn 1997] J. Linn, “Generic Security Service Application Program Interface,” 
IETF RFC 2078, January 1997.

[Luckenbaugh 1986]G. L. Luckenbaugh, V. D. Gligor, L. J. Dotterer, and C. S. Chan
sekaran, “Interpretation of the Bell-LaPadula Model in Secure Xeni
In Proceedings of DoD-NBS Conference on Computer Security, 19

[Maes 1987] P. Maes, “Computational Reflection,” in Artificial Intelligence Labora-
tory. Vrije Universiteit Brussel, 1987.

[McCauley 1979] E. J. McCauley and P. J. Drongowski, “KSOS -- The Design of a Se
Operating System,” In Proceedings of National Computer Conferen
1979.

[McInerney 1999] M. J. McInerney, Windows NT Security. Prentice Hall, 1999.

[McMahon 1995] P. McMahon, “Making the Internet Safe for Business,” ICL Systems 
Journal, vol. 10(2), 1995.

[Meyers 1997] W. J. Meyers, “RBAC Emulation on Trusted DG/UX,” In Proceedin
of Proceedings of the Second ACM Workshop on Role-Based Acce
Control, Fairfax, Virginia, USA, 1997, pp. 55-60.

[Microsoft 1998] Microsoft, “DCOM Architecture,”  Microsoft, 1998.

[Molva 1992] R. Molva, G. Tsudik, E. V. Herreweghen, and S. Zatti, “KryptoKnig
Authentication and Key Distribution System,” In Proceedings of Eu
207



nce, 

a-

nd H. 
s,” 

 
03, 

s-
is-

for 

e for 
 

d 
 
p. 

  

 

p, 
pean Symposium on Research in Computer Security, Toulouse, Fra
1992.

[Mowbray 1997] T. J. Mowbray and R. C. Malveau, CORBA Design Patterns. Wiley 
Computer Publishing, 1997.

[Mowbray 1995] T. J. Mowbray and R. Zahavi, The Essential CORBA: Systems Integr
tion Using Distributed Objects. Wiley Computer Publishing, 1995.

[Mullender 1990] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum, R. v. Renesse, a
v. Staveren, “Amoeba: A Distributed Operating System for the 1990
Computer, vol. 23(5), pp. 44-53, 1990.

[NCSC 1987] NCSC, “A Guide to Understanding Discretionary Access Control in
Trusted Systems,” National Computer Security Center NCSC-TG-0
September 30 1987.

[Neuman 1993] B. C. Neuman, “Proxy-Based Authorization and Accounting for Di
tributed Systems,” In Proceedings of International Conference on D
tributed Computing Systems, Pittsburgh, Pennsylvania, 1993.

[Neuman 1994a] B. C. Neuman and T. Ts'o, “Kerberos: an Authentication Service 
Computer Networks,” IEEE Communications Magazine, vol. 32(9), pp. 
33-38, 1994.

[Neuman 1994b] B. C. Neuman and T. Y. Ts'o, “Kerberos: an Authentication Servic
Computer Networks,” University of Southern California, Information
Sciences Institute ISI/RS-94-399, 1994.

[Notargiacomo 1995]L. Notargiacomo, “Role-Based Access Control in ORACLE7 an
Trusted ORACLE7,” In Proceedings of the First ACM Workshop on
Role-Based Access Control, Gaithersburg, Maryland, USA, 1995, p
65-69.

[NSF 1999] NSF, “Information Technology Research Program Requirements,”
National Science Foundation, 1999.

[Nutt 1997] G. Nutt, Operating Systems: A Modern Perspective. Addison-Wesley, 
1997.

[OMG 1996a] OMG, “CORBAservices: Common Object Services Specification,” 
Object Management Group, 1996.

[OMG 1996b] OMG, “Security Service Specification,”  Object Management Grou
1996.
208



-

 
98.

 

eci-
, 

p, 

nda-

em-

 of 
t 

-

en-

nd 
[OMG 1997] OMG, “Clinical Observations Access Service RFP,” Object Manag
ment Group December 1997.

[OMG 1998a] OMG, “Interoperable Naming Service, Joint Revised Submission,”
Object Management Group, document orbos/98-10-11, October 19

[OMG 1998b] OMG, “Person Identification Service,” Object Management Group,
specification corbamed/98-02-29, February 1998.

[OMG 1999a] OMG, “The Common Object Request Broker: Architecture and Sp
fication,” Object Management Group, Specification formal/99-10-08
1999.

[OMG 1999b] OMG, “IDL to Java Language Mapping,” Object Management Grou
Specification formal/99-07-53, 1999.

[OMG 1999c] OMG, “Resource Access Decision Facility,” Object Management 
Group OMG document number: corbamed/99-05-04, May 1999.

[OSF 1996] OSF, “Authentication and Security Services,”  Open Software Fou
tion, 1996.

[Parker 1995] T. Parker and D. Pinkas, “SESAME V4 - Overview,” SESAME Dec
ber 1995.

[Pedrick 1998] D. Pedrick, J. Weedon, J. Goldberg, and E. Bleifield, Programming with 
VisiBroker: A Developer’s Guide to Visibroker for Java. Wiley Com-
puter Publishing, 1998.

[Pfleeger 1989] C. P. Pfleeger, Security in Computing. Prentice-Hall, 1989.

[Postel 1982] J. B. Postel, “RFC 821: Simple Mail Transfer Protocol,” University
Southern California Information Sciences Institute RFC 821, Augus
1982.

[Postel 1983] J. B. Postel, “TELNET Protocol Specification,” DDN Network Infor
mation Center, Request for Comments 854, May 1983.

[Postel 1985] J. B. Postel, “File Transfer Protocol,” DDN Network Information C
ter, Request for Comments 959, October 1985.

[Quarterman 1985]J. S. Quarterman, A. Silberschatz, and J. L. Peterson, “4.2BSD a
4.3BSD as Examples of the UNIX System,” ACM Computing Surveys, 
vol. 17(4), pp. 379-418, 1985.
209



: 
rity 

: A 
cu-
.

ted 
 

trol 
sk 

urity 
A 
h 

ul-

 

ntrol 
ess 

for 
 on 
.

tice,” 

 
 

[Riechmann 1997]T. Riechmann and F. J. Hauck, “Meta Objects for Access Control
Extending Capability-based Security,” In Proceedings of New Secu
Paradigms Workshop, Langdale, Cumbria, UK, 1997, pp. 17-22.

[Riechmann 1998]T. Riechmann and F. J. Hauck, “Meta Objects for Access Control
Formal Model for Role-based Principals,” In Proceedings of New Se
rity Paradigms Workshop, Charlottesville, VA USA, 1998, pp. 30-38

[Rubin 1999] W. Rubin and M. Brain, Understanding DCOM. P T R Prentice Hall, 
1999.

[Ryutov 2000a] T. Ryutov and C. Neuman, “Access Control Framework for Distribu
Applications (Work in Progress),” Internet Engineering Task Force,
Internet Draft draft-ietf-cat-acc-cntrl-frmw-03, March 9 2000.

[Ryutov 2000b] T. Ryutov and C. Neuman, “Generic Authorization and Access con
Application Program Interface: C-bindings,” Internet Engineering Ta
Force, Internet Draft draft-ietf-cat-gaa-bind-03, March 9 2000.

[Ryutov 2000c] T. Ryutov and C. Neuman, “Representation and Evaluation of Sec
Policies for Distributed System Services,” In Proceedings of DARP
Information Servability Conference Exposition, Healton Head, Sout
Carolina, 2000.

[Saltzer 1974] J. H. Saltzer, “Protection and the Control of Information Sharing in M
tics,” Communications of the ACM, vol. 17(7), pp. 388-402, 1974.

[Sandhu 1996] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based
Access Control Models,” IEEE Computer, vol. 29(2), pp. 38-47, 1996.

[Sandhu 1998a] R. Sandhu and Q. Munawer, “How to Do Discretionary Access Co
Using Roles,” In Proceedings of ACM Workshop on Role-based Acc
Control, Fairfax, Virginia, USA, 1998, pp. 47-54.

[Sandhu 1998b] R. Sandhu and J. S. Park, “Decentralized User-Role Assignment 
Web-based Intranets,” In Proceedings of the Third ACM Workshop
Role-Based Access Control, Fairfax, Virginia, USA, 1998, pp. 1-12

[Sandhu 1994] R. Sandhu and P. Samarati, “Access Control: Principles and Prac
IEEE Communications Magazine, vol. 32(9), pp. 40-48, 1994.

[Schiller 1988] J. I. Schiller, S. P. Miller, B. C. Neuman, and J. H. Salzer, “Project
Athena Technical Plan - Kerberos Authentication and Authorization
System,”  1988.
210



AO 

 

ion 
on-

 pp. 

odel 

-79.

w 

rise-
o-
ce, 

Ver-

n 
[Schmidt 1999] D. C. Schmidt, “Dove: A Distributed Object Visualization Environ-
ment,” C++ Report, vol. 11(3), 1999.

[Schmidt 1998] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design of the T
Real-time Object Request Broker,” Computer Communications, vol. 
21(4), 1998.

[Simon 1997] R. Simon and M. E. Zurko, “Adage: An Architecture for Distributed
Authorization,” OSF Research Institute, Cambridge 1997.

[Soley 1996] R. M. Soley and C. M. Stone, Object Management Architecture Guide, 
3 ed. John Wiley & Sons, 1996.

[Stevens 1993] W. R. Stevens, Advanced Programming in the UNIX Environment. 
Addison-Wesley, 1993.

[Sumner 1999] M. Sumner, “Critical Success Factors in Enterprise Wide Informat
Management Systems Projects,” In Proceedings of ACM SIGCPR C
ference on Computer Personnel Research, 1999, pp. 297 - 303.

[Tardo 1991] J. J. Tardo and K. Alagappan, “SPX: Global Authentication Using 
Public Key Certificates,” In Proceedings of IEEE Symposium on 
Research in Security and Privacy, Oakland, California, USA, 1991,
232-244.

[Thomas 1994] R. K. Thomas and R. S. Sandhu, “Conceptual Foundations for a M
of Task-based Authorizations,” In Proceedings of IEEE Computer 
Security Foundations Workshop, Franconia, NH, USA, 1994, pp. 66

[USA 1996] USA, “Health Insurance Portability and Accountability Act, Public La
104–191,”  US Goverment, 1996.

[Varadharajan 1998]V. Varadharajan, C. Crall, and J. Pato, “Authorization in Enterp
wide Distributed System: A Practical Design and Application,” In Pr
ceedings of 14th Annual Computer Security Applications Conferen
1998.

[Walker 1980] B. J. Walker, R. A. Kemmerer, and G. J. Popek, “Specification and 
ification of the UCLA Unix Security Kernel,” Communications of the 
ACM, vol. 23(2), pp. 118, 1980.

[Weiderhold 1992]G. Weiderhold, “Mediators in the Architecture of Future Informatio
Systems: A New Approach,” IEEE Computer, vol. 25(3), pp. 38-49, 
1992.
211



 

In 
 

s,” 

: A 
n 
-50.

: A 

n 
ent 

za-
ions 

n 
.

er-
 R. 
ed 
n-

 

 

,” 
[Wilson 1997] W. Wilson and K. Beznosov, “CORBAmed Security White Paper,”
Object Management Group corbamed/97-11-03, November 1997.

[Wong 1997] R. K. Wong, “RBAC Support in Object-Oriented Role Databases,” 
Proceedings of the Second ACM Workshop on Role-Based Access
Control, Fairfax, Virginia, USA, 1997, pp. 109-120.

[Woo 1992] T. Y. C. Woo and S. S. Lam, “Authentication for Distributed System
Computer, vol. 25(1), pp. 39-52, 1992.

[Woo 1993a] T. Y. C. Woo and S. S. Lam, “Authorizations in Distributed Systems
Formal Approach,” In Proceedings of The 13th IEEE Symposium o
Research in Security and Privacy, Oakland, CA, USA, 1993, pp. 33

[Woo 1993b] T. Y. C. Woo and S. S. Lam, “Authorizations in Distributed Systems
New Approach,” Journal of Computer Security, vol. 2(3), pp. 107-136, 
1993.

[Woo 1993c] T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorizatio
Service,” University of Texas at Austin, Computer Sciences Departm
TR93-29, September 1993.

[Woo 1993d] T. Y. C. Woo and S. S. Lam, “A Framework for Distributed Authori
tion,” In Proceedings of Conference on Computer and Communicat
Security, Fairfax, Virginia, USA, 1993, pp. 112-118.

[Woo 1998] T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorizatio
Service,” In Proceedings of IEEE INFOCOM, San Francisco, 1998

[Wreder 1998] K. Wreder, K. Beznosov, A. Bramblett, E. Butler, A. D'Empaire, E. H
nandez, E. Navarro, A. Romano, M. Tortolini-Taylor, E. Urzais, and
Ventura, “Architecting a Computerized Patient Record with Distribut
Objects,” In Proceedings of Health Information Systems Society Co
ference, 1998, pp. 149-158.

[Wulf 1996] W. A. Wulf, C. Wang, and D. Kienzle, “A New Model of Security for
Distributed Systems,” In Proceedings of New Security Paradigms 
Workshop, Lake Arrowhead, CA USA, 1996, pp. 34-43.

[Yoder 1997] J. W. Yoder and J. Barcalow, “Archictectural Patterns for Enabling
Application Security,” In Proceedings of Pattern Languages of Pro-
gramming, Monticello, Illinois, USA, 1997.

[Zachman 1997] J. A. Zachman, “Enterprise Architecture: The Issue of the Century
Database Programming and Design, pp. 44-53, 1997.
212



lar 
gs 
ri-
[Zurko 1998] M. E. Zurko, R. Simon, and T. Sanfilippo, “A User-Centered, Modu
Authorization Service Built on an RBAC Foundation,” In Proceedin
of Annual Computer Security Applications Conference, Phoenix, A
zona, 1998.
213



Vit a
VITA

KONSTANTIN BEZNOSOV

Born, Novosibirsk, Siberia, Russia

1987-1989 Military Service, Siberia, Russia

1991-1994 Assistant System Administrator and Analyst
Information Technology, Budker Institute of Nuclear Physics
Akademgorodok, Siberia, Russia

1993 B.S., Physics
Novosibirsk State University
Akademgorodok, Siberia, Russia

1994-1998 Research Assistant
High Performance Database Research Center
School of Computer Science (SCS)
Florida International University (FIU)
Miami, Florida, USA

1997 M.S., Computer Science
FIU
Miami, Florida, USA

1997-1999 Information Security Architect
Information Technology
Baptist Health Systems of South Florida
Miami, Florida, USA

1998-1999 Co-chair, Security Special Interest Group
Object Management Group (OMG)

1998-2000 Research Associate
Center for Advanced Distributed System Engineering
SCS, FIU
Miami, Florida, USA

1999 Program Committee member
OMG Workshop on Distributed Object Computing Security
July 12-15, Baltimore, Maryland, USA
214



ntrol
ontrol

eci-
puter

Con-
ole-

ition
8, p.

 Sys-

bject

ecord
Secu-

urce
 FIU,

med/

, E.
 a

nfor-

ge-
 PUBLICATIONS

J. Barkley, K. Beznosov, and J. Uppal, “Supporting Relationships in Access Co
Using Role Based Access Control,” In Proceedings of ACM Role-based Access C
Workshop, Fairfax, Virginia, USA, 1999, pp. 55-65.

K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A Resource Access D
sion Service for CORBA-based Distributed Systems,” In Proceedings of Annual Com
Security Applications Conference, Phoenix, Arizona, USA, 1999, pp. 310-319.

K. Beznosov and Y. Deng, “A Framework for Implementing Role-based Access 
trol Using CORBA Security Service,” In Proceedings of Fourth ACM Workshop on R
Based Access Control, Fairfax, Virginia, USA, 1999, pp. 19-30.

K. Beznosov, “Requirements for Access Control: US Healthcare Domain,” pos
paper, In Proceedings of Third ACM Workshop on Role-Based Access Control, 199
43.

K. Beznosov, “Taxonomy of CPR enterprise security concerns at Baptist Health
tems of South Florida,” Baptist Health Systems of South Florida, 1997.

K. Beznosov, “CPR Security CORBA-based Security and Intranet Services: O
Technology Group Position Paper,” Baptist Health Systems of South Florida, 1997.

K. Beznosov, “Issues in the Security Architecture of the Computerized Patient R
Enterprise,” In Proceedings of Second Workshop on Distributed Object Computing 
rity, Baltimore, Maryland, USA, 1998.

L. Espinal, K. Beznosov, and Y. Deng, “Design and Implementation of Reso
Access Decision Server,” Center for Advanced Distributed Systems Engineering,
Miami, Technical Report 2000-01, January 2000.

OMG, “Resource Access Decision Facility,” Object Management Group, corba
99-05-04, May 1999.

K. Wreder, K. Beznosov, A. Bramblett, E. Butler, A. D'Empaire, E. Hernandez
Navarro, A. Romano, M. Tortolini-Taylor, E. Urzais, and R. Ventura, “Architecting
Computerized Patient Record with Distributed Objects,” In Proceedings of Health I
mation Systems Society Conference, 1998, pp. 149-158.

W. Wilson and K. Beznosov, “CORBAmed Security White Paper,” Object Mana
ment Group, document corbamed/97-11-03, November 1997.
215


	Title Page
	Approval Page
	Copyright Statement
	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Objectives of the Work
	1.2 Summary of the Main Results
	1.3 Dissertation Content

	2 Background and Problem Statement
	2.1 Background Information and Terminology
	2.2 Controlling Access to Application Resources
	2.2.1 Examples

	2.3 Problem Statement
	2.3.1 Information Enterprise Perspective
	2.3.2 System Perspective
	2.3.3 Problems with Access Control in a Health Care Enterprise
	2.3.3.1 Introduction
	2.3.3.2 CPR Enterprise
	2.3.3.3 Security Architecture Issues
	2.3.3.4 Goals for CPR Architecture

	2.3.4 Summary

	2.4 Evaluation Criteria

	3 Related Work
	3.1 Access Control for Distributed Applications: State of the Practice
	3.1.1 Java Authentication and Authorization Service
	3.1.2 Distributed Computing Environment
	3.1.3 Microsoft Distributed Component Object Model
	3.1.4 SESAME
	3.1.5 CORBA Security
	3.1.5.1 Security Model Overview

	3.1.6 Generic Authorization and Access Control API

	3.2 Access Control for Distributed Applications: State of Research
	3.2.1 Policy Agents
	3.2.1.1 Security Policy Mediators from the University of Tulsa

	3.2.2 Proxies and Interceptors
	3.2.2.1 Views as Objects
	3.2.2.2 Role Classes
	3.2.2.3 SafeBots
	3.2.2.4 Legion
	3.2.2.5 Security Meta Objects

	3.2.3 Authorization Servers
	3.2.3.1 Authorization Server from HP
	3.2.3.2 Distributed Authorization Service from the University of Texas
	3.2.3.3 Adage


	3.3 Chapter Summary

	4 Supporting RBAC Using CORBA Security
	4.1 Overview of RBAC and Motivations
	4.2 CORBA Access Control Mechanisms
	4.2.1 Informal Description
	4.2.2 CORBA Protection State Configuration

	4.3 Support of RBAC by the CORBA
	4.3.1 Access Control Model
	4.3.2 Original Definitions of RBAC models
	4.3.3 RBAC0: Base Model
	4.3.4 RBAC1: Role Hierarchies
	4.3.5 RBAC2: Constraints
	4.3.6 RBAC3: RBAC1 + RBAC2

	4.4 Examples
	4.4.1 Single Access Policy Domain Solution
	4.4.2 Multi-domain Solution

	4.5 Conclusions

	5 Resource Access Decision Service
	5.1 RAD Architecture
	5.1.1 Interface Between Application Systems and RAD Service
	5.1.2 Logical Composition of RAD

	5.2 Example
	5.2.1 Initial Policies

	5.3 Modeling Policies
	5.4 Advanced Policies
	5.5 Discussion and Conclusions

	6 CAAS -- Prototypical Implementation of RAD
	6.1 Overview of CAAS Design
	6.1.1 Middleware Technology
	6.1.2 Component Interfaces
	6.1.3 Implementation Language
	6.1.4 Design Extensibility
	6.1.5 General Component Structure
	6.1.6 Component Initialization and Discovery

	6.2 Decision Combinator
	6.3 Policy Evaluator
	6.4 Discussion and Conclusions

	7 CAAS Performance Measurements
	7.1 Measurement Model
	7.2 CAAS Configurations
	7.3 Test Environment
	7.4 Experiment Procedure
	7.5 Measurement Results
	7.6 Performance Considerations
	7.7 Conclusions

	8 Conclusions
	8.1 Open Problems

	Bibliography
	Vita

