
FLORIDA INTERNATIONAL UNIV ERSITY

Miami, Florida

ENGINEERING ACCESS CONTROL FOR

DISTRIBUTED ENTERPRISE APPLICATIONS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Konstantin Beznosov

2000

Title Page

ii

To: Dean Arthur W. Herriott
College of Arts and Sciences

This dissertation, written by Konstantin Beznosov, and entitled Engineering Access Con-
trol for Distributed Enterprise Applications, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Geoffrey Smith

Raimund K. Ege

Ravi S. Sandhu

Yi Deng, Major Professor

Date of Defense: July 18, 2000

The dissertation of Konstantin Beznosov is approved.

Dean Arthur W. Herriott
College of Arts and Sciences

Dean Richard L. Campbell
Division of Graduate Studies

Florida International University, 2000

Approval Page

iii

 Copyright 2000 by Konstantin Beznosov

All rights reserved.

Copyright Statement

iv

DEDICATION

To Alla, Vladimir, Valerij, Olga, and Alissa

Dedication

v

ACKNOWLEDGMENTS

Kent Wreder directed my original steps towards addressing the problem of access con-

trol for distributed enterprise applications. Thanks to his encouragements and support, I had

a very quick start. Eric Butler and Eric Navarro introduced me to the work of IT architects

and were great colleagues.

My advisor, Yi Deng, was an unending source of useful and pragmatic advice. He

helped me to see the problems more broadly and at the same time be more specific. His

patience, compassion and belief in me were instrumental in the completion of this journey.

Thanks also to him for reading my dissertation and suggesting structural and stylistic

changes that made it much more valuable and comprehendible. Yi, thanks for everything.

I would like to thank Yi’s students -- Suresh Chegireddy, Banaglore Gururprakash,

Luis Espinal, Manish Mahajan and Nathan Vuong -- for their input during our numorous

discussions on CAAS. Luis deserves special thanks for he has been a great help to me

throughout my research, we did most of CAAS design and implementation together, and I

enjoyed working with him very much. SCS Computing Support, directed by Steven Luis,

was excellent in providing necessary help with the computing environment during the

course of my study and research.

The framework for implementing RBAC using CORBA Security was motivated by the

communications with the participants of RBAC workshops of 1997-1999, who also helped

me to gain insights of the RBAC model. My understanding of the CORBA authorization

Acknowledgments

vi

model was largely influenced by active OMG SecSIG members -- Bob Blakley, Bret Hart-

man, Polar Humenn, and Jishnu Mukerji.

The RAD architecture was invented during the work on the proposal to OMG’s Health-

care Resource Access Control RFP and was developed together with John Barkley, Bob

Blakley and Carol Burt throughout numerous e-mail rounds, conference calls, and a

number of very productive and enjoyable meetings. Without them, the architecture would

not exist in its current form. They also taught me a great deal about designing practical solu-

tions and writing specifications. Other members of the OMG’s SecSIG and CORBAmed

were an extensive source of the comments and feedback on stating the problem and on the

architecture.

Finally, special thanks go to my parents and my brother for supporting me with their

love and understanding while I was applying to and during my years in graduate school.

Thanks to Dina Evans for the support and love she gave me. Olga and Alissa were the

source of my inspiration, encouragement and love last year, which was the most intense and

demanding period of the work on the dissertation.

Kim Lumpkin from FIU Learning Center provided invaluable help by spending with

me many hours on converting my “Russglish” into proper English. Without her guidance

the dissertation would be unreadable. Thanks to his very careful reading, Geoffrey Smith

pointed at many typos and errors in the text.

My research was funded by the National Science Foundation and mainly by donations

from Baptist Health Systems of South Florida.

vii

ABSTRACT OF THE DISSERTATION

ENGINEERING ACCESS CONTROL FOR

DISTRIBUTED ENTERPRISE APPLICATIONS

by

Konstantin Beznosov

Florida International University, 2000

Miami, Florida

Professor Yi Deng, Major Professor

Access control (AC) is a necessary defense against a large variety of security attacks on

the resources of distributed enterprise applications. However, to be effective, AC in some

application domains has to be fine-grain, support the use of application-specific factors in

authorization decisions, as well as consistently and reliably enforce organization-wide

authorization policies across enterprise applications. Because the existing middleware

technologies do not provide a complete solution, application developers resort to embed-

ding AC functionality i n application systems. This coupling of AC functionality with

application logic causes significant problems including tremendously difficult, costly and

error prone development, integration, and overall ownership of application software. The

way AC for application systems is engineered needs to be changed.

Abstract

viii

In this dissertation, we propose an architectural approach for engineering AC mechanisms

to address the above problems. First, we develop a framework for implementing the role-

based access control (RBAC) model using AC mechanisms provided by CORBA Secu-

rity. For those application domains where the granularity of CORBA controls and the

expressiveness of RBAC model suffice, our framework addresses the stated problem.

In the second and main part of our approach, we propose an architecture for an authoriza-

tion service, RAD, to address the problem of controlling access to distributed application

resources, when the granularity and support for complex policies by middleware AC

mechanisms are inadequate. Applying this architecture, we developed a CORBA-based

application authorization service (CAAS). Using CAAS, we studied the main properties

of the architecture and showed how they can be substantiated by employing CORBA and

Java technologies. Our approach enables a wide-ranging solution for controlling the

resources of distributed enterprise applications.

ix

TABLE OF CONTENTS

CHAPTER PAGE

CHAPTER 1 Introduction .1

1.1 Objectives of the Work .3
1.2 Summary of the Main Results. .3
1.3 Dissertation Content .5

CHAPTER 2 Background and Problem Statement .7

2.1 Background Information and Terminology. .7
2.2 Controlling Access to Application Resources. .11

2.2.1 Examples .13

2.3 Problem Statement. .14
2.3.1 Information Enterprise Perspective .15
2.3.2 System Perspective. .17
2.3.3 Problems with Access Control in a Health Care Enterprise.18

2.3.3.1 Introduction. .19
2.3.3.2 CPR Enterprise. .20
2.3.3.3 Security Architecture Issues. .23
2.3.3.4 Goals for CPR Architecture .27

2.3.4 Summary .31

2.4 Evaluation Criteria. .31

CHAPTER 3 Related Work .35

3.1 Access Control for Distributed Applications: State of the Practice36
3.1.1 Java Authentication and Authorization Service. .37
3.1.2 Distributed Computing Environment .41
3.1.3 Microsoft Distributed Component Object Model .45
3.1.4 SESAME .48
3.1.5 CORBA Security .52

3.1.5.1 Security Model Overview. .52
3.1.6 Generic Authorization and Access Control API .56

3.2 Access Control for Distributed Applications: State of Research 61
3.2.1 Policy Agents. .61

3.2.1.1 Security Policy Mediators from the University of Tulsa64
3.2.2 Proxies and Interceptors. .67

3.2.2.1 Views as Objects. .69
3.2.2.2 Role Classes .69
3.2.2.3 SafeBots .70
3.2.2.4 Legion. .71
3.2.2.5 Security Meta Objects. .73

Table of Contents

x

3.2.3 Authorization Servers. .75
3.2.3.1 Authorization Server from HP .78
3.2.3.2 Distributed Authorization Service from the University of Texas.80
3.2.3.3 Adage .86

3.3 Chapter Summary .88

CHAPTER 4 Supporting RBAC Using CORBA Security.97

4.1 Overview of RBAC and Motivations .98
4.2 CORBA Access Control Mechanisms. .99

4.2.1 Informal Description .100
4.2.2 CORBA Protection State Configuration .106

4.3 Support of RBAC by the CORBA. .110
4.3.1 Access Control Model .110
4.3.2 Original Definitions of RBAC models. .110
4.3.3 RBAC0: Base Model .112
4.3.4 RBAC1: Role Hierarchies .114
4.3.5 RBAC2: Constraints. .115
4.3.6 RBAC3: RBAC1 + RBAC2. .116

4.4 Examples. .116
4.4.1 Single Access Policy Domain Solution .119
4.4.2 Multi-domain Solution. .123

4.5 Conclusions. .127

CHAPTER 5 Resource Access Decision Service .129

5.1 RAD Architecture .131
5.1.1 Interface Between Application Systems and RAD Service.131
5.1.2 Logical Composition of RAD .135

5.2 Example. .143
5.2.1 Initial Policies. .144

5.3 Modeling Policies .145
5.4 Advanced Policies. .149
5.5 Discussion and Conclusions .156

CHAPTER 6 CAAS -- Prototypical Implementation of RAD160

6.1 Overview of CAAS Design. .162
6.1.1 Middleware Technology .162
6.1.2 Component Interfaces .163
6.1.3 Implementation Language .164
6.1.4 Design Extensibilit y .167
6.1.5 General Component Structure .169
6.1.6 Component Initiali zation and Discovery .169

6.2 Decision Combinator. .172
6.3 Policy Evaluator .173

xi

6.4 Discussion and Conclusions .176

CHAPTER 7 CAAS Performance Measurements .179

7.1 Measurement Model .181
7.2 CAAS Configurations. .183
7.3 Test Environment .189
7.4 Experiment Procedure. .189
7.5 Measurement Results. .191
7.6 Performance Considerations .193
7.7 Conclusions. .195

CHAPTER 8 Conclusions .197

8.1 Open Problems .198

Bibliography .201

Vita .214

xii

LIST OF TABLES

TABLE PAGE
4-1 Security Attributes Possessed by Authenticated Principals ...104
4-2 Required Rights Matrix ..105
4-3 Granted Rights Per Attribute..105
4-4 Granted Rights Per Principal..106
4-5 Operations Permitted to Principals...106
4-6 Operations Permitted to Principals...109
4-7 Required Rights Matrix for Single Domain Solution...121
4-8 Granted Rights Matrix for Single Domain Solution...122
4-9 Required Rights Matrix for Multi-domain Solution...124
4-10 Interface Instance Domain Membership Matrix (IDM) for Multi-domain Solution....125
4-11 Granted Rights Matrix for Multi -domain Solution..126
5-1 Access Control Policy (Policy 1) ...144
5-2 Parts of Patient Medical Records...145
5-3 User to Role Assignment Relation (UA)..146
5-4 Permission-to-role Assignment Relation (PA) ...147
5-5 New Policy (Policy 2) ..150
5-6 Permission Assignment (PA) Relation for Role Hierarchy (New Policies)152
5-7 Relationship to Permission Assignment Relation (RSPA) ...153
6-1 Correspondence Between IDL Interfaces Extended by CAAS Design and RAD.......163
7-1 Recommended CAAS Configurations Depending on Application Requirements.......193

List of Tables

xiii

LIST OF FIGURES

FIGURE PAGE
2-1 Main Concepts of Computer Security ..8
2-2 Reference Monitor..9
2-3 Separation of Access Control Scope between Middleware and Application.................12
2-4 PIDS DemographicAccess Interface...13
2-5 PIDS SequentialAccess Interface...14
2-6 Points of Access Control ..18
2-7 CPR Security Issues Space...23
2-8 Propagation of Problems..24
3-1 Example of JAAS Policy Entry (adopted from [Lai 1999])...38
3-2 Authorization Process and ACL Management in DCE-based Application Systems (from

[Caswell 1995])...42
3-3 DCOM Middleware (from [Microsoft 1998])..45
3-4 The Hierarchy of DCOM Authorization Policies and their Scope.................................47
3-5 SESAME Components...49
3-6 Enforcement of Policies in CORBA Security (from [Blakley 1999])............................54
3-7 Sequence of Events in GAA API Model ..57
3-8 Policy Agents..62
3-9 Proxies and Interceptors...67
3-10 Authorization Servers...76
3-11 Authorization-related Interactions (from [Woo 1993c]) ..84
4-1 Execution Context Creation ...100
4-2 Domains and Policies in CORBA Security ..102
4-3 Relationships Among the Key Elements of CORBA AC Mechanisms.......................103
4-4 An Example Role Hierarchy (from [Sandhu 1998b]) ..117
4-5 EngineeringProject Interface..117
4-6 Employee Interface...118
4-7 Engineerin gProject Interface Hierarchy...119
4-8 Domain Hierarchy for Multi-domain Solution...123
4-9 Interface Instance Domain Membership ..126
5-1 Interactions among Client, Application System, and RAD Service.............................132
5-2 Interactions among RAD Components...136
5-3 Interaction Diagram for Hypothetical Case..137
5-4 Main Run-time Elements and Their Appurtenance to the Architecture Scope (from [OMG

1999c]) ..139
5-5 Administrative Elements and Their Appurtenance to the Architecture Scope (from [OMG

1999c]) ..141
5-6 Computational Part of RAD Architecture..142
5-7 Role Hierarchy (RH relation)...146
5-8 RAD Configuration for Role-based Policies..147
5-9 RAD Configuration for Relationship-based Policies...152
5-10 Relationship Hierarchy Relation (RSH)...153
6-1 CAAS Main Elements..162

List of Figures

xiv

6-2 CAAS Architecture ..165
6-3 Implementing a CORBA Object Using the Tie Approach...166
6-4 Implementing a server using Strategy pattern..167
6-5 Applying Template Method Pattern ...168
6-6 Structure Common to Most CAAS Components...169
6-7 Reference Configuration ..170
6-8 CAAS Configuration with Each Component in a Separate Process............................171
6-9 DecisionCombinator Design ..172
6-10 PolicyEvaluator Design..174
6-11 CAAS under different configurations..177
7-1 Times for Measuring Performance...182
7-2 Boundaries Crossed by Messages ..184
7-3 Reference Model and Experimental CAAS Configurations..186
7-4 Response Time Increase for Various CAAS Configurations (Error size: ±0.5)...........192

xv

LIST OF ACRONYMS

Adage Authorization toolkit for Distributed Applications and Groups

ADS Authorization Decision Server

AL Authorization Language

CAAS CORBA-based Application Authorization Service

CORBA Common Object Request Broker Architecture

DAC Discretionary Access Control

DCE Distributed Computing Environment

EPAC Extended Privilege Attribute Certificate

FTP File Transfer Protocol

GSS API Generic Security Service Application Programming Interface

GAA API Generic Access Control Application Programming Interface

IIOP Interoperable Inter-ORB Protocol

JAAS Java Authentication and Authorization Service

MAC Mandatory Access Control

ORB Object Request Broker

PAC Privilege Attribute Certificate

RAD Resource Access Decision

RPC Remote Procedure Call

SESAME Secure European System for Applications in a Multi-vendor
Environment

RBAC Role-Based Access Control

TCB Trusted Computing Base

List of Acronyms

1

1Introduction

Software systems today are increasingly integrated and interconnected to achieve

organization-wide, agency-wide and industry-wide automation and interoperation. Such

integration results in enterprises that consist of autonomous, heterogeneous and distributed

systems called enterprise software systems. Applications within each enterprise may be

developed independently and based on different design and technology. National defense,

industry, commerce and health care are increasingly dependent on the function of these sys-

tems [Sumner 1999].

Because of the magnitude and complexity of distributed systems and information

resources interconnected by the Internet and/or enterprise networks, designing security

mechanisms that protect the systems and resources becomes an increasingly complex and

difficult challenge. This is why it is an essential concern to every enterprise [NSF 1999].

The problem of securing information enterprises has been the focus of intensive efforts

from industry. As a result, several well -known security system architectures and models for

network, operating, DBM, and middleware systems have been developed for constructing

scalable and flexible security for distributed environments. This represents significant

progress yet it is only the first step for attaining the goal. The issues that remain are the fol-

lowing: handling complex and fine-grained security policies; supporting changes not only

in application systems and their underlying platforms, but also in business process and

2

security policies, as well as in user population and their roles; supporting dynamic config-

uration of enterprise applications without affecting security integrity; and achieving

required performance.

In this dissertation, we consider one particular security functionality -- access control

(AC) [Sandhu 1994]. It is a necessary defense against a large variety of security attacks on

information enterprise resources. However, the control of access to application resources

more and more needs to be fine-grain and support the use of application-specific factors in

authorization decisions. It must also consistently and reliably enforce organization-wide

authorization policies across enterprise applications.

The existing network, OS, DBMS, and middleware technologies are inadequate for

doing such control, and they will never be because they are designed for general purpose

usage, and their controls are too coarse and concern only certain resources [CIST-NRC

1999]. Because of this, application developers resort to embedding AC functionality in

application systems in order to support complex, fine-grain and context dependent autho-

rization policies.

The coupling of AC functionali ty with application logic causes significant problems.

Enterprise security administrators end up having to configure AC logic on application-by-

application basis [Beznosov 1998a]. This application-based multiple point AC makes

enterprise security administration tremendously difficult, costly and error prone [Beznosov

1997, Wilson 1997], makes it harder to change security policies and control mechanisms,

and makes it diff icult to develop, change and dynamically reconfigure application software

[Beznosov 1999b, Grimm 1999, Hale 1999].

3

The way application systems are constructed needs to be changed so that the problem

of protecting application resources is addressed and yet the systems can be developed, inte-

grated, and managed in the enterprise computing environment in a cost-effective way.

1.1 Objectives of the Work

In this dissertation, we propose an architectural approach for engineering AC mecha-

nisms capable of addressing the problem of controlling the access to enterprise application

resources. The approach is twofold. First, we develop a framework for implementing role-

based access control (RBAC) model using AC mechanisms provided by CORBA Security.

For those application domains where the granularity of CORBA controls and expressive-

ness of RBAC model suffice, our framework addresses the stated problem. The second and

main part of our approach develops an architecture for an authorization service that

addresses the problem of controlling access to distributed application resources, when the

granularity and the support for complex policies in middleware AC mechanisms are inad-

equate and application developers embed additional AC functionality in their systems.

1.2 Summary of the Main Results

Security provided by middleware technologies is important and necessary for protect-

ing distributed applications and their resources. Therefore, it is important to have means for

modeling authorization policies using middleware AC mechanisms in order to fully utilize

them. We define a configuration of the CORBA protection system state. Using the defini-

tion language, we specify an algorithm for authorization decisions in CORBA security. The

configuration along with the authorization algorithm mathematically define the state and

the behavior of the CORBA Security authorization system.

4

Using the previously defined configuration of the CORBA protection system, we show

how RBAC models could be supported by the CORBA Security service. We provide defi-

nitions of RBAC0 and RBAC1 implementations in the language of CORBA Security. Fur-

thermore, we describe what is required from an implementation of the CORBA Security

service in order to support RBAC0-RBAC3 models. Our approach allows an implementa-

tion compliant with the CORBA Security specification to support RBAC models. This

work advances the understanding of the CORBA AC mechanism’s capabilities and by this

maximizes their utility, which is vital to the use of middleware in protecting application

resources.

Our main contribution is the resource access decision service (RAD) -- a novel archi-

tectural approach for constructing authorization mechanisms that are functionally adequate

for protecting fine-grain application resources using application-specific i nformation in

authorization decisions. The approach allows separation of application and authorization

logic, which makes application development, deployment, and management more cost-

effective. It also enables consistent enforcement of organizational policies across multiple

applications. We show its functional capabilities by modeling authorization policies that

require the use of such application-specific information as the relationship between the user

and the resource owner.

Through the prototype implementation of the CORBA-based application authorization

service (CAAS), which was constructed according to RAD architecture, we gained some

important insights on the design of RAD-based authorization services. In addition, we

showed how the main features of RAD architecture, such as flexibil ity, configurabilit y, and

5

extensibility, can be substantiated using standard CORBA middleware and Java program-

ming technologies. Our experience of developing CAAS provides a guideline to the design

of RAD-based services.

Using CAAS as a test-bed, we obtained quantitative estimates of CAAS performance

for different compositions of its components. We found that depending on the ratio of the

application execution time to the number of authorization requests and the performance

constraints, one or the other CAAS configuration can deliver the required performance.

1.3 Dissertation Content

In the next chapter, we give background information on the subject of access control

in computer systems, explain main concepts and terms, and then introduce the area of appli-

cation-level access control. Then we state in detail the problem addressed in this disserta-

tion. Finally, we define a framework for evaluating the existing technologies, related work

and our approach.

Chapter3 provides an overview and analyses of the technologies, where we show that

the existing middleware technologies are important and necessary for protecting resources

of distributed enterprise systems but are not sufficient. The chapter also contains a review

of the related work conducted in the research community.

In Chapter 4, we propose CORBA protection system configuration that formally

defines the state of the system. Using the definition, we specify an algorithm for making

AC decisions in CORBA, and show how RBAC models could be supported using CORBA

Security.

6

Chapter5 introduces our main contribution -- RAD service architecture. There, we

also demonstrate its utility on examples with complex access control policies.

We present a design of CAAS and show how the main features of RAD architecture

can be substantiated using CORBA and Java in Chapter6.

Chapter7 discusses performance experiments, which we conducted using CAAS, and

draws conclusions from the results.

We conclude in Chapter 8 by discussing the achieved results and outlining what should

be done next in the problem area.

7

2Background and Problem
Statement

Before stating the problem addressed by this dissertation in detail , it is necessary to

give background information on the subject of access control in computer systems, explain

main concepts and terms, and then introduce the area of application-level access control.

This chapter’s objective is to provide all of the above.

In addition, we define criteria for critiquing existing technologies, related work, and

for analyzing the solution we propose. In short, the criteria are the granularity of protected

resources, the support for policies specific to the application domain, the variety of infor-

mation available for making authorization decisions, the use of application-specific infor-

mation in authorization decisions, the consistency of policies across multiple applications,

the support for application and enterprise evolution, and performance and administration

scalability.

2.1 Background Information and Terminology

Security of modern software systems is conventionally achieved via protection and

assurance, as shown in Figure2-1. The former is usually provided by some security sub-

systems or mechanisms, which are designed to protect the system from specific threats. A

threat is any potential occurrence that can have an undesirable effect on the assets and

resources associated with a computer system [Amoroso 1994]. Protection is based on the

8

premise that it is possible to list most of the threats which can happen in a computer system,

and it is possible to build mechanisms which can prevent the threats [Blakley 1999]. The

protection mechanisms can be classified in three groups: accountability, availability and

authorization. Accountability mechanisms make sure that users (or programs executed on

behalf of them) -- conventionally called subjects -- are held accountable for their actions

towards the system resources and services. Sometimes, subjects are also called principals.

We will use these two terms interchangeably. Availability mechanisms ensure either ser-

vice continuity or service and resource recovery after interruption. Authorization mecha-

nisms ensure that the rules governing the use of system resources and services are enforced.

They are further qualified as either access control or data protection ones. Access control

(AC) mechanisms allow system owner to enforce those rules when rules check and enforce-

ment are possible. The term “authorization” also implies the process of making AC deci-

Figure 2-1. Main Concepts of Computer Security

Protection
Authorization Accountabil ity Availability

A
cc

es
s

C
on

tr
ol

D
at

a
Pr

ot
ec

tio
n

Audit

Non-
Repudiation

Se
rv

ic
e

C
on

tin
ui

ty

D
is

as
te

r
Re

co
ve

ry

Assurance

D
es

ig
n

A
ss

ur
an

ce

D
ev

el
op

m
en

t A
ss

ur
an

ce

O
pe

ra
tio

na
l A

ss
ur

an
ce

9

sions. When checking and/or enforcement of the rules are not possible, data protection

mechanisms, such as data encryption, are used.

The structure of traditional AC mechanisms can be viewed using the conceptual model

of reference monitor [Anderson 1972]. A reference monitor is a part of the security sub-

system, responsible for mediating access by subjects to system resources (traditionally

called objects), as illustrated in Figure2-2. The mediation consists of making authorization

decisions, by checking access requests against authorization rules from the authorization

database -- a storage of such rules -- and enforcing them. A set of the rules is sometimes

called a policy. Conventionally having subject-action-object structure, authorization rules

specify what subject(s) can perform what action(s) on what object(s). Permitted actions are

also called access rights. Thus a subject has a particular access right to an object if it can

perform the action, defined by the right, towards that object. Furthermore, all authorization

Figure 2-2. Reference Monitor

Authorization
Database

Reference
monitor

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

Objects

Authorization

Rules

Subjects Access Control
Mechanism

actions

10

rules can be conceptualized into access matrix [Lampson 1971], where there is a row for

each subject and a column for each object, and each cell specifies access rights granted to

the subject for the corresponding object.

In order to make an authorization decision, a reference monitor takes as its inputs

authorization rules and three groups of information: 1) about the access request, 2) about

the subject who made the request, and 3) about the object to be accessed. It is necessary to

discuss what information is in these groups because we will use it for stating the problems,

evaluating the existing and analyzing our work.

The information about access request usually carries the request type, for example

“read” in a request for reading a file. However, some application domains have a need for

AC decisions based on additional attributes of the request. For instance, a banking system

might deny a withdrawal request if its amount exceeds a pre-determined threshold.

Information about the subject can be divided in two types -- related and unrelated to

security. Originally, only security-related information was used in AC decisions. Con-

trolled by security or user administrators, this information describes subject’s identity,

group membership, clearance, and other security attributes. Some times, we will use term

privilege attributes to refer to those security attributes that are intended to be used for noth-

ing else but AC.

In some application domains, security-unrelated information about the subject needs

to be taken into account. For example, access to rated materials in public libraries could be

granted according to the age of the accessing user. Another example is information derived

11

from the organizational work-flow process. This information is not controlled by security

or user administrators and it is not always provided to the reference monitor in the form of

subject security attributes. The monitor needs to obtain it via other means. The information

about the object to be accessed can also be divided into the related and unrelated to security.

An example of an object security attribute is its security level. All this information is used

for evaluating authorization rules.

Depending on the capabiliti es of a particular AC mechanism and the availability of

information about the subject, request and object, either only limited or elaborate informa-

tion can be accessible for making authorization decisions. This information availability will

be used as a criterion for evaluating expressiveness (or power) of AC mechanisms.

AC mechanisms are part of most operating, database management (DBM), and mid-

dleware systems. They are also present in such control systems as firewalls, and many

applications.

2.2 Controlling Access to Application Resources

Application resources can be in the form of data processed by applications, their ser-

vices (e.g. Telnet [Postel 1983], SMTP [Postel 1982] or WWW servers), particular opera-

tions performed on them (e.g. GET access requested from a WWW server via HTTP

protocol, operation invocation on a CORBA-based application server), or even menus of

the application interface.

Some application resources, such as files, database records, or network sockets, can be

protected by an operating, DBM, or middleware system. However, there are resources that

12

are application-specific and not recognized by anything except the application itself [CIST-

NRC 1999], for example the execution of particular parts of the application business logic.

In other words, the granularity of application-specific resources is finer than of general-pur-

pose computing systems. Figure2-3 illustrates the difference in the scope of middleware

and application-level AC. This is one essential distinction between application-level and

general purpose AC.

Another vital difference is that authorization rules used for application-level AC

require the use of such information about access operations, subjects, or objects, that is spe-

cific to the application domain or more elaborate (more expressive) than the information

used by AC mechanisms of general purpose systems.

In order to meet the requirements, applications commonly have their own AC mecha-

nisms in addition to the use of those provided by the underlying general purpose systems.

And this practice is becoming more and more commonplace than exceptional.

Figure 2-3. Separation of Access Control Scope between Middleware and Application

method A

method B

method C

method D

method E

Sc
op

e o
f M

id
dl

ew
ar

e
A

cc
es

s C
on

tr
ol

O
bj

ec
t

In
te

rf
ac

e

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

non-object resources

scope of application access control
Middleware Object

13

2.2.1 Examples

Let us present fragments of actual interfaces brought from formal OMG specification

of Person Identification Service (PIDS) [OMG 1998b]. They illustrate the need to exercise

AC on the level of method argument and/or return values. Each PIDS-compliant applica-

tion server must provide access to its functionality and data via interfaces defined in PIDS

specification. Let us consider some operations specified by PIDS interfaces.1

First we demonstrate the need to control what values of operation arguments can be

used by different subjects. The processing of invocations on the operations shown in

Figure2-4 require access control on the level of input argument values. The

get_profil e() operation returns a profile, which is a collection of traits describing a

person, or its subset available to the PIDS service. The traits provided as input argument

indicate what subset of the profile is required by the client [OMG 1998b]. The

update_traits() is used to modify an already existing profile by adding new traits

and overwriting any values for existing traits that are also passed in. Any traits already

stored for that person but not mentioned in the provided profile are left intact [OMG

1. The interfaces are from module org/omg/PersonIdService. We omit some elements of operation defini-
tions, such as exceptions, since their presence does not contribute in the discussion. Also, only relevant oper-
ations are reproduced in the definitions.

interface DemographicAccess : IdentificationComponent
{
 Profile get_profile (in PersonId person_id,

in SpecifiedTraits specified_traits);

 void update_traits(in PersonId id, in Profile the_profile);
};

Figure 2-4. PIDS DemographicAccess Interface

14

1998b]. Because different person traits could have different confidentiality level it is real-

istic to foresee security policies that require PIDS-compliant server to control what subject

can access what traits of what person in what mode (e.g. “read” or “modify”).

Second, we show that control over data returned to the client has to be enforced too.

Operation get_all_ids() in Figure2-5 returns profiles for all patients the service

knows about that match one of the provided “states.” The returned profiles contain the traits

indicated by the “state” parameter. The service is not supposed to return those profiles, to

which the subject does not have access even though it might list them in the operation input.

2.3 Problem Statement

The central problem we address in this dissertation is inadequacy of the architectural

solutions for controlling access to enterprise distributed applications and their resources. In

order for an AC mechanism to be sufficient it must support functional requirements. In

addition, the mechanism architecture must support and be supported by the architecture of

the information enterprise where the system is installed. The current solutions are inade-

quate because they are either functionally deficient in protecting fine-grain application

resources according to the application-specific policies or do not support the objectives of

the information enterprise architectures, or both.

interface SequentialAccess : IdentificationComponent
{
 ProfileList get_all_ids(in TraitNameSeq traits_requested,

in IdStateSeq states_of_interest);
};

Figure 2-5. PIDS SequentialAccess Interface

15

In this section we define the problem. First, we expand on the subject of information

enterprise architecture problems and their causes and show what architectural properties a

system must have in order to support the enterprise architecture. Then, we zoom into the

discussion of the requirements for controlling access to application resources at the system

scope. Finally, we substantiate the general discussion with real-li fe example of a health care

enterprise and describe concrete issues with AC in it. We complete the problem defini tion

with a summary.

2.3.1 Information Enterprise Perspective

It is necessary to place the problem of engineering access control to application

resources in a larger context in order to discuss the requirements and the validity of the

work. Such a context is the architecture of information enterprises (IE) because distributed

applications are parts of them, and the goals of engineering distributed applications should

support the goals of IEs.

We must clarify the notion of an enterprise before discussing the problems that have

to be addressed at this level. An intuitive perception of an IE tells us that it is a system of

information systems. Such a description, although correct, is far from rigorous. We will use

the following more precise definition of an enterprise as “an organizational scope upon

which a common set of information technology policies can be imposed” [Mowbray 1997].

The technological scope of IE is defined by the following hierarchy: object, module, col-

lection of modules, framework, program, application, system, department, enterprise, con-

glomerate enterprise, industry enterprises, and global infrastructure.

16

We discuss extensively the problems of information enterprise architectures (IEA)

[Beznosov 2000]. Here we merely summarize the main results for the sake of briefness. The

major problems encountered in the IEA construction are low semantic compatibility of

resulted systems, high re-alignment and maintenance cost, and its exponential increase to

the increase in the number of deployed applications [Zachman 1997]. In addition, enter-

prise modeling takes too long and becomes outdated too soon [Fowler 1997]. The main

causes of the problems are the lack of effic ient solutions to manage changes accumulated

across an enterprise; the lack of an efficient and precise way to describe, analyze, and com-

municate the architecture; architectural mismatch; poor abstraction; and poor support for

legacy, component-based and multi-paradigm systems. The main constraints are the

amount and nature of change on the enterprise level [DeBoever 1997, Mowbray 1997], and

the necessity to reuse the existing information infrastructure [DeBoever 1997, Fowler

1997].

Clearly, the main goal of an enterprise, which must be supported by constituent appli-

cations, as any other informational construction, is to satisfy its functional and non-func-

tional requirements. For an enterprise, the former is the business work-flow it is to support.

Today, business work-flow changes more and more rapidly. The rate of change has grown

from a full cycle period of approximately 7 years in the 1970s and 1980s to 12-18 months

in the 1990s [DeBoever 1997]. Essentially, the non-functional goal is not only to align the

enterprise with the business work-flow but also “ to have such an enterprise that will allow

quick re-aligning when the business work-flow changes” [DeBoever 1997]. Another

important goal for an enterprise is to allow the gradual migration towards new technologies

with the retirement of old ones as well as the evolution of systems comprising the enter-

17

prise. We define a well constructed IE as one that fully supports business work-flow and

allows sufficiently quick re-alignment according to the work-flow changes while requiring

only a reasonable amount of resources to maintain and manage the enterprise. In each case,

the notion of quick and reasonable has to be determined.

Therefore, we suggest that the architecture of a system or a service functioning in the

enterprise environment must aim to 1) reduce the amount of change associated with it and

other systems, 2) reduce the cost associated with maintaining and re-aligning it and other

systems, and 3) enable solutions that scale well with the increase in the number of deployed

applications.

For instance, solutions currently available in the industry control access to application

protected resources at several points, as Figure2-6 shows. They are network (e.g. firewall),

middleware, database and operating system controls. Making all these controls to work in

concert and consistently enforce enterprise-wide access control policies is a daunting task,

when there are hundreds of application and supporting systems (e.g. operating systems).

Such solutions considerably increase the amount of change associated with administering

authorization policies and applications, increase the maintenance and re-alignment costs,

and do not scale well with the increase of the number of applications.

2.3.2 System Perspective

The main problem at the system level is that middleware AC mechanisms do not pro-

tect fine-grain resources or they provide limited capabiliti es for handling complex policies,

which is required in some application domains, e.g. health care [Beznosov 1997, Wilson

1997]. In addition, there is a need for domain-specific factors (e.g. relationship between the

18

user and the patient [Barkley 1999], emergency context) to be used in access control poli-

cies. This complexity and granularity level often force application designers to embed

domain-specific authorization logic inside their applications. Some even document patterns

of designing “application security” [Yoder 1997]. As a result, this increases the complexity

of software design and makes it diff icult to ensure system integrity and quality. It also sig-

nificantly increases the difficulty and cost of system administration and management.

2.3.3 Problems with Access Control in a Health Care Enterprise

In the previous sections, we outlined general problems that architectures of informa-

tion enterprises face, suggested what architectural properties enterprise systems and ser-

vices should have. We also showed what functional requirements mechanisms controlling

Figure 2-6. Points of Access Control

MiddlewareM
id

dl
ew

ar
e

C
on

tr
ol

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

OS
Access Control

OS

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

Objects

Application

Resources

Application
Access Control

network access control

19

access to application resources should have. Now we substantiate our discussion with par-

ticular problems in AC for the information enterprise of a health care organization -- Baptist

Health Systems of South Florida (BHS). BHS is the largest non-for-profit healthcare orga-

nization in South Florida, which is comprised of six major hospitals and clinics. Due to the

technical and historical reasons BHS information enterprise is referred as Computerized

Patient Record (CPR). We will use this name through out the section. Parts of the section

are based on the materials from [Beznosov 1998a, Beznosov 1998b].

2.3.3.1 Introduction

CPR enterprise is and will be a heterogeneous environment for long time if not forever.

Legacy computing technologies and architectures, such as stovepipe systems [Mowbray

1995], are going to co-exist with new component-based systems as well as with new mid-

dleware and other technologies such as CORBA and its services, common and vertical

domain facilities. The enterprise will always have to accommodate emerging technologies

with old disappearing ones. The main goal for CPR security architecture is to provide a

security environment where the view of an enterprise user will be consistent across all its

components, and AC decisions will be made according to one set of enterprise-specific pol-

icies. We list the main issues that make this goal diffi cult to achieve and maintain. We

present our vision on how a CPR enterprise architecture can be designed so that the

described problems can be addressed in the realm of existing constraints. The problems dis-

cussed here are based on the experience from the ongoing project of designing CPR secu-

rity architecture at BHS.1

1. More information about BHS can be found at htttp://www.baptisthealth.net

20

In order to facilitate understanding of the issues and constraints, we first provide back-

ground information on CPR enterprise and describe its specifics next.

2.3.3.2 CPR Enterprise

CPR is a long-term initiative at BHS. Wreder et al. [Wreder 1998] describe its ultimate

goal as to provide the mechanism to capture, manage and present information required

throughout the continuum of care in a manner that optimizes the business process by taking

advantage of distributed object computing technologies. BHS’s CPR can be viewed as a set

of object services and clients distributed across a healthcare enterprise. Since all clinical

and some business services are eventually expected to be integrated into the CPR infra-

structure, it is considered as an enterprise itself. CPR architecture is being constructed uti-

lizing the Object Management Architecture described in [Soley 1996]. CORBA-compliant

ORBs constitute a distribution backbone for CPR components.

All deployed application systems are selected according to the criteria of the best fit

for a particular business process they serve and according to the mandatory requirement to

comply with CPR architecture. Particularly, application systems and services are required

to provide CORBA-compliant interfaces to their main functionality and to use services

available within CPR enterprise to avoid redundancy. For example, any application system

and service that has a notion of patient is required to utilize a CORBA-compliant Patient

Identification Service (PIDS) [OMG 1998b] and expose any data related to clinical obser-

vations via interfaces compliant with Clinical Observation Access Service (COAS) [OMG

1997] standard from the OMG. The very first CORBA-based CPR service was deployed at

BHS in February 1998. The service provides access to clinical transcription records. BHS

21

is in the process of deploying a Master Patient Index service that will provide PIDS among

other services. An anatomic pathology system that will be using PIDS and wil l also provide

access to its data via COAS-compliant interfaces is expected to be deployed as well.

Even though all new components deployed in CPR enterprise are based on CORBA

technology, there are legacy systems that have to be integrated in CPR architecture at some

point. Also, some new non-CORBA-compliant services will be deployed within CPR

enterprise. Such systems and services have to be integrated in CPR enterprise including its

security infrastructure. We will discuss the issues of designing CPR security architecture in

the next sections.

CPR enterprise has its own features that affect its architecture. Some are common to

any enterprise, some are specific to health care, and others are BHS distinctive. They serve

as constraints to the enterprise, including its security infrastructure. We identified the fol-

lowing significant features:

• As we discussed in Section2.3.1, like with any other IE, due to the increasing rate of

information enterprises growth and the replacement of conventional monolithic, multi-

purpose solutions by component-based specialized ones, the amount of maintenance

and administration is rapidly increasing. The increase of enterprise size and complexity

exacerbates all other factors.

• CPR business processes change much faster than they used to do. This forces CPR

enterprise configuration to be adjusted at the same rate. For a security architecture, this

means decentralized administration and extensive delegation of administration privi-

leges, as well as more frequent AC policy changes driven by business processes.

22

• Many different application systems are used across the enterprise. Y2K inventory

revealed about 200 different applications from word processor to multi-millio n dollar

clinical systems.

• Some products come from narrow niches with few vendors, which eliminates fair com-

petition of products forcing customers to select sub-optimal solutions or contract condi-

tions.

• Heterogeneous operating system (OS) environments serve different needs of different

departments. The heterogeneity is also due to tight coupling between applications and

the underlying OS. Major clinical applications are available only on particular OS or

even hardware platforms.

• Vendors are oriented towards numerous more conservative customers. Those custom-

ers are usually technically less educated and, as a consequence, concerned only with the

functional properties of the products.

• Outside visitors have the potential for physical access to desktops and network infra-

structure. Unlike financial or manufacturing enterprises, in health care organizations

patients, and often their guests, have access to most faciliti es thus making it almost

impossible to introduce the notion of trust boundary dividing the facili ties.

• Dif ferent departments have different levels of urgency and different requirements for

confidentiality and service availability. This makes security protection of the same high

strength unjustifiable and some times even conflicting with the support of business

practice specific to the particular department.

23

• The information technology (IT) department cannot afford in-house development due

to the lack of resources and qualified staff, which mandates the use of COTS applica-

tions, external consulting, integration and outsourcing services.

2.3.3.3 Security Architecture Issues

Given the general constraints imposed on CPR, we discuss the issues related directly

to its security infrastructure, and first present four groups of issues related to the CPR secu-

rity architecture. We limit our discussion to the issues only directly related to access con-

trol. Its full version can be found in [Beznosov 1998a, Beznosov 1998b]. To ease the

understanding of how the groups relate to each other, we place them on a discrete 2-dimen-

sional space depicted in Figure2-7. The horizontal dimension identifies if the issue can be

found generally in any information enterprise or only in a CPR enterprise. The vertical

dimension identifies if the issue is related to any technology or it is specific to CORBA-

based enterprises.

C
O

R
B

A
 T

ec
hn

ol
og

y
A

ny
 T

ec
hn

ol
og

y

Any Enterprise CPR Enterprise

Figure 2-7. CPR Security Issues Space

24

General issues are propagated into more specialized areas. For example, those prob-

lems that exist in any information enterprise are propagated also into a CPR enterprise. To

il lustrate it, we present the same issue space in the propagation pyramid shown on Figure2-

8. More general problems and requirements at the foundation of the pyramid, if not

addressed, would propagate to the upper layers. We discuss the problems in groups moving

from generic to specific.

 Any Enterprise Based on Any Distributed Computing Technology

Coupled AC logic. Conventional applications have their own AC decision logic

tightly coupled with an application itself. Enterprise security administrators end up having

to configure such logic on application-by-application basis, which brings tremendous

administration overhead and highly increases chances of human error.

Decisions about which users can have what access to what assets of the information

enterprise should ideally depend only on the following factors: user privilege attributes,

Figure 2-8. Propagation of Problems

CPR / CORBA

CPR / Any Any / CORBA

Any Enterprise / Any Technology

P
ro

bl
em

 P
ro

pa
ga

ti
on

25

enterprise security policies, business workflow and its constraints. All these items are prop-

erties of a particular enterprise and not of any application in it. Also, AC models must have

a common denominator to map enterprise security policies and business workflow con-

straints uniformly into particular authorization rules. Therefore, all access decisions should

be foreign to an application service and native to the enterprise security infrastructure as

well as the enterprise business workflow.

No standard administration interface. Among those applications that have their own

AC mechanisms, each has its own proprietary interface to administrate the mechanism.

This makes it impossible to administrate AC and other security mechanisms for multiple

applications using a single administration environment. Therefore, the automation of AC

administration is a very resource-consuming and error-prone task.

Inconsistent AC models. Due to the replication of security information over applica-

tions and coupling of authorization and application logic, multiple inconsistent AC models

co-exist in the same information enterprise. In this case, it is highly difficult to insure con-

sistency of AC rules across the enterprise. Most of the time, security administrators end up

having no guarantee, whatsoever, that authorization rules and, especially, changes to them

are consistent across all application systems and comply with organizational policies.

 CPR Enterprise Based on Any Distributed Computing Technology

YES/NO AC. It is hard to draw exact borders between what a care giver, as a user of

medical systems, is supposed to have access to and what he/she is not. Some scenarios are

clear (e.g., a registration clerk trying to change lab test results of a patient) and some are

not (e.g., emergency room physician browsing encounter history of a patient). There is a

26

need for, so called, “soft AC” when a principal is granted access; however, audit and

(maybe even) non-repudiation “alarms” go off for later investigation. Meanwhile, the user

is warned that they are accessing information they are not supposed to. Such “soft AC”

notion is missing from most models including CORBA Security. Additional abstraction is

needed in security administration solutions to accommodate “soft AC.”

Vanilla security administration. A low-level generic security administration model,

where authorization (and other) rules are expressed in terms of security attributes of sub-

jects and (maybe groups of) objects/interfaces, does not support needed abstractions spe-

cific to the business process. Domain-specific AC languages that abstract the access model

to the level of business model are necessary.

 CPR Enterprise Based on CORBA Technology

Heavy security policy domains. Ideally, the notion of security policy domains should

be used actively in order to leverage AC mechanisms of CORBA Security service. All

information about a patient can be represented as a collection of objects that belongs to the

same AC policy domain. When a new patient is registered and his/her record is created, all

data about the patient is accumulated in the objects belonging to the patient’s domain and

AC (as well as other security) policies are instantiated appropriately. Consider a common

situation when a healthcare enterprise serves thousands of patients. We do not have empir-

ical knowledge but it seems that the current security technologies (e.g. SESAME and Ker-

beros) used for CORBA Security implementation would not scale to scenarios with

thousands of security policy domains.

27

Coarse-grain AC. Preliminary modeling of a CPR AC [Beznosov 1997, Wilson 1997]

shows that the basic CORBA Security AC model does not take into account such important

for a healthcare enterprise factors of authorization decisions as the content of requests and

replies, and the context of client/server interactions.

2.3.3.4 Goals for CPR Architecture

Not all the issues are as urgent in the short term period or as important in the long term

period as others. Some of them are highly critical for CPR enterprise success. Below, we

state the goals that we believe will impact significantly the way CPR enterprise security

architecture will evolve.

 Long Term Most Important Goals

Achieving long term goals will enable integration of applications with CPR security

infrastructure. The goals are difficult to implement quickly because they require re-struc-

turing of the infrastructure and re-design of the applications. However, once realized they

will enable creation of a well constructed CPR enterprise which will support organizational

work-flow and its changes. Besides generic goals, CPR security infrastructure has several

specific long term objectives in the area of AC.

Enterprise-wide logically single repository of user security attributes is paramount to

any well structured organizational security infrastructure. It will provide a single view of a

user no matter what underlying security technology and applications are used. When a user

initializes a session, information from the repository is used for their identification and

authentication. The main advantage is, however, the existence of logically single location

for security information related to the user which allows inherent coherence of any changes

28

to it. Such a repository will allow significant reduction of enterprise-wide user security

information administration.

Second goal is the realization of fine-grain uniform access controls across all applica-

tions. Otherwise complete CPR automation will risk a health care organization to face lia-

bilities of various degree. For instance, breaching the regulations on patient information

privacy and confidentiality [DHHS 1999], which are part of health insurance portability

and accountability act (HIPAA) [USA 1996] imposed on US health care industry, would

jeopardize the company abilit y to compete on the market and could bring legal actions

against its administration. The keys here are the granularity and uniformity of AC. Without

needed granularity, service-based health care applications would not provide protection

necessary for controlling access on the need-to-know basis. On the other hand a lack of uni-

formity would introduce inconsistencies in AC enforcement thus considerably decreasing

its usability, manageability, and maintainabilit y.

Another important goal is the use of domain-specific high-level abstraction for admin-

istering security in general and AC in particular. We describe below those factors that

should be used to make elaborate authorization decisions in order to comply with patient

information discloser requirements.

Affiliation -- what subsidiary of the health care system a particular care giver works

for or is a partner with. Due to frequent mergers and to the fact that many physicians consult

in several hospitals, this factor affects authorization decisions.

29

Role -- what role the user is assigned to in the current session. This factor is important

to use because the same user can act in different roles performing his or her responsibilities

and because RBAC decreases security administration overhead. However, modeling of

health care AC policies shows us that the type of relationship between the user and the

patient is also used very extensively in making authorization decisions.

Relationship -- what is the relationship between the user and the patient whose records

are to be accessed. Today health care practise increasingly employs shared care approach

in which the patient is managed by a team of care professionals each specializing in one

aspect of care [Grimson 2000]. Some types of relationships that need to be managed in the

healthcare context are: patient's primary care provider; admitting, attending, referring, or

consulting physician of a particular patient; part of the patient care team; healthcare staff

explicitly assigned to take care of the patient; patient's immediate family; patient's legal

counsel or guard; personal pastoral care provider.

Location -- where the user is accessing information services from. Location informa-

tion is used in several types of authorization policies. One type is represented by the fol-

lowing example of an AC policy: a nurse should have access to medical records of a patient

if the nurse is currently working on the same “floor” as the patient. Another type uses loca-

tion to identify the trust domain where the user is accessing information services from. A

reasonable policy would deny access to any sensitive information for anyone accessing it

from untrusted areas or via unprotected communication channels. Location can also be

used to derive the emergency level of access. A policy can allow read access to all patient

30

information of all patients for any user assigned to the role physician and accessing the

information from an emergency room.

Time -- when access is requested. The time factor is useful for authorization rules on

users assigned to shift-related positions such as nurses and for task-based AC [Thomas

1994] when access to patient records is granted for the task duration to the users responsible

for accomplishing it.

All t his information is essential in order to make authorization decisions at health care

enterprises. To achieve integral use of the described factors, an effective domain-specif ic

authorization language that would incorporate the concepts of role, affiliation, location,

relationship and time is needed.

Putting all these goals together, we believe that if the security infrastructure of a health

care enterprise can be designed in such a way that AC can be enforced at fine level of gran-

ularity, in a uniform way across the enterprise, and a domain-specific high-level authoriza-

tion language is used, then CPR security infrastructure can be well structured.

We used CPR security architecture at BHS as a concrete example for ill ustrating the

context in which the problem of engineering access control in distributed applications is

stated. Familiarity with the context will help to the understanding of the problem require-

ments and its solution proposed in this dissertation. We outlined the main issues in con-

structing CPR security architecture. In addition, we grouped them into four categories

according to the type of information enterprise (general or healthcare) they can appear in,

and the type of distributed computing technology they characterize (any or CORBA-spe-

31

cific). Finally, we defined most important long and short term goals for CPR security infra-

structure.

2.3.4 Summary

The issues central to the problem of controlling access to the resources of distributed

enterprise applications are of two types: functional and architectural. The functional are 1)

the granularity of protected resources, 2) the enforcement of policies specific to the busi-

ness domain of the enterprise, and 3) the decisions based on elaborate security-related and

unrelated information about the accessing subject, the access operation and the object. Last

but not least, ways must be provided to ensure the consistency of policy enforcement across

multiple applications.

Architecturally attractive solutions must effectively support the evolution of enterprise

systems, i.e. changes to existing applications, their insertion or deletion, changes in busi-

ness processes and security policies, changes in hardware/software platforms, etc. These

qualities need to be achieved at reasonable cost during the development, operation, and

evolution of application systems and the enterprise they comprise. Above all, the solution

shall scale well with the number of applications.

2.4 Evaluation Criteria

Before proposing our solution to the problem, we wil l review the state of the practise

and research in the next chapter. In this section, we define a framework containing criteria

for evaluating the existing technologies and related work, as well as for analyzing our

approach.

32

Any existing or proposed solution should be evaluated on the basis of its adequacy in

addressing the problem. Therefore, the problem statement is the main source for the crite-

ria. Particularly, how well does it address the following main issues?

1. Granularity of protected resources. If a technology or solution does not allow autho-

rization decisions on fine-grain resources, then it cannot be used for protecting applica-

tion resources. We will use the following granularity hierarchy: application, interface,

method, arbitrary resource.

2. Support for policies specific to the organization application domain. There is a

wide range of supported AC models and policies, as it will be shown in Chapter3. At

one end there are AC mechanisms that support only one model (and the corresponding

policies), for example lattice-based mandatory AC (MAC) [Bell 1975]. At the other

end are solutions that allow implementation of any authorization logic and their support

for policies is limited only by the interface to the logic. In general, the more AC policy

types a mechanism can support the easier it is to configure for required organizational

policies. When applying this criterion we will look at the range of supported AC mod-

els.

3. The variety of information available for making authorization decisions. As we

discussed above, authorization decisions are made by evaluating rules with the use of

information about the subject and object, as well as the operations to be performed by

the former on the latter. The available information is limited. For example some tech-

nologies allow obtaining only authenticated identity of the subject but not the informa-

33

tion about group membership or activated roles, which ultimately limits the functional

capabilities of the AC mechanism based on such a technology. We will look into what

information is available and what information is used in authorization decisions.

4. The use of application-specific information. The use of information which is applica-

tion-specific and becomes available only while the application processes the client

request is critical for some application domains (e.g. health care). If a solution does not

allow the use of such information, then full automation of protecting application

resources would not be possible.

5. Support for consistency of policies across multiple applications. It was discussed

earlier that in the enterprise environment, the issue of consistent policy enforcement is

a critical one. We will consider the support for enterprise-wide consistent AC policy

enforcement while examining the available and proposed approaches.

6. Support for insertion and deletion of applications, changes in policies and the

computing environment. No matter how functionally perfect the support for the AC

of application resources is, if it is highly ineffective to accommodate all these changes,

then it is of no good in enterprise settings. Most available approaches support the

changes to some degree. We will evaluate how good the support is. Unfortunately,

there are not any objective quantitative criteria for determining the level of support.

This is why we compare the solutions with each other in regards to this criterion.

7. Solution scalability. Performance and administration scalability highly affects the

approach utility. Regardless of all other merits, if an approach does not scale well it can

not be more then just an academic exercise. Since there is not any benchmark available

34

for evaluating the scalability of AC solutions, we will use common knowledge to rea-

son about the scalability. For instance, when it is possible, we will examine the amount

of data that needs to be modified, in order to accommodate a policy change. Another

commonly known measure that we wil l use is the communication complexity, which is

still regarded as the major factor in the performance of distributed systems.

35

3Related Work

This chapter provides a survey and analyses about available solutions in the area of this

dissertation, i.e. controlling access to the resources of distributed enterprise applications. In

sections 3.1 and 3.2, we survey the existing work in detail , then summarize the discussion

in Section 3.3.

The idea of treating authorization logic as an independent component of software sys-

tems is not new. An abstract model of a reference monitor [Anderson 1972] is a classical

example of authorization decisions being made and enforced outside of applications. The

concept has being employed in the AC design of operating systems from the early days of

computer security. Most operating systems implement authorization logic in the security

part of their kernels [Benantar 1996, Curry 1992, DEC 1989, Gligor 1986, Grampp 1984,

Heydon 1994, Hommes 1990, Karger 1991, Luckenbaugh 1986, McCauley 1979, McIner-

ney 1999, Mullender 1990, Pfleeger 1989, Quarterman 1985, Saltzer 1974, Walker 1980].

Among special-purpose ad-on security software packages, Computer Associates’

Access Control Facility 2 (CA-ACF2) [CA 1998a] and CA-Top Secret [CA 1998b], as well

as IBM’ s Resource Access Control Facili ty (RACF) [Benantar 1996, IBM 1976] are the

most known ones. RACF is a security system for MVS and VM operating systems. It acts

as a central control point that mediates access to various system resources by authenticated

users. The operating system’s resource managers send user requests to RACF for valida-

36

tion. Computer Associates’ packages are integrated in operating systems and work in a way

similar to RACF. As a matter of fact, MVS installations have the option to use CA-Top

Secret or CA-ACF2 as their choice of access control software package [Benantar 1996],

which underlines the separation of AC mechanisms from application and even operating

system functions.

3.1 Access Control for Distributed Applications: State of
the Practice

In this section, we review the capabilities and discuss what the main-stream technolo-

gies provide for engineering of AC in distributed software applications. We evaluate their

fitness by applying the criteria described in Section2.4. Ideally, all security functionality

should be engineered outside of an application system, therefore making it, so called,

“security unaware.” This is why we also examine if the distributed security technologies

can enforce AC externally to the application.

In general, there are two types of technologies used for securing distributed software

systems. One type is the technologies that merely provide party authentication, communi-

cation protection, and AC independently of the underlying communication layers. They are

Kerberos [IETF 1993, Neuman 1994a], GAA API [Ryutov 2000a], and SESAME [Kaijser

1998, Parker 1995]. Application developers deliver inter-application communications by

other means (e.g. ONC RPC [Bloomer 1992]). This enables the use and mix of any desired

communication protocols and media. However, developers are overburdened with the

efforts to integrate security with the underlying communication technology.

37

Another type is middleware technologies, such as CORBA [OMG 1996b], DCE [Git-

tler 1995], Java [Lai 1999], and DCOM [Microsoft 1998], that provide an underlying com-

munication infrastructure along with the security subsystem, thus enjoying reasonable

integration of both and much more seamless use of the former by developers. Moreover,

some of them (CORBA and DCOM) enable basic AC completely outside of an application

system because access decision and enforcement occur before the remote call is dispatched

to the application.

3.1.1 Java Authentication and Authorization Service

The release of the Java 2 platform introduced a new security architecture [Gong 1997],

which uses a security policy to decide about granting access permissions to the running

code. It uses factors relevant to the code for authorization decisions, such as where the code

is coming from and whether it is digitally signed and, if so, by whom. Such a code-source-

centric style of AC is very different from user-centric authorization policies supported by

conventional computing environments. Java has recently become widely used in enterprise

application systems where different users run the same code. The Java Authentication and

Authorization Service (JAAS) [Lai 1999] is designed to provide a framework and standard

programming interface for authenticating users and for assigning privileges to users. Using

JAAS together with Java 2, an application can provide code-source-centric, user-centric, or

a combination of both types of authorization.

In Java 2 and JAAS (we wil l refer to the combination as “JAAS”), AC is enforced by

the security subsystem only on Java Virtual Machine (JVM) protected resources, such as

files, sockets, etc. Java objects or other application resources are not protected, so AC has

38

to be implemented by an application itself. Application developers can program against the

same authorization API as the one used for the rest of Java 2 run-time if they employ JAAS

authorization.

For an application to use the JAAS authorization mechanism, it needs to 1) construct

an instance of class java.se curity.Permission representing the protected

resource(s) in question, 2) locate global instance of Policy object, 3) obtain permissions

granted to the code and the subject via Policy::getPermissions() ,1 and 4) deter-

mine if the returned collection of granted permissions contains the required one.

JAAS supports any level of resource granularity because it specifies a flexible mecha-

nism for defining application-specific protected resources. This is done via access rights

which are permissions in the terminology of Java security architecture. Java permissions

are classes with the common ancestor java.security.Permission . Depending on

the semantics of a permission, a group of resources could be associated with it. For example

java.io.So cketPermission is associated with all port numbers in the example

policy in Figure3-1. There are several pre-defined permissions. They are file,

1. An application can obtain permissions for processing a client request only once as long as the subject
privilege attributes, code base, and code signer do not change.

//JAAS pri ncipal-based po licy
grant

Codebase “ http://bar.com” ,
Signedby “bar”,
Principal bar.Principal “duke”
{

permission java.io.FilePermission “/cdrom/duke”, “read”;
permission java.io.SocketPermission “* ”, “connect”;

}

Figure 3-1. Example of JAAS Policy Entry (adopted from [Lai 1999])

39

socket, property, runtime, AWT, net, reflect, serializable,

and security . New subclasses of Permission can be defined in order to implement

new types of permissions, including those which are application-specific.

JAAS model defines a generic concept of authorization engine via abstract class

java.security.Policy , implementations of which are responsible for determining

what permissions are granted to the code source executing on behalf of the given subject.

The main method of this class, getPermissions(s ubject,codesource) ,

returns a collection of permissions granted to the subject with privilege attributes presented

in argument subject , and executing code that came from codesource . A subclass of

Policy can implement a different authorization policy, which should comply with the

class defini tion. Therefore, the main constraint on such an implementation would be the

syntax of getPermissions() method. JAAS provides a default subclass Policy-

File , which supports authorization decisions according to the source code base, the iden-

tity of the code signer, and the value of privilege attributes possessed by the subject. These

all are used to determine permissions for a particular resource. The flexibil ity of JAAS

comes from the property that the authorization logic can be implemented in various ways

without deviating from the JAAS AC model. Since Policy is an abstract class and its

main method getPermissions() could be implemented in many different ways, JAAS

does not constrain implementers to any particular authorization model, which enables sup-

port for policies specific to the organization or to the application domain. It is up to the

implementers of Policy instances to achieve performance and administration scalabil ity.

40

JAAS has a generic and extensible support for different authorization factors. Privilege

attributes are not limited to the predefined ones. New attributes can be easily defined via

new Java classes. Moreover, JAAS supports the composition of privilege attributes into

hierarchies, which is important for implementing AC models with relationships between

attributes, for example role-based AC (RBAC) with role hierarchies [Sandhu 1996]. On the

other hand, even semantically the same attributes, if they are implemented as different

classes, are considered dissimilar by JAAS, which introduces a basis for confusion. A

notion of an attribute type, as in CORBA or SESAME, would sufficiently address the prob-

lem.

JAAS architecture does not explicitly support the consistency of authorization deci-

sions across multiple applications because Policy instances used for authorization deci-

sions must be local to the application. However, this does not preclude an implementation

of Policy to delegate authorization decisions to a remote service.

JAAS architecture is relatively adaptable to the changes in applications, authorization

policies, and computing environment. Changes to the policies can be accommodated via

the replacement of the Policy object. Java’s dynamic loading mechanism allows the

addition and removal of applications as well as adaptation to various changes in the com-

puting environment.

Because JAAS architecture is defined as a set of several Java abstract classes and inter-

faces, allowing the implementations of very different scalabil ity, we can only analyze the

scalability constrained by the interfaces to its components. We found that the semantics of

Policy::ge tPermissions() , which returns the amount of data proportional to the

41

number of all permissions in the system granted to the subject, can cause performance scal-

abili ty problems for policies of some types. Consider for example an implementation of

Policy , which supports, or maps to, an owner-based discretionary AC (DAC) policy

[NCSC 1987], similar to UNIX file permissions. In such systems, there is a set of permis-

sion bits declaring access rights for the owner, the members of the primary and other groups

of each file. Thus getPermissions() should return permissions to all files that the user

has. This is justified only when an application needs to make many authorization decisions

for the same subject running the same code. However, when only one authorization deci-

sion is needed in order to process a request or when the code base or signer change, return-

ing all permissions granted to the subject seems inefficient. A more scalable solution would

be a one in which the result of the authorization decision is returned instead.

3.1.2 Distributed Computing Environment

The Open Software Foundation’s (OSF) Distributed Computing Environment (DCE)

[Kong 1995], is an underlying RPC infrastructure and a collection of integrated services

that support the distribution of applications on multiple machines. The functionalities pro-

vided by DCE security services include: user authentication, secure data communications

to protect data communicated by an application to other applications over DCE infrastruc-

ture, and authorization for applications [Gittler 1995].

DCE Security is based on Kerberos [IETF 1993, Neuman 1994a], which performs

authentication of users and applications based on cryptographic keys so that communicat-

ing parties can trust the identity of each other. DCE augments Kerberos with a way to trans-

42

fer additional privilege attributes to a server that may choose to perform AC based on those

attributes.

The service does not control access to applications or their resources, and DCE appli-

cations are expected to enforce and provide administrative access to authorization policies

on their own. To do so, an application has to implement AC functionality, including an

access control list (ACL) manager and an ACL storage, as shown in Figure3-2. In order

for an application to use DCE security service for AC, it needs 1) to determine the DCE

object ID (OID) of the resource in question, and 2) to obtain authorization decision from its

ACL manager using the OID.

If an application uses the DCE ACL model for authorization, it associates an ACL with

a protected resource via OIDs, which are used by the ACL manager to determine right

ACLs. The exact definit ion of “resource” is entirely at the discretion of the application. For

Figure 3-2. Authorization Process and ACL Management in DCE-based Application
Systems (from [Caswell 1995])

ACL Database

Automated Tel ler
Machine

Bank Administrat ion
Control Account

Management

Application
Interface

ACL Manager

Edit ing
Interface

(rdacl)

Give User jane
Permission to
Withdraw from
Account 1234

Management Process

Server Process

Client Process

User=jane,
Account=1234,

Request=Withdraw
$100.00

Does user jane have
permission to
withdraw from

Account

yes

Modify Account
Permission

Update
ACL

information

Get Account
Permissions

Dispense $100.00

1

2

3

4

5

6

43

example, an object could be an item of stored data (such as a file), or could be a purely com-

putational operation (such as matrix inversion). Thus, the concept of OIDs enables any

granularity of protected resources.

DCE ACLs support a limited number of privilege attribute types -- only identities of

the user, who is the resource owner, the owner group, and other group(s). There are also

distinctions between:

• “ local” and “foreign” (from another DCE cell) subjects,

• those acting as delegates and primary invokers, and

• entries that specify specific and default policy, i.e. in the absence of any other appli-

cable ACL entry (ACLE).

DCE ACL language is also considerably limited allowing security administrators to

either explicitly grant or deny rights to the subject based only on its identity or group

attributes. The language capability to support policies specific to application or organiza-

tion remains to be seen.

The following simple example from [Caswell 1995] demonstrates (Figure3-2) how

AC is expected to be implemented by an application system. User jane makes a request

to withdraw $100.00 from her account number 1234 (step 1). The application interface

passes this information to the ACL manager asking for an authorization decision (step 2).

The ACL manager retrieves the authorization policy for account 1234 from the ACL data-

base (3) and applies the policy to derive the answer (4). If user jane is authorized, the

withdrawal is performed (5 and 6).

44

In order for an ACL associated with application resources to be administered, DCE

applications are expected to provide a means for it. They can implement DCE standard

ACL administration interface (rdacl). When Jane’s account is first set up, a bank

employee would use an administrative tool to give user jane the permission to withdraw

money from account 1234 . The editing interface enables the ACL manager to change the

policy. An ACL manager changes a policy by retrieving the current policy, modifying it,

and writing it back to the ACL database. Rdacl interface seems to be the only means of

ensuring the consistency of authorization policies across application boundaries unless

access to the ACL database is implemented as a global service. In the latter case, policy and

application changes could also be accommodated by the DCE environment easier than in

the basic configuration shown in Figure3-2.

As seen from the discussion above, DCE security service provides rudimentary help to

applications to make AC decisions, and it enforces no AC externally to an application.

Comparatively to its predecessor, Kerberos, it advances privilege attribute management by

enabling attribute types other than subject identity in EPACs. However, the expressiveness

of DCE ACL language is fairly lim ited, and we could not determine how application-spe-

cific factors could be used in authorization decisions if the mechanisms of DCE ACLs are

utilized. It seems that the increase of the application client or server population would not

drastically affect overall DCE-based enterprise performance because AC decisions are

made using local data. However, administration scalability is poor because policy changes

have to be reflected in the ACL database of every application unless the database is central-

ized. Then the performance scalability would suffer.

45

3.1.3 Microsoft Distributed Component Object Model

The Distributed Component Object Model (DCOM) [Grimes 1997, Rubin 1999] is a

middleware technology from Microsoft, which extends the Component Object Model

(COM) to support communication among COM objects on different computers running

some flavor of MS Windows OS. A schematic representation of DCOM middleware is

shown in Figure3-3. DCOM protocol, known as “Object RPC” or ORPC, extends the stan-

dard DCE RPC protocol. At the wire level, ORPC uses standard DCE RPC packets, with

additional DCOM-specific information.

Since DCOM RPC is a derivation of DCE RPC, it is not surprising that its security

model resembles DCE security. ACLs, with the language similar to the one in DCE, are

used to code authorization policies. In DCOM, they are named Discretionary ACLs

Figure 3-3. DCOM Middleware (from [Microsoft 1998])

Client ComponentProxy Object

DCE RPC

Protocol Stack

Stub

DCOM network-
protocol

Security
Provider

DCE RPC

Protocol Stack

Security
Provider

S C M S C M

OLE32

"CoCreateI
nstance"

(Remote)
Activation

"CoCreateInstance"

46

(DACL) to signify the default right of the object owner to modify DACL entries. DACLs

can be configured using DCOMCNFG configuration tool or programmatically using the

Windows NT registry and Win32 security functions. However, these do not change the

essence of the model. What does, though, is the capabil ity of enforcing policies outside of

a DCOM object, and the presence of a hierarchy of policies. This is a considerable advan-

tage over the DCE AC model, where no control is enforced by the security environment,

and an application has to implement its own.

DCOM provides two choices for controlling access to applications and their resources

[Eddon 1999]. With “declarative security,” DCOM can enforce AC without any coopera-

tion on behalf of the object or the object's caller; the policies for an application can be exter-

nally configured and enforced. The declarative security policies can be divided into default

policies and component-specific ones. A default policy specifies the default launch and

access settings for all components running on the local machine that do not override these

settings. Component security settings can be used to provide security for a specific compo-

nent, thereby overriding the default security settings.

With another, “programmatic security,” DCOM exposes its security infrastructure to

the developer via security APIs1 so that both clients and objects can enforce their own

application-specific authorization policies in regards to resources of any granularity, and

using any information as input for the decisions. Programmatic security can be used to

override both default and component security settings in the registry. Figure3-4 shows the

hierarchy of DCOM authorization policies: 1) policy encoded in the behavior of the com-

1. For example, calling subject identity can be obtained using methods
IObjectConte xt::IsCallerInRole() and ISecurityPropert y::GetCallerSID().

47

ponent implementation, 2) the declarative process-specific, and 3) the declarative host-spe-

cific policies. Policies 2 and 3 are enforced before the call is dispatched to the object

method. In this hierarchy, the inner policies override the outer ones in the following way:

before the invocation reaches the method implementation, statements, if any, from process-

wide policy override corresponding statements in the host-wide policy. If the invocation is

allowed, then it will be dispatched to the method implementation, which wil l be able to

exercise its own AC policy (policy 3), if any.

A significant hindrance to the authorization model is the granularity of “component-

specific” declarative policy (policy type 2 shown in Figure3-4). The granularity is per OS

process, and there is no distinction among different object methods. That is, the policy uses

the same DACL to control access to all objects and methods on those objects that a system

process implements. However, if an application needs to have finer level of granularity and

still use the DACL mechanism, it can achieve it, though with more effort and not transpar-

ently to the application logic. An application can associate its fine-grain resource with a

protected resource of the operating system, such as an MS Windows registry key, assume

the identity of the subject, and try to access the OS resource. If this access fails, the assumed

subject did not have permission to access the resource.

Figure 3-4. The Hierarchy of DCOM Authorization Policies and their Scope

3. Host-wide Declared Authorization Policy

2. Process-wide Declared Authorization Policy

1. Method-wide Programmed Authorization Policy

48

Process-wide and host-wide policies (types 2 and 3) implicitly introduce the notion of

access policy domains for DCOM objects. Unfortunately, the partitioning of objects can be

only according to their locations and not according to their sensitivity or the value of other

parameters. The limitation of authorization policy domains to the host boundaries restricts

the administration scalability of DCOM-based distributed applications because it has to be

performed individually on each host or even for each process.

As we have shown, no application-specific information can be used or application-spe-

cific policies are enforced when declarative AC is exercised. Declarative authorization pol-

icies and their changes have to be administered on a machine-by-machine basis, which

hinders administration scalability and rules out automatic policy consistency across appli-

cation boundaries unless applications are located on the same host.

3.1.4 SESAME

Secure European System for Applications in a Multi-vendor Environment (SESAME)

is an European research and development project, which was started in late the 1980s. It is

also the name of the technology that came out of that project. This technology [Kaijser

1998, Parker 1995] defines components of a security architecture providing the underlying

bedrock upon which full managed security products1 can be built using the following ser-

vices defined by the architecture: authentication, authorization, confidentiality, integrity

and audit.

1. Examples of such products are ICL's Access Manager [McMahon 1995] and Bull SA's Integrated System
Management AccessMaster [BullSoft 1995].

49

The work of SESAME components (shown in Figure3-5) could be described in the

following way. The user logs in the SESAME environment by interacting with a user spon-

sor (US) client, which then contacts the authentication server (AS) via the authentication

privilege attribute (APA) client. The US authenticates itself to the AS, and then contacts

the privilege attribute server (PAS) and receives from it a privilege attribute certificate

(PAC) containing the subject privileges used for AC decisions. The user is now authenti-

cated and has a PAC, which can be used when starting application clients. The PAC allows

a user to access applications on a computer, which knows nothing about the user, but can

verify the user privileges from the PAC. If the user wants to start an application, the US

contacts the secure association context manager (SACM) for the application client. The

client SACM then contacts the server SACM and they exchange subjects’ credentials.

Figure 3-5. SESAME Components

U ser U ser
Sponsor A PA A S

PA S

K D S

SACM

S A CM
Appli cation

Client
Application

S erver

P V F

Client Host Server Host

Domain Security
Server Host

50

Next, server SACM contacts the PAC validation facility (PVF) to validate the subject’s

PAC. Finally, the user can start the application client and exchange data with the server.

A PAC can be used more than once at more than one target application. It is digitally

signed to prevent it being undetectably tampered with. Privilege attributes can have any of

the following syntax representations: access identity, role(s), primary group, and secondary

group(s).

SESAME technology is not a middleware. Rather it is an architecture for security ser-

vices. It does not provide a means for communication such as ORB bus in CORBA, or RPC

layer in DCE or DCOM. Thus it cannot control pre/post invocation events. This is why AC

and other security functionality has to be specifically invoked by an application system.

This prevents SESAME from providing AC external to an application, as in DCOM

“declarative security” or CORBA. On the other hand, authorization logic is provided to an

application by SESAME-compliant infrastructure, as opposed to DCE where an application

even has to implement ACL storage as well as run-time and management functionality.

Authorization decisions in SESAME are made by the SACM of the target application,

which is responsible for receiving Generic Security Service (GSS) token and passing it to

the SACM using GSS API [Linn 1997]. The target SACM passes the incoming security

information to the PVF for analysis and validation. If all is valid, the SACM receives an

integrity and confidentiality dialog keys from the PVF for protecting exchanges between

the client and the target application. But if the PAC checks made by the PVF fail, the secu-

rity context is not made available to the application.

51

Even if the checks succeed, besides routine checks of matching initiator and PAC iden-

tities, the SACM performs an additional AC check according to authorization rules [Parker

1995] represented as a set of access control entries (ACE) compliant with POSIX.6 [IEEE

]. An entry can specify a certain application or “all applications,” to be accessible or not

accessible by either an identity, a role, a group or “all initiators.”

The smallest unit of AC check in SESAME is an application system. Therefore, either

access is granted to the whole system or any access is denied at all. For distributed appli-

cations, which commonly expose their functionality via several operations with different

AC requirements, such a level of AC granularity is frequently insufficient. Consequently

an application system has to implement additional functionality in order to exercise per-

operation AC. Also, the architecture lacks the capability of applying one authorization

policy to several applications thus requiring each application to be configured individually

to support the policy.

The concept of domain in SESAME pertains to various authorities that manage keys,

identities and privilege attributes. SESAME domains affect AC in the way that the same

user can be granted different identity and privilege attributes in different domains, and the

attributes can be mapped with restriction [Ashley 1997] thus influencing decisions made

by the target SACM. Identity and privilege attribute domains make user security adminis-

tration more scalable for large or multi-organizational environments.

The lack of external AC, coarse granularity of authorization decisions, and the need to

administer the policies on application-by-application basis make SESAME less attractive

then JAAS, DCE, DCOM or CORBA technologies for AC in enterprise distributed appli-

52

cations. However, SESAME can be deployed over most communication technologies, and

is known for its advanced model of privilege attributes management and propagation,

which is best suitable for large multi-domain heterogeneous environments [Ashley 1997].

These make it indispensable for building heterogeneous, multi-vendor, high-performance

distributed application systems that require the use of different communication layers, and

authorization based on privilege attributes other than user identity.

3.1.5 CORBA Security

The Common Object Request Broker Architecture (CORBA) technology, including

CORBA Security Service, provides a general-purpose infrastructure for developing and

deploying distributed object-based systems in a broad range of specialized application

domains. All entities in the CORBA computing model are identified with interfaces defined

in the OMG Interface Definition Language (IDL) [OMG 1999a]. A CORBA interface is a

collection of three things: operations, attributes, and exceptions. An implementation of a

CORBA interface is called a CORBA object. Hence, we use “CORBA object” or just

“object” to mean “implementation of a CORBA interface,” where it does not cause confu-

sion. Object functionality is exposed to other CORBA-based applications only through the

corresponding interfaces. Objects have object references by which they can be referenced.

An object reference is a handle through which one requests operations on the corresponding

object.

3.1.5.1 Security Model Overview

CORBA Security (CS) standard [OMG 1996b] defines the following functionalities

visible to application developers and security administrators: identification and authentica-

53

tion, authorization and AC, auditing, message integrity and confidentiality protection,

authentication of clients and target objects, optional non-repudiation, administration of

security policies and related information. One of CS objectives is to be totally unobtrusive

to application developers. Security-unaware objects should be able to run securely on a

secure ORB without any active involvement on the site of application objects. In the mean-

time, it must be possible for security-aware objects to exercise stricter security policies than

the ones enforced by CS. In the CS model, all object invocations are mediated by the appro-

priate security functions in order to enforce various security policies such as AC.

Every user authenticates when he/she logs into the CS environment. The main result

of authentication is a set of security-related data -- Credentials . The information in

Credential s constitute the identity of the new subject, which initiates requests on

CORBA objects on behalf of the user. Authenticated security attributes are part of the infor-

mation stored in the Credentials object and are used for the purpose of enforcing var-

ious security policies. Because CS defines advanced concepts of privilege attributes,

similar to SESAME, it enables AC policies based on roles, groups, clearance, and any other

security-related attributes of subjects.

CS architecture achieves performance and administration scalability by the means of

policies and policy domains, where any security policy is associated with a policy domain

(or just “domain”). Policies of more than one type could be associated with the same

domain and each object can belong to more than one policy domain. Domains could be

organized in federations, hierarchies or be completely unrelated. AC decisions could be

specific for each object, if the object is located in a separate domain, or a large group of

54

objects could be associated with one policy domain. This means that the model scales (in

terms of performance as well as administration) very well without loosing fine granularity.

Unlike DCOM, CORBA objects residing on different computers can be associated with the

same domains.

As in DCOM Security, AC can be enforced completely outside of an application

system because the enforcement occurs at the ORB level. Everything, including obtaining

information necessary for making authorization decisions, is done before the method invo-

cation is dispatched to the target object. As Figure3-6 shows, policy enforcement code is

executed inside of CS enforcement sub-system, when a message from client application to

a target object is passed through the ORB. Executed at the client ORB as well as at the

target ORB, the enforcement code uses three sources of information for making decisions

before it enforces them. First is the policy of the domain(s) to which the target belongs.

Second is the information from credentials of the client. In case of AC policy enforcement,

these are client privilege attributes (such as access identity, group membership, role and

Figure 3-6. Enforcement of Policies in CORBA Security (from [Blakley 1999])

ORB

Security Enforcement Subsystem

Execution Context

Credential

Identity
Privileges

Policy
Enforcement

Code

Target
Object

Client
Application

Message

Domain
Policy

Domain

55

clearance). The third source of information is the message itself which, in case of AC

enforcement, is a request to invoke an operation on the target object.

CS controls access by clients to object methods. Objects, in their turn, are placed in AC

policy domains, which allow the same policy to govern access to the methods of all the

domain members. CS allows stating AC policies in terms of subject and object security

attributes as well as operations implemented by those objects. Operations are grouped via

rights required for invoking them. The rights granted to a subject according to its privilege

attributes should match the required rights of the operation. AC policies control what sub-

jects can invoke what operations on what objects in the domain the policies are defined on.

The expressive power of CORBA AC mechanisms was analyzed by [Karjoth 1998], where

it was shown to support lattice-based mandatory AC (MAC) [Bell 1975]. We discuss in

greater detail the CS authorization model in Chapter 4. We also show there that it is possi-

ble to configure CORBA AC mechanisms to support role-based access control (RBAC)

models, which means that DAC models can be also supported, as Sandhu and Munawer

show in [Sandhu 1998a].

User grouping via privilege attributes, object grouping via policy domains, and method

grouping via the concept of required rights enable high scalability of CS administration,

which is an important factor in object-oriented enterprise distributed environments. Still

there will be applications, in which additional AC has to be exercised (a so called security-

aware application). A security-aware application can do so with the help of CORBA Secu-

rity interfaces. For enforcing conventional AC policies, an application system needs to

know who, wants to access, what protected resource, and in what way. CORBA Security

56

provides to an application a means to find out “who.” Interface

SecurityLe vel1::Current , available to an application, defines method

get_attrib utes() for obtaining subject security attributes.

3.1.6 Generic Authorization and Access Control API

Generic Authorization and Access Control API (GAA API) is published as an IETF

Internet draft authored by Ryutov and Neuman in [Ryutov 2000a]. It defines a framework

for application authorization aiming to address the lack of standard authorization API for

applications using GSS API. Kerberos [IETF 1993, Neuman 1994a] was the first security

technology providing GSS API functionality, and it did influence the model behind GSS

API. Kerberos had only rudimentary support for AC in networked applications: if a client

did not have an authenticated ticket for a particular network server, then it could not estab-

lish a connection with it thus being denied access.

The GAA API model is based on the assumption that the distributed nature of Internet-

based computing requires interactions between entities across autonomous and mutually-

suspicious security domains. The authors also put in the front corner a requirement for a

mechanism which provides authorization decisions on fine-grained resources for a wide

range of systems.

The framework consists of two major parts: a programming interface for obtaining

authorization decisions by application systems, and a “universal” l anguage for AC policy

representation, Extended ACL (EACL) [Ryutov 2000c], which is an extension of the tradi-

tional ACL model. The subject of our discussion is the API itself, which goals are 1) to sup-

port the needs of most applications, thus allowing application developers to refrain from

57

designing their own authorization mechanisms, 2) to allow better integration of multiple

mechanisms with application servers (for example, GSS API [Linn 1993] and GAA API

can be integrated to provide authentication of an invoking subject and authorization deci-

sions).

GAA API does not enforce AC externally to an application. Instead, it provides autho-

rization decisions which can be described as follows [Ryutov 2000a]. An authentication

service performs authentication of users and supplies limited credentials, in the form of

GAA API security context, to the application via authentication API, as shown in steps 1

and 2 in Figure3-7. Then, the application calls GAA API routines (steps 3, 4, and 5) to

check authorization against the policies. The API routines obtain subject identity from

authenticated credentials of the client (step 4a) as well as policies (steps 3a and 4b) from

local files, distributed authorization servers, or by some other means. They combine local

and distributed authorization policies and information. For example, it is possible in the

GAA API model to combine global EACL with the machine or application-specific list,

Figure 3-7. Sequence of Events in GAA API Model

 gaa_get_object_policy_info

 gaa_check_authorization

GAA API
 EACL

. .
 .

GAA API
 security
 context

3 3a

Authentication
 Server

1

1a 1b

2

 2a

4

4a

4b

Authentication
API

Application

5

58

which enables the use of application-specific policies. The way the combination happens is

not defined in [Ryutov 2000a] and depends on the concrete implementation of GAA API,

which means that changes in the computing environment and the policies behind the pro-

gramming API are not supported in a standard way and are implementation-specific.

For the purpose of our discussion, the most important API function is

gaa_check_authorization() , which provides applications with authorization

decisions, or indicates if additional checks are required, in regards to the requested opera-

tion(s). Its inputs are 1) a handle1 to the data structure containing rules governing access to

the resource in question, 2) security context containing privilege attributes of the accessing

subject, 3) operations for authorization, and 4) parameters for a parameterized operation.

The output consists of short, yes/no/maybe, and detailed answers. Specifying additional

conditions which have to be met or time limits of the decision, the concept of detailed

answer is unique to GAA API and provides capabilities required in many application

domains. It is a data structure, used only when the short answer is “maybe,” that contains a

time window, during which the answer is valid, and a list of zero or more rights granted or

denied to perform requested operations. Each right can be accompanied by the correspond-

ing conditions, if any. Each condition is marked as evaluated or not evaluated. An evaluated

condition could be also marked as met, not met or “further evaluation or enforcement is

required.” This tells the application which policies must be enforced.

The application must understand the conditions that are returned unevaluated, or it

must reject the request from the client. If understood, the application checks the conditions

1. It is supposed to be obtained prior to the invocation via function gaa_get_object_policy_info() described
below.

59

against the information about the request, the protected resource, or environmental condi-

tions to determine whether the conditions are met. The enforcement of the returned condi-

tions is up to the application. An example of condition enforcement is the use of CPU

utilization. It could be specified in the policy that processing of the client request can be

performed as long as the CPU is utilized less than 20%. Such a requirement could not be

enforced by an authorization service. In the GAA API model, it would be passed to an

application as a condition expected to be further enforced. Some other examples of condi-

tions are printer load, provision of payment for access to the resource, and location of the

subject [Ryutov 2000a]. As it can be seen, these authorization conditions give substantial

flexibili ty for enforcing application-specific policies. Still, i t remains to be seen if the con-

cept will not cause tight semantic coupling of authorization service implementation with

the application systems it serves.

The detailed answer may also mean that authorization is not completed yet, and addi-

tional privilege attributes are required. The application requires them from the client

because GAA API attempts to build an authorization model that would fit into the existing,

and, we believe, outdated1 model of GSS API implemented first by Kerberos. It reuses Ker-

beros’s authentication model, in which only authenticated subject identity is provided. This

is why the GAA API model assumes group membership service, the defini tion of which it

left beyond the scope of the model. A group server furnishing group membership infor-

mation is the only way by which subject privilege attributes can be obtained. In order to

do it, the client should request group (non)membership certificates from the server

1. We believe GSS API is outdated because some other architectures, such as SESAME, attempted to
extend it. This indicates that the API does not satisfy the needs any more.

60

expli citl y. The server is not part of the specif ication [Ryutov 2000a], although it was intro-

duced earlier by Neuman in [Neuman 1993] and is described in Section 3.2.3.2 as part of

the discussion of the authorization service from the University of Texas at Austin.

Because the client is asked to provide group certificates after it already made an applica-

tion request, it is possible to use application and even request-specific information for

authorization decisions, which gives advantage to GAA API over other authorization

solutions.

However, the use of a group server has significant drawbacks. First a communication

scalability problem is created because some policies might require an undetermined

number of interactions with the server causing possibly remote communications, which

are usually expensive, unless the server and the client are co-located. But such a co-loca-

tion means that the number of group server instances should be proportional to the

number of clients, which is an obvious performance, maintenance and administration

scalability problem. Second, it is very inefficient to obtain subject privi lege attributes

over and over even when they are the same during user session.

Another drawback of the approach is that the service, or at least its proxy, should be

co-located in the same process because the only language binding available as of May 2000

is defined in C language [Ryutov 2000b]. The main advantage of the API over the other

reviewed models is the support for a very flexible and powerful concept of additional con-

ditions that should be enforced by the application or met by the client.

GSS API provides very generic low-level abstraction, the use of which by application

developers requires significant integration efforts. This prompted new generations of secu-

61

rity technologies for distributed application systems such as CORBA and DCOM, in which

an application can be developed without any notion of underlying security, including AC,

unless it requires the enforcement of complex policies. However, if an application does use

bare GSS API and it requires the authorization on fine grain resources or enforcement of

complex AC policies, then GAA API, not the EACL, meets most authorization needs of

such applications.

3.2 Access Control for Distributed Applications:
State of Research

There are three main research directions in addressing the problem of controlling

access to the resources of distributed enterprise application systems. They are policy

agents, interface proxies and interceptors, and enterprise-wide authorization servers. In this

section, we describe and critique each of them.

3.2.1 Policy Agents

By the term “policy agents,” we refer to a direction in the area of AC distributed appli-

cations, the approaches of which suggest the enforcement of AC policies by the means of

native mechanisms available locally in the computing infrastructure of each application

system, as shown in Figure3-8. They could be the OS AC or add-on packages, AC pro-

vided by the middleware (Section3.1), by DBMS security layers, or even by AC mecha-

nisms of the application integrated environment. The main feature of these approaches is

achieving the consistency of authorization policies across application boundaries by the

means of centralized AC management via translation of authorization rules into languages

supported by local mechanisms, and the distribution of the rules across application systems.

62

This is achieved with the help of policy agents. The distributed management architecture

based on such agents provides the infrastructure necessary to map domain-wide authoriza-

tion rules into rules specific to particular mechanisms.

All approaches under this direction have the following advantages:

• Inherent fault tolerance. If a mechanism responsible for AC decisions and

enforcement fails, only the application system protected by the mechanism

becomes affected, while all other systems remain protected.

Figure 3-8. Policy Agents

agent

agent

agent

agent

Policies

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Mechanism 1

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

Mechanism 2

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Mechanism 3

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Mechanism N

mapping 1

mapping 2

m
ap

pi
ng

 3

m
ap

pi
ng

 N

Appl icat ion

Appl icat ion

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

Appl icat ion

Appl icat ion

Access

Access

Access

Access

63

• For an intruder to gain unauthorized access to all protected resources in a policy

domain, either all AC mechanisms or the policy management, mapping and

distribution infrastructure have to be subverted. Since the latter can be

implemented using off-line techniques, it can be secured much more, without

penali zing run-time performance.

• Locality of the decision making process. In a distributed architecture based on

policy agents, all AC decisions are made locally and this allows achieving

minimum performance penalty.

• Performance scalability . Since the authorization process is naturally distributed

over the computing environments of application systems, authorization is an

issue local for those environments. Thus a greater number of applications does

not cause longer response latency experienced by each application client.

The main challenges facing the approaches are as follows: 1) automation of mapping

a global policy into various representations specific to local AC mechanisms, where even

for the same AC model there could be different implementations and configurations, 2) the

consistency of the enforced global policy, as Hale et al. point out in [Hale 1999], and 3) the

preservation of policy semantics when they are mapped into local mechanisms, similar to

the problem of translating a program written in a high-level language into architecture-spe-

cific binary code.

As the author’s experience of performing similar mappings with such commercial sys-

tems as Unicenter/TNG [CA 1999] from Computer Associates shows, the process of

administering the mapping of the subject’s global credential information into local creden-

64

tials could be so costly and resource-consuming that only very advanced IT departments

could afford it. There might be no other way to solve the problem of managing AC in enter-

prise applications when they are already deployed.

Approaches based on policy agents also suffer from a number of inherent limi tations.

First, the granularity and expressiveness of AC policies in a policy domain can be only as

good as those supported by its most coarse-grain and least expressive mechanism. Second,

policy changes can be very slow. For example, on some operating and DBM systems acti-

vation of such changes requires re-initialization of system components or even the entire

system, which makes policy changes an expensive and prone to temporary inconsistency

and frequent downtime periods. This can easily make policies based on periodic authoriza-

tions [Bertino 1996a] unaffordable. Because of these challenges and limitations, we believe

it is very difficult to support a positive answer to the question of whether this approach

employed for new applications is best. Below we describe in details one of the approaches

representing the direction of policy agents.

3.2.1.1 Security Policy Mediators from the University of Tulsa

Hale et al. propose in [Hale 1999] an approach for the coordination of security policies

and subject credentials across heterogeneous information systems with the focus on loosely

coupled federations, where no central authority for federation management is possible.

Their approach is twofold. The first part is a ticket-based simple authorization model, to

which a number of authorization models (owner-based DAC [NCSC 1987], lattice-based

MAC [Bell 1975], RBAC [Sandhu 1996], TBAC [Thomas 1994]) are shown to be mapped.

This enables the employment of a single language for authorization rules. The part of their

65

work we are interested in is an architecture for authorization process and the policy medi-

ation, which enables the consistency of enforced authorization policies.

In the model, each enterprise manages its own policy mediators [Weiderhold 1992]. A

security mediator is installed on each computer system that manages protected enterprise

resources, as well as on the client systems from which subjects access those resources. Sub-

jects hold a partially implicit and potentially heterogeneous collection of rights to various

information resources to which they need to have access. When subject access resources

across organizational boundaries, they are called “foreign subjects.” Security mediators

determine access rights according to the global policy. In case of foreign subjects, the medi-

ators translate subject credentials according to trans-organizational authorization policy.

Each mediator installed on the server host contains the following: a model of the database

containing resources, to whom the local system provides access; global security policy

expressed in the language of simple authorization model, which Hale et al. developed as

part of their work; and coordination policy for managing access by foreign subjects. Coor-

dination policies can take different forms -- mapping foreign subjects to local subjects,

assigning local proxies to act as trusted delegates of foreign subjects, requesting vouchers

from trusted sources for foreign subjects, or mandating joint authorization with local sub-

jects.

Client mediators bundle subject credentials with query fragments to distribute the

query to remote systems. Mediators at the application systems, translate the incoming

requests into local requests according to the database model of the local system resources,

apply their coordination policy to the incoming requests based on the received credentials,

66

and then authorize the requests according to the global security policy. The authorization

might be performed by the application AC mechanism.

The major advantage of this approach to the problem of controlling access to applica-

tion resources is the support of multiple AC models where each system or enterprise can

enforce a model most suitable for its own environment without requiring any changes to

what already exists, while continuing the enforcement of the organization-wide authoriza-

tion policy. Such a global policy is mapped into a concrete authorization model. This

enables high adaptability to the changes in applications and computing environments,

although it does not accommodate changes in policy types well.

Another signif icant advantage is that mediators can hide from the application the pro-

cess of correlating foreign and local subject privilege attributes. This solves the problem of

multiple inconsistent subject privilege attribute sets maintained independently in most

commercial systems today, and the problem of accessing application systems across orga-

nizational boundaries. However, security technologies like SESAME already have

addressed this problem by the means of single sign-on when a subject has one set of privi-

lege attributes used for accessing multiple applications.

The approach of security policy mediators inherits all the disadvantages of policy

agents direction. In addition, the use of mediators on the clients makes it less scaleable

because the amount of change becomes not proportional to the number of application serv-

ers but to the number of clients, which is usually significantly larger.

67

3.2.2 Proxies and Interceptors

The approach of proxies and interceptors, or just “proxy approach” for short, is due to

the obvious desire to add new functionality, AC in this case, on top of the old one. This way,

existing applications can be enhanced with new features and behavior without changes to

their internals. Most capable security services such as CORBA and DCOM follow the

approach by using invocation interception in order to enforce various security policies.

The idea is based on either proxing an application interface or intercepting communi-

cations between interacting application systems by some other means. Access to an appli-

cation is controlled externally to it because authorization decisions are made before a

system gains control and/or after it dispatches an invocation to another system. In order to

achieve it, invocations are intercepted either in the communication or middleware layers,

as illustrated in Figure3-9. Interception can also occur at the application layer, when a

system is “wrapped” into its interface surrogates, or additional code is inserted by a com-

piler or other similar tool.

Figure 3-9. Proxies and Interceptors

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

 Proxy Applicat ionAccess

Policies

68

The main advantage of the direction is that it requires hardly any changes to the appli-

cation system since the reference monitor is implemented externally to it. Another advan-

tage is the abilit y to make all the decisions locally because interceptors and proxies can be

deployed even in the same process space. Also, if authorization decisions are made locally

and use local data, the approach features inherent performance scalabilit y.

There are a number of significant limitations however. First, AC granularity cannot be

finer than the method level and its arguments (but only when the arguments can be inter-

preted outside of the method implementation). That is, no approach under this direction

allows the control of access to the resource other than interface instances, methods defined

on them, and arguments. Second, authorization decisions cannot be made just-in-time.

They always have to be made either before or after an application system is in the posses-

sion of execution control. Third, because of the above reasons, variables, whose values

become available at some point after the method is invoked but before the decision needs

to be made, cannot be used in authorization rules.

The main disadvantage is that insuring the consistency of enforced policies as well as

the coherency of data used for authorization decisions becomes a challenge,1 since there

are as many instances of access controls as application systems. The administration of

proxy-based AC mechanisms will have significant overhead and a high human error rate

unless thoroughly automated, which brings us back to the main objective of the policy

agents.

1. Although it can be partly solved using the policy agents approach.

69

We describe and analyze several main approaches following this direction: views rep-

resented as objects and used for enforcing AC, role classes, SafeBots, AC in Legion sys-

tems and security meta objects.

3.2.2.1 Views as Objects

Hailpern and Ossher describe a model in which application objects can have multiple

“views” [Hailpern 1990] whereas each view represents a certain set of methods invokeable

by a specified collection of clients. They suggest the model of views for controlling access

of clients to servers in object-oriented systems. Even though their approach was originally

made in the context of local inter-object invocations, views can be used in distributed het-

erogeneous application systems.

One of the proposed methods for implementing views is to materialize views as objects

(view objects) [Hailpern 1990]. Specifically, all method invocations are addressed to a par-

ticular view with the server, client, and method selector as arguments. The view object then

checks if the client has access permissions for the given server and method. If the check

succeeds, it invokes the server on behalf of the client using a primitive form of invocation

not available to the client. View objects act as proxies for server objects, and perform and

enforce authorization decisions. The approach is a common representative of the direction.

3.2.2.2 Role Classes

Similar to views as objects, Barkley suggests to use proxies (“ role classes” according

to his terminology) in order to implement (role-based) AC for application systems [Barkley

1995]. Having methods with the same signatures as the original classes, proxy objects

mediate invocation requests. Barkley deviates from a simple proxy model by introducing

70

another layer of proxies -- now on the client side (“client proxies”). Client proxies are used

in order to determine what AC proxy should be used and to direct the call to that proxy. It

is assumed that client proxies can be automatically produced and linked to the client appli-

cation, hence making it completely transparent to the client developers and users. If the

environment used for client-server communications cannot determine the right proxy and

direct the invocation to it, then some mechanism similar to client proxies must be imple-

mented.

3.2.2.3 SafeBots

SafeBots [Filman 1996a, Filman 1996b] is a concept based on software, possibly

mobile, security agents. According to its vision, software security controls are active agents

that “wrap” insecure components, communicate with each other, and are smart enough to

adapt their actions to the local and global interaction contexts. These agents monitor com-

munications by wrapping an application’s components and can be programmed to perform

authentication, AC, intrusion detection, or other security controls. They can be structured

either as wrappers for application components, or as independent SafeBot agencies that

support the coordination of SafeBot activities, and may confederate with each other for dif-

ferent purposes.

In order to use SafeBots as security wrappers, the authors make a number of assump-

tions: application systems have well-defined interfaces, can be sequestered (i.e. cannot be

invoked directly without going through SafeBots), and can be substituted. They propose the

automation of application system wrapping.

71

SafeBots approach attempts to marry mobile agent technology with security controls

and brings advantages and disadvantages of the former to the latter. SafeBots enable the

implementation of cost-effective, redundant, extendable security controls including AC.

The authors themselves list several inherent limitations [Filman 1996b]: it is difficult to

wrap application systems with complex or rich interfaces (e.g., applications with complex

GUIs, shells or other programming scripts and environments); SafeBots complicate and

increase enterprise security administration; subverting a SafeBot could become a way to

attack systems; and inept security designers could design SafeBots that actually reduce

overall system security; at a time of crisis, SafeBot activity could tie up a system when the

resources are most needed. In addition to these limitations, change of policies requires re-

deployment of SafeBots over all systems affected by the change, which is very expensive

and lengthy in large enterprise settings.

3.2.2.4 Legion

The Legion system [Grimshaw 1998, Grimshaw 1997, Wulf 1996], developed at the

University of Virginia, defines a software architecture designed to support the use of large

collections of heterogeneous computing resources distributed across local- and wide-area

networks as a single, seamless virtual machine. Legion’s components include a run-time

system, Legion-aware compilers that target this run-time system, and programming lan-

guages that provide application programmers with a high level abstraction of the system.

The system itself creates, schedules, and utilizes distributed objects to execute the applica-

tion programs.

72

Legion security architecture follows the overall design philosophy of the project -- “No

single policy or static set of policies will satisfy every user, so users must be allowed to

determine their own priorities and to implement their own solutions as much as possible”

[Grimshaw 1998]. The architecture requires that every class defines a special member func-

tion MayI , which has default behavior granting access. Legion security automatically calls

this function before any method invocation, and permits the invocation only if MayI grants

access. The approach supports mandatory AC via implementation inheritance or delega-

tion. In order to exercise MAC, an implementation of the MayI method must either dele-

gate its behavior to or inherit it from an organization-wide implementation of MayI . This

raises the question of performance scalability. DAC policies are supported via custom

implementation of MayI for a class. Class implementers can resort to the default imple-

mentation of MayI , granting access unconditionally, or inherit implementation from a class

they trust, or write a new one. The code for implementing the security policy is localized

to the MayI method rather than distributed among the member methods. Method IWan-

tTo , a counterpart of MayI , is invoked by Legion security mechanisms every time an

object makes an invocation on other objects. This enables the enforcement of lattice-based

mandatory security policies [Bell 1975], which control the flow of information to and from

objects.

By enabling nominal initial overhead with simple AC policies, Legion security design

features minimality principle. The use of class-specific MayI and IWantTo methods

makes the implementation of arbitrary discretionary policies on class-by-class basis easy.

However, the enforcement of mandatory policies or those discretionary policies that need

to be consistent across several systems, seem to be diffi cult because security administrators

73

do not have control over what logic is implemented by application objects launched by

users. Futhermore, the change of enterprise policies requires changes in implementations

of MayI and IWantTo methods, which is not a realistic requirement for contemporary

enterprises with large-scale deployments of service-based and object-based applications.

This can be avoided by using only one instance of these methods across multiple applica-

tions but then the performance should be addressed. Also, implementation inheritance or

delegation requires control over the implementation of an application system, which

becomes less and less realistic with advances of COTS and component systems provided

by various vendors.

3.2.2.5 Security Meta Objects

Security meta objects (SMOs) [Riechmann 1997, Riechmann 1998] is a paradigm pro-

posed recently by Riechmann and Hauck from the university of Erlangen-Nurnberg, Ger-

many. The area of its application is strictly object-based systems.

They propose to “attach” one or more special objects to an object reference. These spe-

cial objects are invoked for each security-relevant operation on the object reference. The

special objects are not visible to the application; that is, protected and unprotected object

references look the same to it. Such special objects can be considered as meta objects [Maes

1987]. SMOs are attached on a per-reference basis. There may be many references to an

object which are not protected or protected by a different SMO. If a client invokes a method

via a protected reference, a special check method of the meta object is implicitly invoked.

This method gains access to some meta information, such as name and parameters of the

method to be invoked. The check method can decide whether it wants to grant access or

74

not. To grant access, it returns control to the run-time system, which continues with the

method invocation. If access is to be denied, an exception is raised or the invocation is ter-

minated with an error result. If several SMOs are attached to the same reference, then they

are “asked” sequentially before access is granted. A single SMO can be used to protect mul-

tiple references. It is not possible to detach SMOs from a reference unless the SMO

removes itself.

Meta objects can be used for enforcing arbitrary AC policies as well as for implicit and

transitive AC of object references passed as a parameter or result. Another advantage of the

approach is that it allows the development of SMOs totally independent of the objects they

protect and vice versa.

The approach provides flexibility lacking from other paradigms in this direction, such

as Legion (Section3.2.2.4). In particular, it allows “attaching” multiple SMOs to the same

object reference so that several policies or additional functionaliti es can be composed. This

is very similar to CORBA request interceptors [OMG 1996a], which are invoked before an

invocation is scheduled on an interface implementation by the ORB or before it is prepared

to be sent to another CORBA object. However, SMOs are “attached” to an object reference.

Whereas, CORBA interceptors are “attached” to an instance of an interface implementation

identified by an object key in the scope of the object adapter. Thus, the same interceptors

are used to control access to an object, as opposed to the SMO paradigm, where different

SMOs can be attached to different object references that “point” to the same object.

In addition to the general limitations of proxies and interceptors direction discussed in

Section3.2.2, SMO paradigm has a number of its own drawbacks. First, in order for the

75

SMO approach to be realistic, support for meta-objects is needed in the desired middleware

technology. SMO authors use MetaJava system [Kleinoder 1996] to prototype the concept.

However, to the best of our knowledge contemporary industrial middleware systems such

as CORBA, DCE, Java, and DCOM do not support attachment of (meta) objects to object

references. Second, they assume that object references are safe, that is, the references are

only generated and controlled by a trusted run-time system and cannot be tampered with.

It is a very restricting assumption. Third, we cannot find a solution for the problem when

the policies governing access to an object change, in such a way that new SMOs need to be

added or old ones removed or replaced, after the object’s reference has been released. This

means that policies for an object cannot be changed after an object reference is released to

the world. This renders SMO-based solutions unusable for the real-life computing enter-

prises, unless the limitation is somehow addressed.

3.2.3 Authorization Servers

The third direction in AC for distributed application systems is based on authorization

services. Such a service is logically one per policy domain, even though its instances can

be replicated in order to achieve desired level of availability, fault tolerance, performance

and scalability. Authorization decisions are made by an instance of the service -- authori-

zation server. An application system enforces decisions made by an authorization service

without knowing how they have been made, as shown in Figure3-10. Thus both the appli-

cation and the authorization server are part of a reference monitor [Anderson 1972].

We consider a research project on generalized framework for AC (GFAC) [Abrams

1991, Abrams 1990a, Abrams 1989, Abrams 1990b] at the MITRE Corporation as a pre-

76

decessor of all other attempts to develop the concept of authorization service. The project

endeavored to build a theoretical framework that explicitly recognizes the main informa-

tion components for AC -- subject and object security-related attributes, access context,

authorities, and rules, where they showed that “the rules for AC are an entity that is separate

from, although necessarily related to, the model of the trusted computing base (TCB) inter-

face” [LaPadula 1990]. Moreover, La Padula concludes that in a networking environment

“one can conceive of an access control engine realized as a server, with access requests han-

dled via a remote procedure call mechanism” [LaPadula 1990].

The main advantages of approaches based on the concept of an authorization server

are:

• Logical centralization of AC rules, which gives inherent consistency and

coherency of authorization policies enforced throughout a policy domain.

Figure 3-10. Authorization Servers

Applicat ion
Authorizat ion Service

Access Access Decision

Pol ic ies

77

• Ease of policy change and update because authorization is made in a logically

single place.

• Since authorization logic is centralized and decoupled from the application

logic, it is possible to replace a policy with a new one of a different type

without affecting application systems.

• Centralization of authorization rules naturall y features single point of

administration for all systems belonging to one AC policy domain, significantly

lowering the cost of administration.

• Since an application system decides when to obtain an authorization decision

from the server, it can do so right at the time when such a decision is needed.

• Authorization decisions on resources of any level of granularity can be obtained

from the server because an application uses the server while it is processing a

request. This lifts the limitation of the other approaches, namely Proxies and

Interceptors, in which the granularity can be only as fine as a method on an

interface instance.

For this approach to be feasible, several important issues must be addressed. First, it is

much more challenging to design an implementation of such a server so that it does not

become a bottleneck in terms of performance. Second, if the server fails, all application sys-

tems served by it will have to resort to a simplistic and very limiting policy such as “always

deny” or “always grant,” which would render systems un-operational. Thus provision of

high degree fault-tolerance needs to accompany such servers. We describe in detail the

78

reported work on authorization servers since it directly relates to the subject of this disser-

tation.

3.2.3.1 Authorization Server from HP

The design principles described by Varadharajan et al. in [Varadharajan 1998] were

used in the development of Praesidium Authorization Server [HP 1996], which is a rule-

based authorization facil ity for distributed application systems. The work, according to the

paper, began in 1993, although the paper, apparently the first research reporting the work,

appeared in 1998. This is one of the first works in the area of authorization service practical

design and implementation for distributed systems that has been reported in the literature.

Varadharajan et al. outline several design principles for authorization in distributed

systems that some architects of enterprise security systems might find useful, although

these principles are not supported with any study on their validity. The authors propose to

classify security information in a two-dimensional space: one dimension is the generality

and the other is the dynamics of the information. Hence, they identify three groups of infor-

mation: generic and static, specific and static, and specific and dynamic. Using this classi-

fication, they suggest to design distributed security infrastructure in such a way that the

information is stored either in a central server and is “pushed” to the target by the client, or

near or on the target and “pulled” at the time of the decision process. The design sugges-

tions outline three main parts of an authorization infrastructure: 1) a domain-wide central

authority storing and managing generic-static security information, 2) a domain-wide cen-

tral authority dealing with specific-static information, and 3) a per target (or per a group of

related targets) component dealing with specific-dynamic information.

79

Another contribution of the work is the location and the types of authorization checks.

Although it is not a novel point of view, we did not encounter similar considerations in the

li terature. The paper suggests considering three points of authorization checks: a check if a

subject should access an application at all (Level I), then a check on the type of the function

to be performed (Level II), and a check from within the application program (Level III).

We believe that the value of this classification is in the establishment of the common lan-

guage and conceptual points for reasoning about authorization in distributed systems.

The authors distinguish between two stages in the functionality of their distributed

authorization service: the administration phase and the “run-time” phase. They make such

a delineation because they bring forward two arguments for maintaining distinct represen-

tations of authorization information in the service. The arguments are the existence of infor-

mation captured during the administration phase that can be compiled before access

decision time for the performance purposes, and the possibility to use different replication

strategies for the administrative information versus the information needed for access eval-

uation decisions at the application servers. This premise is the driving force behind the

design of the authorization server, which considers the system as two domains -- adminis-

tration (the management of privileges and profiles granted to subjects) and run-time (fur-

nishes authorizations to applications).

The run-time domain consists of an evaluation engine and the run-time database of pre-

compiled rules. The authorization decisions are made in regards to the following:

Level I DCE IDL interface name (process names for GSS-API),

80

Level II Name of the procedure specified by the DCE IDL file (application-

defined for GSS-API),

Level III authorization rule.

The service design outlines several elements and approaches that have been employed

in other similar works including Adage (Section3.2.3.3 on page86) and the work

described in this dissertation. The main elements are the encapsulation of authorization

functionality into a service available in the distributed environment and the explicit divi-

sion of the server into administrative and run-time domains.

The main drawback of the reported work is the lack of any study on the validation of

the design principles and evaluation of the authorization service proposed in the paper. No

research analyzing the suggested approach is in the paper or published separately.

3.2.3.2 Distributed Authorization Service from the University of Texas

Woo and Lam from the University of Texas at Austin researched the theory and prac-

tice of constructing a distributed authorization service [Woo 1993a, Woo 1993b, Woo

1993c, Woo 1993d, Woo 1998]. As as result, they designed such a service [Woo 1993c,

Woo 1998], the key features of which are a language-based approach for specifying autho-

rization rules and authenticated delegation. Their design is based on the prior work of

Neuman [Neuman 1993], where he outlines an authorization protocol for distributed appli-

cation systems.

They observe that most existing application systems perform their own authentication,

authorization, accounting and auditing [Woo 1993c]. Even though authorization is often

81

perceived to be tightly coupled with an application and hence cannot be easily abstracted,

Woo and Lam suggest that a better approach would be to factor these functions out and

implement them separately as a set of core services. The set can in turn be used as a basis

for building other generic services and application systems.

The main motivation of their research was to study two problems in the construction

of an authorization service for distributed systems: (1) how to identify the commonalities

in authorization requirements of application systems and to design an appropriate abstract

representation to capture these commonalities, as well as (2) what secure protocols should

be used for off-loading authorization from application systems to authorization servers and

for interactions among various enterprise entities. Apparently they identify these problems

by drawing an analogy with authentication services in distributed systems [Burrows 1990,

Lampson 1991, Woo 1992], where common representation of user credentials and interac-

tion protocols for secure exchange of authentication information are the distinguishing fac-

tors of various architectures [IETF 1993, Molva 1992, Neuman 1994b, OMG 1996b, OSF

1996, Schiller 1988, Tardo 1991]. However, it is not evident that those are really the main

problems in constructing a distributed authorization service. An application system, for

example, might just use RPC over secure (i.e. authenticity, confidentiality, and integrity

protection) channel to obtain an authorization decision from an authorization server

[Beznosov 1999b, Varadharajan 1998, Zurko 1998] thus avoiding the issue of the interac-

tion protocols.

The authors claim the following advantages of a separate authorization service [Woo

1993c]: 1) savings in re-implementation effort for each application system, 2) application

82

systems are relieved of the authorization task, which can lead to higher throughput, 3) a

specialized authorization service can afford the use of better methods in making AC deci-

sions than would be justified for individual application systems, 4) an authorization service

can be verified to be secure once and for all, reducing the complexity in verifying the secu-

rity of an application system, 5) anonymity (if desired) can be achieved with the use of a

trusted authorization service, 6) a uniform authorization service can contribute to the uni-

formity of accounting and auditing functions, hence facilitating the construction of distrib-

uted accounting and auditing services.

The architecture of the distributed authorization service, proposed by Woo and Lam,

consists of five main entities:

1. Service Locator. It responds to a client's request with a list of application

systems that implement the requested service, and possibly a list of authorization

servers for the application systems. In its functions, such a locator is very similar

to CORBA directory or trader services.

2. Authentication server. An authentication server authenticates users during their

initial sign-on and supplies them with an initial set of credentials, as well as

enables mutual authentication between clients and servers.

3. Authorization server. An authorization server performs authorization on behalf

of an application system if the system elects to off-load its authorization to the

server. To do so, an application needs to contract an authorization server for this

83

purpose using a contracting protocol. An authorization server provides clients

with authorization certificates which are to be forwarded by clients to

applications along with their requests.

4. Group server. A group server maintains and provides clients with group

membership information in the form of (non)membership certifi cates to be

forwarded to the authorization server together with the client’s requests.

5. System monitor. By the means of several processes executing a distributed

algorithm, a system monitor tracks the values of system predicates indicating

overall system status. It is not clear why Woo and Lam included a system

monitor, pertaining more to the network management then to security, in the

architecture of an authorization service.

The entities are services that in concert provide the functionality required for an appli-

cation system to delegate authorization and to monitor the systems. While being logically

disjoint, all or some of them can be integrated into one server.

Woo and Lam designed a protocol enabling the interaction among the five entities. We

are going to omit a detailed description of the interaction and the supporting protocol,

which can be found in [Woo 1993c]. Here, we will point to the key features of the interac-

tion required for the successful use of authorization in the model.

Application system E locates, possibly through a service locator, an authorization

server A, and, after mutual authentication via authentication service, contracts it to autho-

rize access to E. The contract is enacted using a contracting protocol at the end of which A

84

has an authorization specification, which is a description of authorization policies,

expressed in generalized ACL (GACL), governing access to E services. Upon success in

contracting, E notifies service locator that A is delegated to perform authorization for E.

From now on, every client is responsible for obtaining a reference to A from a service loca-

tor, and acquiring an authorization certificate from A, before E will serve the client. A group

service comes into play, when a client requests an authorization certificate from A, which

might require the client to obtain one or more (non)membership certificates from a group

server, before A can authorize the client.

The ideas used by Woo and Lam (we will refer to it as WL architecture/service) are

very similar to the ones in Kerberos -- a client goes to a trusted third party (TGS in Ker-

beros, and authorization service in WL work) and gets a ticket (session key in the former

and authorization certif icate in the latter) in order to access a server. The work seems to be

an effort to cure Kerberos and provide authorization service that would be in harmony with

it. Kerberos lacks the management of subject privilege attributes and does not assume any

Figure 3-11. Authorization-related Interactions (from [Woo 1993c])

End
Server

Authori-
zation
Server

System
Monitor

Client
Group
Server

Contracting
Protocol

System
Information

Authorization
Certifi cate

Identity
Credentials,

Group
Certificates

Group
Certificates

Identity
Credentials,

Authorization
Certifi cate

85

middleware infrastructure in place. This is why such different functionalities and corre-

sponding services, as authentication, privilege attribute management (via group service),

location discovery, authorization, and even system monitoring are mixed into WL architec-

ture.

The concept of a group service deviates from the traditional model where subject priv-

ilege attributes (including group membership ones) are identified during authentication

phase, and fixed during the session lifetime. The group service allows the use of authenti-

cation technology that is not capable of identifying all privilege attributes of the subject

during authentication phase. This can potentially make the authorization process very inef-

ficient, if the client has to interact additionally with the remote group server for each appli-

cation request.

The granularity of authorization decisions in WL solution cannot be fine because prior

to contacting an application, the client needs to know exactly for what authorization it

should ask the authorization service. For example, in a health care organization that has a

service allowing various queries of type “give me records of those patients that have

attribute X,” the client would have to obtain authorizations for accessing records of all

patients selected by the query, which is not possible to know before the query is performed.

In some cases, a client knows at most the application and its function that it wants to invoke,

and the invocation arguments, and not what resources have to be accessed in order to per-

form that function. This makes WL authorization service architecture useful only for such

network services as Telnet [Postel 1983], FTP [Postel 1985], etc., where the only authori-

86

zation required is to open a session with the server. The rest is controlled via operating

system AC mechanisms.

Another critique about WL approach is the contracting protocol between an applica-

tion system and the authorization server. The authors assume that the application is the

owner and the source of its authorization policies. However, in most mid to large size orga-

nizations, authorization policies are enterprise-specific, and not application-specific. Thus,

the policies should not reside on the application. An application ideally should not be

involved in policy management, administration, or distribution.

WL architecture cannot be used in those distributed computations which require an

invocation chain with the delegation of client privileges to the intermediate services,

because the client is involved in obtaining authorization for any invocations on its behalf.

This limits the approach to those invocations where there are no delegated sequences of

calls among remote application servers.

Overall, the WL approach to application authorization achieves its goals listed above.

However, it has significant limitations that render the applicabilit y to only simple distrib-

uted systems that have Kerberos as their primary security technology, and do not have

requirements for fine-grain AC or invocation with delegation of client privileges.

3.2.3.3 Adage

Zurko et al. report on the design and their studies made on the Authorization toolkit for

Distributed Applications and Groups (Adage) [Zurko 1998], which is mainly an authoriza-

tion service for distributed computing environments. Adage architecture was based on the

87

following principles: user-centered design, policy neutrality, modularity and the use of

RBAC foundation. The primary goal of their work was to prototype an authorization ser-

vice for use with distributed applications whose emphasis was on the usabil ity of its admin-

istrative interface and tools.

The Adage system consists of a policy definition client for administering policies and

a policy decision server for furnishing authorization decisions. The client contains the GUI

and Authorization Language (AL) interpreter and communicates with the Authorization

Decision Server (ADS) through the administration API. The GUI and AL can be replaced

with other clients. Applications wishing an authorization decision access the ADS through

the authorization API. Administration and authorization APIs are defined using CORBA

IDL and implemented via CORBA technology.

The ADS stores policy information supplied by the administrative clients in a database

called the User Authorization Database (UAD). The ADS contains a translator for trans-

forming the information in the UAD into a form more suitable for making fast authorization

decisions. This database is called the Engine Authorization Database (EAD). The authori-

zation engine is the other major piece of the ADS, which uses the EAD to find rules appli-

cable to a given decision.

The main research objective of Adage project is to design an authorization service for

distributed application systems that would enable the use of administrative and application

interfaces constructed according to the principles of psychological acceptability and usabil-

ity and to perform usabil ity study of the system. Such a goal is orthogonal to the goal of this

88

work described in Chapter 2. Hence, we believe that studies reported in this dissertation are

complemented by the results reported by the Adage project.

3.3 Chapter Summary

The idea of authorization decisions being separated from application logic is not new.

An abstract model of a reference monitor [Anderson 1972] is a classical example of autho-

rization decisions being made and enforced outside of applications. The industry achieved

considerable results in regards to the control of access to operating system and middleware

resources. Most operating systems implement authorization logic in the security part of

their kernels. There are also special-purpose ad-on security software packages that furnish

authorization decisions to operating systems [Benantar 1996, CA 1998a, CA 1998b, IBM

1976].

Middleware technologies provide several means to control the use of distributed ser-

vices exposed via application interfaces. There are two groups of technologies used for

securing distributed software systems. One group is the technologies that merely provide

party authentication, communication protection, and access control independently of the

underlying communication technology: Kerberos [IETF 1993, Neuman 1994a], SESAME

[Kaijser 1998, Parker 1995] and GAA API [Ryutov 2000a]. This enables using and mixing

any desired communication protocols and media, but developers are overburdened with

significant efforts to integrate the security technology with the underlying communications.

Another group is middleware technologies, such as CORBA [OMG 1996b], DCE [Git-

tler 1995], Java [Lai 1999], and DCOM [Microsoft 1998], that provide the underlying com-

89

munication infrastructure along with the security subsystem, thus enjoying reasonable

integration of both and much more seamless use of the former by developers. Moreover,

some of them enable basic access control completely outside of an application system

because access decision and enforcement occur before the remote call is dispatched to the

application server.

The Java Authentication and Authorization Service (JAAS) is designed to provide a

framework and a standard programming interface for authenticating users and for assigning

privileges to users. Access control is enforced only on system resources, such as fil es, sock-

ets, etc. but not on Java objects and other application resources. JAAS has very generic and

extensible support for different privilege attributes which can be easily defined via new

classes. The source code base, the identity of the code signer, and the value of the subject

privilege attribute are passed to the authorization code via Policy class interface for

authorization decisions. JAAS allows any granularity of authorization decisions, and it

does not constrain implementers of authorization policies to any particular mechanism or

to the information used for the decisions. It also enables seamless change of policies. How-

ever, the architecture does not address the consistency of authorization policies across mul-

tiple applications. Nor does it have any provisions for achieving performance and

administration scalabili ty.

In the DCE, application systems are expected to enforce and provide administrative

access to authorization policies themselves. An application system can use DCE access

control list (ACL) but it has to implement most of access control functionality, including

ACL storage and manager, and its administration. DCE Security supplies an application

90

only with the caller’s subject and group identities. Cross-application administration of

authorization logic is not directly supported although administrative interface for doing the

administration on per-application basis is defined, yet it is not a scalable solution.

The security model of DCOM resembles DCE security. As with DCE, ACLs are used

to code authorization policies. The main advance of DCOM is the capability of enforcing

policies outside of objects with the presence of process and host-specific policies in addi-

tion to the capability for an application to use DCOM Security API for its own AC. The

authorization model is significantly hindered by the granularity of the so-called “compo-

nent-specific” policy where there is no distinction among different objects and their meth-

ods in the same OS process. Component- and host-wide policies implicitly introduce the

notion of access policy domains; still it is not clear if such domain partitioning is an admin-

istratively scalable and functionally successful solution. The administration has to be per-

formed individually on each host or even for each process, which is better than in DCE but

still lim ited. Although DCOM Security provides ways for application systems to exercise

fine grain AC in an application-specific way, application-specific policies cannot be

enforced and only security-related attributes of subjects and objects can serve as input for

external AC.

SESAME is an architecture for security services which does not specify a communi-

cation layer. Thus it cannot control pre/post invocation events. This is why AC and other

security functionality has to be specifically activated by an application. This prevents

SESAME from providing AC externally to applications. Another drawback of SESAME

authorization is the lack of support for applying one policy to several application systems

91

located on separate hosts. The unit of authorization check is an application system. All

these, especially the granularity of AC, make SESAME less attractive then JAAS, DCE,

DCOM or CORBA technologies for engineering access control to application resources.

However, SESAME is neutral to the underlying communication protocols, and is known

for its advanced model of privilege attributes management and propagation. This makes it

indispensable for building heterogeneous, multi-technology and multi-organization distrib-

uted applications that require authorization based on privilege attributes, other than user

identity, and the use of different communication technologies.

In CORBA Security, access control can be enforced completely outside of an applica-

tion system. AC decisions are based on subject privilege attributes, required rights of the

method, and the access control policies of the domains to which the object belongs. The AC

model scales very well without losing fine granularity, for the decisions could be specific

to each object, if the object is located in a separate domain, or a large group of objects could

be associated with one policy domain. Unlike DCOM, CORBA objects residing on differ-

ent computers can be associated with the same policy domains. Because CS defines

advanced concepts of privilege attributes, it enables AC policies based on roles, groups,

clearance, and any other security-related attributes of subjects. User grouping via privilege

attributes, object grouping via policy domains, and method grouping via the concept of

required rights enable high administration and performance scalability of AC mechanisms.

If an application system is to enforce its own AC, it can do so with the help of CORBA

Security API, which allows it to obtain subject security attributes, including privilege

attributes. However, application-specific policies are difficult to enforce and the use of

application-specific information in the CORBA AC is limited.

92

Generic Authorization and Access Control API (GAA API), published as an IETF

Internet draft, defines a framework for application authorization. The API aims to address

the lack of standard authorization interfaces for those applications which use the generic

security service (GSS) API. This is why GAA API’s authorization model specifically fits

into the existing GSS API. If an application uses GSS API, which provides very generic

low-level abstraction, and it requires the protection of fine grain resources or the enforce-

ment of complex authorization policies, then GAA API defines interface with enough capa-

bilities for most applications. The main advantage of the API over the other reviewed

models is the support for the very flexible and powerful concept of additional conditions

that can support application-specific policies. The drawbacks of the API are that it only

defines the interface between an application and an authorization mechanism, and the

model addresses neither administration scalability nor the consistency of authorization pol-

icies across multiple applications.

Ideally, all security functionality should be engineered outside of an application sys-

tem, therefore making it so called “security unaware.” However, this is difficult to achieve

for the majority of application systems, where access control, and other security policies,

are too complex, or require too fine control, to be supported by the general-purpose security

technologies. This is why fine-grain control of distributed application resources is done tra-

ditionally in an ad-hoc manner [Wilson 1997], and there are no automated means to ensure

enterprise-wide consistency of such controls.

The research community has being working towards systematic ways of controlling

access to resources in distributed heterogeneous application systems. There are three main

93

research directions in addressing the problem. They are policy agents, interface proxies and

interceptors, as well as enterprise-wide authorization services.

The direction of policy agents is motivated mainly by the goal of accommodating the

existing body of products and technologies already deployed in organizations. The key

property of the direction is centralized AC management via the translation of authorization

rules into languages supported by local mechanisms, and the distribution of the rules across

systems, which is achieved with the help of policy agents residing on computers hosting

applications systems.

Approaches under this direction have a number of advantages: there is inherent fault

tolerance; enterprise security is naturally compartmentalized without penalizing run-time

performance; the architecture facilit ates achieving nominal performance overhead; there is

high degree of run-time autonomy -- a trait essential for achieving performance scalabil ity

and fault tolerance.

The main challenges facing the approaches are the consistency of enforced global pol-

icies and automation of mapping a global policy into various instances of AC mechanism

languages and representations. The approaches also suffer from a number of inherent lim-

itations. First, the granularity and expressiveness of AC policies in a policy domain can be

only as good as the policies supported by the most coarse-grain and least expressive AC

mechanism in that domain. Second, distribution of policy updates can be very slow, which

would easily make policies based on periodic authorizations un-affordable. The direction

of policy agents becomes irreplaceable, if other approaches, such as proxies and authoriza-

tion services, fail in those circumstances when application systems are already deployed.

94

The question if it is the best way to address the problem of application-level AC for newly

developed systems remains opened.

The approaches under another direction employ either interface proxies or interception

of inter-application communications. Access to an application system is controlled exter-

nally. Authorization decisions are made before an application system gains control and/or

after it dispatches an invocation to another system. In order to achieve it, invocations are

intercepted either in the communication, middleware, or at the application layer.

The main advantages of the direction are that it does not require almost any changes to

the application system, the reference monitor is implemented externally to it, and its size

can be controlled by security developers. This makes the direction a good alternative to

policy agents approach for controlling access to resources of already deployed applications.

Moreover, if an existing application lacks any AC mechanism, proxies and interceptors

become the only choice. Another advantage is the ability to make all the decisions locally

to an application system, which facili tates performance scalabilit y.

There are a number of significant limitations though. First, the granularity of AC

cannot be finer than method and, when arguments can be interpreted outside of method

implementation, its arguments. Second, the decisions always have to be made either before

or after an application system is in possession of control. Third, variables, whose values

become available at some point after the method is invoked but before a decision needs to

be made, cannot be used in authorization decisions. Fourth, since there are as many

instances of access controls as application systems, insuring the consistency of enforced

95

policies as well as the coherency of data used for authorization decisions becomes a chal-

lenge.

Another direction is based on authorization services. Decisions provided by an

instance of the service, authorization server, are enforced by an application system. Both

an application system and an authorization server constitute a reference monitor, which

requires an application system to be trusted to enforce AC decisions.

The goal of authorization services is to factor common AC decision functions out of

application systems and implement them separately as an infrastructure service. The main

advantages of the direction are inherent consistency and the coherence of authorization pol-

icies; the ease of policy changes and updates because authorization is made in a logically

single place; the ability to change policies and their policy types without affecting applica-

tion systems; the relatively low cost of access control administration; the abilit y to obtain

authorization decisions just when they are needed; and potentially any level of granularity

of protected resources.

However, in order to construct a successful architecture for a distributed authorization

service, one must address several key problems. They are performance, fault tolerance,

scalability, security of communicating authorization information, the guarantee of authori-

zation decisions being enforced, and the common representation of information used for

making the decisions.

We expect that successful architectural solutions most probably will employ a combi-

nation of proxies, interceptors, policy agents, and authorization services because solutions

96

from all three groups complement each other. For systems with existing AC mechanisms

tightly integrated into applications, policy agents is the only choice. In those existing sys-

tems where AC mechanisms are missing, weak, or have too coarse granularity, interceptors

and proxies, combined with the ideas from policy agents and authorization services could

cure the problem. New applications with requirements for fine-grain access control, com-

plex or very dynamic authorization policies or to be deployed in organizations of different

types (e.g. military, government, finance, health care, telecommunications) and sizes, will

be best constructed with the use of the authorization server approach.

97

4Supporting RBAC Using
CORBA Security

We surveyed the AC mechanisms of the existing middleware technologies in the pre-

vious chapter and showed that they are inadequate for solving the problem of controlling

access to application resources completely. However, some of the mechanisms, such as in

CORBA and DCOM, allow the enforcement of authorization policies outside of applica-

tions. In addition, they are very well integrated with the corresponding services. These two

factors make the use of middleware AC mechanisms, when they are sufficient, more favor-

able than application-level control. The latter is used when the mechanisms are functionally

inadequate. Before a system architect opts to employ application-level AC, it is important

to take maximum advantage of middleware AC. This is why the study of middleware AC

capabilities is crucial for engineering the protection of application resources.

In this chapter, we make two contributions. First, we show the capabiliti es of the

CORBA AC mechanism by providing a detailed and illustrative description. More impor-

tantly, we propose a CORBA protection system configuration which formally defines the

state of the system. Using the definit ion, we specify an algorithm for making authorization

decisions in CORBA. In addition to the precise explanation of the CS AC semantics, the

algorithm fill s in the gap in the specification [OMG 1996b], which uses only English prose

to explain how AC decisions are performed. Second, we show how role-based access con-

trol (RBAC) models could be supported using the CORBA Security service. Using the

98

defined configuration of the CORBA protection system, we provide definitions of RBAC0

and RBAC1 models in the language of CORBA Security. Furthermore, we describe what

is required from an implementation of the CORBA Security service in order to support

RBAC0-RBAC3 models. Our approach allows an implementation compliant with CS spec-

ification to support RBAC0. Additional functionality, which is beyond the scope of CS

specification, should be implemented in order to support RBAC1 and/or RBAC2. This work

advances the understanding of CORBA AC mechanisms’ capabilities, which is vital to the

use of middleware in protecting application resources. The content of this chapter is based

on the materials from [Beznosov 1999a].

4.1 Overview of RBAC and Motivations

RBAC [Sandhu 1996] is a family of reference models in which permissions are asso-

ciated with roles and users are assigned to appropriate roles. A role can represent compe-

tency, authority, responsibility or specific duty assignments. Some variations of RBAC

include the capability to establish relations between roles, between permissions and roles,

and between users and roles. There are four established RBAC reference models: unrelated

roles (RBAC0), role-hierarchies (RBAC1), user and role assignment constraints (RBAC2),

and both hierarchies and constraints (RBAC3). RBAC supports three security principles:

least privilege, separation of duties and data abstraction.

A major purpose of RBAC is to facil itate access control administration and review.

RBAC is a promising approach to address the needs of the commercial enterprises better

than lattice-based mandatory access control (MAC) [Bell 1975] and owner-based discre-

tionary access control (DAC) [Lampson 1971]. Recent series of papers describe ways to

99

model or implement RBAC using the technologies employed by the commercial users:

Oracle [Notargiacomo 1995], NetWare [Epstein 1995], Java [Giuri 1998], DG/UX [Meyers

1997], object-oriented systems [Barkley 1995], object-oriented databases [Wong 1997],

MS Windows NT [Barkley 1998], and enterprise security management systems [Awischus

1997]. Evidence of RBAC recognition in the US government is the fact that the proposed

rules on security from the Department of Health and Human Services [DHHS 1998]

include RBAC as one of the required choices for access control.

At the same time, the commercial market is experiencing the spread of systems based

on CORBA technology. Due to its general nature, CORBA Security (CS) is not tailored to

any particular access control model. Instead, it defines a general mechanism which is sup-

posed to be adequate for the majority of cases and could be configured to support various

access control models. For example, it was shown how to implement lattice-based MAC

using the CORBA authorization model [Karjoth 1998]. In the next few years we expect to

witness significant financial investments in the enterprise-wide deployment of CS in com-

mercial and government organizations, including those who will construct their security

policies utilizing RBAC concepts. It is important to foresee if CS will fully support RBAC

models. However, we are not aware of any work in the research community that has

explored the potential of CS for the support of RBAC reference models.

4.2 CORBA Access Control Mechanisms

First, we give a detailed, though informal, description of the CORBA AC mechanism.

Then we formulate a CORBA protection state configuration and define the authorization

100

algorithm. We will use the language of the configuration later in the chapter to discuss the

support of RBAC by CORBA Security.

4.2.1 Informal Description

We introduced the main concepts of CORBA Security in Chapter 3. Before we go into

detailed discussion of CS AC mechanisms, let us briefly review CS. In short, all object

invocations are mediated by the appropriate CS functions for the enforcement of various

security policies. The functions are tightly integrated with the ORB because all messages

between CORBA objects and clients are passed through the ORB.

CS authentication architecture is very much similar to the one of SESAME. A user

uses a user sponsor to authenticate to the CS environment. A user sponsor is a logical part

of client application. It authenticates on behalf of a user with and obtains authenticated cre-

dentials from an instance of interface SecurityLevel2:: PrincipalAuthenti-

cator , as shown in Figure4-1. Instances of user sponsor implement user interface

Figure 4-1. Execution Context Creation

ORB
Security Enforcement Subsystem

Execution Context

Credential

Identity
Privileges

Client Application

Principal
Authenti

cator

User Sponsor

U ser

101

specific to the authentication method supported by the concrete implementation of CS. For

example, for password-based authentication, it prompts the user for user name and pass-

word. For authentication based on smart-cards, it interacts with a smart-card reader and

(probably) prompts the user to insert the card in the reader. CS standard does not mandate

any particular authentication method. What it does specify is the interface of Principa-

lAuthentic ator . An instance of PrincipalAuthenticator conducts the actual

authentication and creates Credentials object for a new subject. Based on the authen-

tication data it received from a user sponsor and on the underlying security technology

(Kerberos, SESAME, or any other capable technology) as well as on any rules it adheres

to, Princip alAuthenticator instantiates Credentials with various informa-

tion. The information in Credentials constitute the identity of the new subject, which

initiates requests on CORBA objects on behalf of the user. Authenticated security attributes

are part of the information stored in the Creden tials object.

Access control and other protection in CS is policy-based. There are several types of

policies. One of them is AC policy. Any policy is associated with a domain, which is called

policy domain in CS terminology. A policy domain is an abstraction that allows security

administrators to group objects in groups and assign policies to the groups. Objects that

have common security requirements are grouped in the same security policy domains.

Domains allow the application of AC policies to security-unaware objects without requir-

ing changes to their implementations or interfaces. Figure4-2 illustrates the concepts of

domains and policies. It shows that a policy domain is associated with a policy. And objects

(small circles) are grouped in the domain. They are governed by the policy. Policies of

more than one type could be associated with the same policy domain and each object can

102

belong to more than one policy domain. Domains could be organized in federations, hier-

archies or be completely unrelated.

The policy enforcement code uses three sources of information: the policy of the

domain(s) to which the target belongs, the information from the client’s credentials, and the

message itself which specifies target object and the name of the method to be invoked. In

the remainder of this section, we discuss in detail the AC mechanisms available in CS.

For ill ustrating our discussion, we will use Figure4-3. The concept of a user is absent

from the CS AC model. Instead a principal represents the user completely. The term prin-

cipal in the CS model is equivalent to subject in traditional AC terminology. We will use

these two terms interchangeably in this discussion. The notion of a session is indistinguish-

able from the notion of a principal. Thus multiple principals can act on behalf of a single

user. They all potentially have different sets of credentials and therefore exist in CS as com-

pletely independent entities. Among other data, principal credentials contain security

attributes. Hereafter, we understand attribute to mean “security attribute.” From the CS AC

model point of view, a principal is nothing but an unordered collection of authenticated

attributes. An attribute is a four-tuple a = {t, a, v, ds} w ith certain type t, defining authority

Figure 4-2. Domains and Policies in CORBA Security

Domain

Domain
Policy

103

a, value v, and delegation state ds. Where and state i indicates attribute

possessed by the immediate invoker, and d -- by the intermediate one. Attribute types are

partitioned into two families: privilege attributes and identity attributes. The family of priv-

ilege attributes enumerates attribute types that identify principal privileges. These types

include access identifier, primary and secondary groups the principal is a member of, clear-

ance, capabilities, etc. Identity attributes, if present, provide additional information about

the principal. Examples of their types are audit id, accounting id, and non-repudiation id,

reflecting the fact that a principal might have various identities used for different purposes.

Principal credentials may contain zero or more attributes of the same type. An example of

security attributes assigned to authenticated principals is provided in Table 4-1. One of the

Figure 4-3. Relationships Among the Key Elements of CORBA AC Mechanisms

Operation

Interface

0..*

0..*

+inherits

0..*

0..*

1..1

+defined

0..*

1..1

Interface Implementation

1..1

0..*

1..1

+implement

0..*

User

Credentials

Request

1..1 0..*1..1

+invoke

0..*

1..1

0..*

1..1

+on
0..*

RequiredRights

Combinator : RightsCombinator

0..1

0..*

0..1

+requires

0..*

SecurityPolicyDomain

0..* 1..*

+associated

0..* 1..*

SecurityAttribute

type : AttributeType
defining_authority : Opaque
value : Opaque

0..*

0..*

0..*

+contain

0..*

Principal

0..1

0..*

0..1

+acts on behalf

0..*

0..*

1..1

0..*

+has

1..1

0..* 1..10..* +makes 1..1

Right

Family : ExtensibleFamily

0..*

0..*

0..*

+consists

0..*

DomainAccessPolicy

0..*

1..1

0..*

+applies

1..1

GrantedRights
0..* 0..*

+based on

0..* 0..*

0..1

0..*

+grante

0..1

0..*

0..* 0..*0..*

+consists

0..*

1..*

0..*

1..*

+according to

0..*

ds DS∈ i d{ , }=

104

standard CORBA attribute types is role. Due to the extensibility of the schema for defining

security attributes, an implementation of CS can support attribute types that are not defined

by the CORBA Security standard. Although the normative part of CS does not mandate the

way the attributes are managed, assignment of such attributes to users is meant to be per-

formed by user administrators.

All a principal does in the CORBA computational model is invoke operations on cor-

responding objects. In order to make a request one needs to know two things: object refer-

ence, which uniquely identifies an object, and operation name. CORBA interfaces can

inherit from other interfaces via interface inheritance. An operation name is unique for an

interface. Thus, any operation is uniquely identified by its name and by the name of the

interface in which it is defined. Here, we use notation ikmn, to refer to n-th operation on k-

th interface.

There is a global set of required rights for each operation. This set, together with a com-

binator (all or any rights), defines what rights a principal has to have in order to invoke the

operation. Table 4-2 provides an example of required rights for operations on three inter-

faces i1, i2, and i3. It is assumed that required rights are defined and their semantics are pre-

cisely documented by application developers who know the best semantics of each

operation. Depending on the access policy (DomainAccessPolicy) enforced in a particular

Principal Attributes
p1 a1

p2 a2, a6

p3 a2, a3

p4 a4, a5

Table 4-1. Security Attributes Possessed by Authenticated Principals

105

AC policy domain, a principal is granted different rights (GrantedRights) according to what

privilege attributes it has. Each DomainAccessPolicy (DAP) object defines what rights are

granted for each security attribute. An example of a mapping between principal privilege

attributes and granted rights is provided in Table 4-3. Security administrators are responsi-

ble for defining what rights are granted to what security attributes in what delegation state

on domain per domain basis. Whenever a principal attempts an operation invocation, prin-

cipal's effective rights are computed via operation AccessPol-

icy::get_effective_rights() . CS specification purposefully does not define

how the operation combines rights granted through different privilege attribute entries

shown in Table 4-3. The specifiers let CS implementers define the operation's internal

behavior ([OMG 1996b, p. 122]). A simplest implementation of

O p era tio n s
Required

Rights
Combinator Meaning

i1m1 r1 all
Only a principal who is granted right r1can invoke the
operation.

i1m2 r1, r2 any
Any principal who is granted either r1 or r2 right can
invoke the operation.

i2m1 r2, r3 all
Only a principal who is granted both r 2 and r 3 rights
can invoke the operation.

i2m2 r2, r3, r4 all
Only a principal who is granted all r2, r3, r4 rights can
invoke the operation.

i3m1 r1, r2, r3, r4 any
Any principal who is granted either of r1, r2, r3, r4
rights can invoke the operation.

Table 4-2. Required Rights Matrix

Attributes

Granted Rights

Domain

d1 d2

a1 r1 r2
a2 - r1
a3 r2, r3 -

a4 r3 r1, r4
a5 r1, r2, r3 r2, r3, r4
a6 r6 r1

Table 4-3. Granted Rights Per Attribute

106

get_effect ive_rights() could be such that the set of rights granted to a principal

is a union of rights granted to every security attribute the principal has. For our example,

we will assume exactly this implementation of the operation. If we use our example of secu-

rity attributes assigned to principals p1, p2, p3, and p4 (Table 4-1), and the examples of

required (Table 4-2) and granted (Table 4-3) rights, then Table 4-4 shows what rights the

principals are granted in each domain. Therefore, the principals can invoke operations as

shown in Table 4-5. Note that because principal p2 is granted only right r6 in domain d1, it

is not permitted to invoke any operation because right r6 is not sufficient for invoking any

operation according to the Required Rights Matrix (Table 4-2).

4.2.2 CORBA Protection State Configuration

Having informally discussed the CS AC model, we define the protection state config-

uration of a CORBA system in Defintion 4-1. An implementation of security service com-

pliant with CS is supposed to yield the same access control decision as the one described

Principal

Granted Rights

Domains
d1 d2

p1 r1 r2
p2 r6 r1
p3 r2, r3 r1
p4 r1, r2, r3 r1, r2, r3, r4

Table 4-4. Granted Rights Per Principal

Principal

Permitted Operations

Domains
d1 d2

p1 i1m1, i1m2, i3m1 i1m2, i3m1

p2 - i1m1, i1m2, i3m1

p3 i1m2, i3m1 i1m1, i1m2, i3m1

p4 i1m1, i1m2, i3m1, i1m2, i2m1 i1m1, i1m2, i3m1, i1m2, i2m1, i2m2

Table 4-5. Operations Permitted to Principals

107

by Algorithm 4-1. Function effective_rights looks up GRM to obtain granted rights for each

attribute in all domains to which object o belongs. It combines those rights according to its

implementation and returns effective rights for each domain. Results returned from effec-

Definition 4-1. CORBA System Protection State Configuration

A configuration of a CORBA system protection state is the thirteen-tuple (A, IM, O,

R, D, C, RRM, DS, IDM, GRM, effective rights, combine, interface operation) interpreted

as follows:

• A is the set of privilege attributes.

• IM is the set of operations uniquely identified by interfaces that they are defined on.

• O is a set of distinguishable interface instances.

• R is the set of rights.

• D is the set of access policy domains.

• C = {all, any} is a set of rights combinators.

• RRM is the required rights matrix, with a row for every interface operation from IM
and two columns. For the first column (Required Rights), we have .
For the second column (Combinator), we have .

• DS = { i, d} is a set of delegation states.

• IDM is the matrix of domain membership for interface instances with a row for every
domain from D and a column for every interface instance from O. We denote the con-
tents of (D, O) cell of IDM by [D,O]. We have ,a .

• GRM is the granted rights matrix, with a row for every attribute from A and a column
for every access policy domain from D. We denote the contents of the policy domain
from D. We denote the contents of the .

• effective_rights: , a function mapping a set a1,a2,...al of privilege
attributes (where) in a domain to a set of rights
r1,r2,...rp (where) that are in effect for the given set of
attributes.

• combine: a function mapping sets of rights returned from
effective_rights for every domain in D the interface instance is a member of, to a set of
effective rights.

• interface_operation: a function mapping an operation name m and an

interface instance into an interface operation uniquely identified on the inter-

face, which o implements.

a. T stands for true and F stands for false.

IM, Rights[] R⊆
[IM, Combinator] C∈

[D, O] {T, F}⊆ [d, o] T≡ o d∈⇒

A, D[] R⊆
D 2

A× 2
R→

i∀ s.t.1, i l ai A∈,< < dj D∈
i∀ s.t.1, i p ri R∈,< <

D 2
R→() 2

R→

M O× IM→

o O∈

108

Algorithm 4-1. Authorization Decision in CORBA

Decide authorization for principal p = {a1,a2,...an} accessing operation with name m on

interface instance o where , m is a string that names an operation, and

.

Require:

1: {Empty an array of rights}

2: for all d s.t. IDM[d,o] == T do

3:

4: end for

5: {Combine effective rights into one set}

6:

7: if RRM[i, Combinator] == any then

{Any right is required}

8: for all r in RRM[i, Rights] do

9: if then

10: return T

11: end if

12: end for

13: return F

14: else

{All R ights are required}

15: for all r in RRM[i, Rights] do

16: if then

17: return F

18: end if

19: end for

20: return T

21: end if

a1 ... an, , A∈

o O∈

interface_operation(m, o) IM∈

DER ∅←

DER[d] effective_rights(d, p)←

ER[d] combine DER()←

i interface_operation(m, o)←

r ER∈

r ER∉

109

tive rights serve as input parameters for the function combine. The latter combines them

according to its implementation. Rights returned by combine are checked against RRM. If

the match succeeds, then access is granted. Otherwise, access is denied.

Table 4-5 shows what operations can be invoked by the principals from our example.

For each domain, an access matrix from [Lampson 1971], such as in Table 4-6, could be

constructed.

Three general observations are worth noting for an access matrix constructed for any

CS system. First, subjects cannot be objects, i.e. the CORBA access control does not have

the concept of operations on principals. It only has the concept of operations on interfaces,

which are objects according to the terminology of the access matrix [Lampson 1971]. Sec-

ond, since (i.e. just is not enough for), as

in Table 4-6, the semantics of operations in a general case might be different. Thus, for each

subject s and object o, the content of cell [s,o] is specific to the object, i.e. no operations

permitted on one object could be permitted on another object because operations are

semantically different for every interface unless interfaces are related via inheritance.

Third, all implementations of the same interface in a given access policy domain are repre-

sented by the same object in the access matrix; therefore, implementations of the same

Principal
Objects

i1 i2 i3
p1 i1m2 - i3m1

p2 i1m1, i1m2 - i3m1

p3 i1m1, i1m2 - i3m1

p4 i1m1, i1m2 i2m1, i2m2 i3m1

Table 4-6. Operations Permitted to Principals

ikmp i lmq≡ k l≡ p q≡∧⇔ p q≡ ikmp i lmq≡

110

interface are indistinguishable from the access control point of view. This is one of the rea-

sons policy domains are important in the CORBA access control model.

4.3 Support of RBAC by the CORBA

4.3.1 Access Control Model

Among the four RBAC reference models defined by Sandhu et al. [Sandhu 1996],

RBAC0 is the base model. It requires only that a system has notions of users, roles, permis-

sions and sessions. There are no constraints on the assignment of permissions to roles and

users to roles. RBAC1 has hierarchies of roles in addition to everything RBAC0 has.

RBAC2 has constraints on the assignment of users to roles and permissions to roles in addi-

tion to everything RBAC0 has. RBAC3 combines RBAC1 and RBAC2. In this section, we

define RBAC0 and RBAC1 using the language of Defintion 4-1 for CORBA protection

state configuration. This will help us show the correctness of our approach to configuring

a CORBA system for supporting various RBAC models. But first we introduce the original

RBAC definitions.

4.3.2 Original Definitions of RBAC models

According to the RBAC model, each session is a mapping of one user to possibly many

roles. When a user establishes a session, he or she activates a subset of roles assigned to the

user by the user administrator(s). The permissions available to the user are the union of per-

missions from all roles activated in that session. RBAC treats permissions as uninterpreted

symbols because their semantics is implementation and system dependent.

111

Definition 4-2. RBAC0

The RBAC0 model has the following components:

• U, R, P, and S (users, roles, permissions and sessions respectively),

• , a many-to-many permission to role assignment relation,

• , a many-to-many user to role assignment relation,

• user: , a function mapping each session si to the single user user(si) (constant

for the session’s lifetime), and

• a function mapping each session si to a set of

 (which can change with time) and session si has

the permissions

Definition 4-3. RBAC1

The RBAC1 model has the following components:

• U, R, P, S, PA, UA, and user are unchanged from RBAC0,

• is a partial order on R called the role hierarchy or role dominance rela-

tion, also written as , and

• is modified from RBAC0 to require

 and session si has granted rights

 (which can change with time) and ses-

sion si has the permissions

PA P R×⊆

UA U R×⊆

S U→

roles : S 2
R→

roles si() r | user si() r(,) UA∈{ }⊆

p | pr(,) PA∈(){ }
r roles si()∈

∪

RH R R×⊆

 ≥

roles : S 2
R→

roles s
i

() r | r'∃ r≥() users s
i

() r'(,) UA∈[]{ }⊆

r | a″∃ a≤() r a″(,) PA∈[]{ }
a roles pi()∈

∪

p | r″∃ r≤() p r″(,) PA∈[]{ }
r roles si()∈

∪

112

We reproduce definit ions of RBAC0 (Defintion 4-2) and RBAC1 (Defintion 4-3)

models from [Sandhu 1996] to help the reader in understanding the rest of the chapter.

4.3.3 RBAC0: Base Model

For the base model RBAC0, the four sets of identities are represented in CS as fol-

lows:1 users in RBAC map to users in CS; roles are represented by set A of privilege

attributes of type role; permissions are equivalent to the set of rights R in CS; sessions are

equivalent to principals which are nothing but sets of security attributes, from the CS AC

point of view. RBAC0 in the language of CS is formally defined in Defintion 4-4.

1. We do not mention CS AC domains because, as it will be shown in the example below, RBAC models
can be supported in CORBA using a single domain.

Definition 4-4. RBAC0 in the Language of CORBA Security

• U, A, R, P (users, attributes of type role, rights, and principals, respectively)

• a many-to-many assignment of granted rights to security attributes of

type role relation.

• a many-to-many user to security attributes of type role assignment rela-

tion.

• user: , a function mapping each principal pi to the single user user(pi), constant

for the principal lifetime, and

• roles: a function mapping each principal pi to a set of privilege attributes of

type role roles(pi) and principal pi has the

granted rights .

PA R A×⊆

UA U A×⊆

P U→

P 2
A→

roles pi() a | user pi() a(,) A∈(){ }⊆

r | r a(,) PA∈(){ }
a roles pi()∈

∪

113

It is easy to see that the definition describes a system compliant with the RBAC0 def-

inition provided in [Sandhu 1996]. Given the definition, we will show how a CORBA pro-

tection system specified by a configuration language from Defintion 4-1 could be used to

implement a security system compliant to this definit ion of RBAC0. PA relation is specified

by the granted rights matrix GRM. UA relation is managed by user administrators in CS that

define what values of attributes of type role are assigned to users. However such manage-

ment functionality is beyond the scope of CS specification, which means that functionality

defined by UA relation is implementation-specific . An implementation of Principal-

Authentica tor 1 initializes new principal credentials with security attributes according

to UA. An example is provided in Table 4-1, where attributes a1 through a6 have the type

role. The value of the principal privilege attribute of the type AccessId is equivalent to the

return value from the function user. An implementation of Pr incipalAuthentica-

tor should initialize principal credentials according to the function roles. Since a user in

RBAC0 can activate any subset of roles to which the user is assigned, implementation of

UA ensures implementation of RBAC0. Thus, we have shown that all relations, functions

and sets specified in Defintion 4-4 can be directly supported by CS-compliant implemen-

tations. In order for a CS implementation to support RBAC0 it should:

1. comply with CS standard, and

2. provide a means to administrate user-to-role assignment relation UA, and

1. As it was described in Section 3.1.5, a PrincipalAuthenticator conducts the actual authentica-
tion and creates Credentials object for a new principal.

114

3. provide a means for users to select through user sponsor a set of roles with which they

would like to activate the new principal, and

4. implement PrincipalAuthe nticator which creates principal credentials con-

taining privilege attributes of type role according to relation UA, and

5. implement PrincipalAuthe nticator which creates principal credentials con-

taining one and only one privilege attribute of type AccessId.

A straightforward implementation of RBAC0 in CS would be the one that uses privi-

lege attributes of only type role for constructing granted rights tables, such as Table 4-3.

4.3.4 RBAC1: Role Hierarchies

RBAC1 is RBAC0 with role hierarchies. RBAC1 in the language of CS is formally

defined in Defintion 4-5.

Function roles is to be implemented and enforced by a Pr incipalAuthentica-

tor (Figure4-1). A user provides to a user sponsor a set of roles with which they want the

Definition 4-5. RBAC1 in the Language of CORBA Protection System

• U, A, R, P, PA, U A and user are unchanged from RBAC0.

• is a partial order on R called the role hierarchy, written as . It is the

same as in [Sandhu 1996].

• is modified from RBAC0 to require

 and principal pi has granted rights

.

RH A A×⊆ ≥

roles : P 2
A→

roles pi() a | a'∃ a≥() users pi() a'(,) UA∈[]{ }⊆

r | a″∃ a≤() r a″(,) PA∈[]{ }
a roles pi()∈

∪

115

principal to be activated. The PrincipalAuthentic ator , during the authentication

with the user sponsor, creates new credentials of the principal. The credentials have roles,

requested by user, provided that they satisfy the definition of function roles for RBAC1.

A valid implementation of RBAC1 could be one that allows a user to specify any role

junior to those of which the user is a member. In this case, an implementation of Princi-

palAuthent icator activates all roles which are junior to the specified role.

In order for a CS implementation to support RBAC1 it should:

1. implement RBAC0, and

2. provide a means to administrate the role hierarchy relation RH, and

3. implement PrincipalAuthe nticator which creates principal credentials con-

taining privilege attributes of the type role according to relations UA and RH, as well as

function roles.

4.3.5 RBAC2: Constraints

Constraints in RBAC are predicates that apply to UA and PA relations, as well as to

functions user and roles [Sandhu 1996]. Constraints on UA relation are to be enforced by

an implementation of user administrator tools. Constraints on functions user and roles are

the responsibility of Princi palAuthenticator implementation. Constraints on PA

relation are to be enforced by an implementation of security administrator tools.

In order for a CS implementation to support RBAC2 it should:

1. implement RBAC0, and

116

2. implement the support of constraints on UA relation by user administrator tools, and

3. implement PrincipalAuthe nticator with the support of constraints on func-

tions user and roles, and

4. enable enforcement of constraints on PA relation by security administrator tools.

4.3.6 RBAC3: RBAC1 + RBAC2

RBAC3 is a combination of RBAC1 and RBAC2 along with possibly additional con-

strains on the role hierarchy. It can be implemented in CS as well . Obviously, in order for

a CS implementation to support RBAC3 it should:

1. implement RBAC1, and

2. implement RBAC2, and

3. implement possible additional constrains on the role hierarchy.

The requirements for the support of RBAC1 and RBAC2 by CORBA Security service

implementation have already been discussed. The implementation of additional static con-

strains on the RBAC1 role hierarchy is to be done by user administrator tools. For the sup-

port of dynamic constraints, additional functionality in the implementation of

PrincipalA uthenticator is required, in addition to the administrator tools.

4.4 Examples

To illustrate the points made in the previous chapter, we describe a protection state

(defined by Defintion 4-4) of a CORBA system that implements an example role hierarchy.

We show how a CORBA-based distributed system could be configured to support RBAC1

117

with an example hierarchy from [Sandhu 1998b] shown on Figure4-4 and to protect access

to the implementations of CORBA interfaces shown in Figures 4-5 and 4-6. In RBAC role

hierarchies, the convention is to depict junior roles (with less permissions) at the bottom,

and senior roles (with permissions inherited from the junior ones in addition to the new per-

Figure 4-4. An Example Role Hierarchy (from [Sandhu 1998b])

Figure 4-5. EngineeringProject Interface

Director (DIR)

Project Lead 1 (PL1)

Product ion
Engineer 1

(PE1)

Engineer 1 (E1)

Project 1

Engineer ing Department (ED)

Employee

Qual i ty
Engineer 1

(QE1)

Project Lead 2 (PL2)

Product ion
Engineer 2

(PE2)

Engineer 2 (E2)

Project 2

Qual i ty
Engineer 2

(QE2)

En gineer ingProjec t

m ake_changes()
review_changes()
inspect_quality ()
report_problem ()
c lose_problem ()
create_new_release()
get_descr iption()
c lose()

<<Int erface>>

118

missions) at the top. The following access control policies describe what actions are

allowed. All other actions are denied.

Authorization Policies

1. Anyone can look up an employee’s name and experience.

2. Everyone in the engineering department can get a description of and report problems

regarding any project.

3. Engineers, assigned to projects, can make changes and review changes related to their

projects.

4. Quality engineers can inspect the quality of projects they are assigned to.

5. Production engineers can create new releases.

6. Project leaders can close problems.

7. The director can manage employees (assign/un-assign them to/from projects, add new

records to their experience, and fire) and close engineering projects.

Figure 4-6. Employee Interface

Em ployee

get_nam e()
ass ign_to_projec t()
unass ign_from _projec t()
add_experience()
get_experience()
fire()

<<Int erface>>

119

We define that function effective_rights returns a union of granted rights per attribute,

and combine returns a union of rights granted in each domain.

The intent of CORBA access policy domains is somewhat confusing. To help in under-

standing it, we provide two solutions for enforcing these policies. The first uses a single

access policy domain. The second uses multiple domains.

4.4.1 Single Access Policy Domain Solution

In order to implement the role hierarchy in CS without using access policy domains,

we introduce two new interfaces EngineeringProj ect1 and

EngineeringProject2 , as shown in Figure4-7. The following system protection

state configuration could be used:

• A = {e, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dir}. All these attributes have type role.

Figure 4-7. EngineeringProject Interface Hierarchy

EngineeringProject

m a ke_changes()
review_changes()
i nspect_q uality ()
report_problem ()
c lose_problem()
c reate_new_release()
get _descript ion()
c lose()

<< Interface>>

EngineeringProjec t1
<< Interface>>

EngineeringProjec t2
<< Interface>>

120

• IM = {Employee::get_name, Employee::assign_to_project,

Employee::unassign_from_project, Employee::add_experience,

Employee::get_experience, Employee::fire, EngineeringProject1::inspect_quality,

EngineeringProject1::make_changes, EngineeringProject1::report_problem,

EngineeringProject1::review_changes, EngineeringProject1::close,

EngineeringProject1::close_problem, EngineeringProject1::create_new_release,

EngineeringProject1::get_description, EngineeringProject2::inspect_quality,

EngineeringProject2::make_changes, EngineeringProject2::report_problem,

EngineeringProject2::review_changes, EngineeringProject2::close,

EngineeringProject2::close_problem, EngineeringProject2::create_new_release,

EngineeringProject2::get_description}.

We do not use any implementations of interface EngineeringProject . Only

derived interfaces are used.

• O = {e, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dir, prj1, prj2}. prj1 is an instance of

EngineeringProject1 , and prj2 is an instance of EngineeringProject2 .

All other elements of O are instances of interface Employee .

• R = {gn, atp, ufp, ae, ge, f, mc1, rc1, iq1, rp1, cp1, cnr1, gd1, c1, mc2, rc2, iq2, rp2,

cp2, cnr2, gd2, c2}1

• D = {d1}

• C = {all } - we use only one combinator.

1. We used first letters of each operation to create a corresponding right.

121

• RRM is shown in Table 4-7. We omitted column with rights combinators because

required rights for all operations have the same combinator - “all.” 1

• DS = {i, d}

• In the IDM, all interface instances are the members of the only access policy domain.

• GRM is shown in Table 4-8.

1. We could have used “any” as well. When an operation’s required rights set consists of only one right, the
effect of either combinator is the same.

Operations Rights

Employee::get_name gn

Employee::assign_to_project atp

Employee::unassign_from_project ufp

Employee::add_experience ae

Employee::get_experience ge

Employee::fire f

EngineeringProject1::get_description gd1

EngineeringProject1::inspect_quality iq1

EngineeringProject1::make_changes mc1

EngineeringProject1::review_changes rc1

EngineeringProject1::report_problem rp1

EngineeringProject1::close_problem cp1

EngineeringProject1::create_new_release cnr1

EngineeringProject1::close c1

EngineeringProject2::get_description gd2

EngineeringProject2::inspect_quality iq2

EngineeringProject2::make_changes mc2

EngineeringProject2::review_changes rc2

EngineeringProject2::report_problem rp2

EngineeringProject2::close_problem cp2

EngineeringProject2::create_new_release cnr2

EngineeringProject2::close c2

Table 4-7. Required Rights Matrix for Single Domain Solution

122

• -- union of

granted rights per attribute.

•

The CORBA protection system configuration described above allows enforcement of

the sample policies listed on page 118. For example, a lead of project 1 with role pl1 acti-

vated is able to invoke operations get_name and get_experience on all implementations of

interface Employee as well as all but close operations on all implementations of interface

EngineeringProject1 .

From observing the configuration of the CORBA protection system in this solution,

significant administrative overhead could be noticed. The overhead is due to the gratuitous

use of a separate interface (EngineeringProject(1,2)) per project . This is because

we purposefully limited our solution to a single access policy domain. It is shown below

Privilege Attribute Granted Rights

e gn, ge

ed gd1, gd2, rp1, rp2

e1 mc1, rc1

pe1 cnr1

qe1 iq1

pl1 cp1

e2 mc2, rc2

pe2 cnr1

qe2 iq1

pl2 cp1

dir atp, ufp, ae, f, c1, c2

Table 4-8. Granted Rights Matrix for Single Domain Solution

effective_rights dj a1 a2 …, , , al(,) r | r GRM ai dj[,]∈{ }
ai 1 i l≤ ≤,

∪⊆

combine r1 d1, r2 d1, … r l d1, … r1 dp, r2 dp, … rm dp,, , , , , , ,(,)

r | r r 1 d1, … rm dp,, ,

∈

 -- union of rights granted in each domain.
in each domai d

∪

⊆

123

how the unnecessary redundancy of the protection system configuration data is eliminated

by using multiple access policy domains and a hierarchy of such domains.

4.4.2 Multi-domain Solution

Once we have an access policy domain per project, we can go back to using one

Engineerin gProject interface for all projects. We also take advantage of the CS

capability to compose domains in various hierarchies. We choose a limited and easy to

understand tree-like hierarchy shown in Figure4-8. The following configuration of a

system protection state could be used:

• A, O, C, DS, effective_rights, and combine are the same as in the single domain solu-

tion.

• IM = {Employee::get_name, Employee::assign_to_project,

Employee::unassign_from_project, Employee::add_experience,

Employee::get_experience, Employee::fire, EngineeringProject::inspect_quality,

EngineeringProject::make_changes, EngineeringProject::report_problem,

Figure 4-8. Domain Hierarchy for Multi-domain Solution

Company (C)

Engineer ing Department (ED)

Engineering Project 1 (EP1) Engineering Project 2 (EP2)

124

EngineeringProject::review_changes, EngineeringProject::close,

EngineeringProject::close_problem, EngineeringProject::create_new_release,

EngineeringProject::get_description}.

• R = {gn, atp, ufp, ae, ge, f, mc, rc, iq, rp, cp, cnr, gd, c}.

• D = {C, ED, EP1, EP2}

• RRM is shown in Table 4-9. It is the same as in Table 4-7 except one interface Engi-

neeringProject is used instead of two identical interfaces with different names.

• IDM is shown in Table 4-10. As il lustrated in Figure4-9, if an object belongs to a child

domain, according to the domain hierarchy shown in Figure4-8, then it is also a mem-

ber of all the parental domains.

• GRM is shown in Table 4-11.

Operations Rights

Employee::get_name gn

Employee::assign_to_project atp

Employee::unassign_from_project ufp

Employee::add_experience ae

Employee::get_experience ge

Employee::fire f

EngineeringProject::get_description gd

EngineeringProject::inspect_quality iq

EngineeringProject::make_changes mc

EngineeringProject::review_changes rc

EngineeringProject::report_problem rp

EngineeringProject::close_problem cp

EngineeringProject::create_new_release cnr

EngineeringProject::close c

Table 4-9. Required Rights Matrix for Multi-domain Solution

125

The CORBA protection system configuration described above allows enforcement of

the same policies as the configuration in the solution for a single domain. This time, there

is no need either in having separate Enginee ringProject(1,2) interfaces per

project or in having redundant rights. In addition, RRM and GRM are more comprehensible.

Due to the hierarchy structure of the access policy domains, the described system can

also support more flexible policies. For example, the GRM in Table 4-11, in addition to the

sample policies already described on page 118, supports a policy which allows project lead-

ers to add experience (right ae) to the records of the employees working under supervision

of the leaders. In order to enable it, whenever an employee is assigned to a project (we

assume each employee works on one project at a time) an interface implementation repre-

senting the employee is moved to access policy domain of the corresponding project. Also,

Interface
Instance

Domains

C ED EP1 EP2

e X

ed X X

e1 X X X

pe1 X X X

qe1 X X X

pl1 X X X

e2 X X X

pe2 X X X

qe2 X X X

pl2 X X X

dir X

prj1 X X X

prj2 X X X

Table 4-10. Interface Instance Domain Membership Matrix (IDM) for Multi-domain
Solution

126

Figure 4-9. Interface Instance Domain Membership

Privilege Attribute

Granted Rights

Domains

C ED EP1 EP2

e gn ge - -

ed - gd, rp - -

e1 - - mc, rc -

pe1 - - cnr -

qe1 - - iq -

pl1 - - cp, ae -

e2 - - - mc, rc

pe2 - - - cnr

qe2 - - - iq

pl2 - - - cp, ae

dir atp, ufp, ae, f, c - - -

Table 4-11. Granted Rights Matrix for Multi-domain Solution

C

E D

EP1 EP2

dir

e

ed

e1

qe1

pe1

prj1

pl1

e2

pl2
qe2

pe2
prj2

127

the GRM enforces finer grain policy which allows only colleagues from the same depart-

ment to look up employee experience (right ge) .

4.5 Conclusions

The understanding of middleware AC mechanisms is critical for protecting resources

of enterprise applications. In this chapter we not only described in details AC mechanism

of one of the most capable middleware security technologies -- CORBA Security -- but also

defined a configuration of the CORBA protection system. Using the configuration defini-

tion, we suggested an algorithm which formally specifies the semantics of authorization

decisions in CS.

We defined RBAC0 and RBAC1 models in the language of CS and described how

RBAC0-RBAC3 could be implemented using CS. We discussed what functionality needs

to be implemented, besides compliance with CS standard, in order to support RBAC. We

il lustrated the discussion with a single access policy domain and multi-domain examples of

the CS protection system configuration, which supports a sample role hierarchy and access

policies.

Implementations compliant with the CS specification can support RBAC0-RBAC3.

However, additional functionali ty not specified by CS is required. Implementations of

PrincipalA uthenticator interface and user sponsor need to support roles and their

hierarchies (RBAC1). To support constraints (RBAC2), a Prin cipalAuthenticator

has to enforce them. Tools to administer user-to-role and role-to-rights relations are also

required.

128

This chapter develops a framework for implementing as well as for assessing imple-

mentations of RBAC models using CS. It provides directions for CS developers to realize

RBAC in their systems and gives criteria to users for selecting such implementations that

support models from the RBAC0-RBAC3 family. This work advances the understanding of

the CORBA AC mechanism’s capabili ties and by this maximizes its utility which is vital

to the use of middleware in protecting application resources.

Although RBAC is shown to supersede major AC models, its capabilities are limited

and there could be authorization policies that would be challenging to model with it. Also,

the granularity of the CORBA AC mechanism is still l imited to the level of interface oper-

ation. This is why we believe that the use of RBAC and CORBA does not address the needs

of all application domains. The rest of this dissertation discusses the second part of our

approach, which addresses those cases when the RBAC model and CORBA mechanism are

inadequate.

129

5Resource Access Decision Service

In the previous chapters we stated the problem of controll ing access to the resources

of enterprise distributed applications and reviewed available technologies along with

related work. For those application domains where authorization policies can be supported

by RBAC and the granularity of the CORBA AC mechanism is sufficient, the framework

for implementing RBAC models using CORBA Security developed in last chapter could

be an adequate solution. But what to do with the applications whose AC needs cannot com-

pletely be addressed by either the RBAC model or CORBA Security? In this chapter, we

introduce an approach which meets the requirements of other applications -- an architecture

for resource access decision (RAD) service. Furthermore, we demonstrate its utility on

examples with complex access control policies. Some sections of the chapter are based on

the material from [Beznosov 1999b].

RAD defines a conceptual architecture that encapsulates authorization logic in an

authorization service which is external to the application and is also independent of the spe-

cific security models and policies. Such an architecture not only significantly simplifies

both application and security system development but also allows organizations to uni-

formly manage and enforce their security policies.

The RAD approach addresses most other issues important for protecting application

resources in enterprise distributed applications. It is possible to use as many types of subject

130

security attributes for authorization decisions as the underlying authentication technology

provides. The service architecture allows the use of information obtained from work-flow

systems and other sources, thus supporting policies specific to the application domain. It

also enables the use of application-specific information in AC decisions. Due to the encap-

sulation of authorization logic into a separate service, which can be implemented as a net-

work server, consistency of AC policies enforcement across applications can be easily

achieved. In addition, the architecture supports the multi-policy authorization model, and

it enables security administrators and application developers to maintain a clear separation

of responsibiliti es. To achieve these benefits, our design requires application-level enforce-

ment of authorization decisions and assumes agreement on the semantics of resource names

between the application developer and the owner.

RAD architecture is mostly independent of the underlying security technology,

although the current design takes advantage of the CORBA-compliant security infrastruc-

ture and compliments it with the capability of more sophisticated authorization. Note that

it is by no means a replacement or substitution of standard CORBA Security service [OMG

1996b]. Still, the RAD approach can be applied to most distributed computing environ-

ments.

Moreover, we show that the decoupling of authorization logic from application can be

done without complicated interactions between an application and the authorization service

and without significant communication overhead. Factors specific to the application

domain can be supported by authorization systems using the traditional access matrix

[Lampson 1971] as an underlying implementation.

131

5.1 RAD Architecture

The main objective of RAD is to decouple application-level authorization logic from

application logic. As discussed above, the finest granularity level of AC provided by the

main middleware technologies is at the level of operations on middleware objects. The

authorization service is to make decisions for access to those information and computa-

tional resources that are not first class objects or their operations. Thus, the service comple-

ments middleware AC mechanisms. It relies on and uses the middleware security

environment for secure authenticated communications (i.e. message authenticity, confiden-

tiality and integrity protection) between the service and the applications as well as among

the service components. It also assumes that the underlying security provides a means for

an application to obtain security attributes of the accessing subject. As we showed in

Chapter3, these assumptions are valid for most middleware security technologies.

5.1.1 Interface Between Application Systems and RAD Service

The RAD approach is a representative example of authorization services direction

described in Section 3.2.3. Like most of these services, RAD provides authorization deci-

sions to an application system (AS). Authorization logic is encapsulated into RAD service

external to the application, which is traditionally part of an application program. Since the

service can be logically centralized, the approach allows applications to enforce AC

according to the same enterprise-wide set of authorization policies thus naturally enabling

policy consistency. In our approach, the authorization decision is obtained after the method

on the object is invoked. Hence, an application can exercise access control of any granular-

ity level by associating a resource name with protected elements of any size and semantics.

132

The flow of interactions between application client, application system and an instance

of authorization service is depicted in Figure5-1. The sequence of the interaction is as fol-

lows:

1. A client of the application system invokes an operation on the application.

2. While processing the invocation, the application requires an authorization decision

from the authorization service.

3. The service makes a decision, which is returned to the application.

4. The application enforces the decision. If access was granted by the authorization ser-

vice, the application returns the expected results of the invocation. Otherwise, it either

returns partial results or raises an exception.

Simple interfaces between the application and the authorization service are used. An

application developer only needs to program a single invocation on the authorization ser-

Figure 5-1. Interactions among Client, Application System, and RAD Service

1. Application Request

 Target
Object

(ADO client)

Access Decision
Object

Client

2. Authorization request

3. Reply to authorization request4. Reply to application request

Application Client Authorization
Service

Middleware

Application
System

133

vice in order to obtain a decision. Each authorization request consists of client subject secu-

rity attributes, the name of the resource to be accessed, and the name of the operation to be

performed on the resource. The security attributes of the invoking subject are supposed to

be obtained by the application from the middleware security infrastructure. The application

is expected to compute the resource and operation names as part of its application logic. For

each authorization request, it receives back a binary (yes/no) decision. An application

obtains an authorization decision only from one instance of RAD. It is the contract between

the application and its enterprise environment to request an authorization decision and to

enforce it.

A nominal amount of data is passed between the application and the authorization ser-

vice in order to make authorization decisions. When making an authorization request, an

application passes the following three parameters: a sequence of name-value pairs repre-

senting a name of the resource to be accessed; name of the access operation (e.g. “create,”

“read,” “write,” “use,” “delete”); and authenticated security attributes of the subject on

behalf of which the client is requesting access to the named resource.

Security attributes here are regular attributes of the current user session. Of the the

parameters passed by the client, the first two (resource name and access type) are most

worthy of discussion. We introduce an abstraction called “protected resource name” or just

“resource name,” used to abstract application-dependent semantics of entities, the access to

which is controlled by the application. A resource name can be associated with any valu-

able asset of the application owner, the access to which is controlled according to the

owner's interests. For example, electronic patient medical and billing records in a hospital

134

are usually its valuable assets. The hospital administration is interested in controlling

access to the records due to various legal, financial and other reasons. Therefore, the hos-

pital administration considers such records as protected resources. Moreover, different

information in those records counts as different resources, examples of which can be

records from different visits or episodes for one patient. At the same time, a resource name

can be associated with less tangible assets, such as computer system resources, including

CPU time, fi le descriptors, sockets, etc. The RAD service does not attempt to interpret the

semantics of the resource name. We will show in the discussion of the RAD design that it

uses the resource name only to obtain additional security attributes and to look up a set of

policies governing access to the resource associated by an application system with the

resource name.

Access operation abstracts the semantics of access to resource(s) associated with

resource name. An application may manipulate patient records on behalf of different care

givers, or may provide different hierarchies of menus to different lab technicians. In either

case, it is up to the application system developers and the enterprise security administrators

to agree on the semantics of the operation name used for each access. RAD does not inter-

pret the semantics of access operation as shown in the description of the RAD design.

A system can communicate application-specific information to RAD service by encod-

ing it in resource and/or operation names. For example, withdrawal of $500 from a bank

account can be represented as an operation with the name “withdrawal:$500,” and the

resource name carrying the account number. Simple and yet very generic data structures for

135

operation (arbitrary string) and resource name (a list of string name-value pairs) have good

expressive capabilities for this task.

Before an application requests a RAD server for an authorization decision, it is sup-

posed to identify what the resource name and the access operation name are associated with

servicing the client request. There is no particular algorithm defined for performing such

an association because for every application, or at least for every application domain, the

method of associating protected entities with abstract resource names can be different.

Our approach is very similar to most solutions based on authorization services in the

way the client, AS and the RAD server interact, but it is different in the internal composi-

tion of its elements.

5.1.2 Logical Composition of RAD

RAD architecture aims to enable implementation of its components by various vendors

due to the diversity in the requirements to AC policies, performance, scalability and other

system properties from different government and commercial markets. Components of the

following types comprise a RAD service (Figure5-2): The AccessDecisionObject

(ADO) serves as the interface to RAD clients and coordinates the interactions between the

RAD components. Zero or more PolicyEvaluators (PEs) perform evaluation deci-

sions based on the AC policies governing the access to protected resources. The

DecisionCo mbinator (DC) combines the results of the evaluations made by poten-

tially multiple PEs into a final authorization decision by applying certain combination pol-

icy. The PolicyE valuatorLocator (PEL), for a given access request to a protected

resource, keeps track of and provides references to a DC and potentially several PEs, which

136

are collectively responsible for making the authorization decision. The

DynamicAtt ributeService (DAS) collects and provides dynamic attributes about

the client in the context of the intended access operation and resource name.

The components are only logically disjointed while in practice they can be co-located

in the same process or host. This feature is provided to further the support for dynamic com-

position and re-configuration, as well as for high availability and fault tolerance of the ser-

vices based on RAD architecture.

Figure5-2 shows interactions among components of authorization service. They are

the following:

Figure 5-2. Interactions among RAD Components

Access Decision
Object

Application System

 Policy

EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: * evaluate

RAD

137

1. The authorization service receives a request via the ADO interface.

2. The ADO obtains object references to those PEs and DC which are associated with the

resource name in question.

3. The ADO obtains dynamic attributes of the subject (client) in the context of the

resource name and the intended access operation to be performed.

4. The ADO delegates an instance of DC for polling the PEs (selected in Step 1) and com-

bining multiple results of evaluations made by PEs into a final decision. This is because

there can be several PEs responsible for making authorization decision.

5. The DC obtains decisions from PEs and combines them according to the combination

policy. The decision is forwarded to the ADO, which in turn returns the decision to the

application.

To clarify the work of RAD components, we provide a short example of processing an

authorization request in Figure5-3. It shows the sequence of invocations among RAD com-

Figure 5-3. Interaction Diagram for Hypothetical Case

ADAS

access_allowed({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver, role=nurse})

PE RBAC PEDCDA

get_policy_decision_evaluators({patient_id=29984329,record_part=PN})

get_dynamic_attributes({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse})

combine_decisions({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse }, {RBAC PE})

evaluate({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse })

RAD

role caregiver
can read
patient_name

138

ponents in a hypothetical case. For the sake of illustration, let us assume that there is an

authorization policy containing a statement that a user can read the patient’s name (PN) if

the user is performing role caregiver. In this example, AS is requesting authorization to per-

form access operation read on resource patient name. The resource is part of the medical

record on the patient with ID 29984329. Access is to be performed for a user with user_id

d, who activated role nurse which is senior to caregiver. The ADO obtains a list of refer-

ences to PEs and DC, which should be used for making an authorization decision on a

resource with name {patient_id=29984329, record_part=PN}. The PEL returns a reference

to the DC and a reference to one PE – RBAC PE. The DAS does not change the list of secu-

rity attributes, which specifies that the user ID is d and the roles the user activated are car-

egiver and nurse. RBAC PE implements authorization based on roles. According to the

authorization rules, users acting as caregiver have access to the names of all patients. Thus

the PE returns “yes” and the DC returns the same answer to the ADO, which authorizes the

AS to access the name of the patient with ID 29984329 on behalf of user d.

RAD architecture is such that all its components could be replaced dynamically by dif-

ferent implementations as long as they comply with the interface specifications. This

enables the support for insertion and deletion of applications, changes in policies and the

computing environment. For instance, if application insertion introduces new resources to

be protected, a new PE (or even a set of PEs) can be dynamically added and PEL is recon-

figured to use them. We will illustrate the support for changes in authorization policies in

Section 5.2, where we discuss sample authorization policies and show how RAD can sup-

port them and their changes.

139

Unlike most authorization services [Simon 1997, Varadharajan 1998, Woo 1993c]

RAD architecture does not restrict its implementations in the type of supported authoriza-

tion policies. This is why the scope of authorization policy representation is beyond the

scope of RAD architecture, as shown in Figure5-4. Each PE can be administered using a

different interface and AC rules written in a different language. Such a design enables the

Figure 5-4. Main Run-time Elements and Their Appurtenance to the Architecture Scope
(from [OMG 1999c])

AccessDecision

DynamicAttribute
Service

Decision
Combinator

PolicyEvaluator

PolicyEvaluator
Locator

1

1..*

1

1..*

1..*

1..*

1..*

ADO client

Policy

SecuredResource

ResourceName

PolicyName

consults

consults

consults

represented by

represented by

0..1

defines
access policy

has
Operation

1..*

1

0..1

0..1

0..1

1

1

1

Scope of the RAD Service

1

locates
evaluates

locates

1

1

consults

1

1

consults

140

use of the existing policy engines, which were not originally developed to be PEs (e.g.

RACF [Benantar 1996]), and the support for future ones.

One authorization engine (supporting a particular policy) per request is used in Argos

[Jonscher 1995] to evaluate requested access. The introduction of multiple evaluators and

a combinator in RAD provides ways for more than one policy (even of different types) to

govern authorization decisions for the same request. This is similar to [Bertino 1996b],

where Bertino et al. define an explicit authorization model with conflict resolution and

overriding rules. In RAD architecture, such rules are implemented by a particular DC.

One of RAD’s distinguishing architectural elements is the use of DAS. It enables the

support of policies based on the factors whose value can change from request to request or

is determined by the state of organizational work-flow. These factors are furnished by DAS

in the form of dynamic attributes, syntactically equivalent to subject security attributes.

ADO obtains them from DAS before it passes the request to the corresponding DC and PEs.

Dynamic attributes are attributes whose value can be determined only at the time when a

request for an authorization decision takes place. Thus they are specific to the request in

question. Examples of such attributes are relationships between physicians and patients in

a hospital [Barkley 1999]. The introduction of DAS in RAD architecture increases the vari-

ety of information available for making authorization decisions, and enables the use of the

traditional access matrix [Lampson 1971] to support complex and dynamic AC policies.

We will ill ustrate the benefit of DAS in Section 5.4.

141

All RAD components, in addition to the run-time interfaces described above, have

interfaces to administer them. Those interfaces constitute the RAD administrative model,

the scope and main elements of which are shown in Figure5-5.

Figure 5-5. Administrative Elements and Their Appurtenance to the Architecture Scope
(from [OMG 1999c])

PolicyEvaluator
Admin

PolicyEvaluator
LocatorAdmin

Policy

SecuredResource

ResourceName

PolicyName

0..*

represented by

assigns
access policy

has

Operation

1..*

1

0..1

1

1

1

RAD Scope

Administrator

associates

Decision
Combinator

PolicyEvaluator

associates

associates

represented
by

administers

0..1

0..1

1

1 1

1..*

0..*

1

administers

applies

policy

142

Even though RAD architecture purposefully does not provide a means of specifying

authorization policies and their representation, it allows RAD administrators to apply pol-

icies defined via implementation-specific PE interfaces to protected resources. This is car-

ried through with the notion of policy name and with administrative interfaces for PE and

PEL. A policy name is employed to associate the policy with a resource name for those PEs

that can evaluate more than one policy. By naming a policy and avoiding a defini tion of

policy representation, we keep RAD architecture open to the multitude of existing and

future authorization languages.

Run-time and administrative interfaces and the supporting data structures, all defined

in OMG IDL, along with prose description of their semantics, constitute RAD architecture.

Its computational view is showed in Figure5-6. The administrative part of RAD architec-

Figure 5-6. Computational Part of RAD Architecture

Dec is ionCom binator

com bine_dec is ions ()

< < IDL Interface> >

PolicyEvaluatorAdm in

set_pol ic ies ()
add_polic ies ()
l is t_pol ic ies ()
set_default_policy ()
delete_pol ic ies ()

< < IDL Inter face> >

PolicyEvaluator

evalua te()

< < IDL Interface> >

1

1..*

+ pe_adm in

1

1..*

AccessDec is ion

access_allowed()
m ultiple _access_al lowed()

< < IDL Interface> >

Dynam icA ttributeS ervice

get_dynam ic_attributes ()

< < IDL Interface> >

PolicyEvaluatorLocatorNam eA dm in

set_evaluators ()
add_eva luat ors ()
delet e_evalua tors()
get_evaluators ()
set_co mbinat or()
delet e_com binator ()
get_co mbinat or()

< < IDL Interface> >

AccessDec is ionA dm in

get_policy_evaluator_locator()
set_policy_evaluator_locator()
get_dynam ic_attribute_service()
set_dynam ic_attribute_service()

< < IDL Interface> >

1

1..*

1

1..*

1

1

1

+ dynam ic_attribute_service

1

Pol icyEvalua torLocat orBas icAdm in

set_d efault _evaluat ors ()
get_d efault _comb inat or()
set_d efault _comb inat or()
get_d efault _evaluat ors ()

< < IDL Interface> >

PolicyEvaluatorLocator

get_policy_decis ion_evaluators()

< < IDL Interface> >

0..1

1

+ nam e_adm in

0..1

1

1 11

+ policy_evaluator_locator

1

1

0..*

+ b as ic_ adm in

1

0..*

PolicyEvaluatorLocatorPatternAdm in

set _eval uat ors_b y_patt ern()
add_evaluators_by_pattern()
delete_evaluators_by_pattern()
get _eval uat ors_b y_patt ern()
set_com bina tor_by_pattern()
del ete_ comb inat or_ by_pattern()
get_com bina tor_by_pattern()
regis ter_resource_nam e_pattern()
unregis ter_resource_nam e_pattern()

< < IDL Interface> >

1

0..1

1

+ pa ttern_ad m in

0..1

143

ture is designed to allow replaceable RAD objects within an implementation. For instance,

AccessDecisionAdmin interface contains operations for inspecting and specifying the

reference to PEL. Operation set_pol icy_evaluator_locator() allows a RAD

administrator to “point” the ADO to a different instance of PEL. After the change, the ADO

will use the new PEL. This is an example of how we address the goal of supporting changes

in policies and the computing environment.

5.2 Example

RAD conceptual architecture is very generic, and the role of RAD components as well

as the interactions among them could be hard to understand. This section provides a

detailed example for illustrating RAD architecture and its capabilities. The example further

clarifies RAD concepts. It also shows how policies based on roles and relationships can be

supported by a RAD service.

We consider a set of simplified but typical access control policies in the health care

domain which has arguably one of the most complex AC requirements. Consider a hospital

computing enterprise consisting of many distributed systems, which are used for registra-

tion and billing, collecting results of laboratory tests and transcribed X-ray images, as well

as for storing all other clinical information about patients including records of their visits

to the hospital (for out-patients) and their stay over night, when they have complicated

cases (for in-patients).

Hospital employees involved in the care process are called caregivers for short. A car-

egiver accesses many of those clinical, laboratory, transcription and financial systems

144

either directly with specialized client software or via general-purpose application pro-

grams. Such programs interact with several application servers in order to provide caregiv-

ers with information needed for patient diagnosis and treatment. Access to patient

information (patient records) is controlled by AC mechanisms employed by the computing

enterprise.

5.2.1 Initial Policies

Let us assume that the hospital adopts the policy listed in Table 5-1 to control

employee access to the patients’ medical records. Let us also assume that all patient records

consist of the parts shown in Table 5-2.

This policy is coarse-grain in regards to the classes of users. The policy allows any

nurse to read regular records of any patient in the hospital; technicians have full access to

test results of all patients in the hospital; physicians have full access, except mental infor-

mation, of the patients who have ever received care at the hospital. In addition, the policy

does not reflect the fact that patients have relatives, guardians and other representatives,

Rule
No.

Rule Definition

P1.1 Any caregiver can read patient’s name.
P1.2 Registration clerk can modify patient name and demographic information.

P1.3
Nurse can read patient’s name and demographic information, modify cur-
rent episode demographic information, read current episode regular records
and test results.

P1.4 Technician can modify current episode regular and sensitive test results.

P1.5
Physician Assistant, in addition to what a nurse can do, can also read all
regular records of patients.

P1.6
Physician, in addition to what a physician assistant can do, can also modify
current episode regular and sensitive records, as well as read regular, sensi-
tive records and test results from previous episodes.

P1.7
Psychiatrist, in addition to what a physician can do, can also modify mental
information.

Table 5-1. Access Control Policy (Policy 1)

145

that are eligible to know some information about the status of their patient. Nonetheless, let

us assume that the healthcare organization in our example has such privacy requirements

that Policies 1 suffices. We will consider a new policy to deal with more complex AC deci-

sions later in Section 5.4.

5.3 Modeling Policies

Policy 1 can be implemented using the RBAC model with role hierarchy -- RBAC1

[Sandhu 1996]. In order to define the configuration of an RBAC1 system, one needs to

specify role hierarchy, user-to-role and permission-to-role relations, as well as functions

user and roles. We define the role hierarchy (RH) in Figure5-7. According to this hierar-

chy, for example, role physician assistant has as many permissions as role nurse plus its

own permissions, because physician assistant is senior to nurse. User-to-role assignment

relation (UA) is shown in Table 5-3, where we can see that user g is assigned to role care-

giver, and user d is assigned to roles nurse and technician. This means that, when user d

logs into the system, the user can activate either role caregiver, nurse or technician,

whereas user g can only activate role caregiver. This because, according to the role hierar-

Part name Abbreviation
Patient name PN
Demographic data DD
Current episode demographic data CDD
Current episode regular records CRR
Current episode sensitive records CSR
Current episode regular test results CRT
Current episode sensitive test results CST
Regular records from previous episodes PRR
Sensitive records from previous episodes PSR
Regular test results from previous episodes PRT
Sensitive test results from previous episodes PST
Mental information from all episodes AMD

Table 5-2. Parts of Patient Medical Records

146

chy, a user can act in any role junior to the one he or she is assigned. If user d activates role

nurse, then the subject will be granted all permissions assigned to roles caregiver and

nurse. The permission-to-role assignment relation (PA) is presented in Table 5-4, accord-

ing to which a nurse is assigned permissions to read demographic data (DD), current epi-

sode regular records (CRR), and current episode regular test results (CRT), as well as read

and write current episode demographic data (CDD).

The configuration of a RAD server that performs authorization according to the

RBAC1 system defined by the above PA, UA and RH relations, is depicted in Figure5-8.

Figure 5-7. Role Hierarchy (RH relation)

Roles
Users

a b c d e f g

Psychiatrist +
Physician +
Physician Assistant +
Nurse +
Registration Clerk +
Technician + +
Caregiver +

Table 5-3. User to Role Assignment Relation (UA)

Psychiatrist

Physician

Physician Assistant

Nurse

Caregiver

Registration Clerk Technician

147

ADO obtains a reference for the DC and the only PE (RBAC PE) from the PEL, which

always returns the same references. The DAS returns the same list of security attributes that

it received from the ADO. RBAC PE evaluates authorization requests using PA relation.

The DC denies access if the PE returns “unknown” as the result of evaluation (for example

if the resource name is not found in the PA table), otherwise it returns whatever the PE

returns.

Role

Resource

P
N

D
D

C
D

D

C
R

R

C
SR

C
R

T

C
ST

P
R

R

P
SR

P
R

T

P
ST

A
M

D

Psychiatrist RW
Physician W RW R R R
Physician
Assistant

R R

Nurse R RW R R
Registration
Clerk

W RW

Technician RW RW
Caregiver R

Table 5-4. Permission-to-role Assignment Relation (PA)

Figure 5-8. RAD Configuration for Role-based Policies

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

Access Decision
Object

Application System

Policy EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: evaluate

RAD

Echo

RBAC

148

We assume the availability of a distributed security environment which supports acti-

vation of roles by users during the authentication process with enforcement of UA and RH

relations, and implementation of functions user and roles. This means that roles are imple-

mented by the underlying security environment. There are security technologies capable of

fulfill ing this assumption. For example, we showed in Chapter 4 that CORBA security ser-

vice [OMG 1996b] can support RBAC0-3 models. This is why in our example, an applica-

tion making authorization request to a RAD service supplies a list of principal security

attributes which contains all roles activated by the user. The list, as described earlier, is

obtained by the AS from the distributed security environment.

Another way of modeling the policy with RAD using RBAC1 would be to assign the

task of determining the user roles to the DAS or to RBAC PE itself. We preferred the first

choice to the latter two because activated roles are security attributes managed by user

administrators. They persist throughout the user session and should be activated during the

authentication phase when the user logs into the system. This choice also supports dynamic

separation of duties,1 a commonly required RBAC feature.

One of our claims is that RAD architecture supports policy changes in a scalable way.

Let us inspect how policy changes affect a RAD service. Changes to Policy 1 can either

result in the replacement of the authorization model supporting the policy, or in changes to

the system configuration which is defined via UA, RH, PA relations and functions user and

roles. We will discuss in Section 5.4 how a RAD service can be reconfigured when an

1. Separation of duties is achieved by ensuring that mutually exclusive roles must be invoked to complete a
sensitive task [Sandhu 1996]. Dynamic separation of duties is enforced in RBAC via constraints on role acti-
vation so that a user will not be able to activate mutually exclusive roles simultaneously even though each of
them can be activated by the user.

149

authorization model is replaced. Now, we show what has to be done when only the system

configuration is to be updated.

Only minimal alterations are required to accommodate RBAC re-configuration.

Changes in UA, RH, user and roles do not affect RAD components because in our config-

uration they are entirely implemented by the underlying middleware security service.

Changes to PA will result in different evaluations made by RBAC PE. For example, if rule

P.1.5 in Table 5-1 was modified to allow physician assistants to read current episode sen-

sitive records (CSR) of patients, then PA would be modified to have PA[Physiscian Assis-

tant, CSR] = {R}. This would result in RBAC PE granting access for reading CSR to

anyone whose list of activated roles contains “Physician Assistant.”

5.4 Advanced Policies

RAD architecture provides good support for changes not only in the policy content but

also in its type. In this section, we show how a RAD service can be re-configured to support

a more complex policy.

The policy listed in Table 5-1 (from now on called role-based policy) allow an

employee to access records of all patients, regardless of whether the employee is involved

in the provision of care to the patient or not. The principle of least privilege1 is not fully

supported. Let us assume that a new legislation requires the hospital to ensure that patient

records are accessed not only according to the employee functions but also depending on

whether the employee is actually involved in the patient care process. For example, only

1. The principle of least privilege requires that users should only be granted privilege for some activity if
they have a justifiable need for its associated authorizations [Amoroso 1994].

150

the attending physician is now allowed to modify current episode records of the patient.

Also, let us assume that now the patient’s relatives, guardians and designated representa-

tives have the right to limited access of the patient's records. To become compliant with the

new regulations, the hospital replaces the old policy with the new one listed in Table 5-5.

The policy requires that only caregivers who are related to the treatment process for a

given patient can have access to the corresponding parts of the patient record according to

their job description. The new policy follows the least privileged security principle more

closely then the old one. However, authorization decisions for such a policy can be made

Rule
No.

Rule Definition

P2.1 Any caregiver can read patient’s name.
P2.2 Registration Clerk can modify patient name and demographic information.
P2.3 Nurse can read patient’s name and demographic information.

P2.4
Attending Nurse, in addition to the rights of any other nurse, can modify cur-
rent episode demographic information, can read current episode regular records
and test results.

P2.5
Technician can read patient’s name and modify current episode regular test
results.

P2.6
Related Technician, in addition to the rights of any other technician, can mod-
ify current episode sensitive test results.

P2.7
Attending Physician Assistant, in addition to what an attending nurse can do,
can also read all (i.e. from the current and previous episodes) regular records
and all regular test results, as well as modify current episode regular records.

P2.8
Attending Physician, in addition to the rights of an attending physician assis-
tant, can modify current episode sensitive regular records and can read all regu-
lar and sensitive records from previous episodes.

P2.9
Attending Psychiatrist, in addition to what an attending physician can do, can
also modify mental information.

P2.10
Patient Relative can read patient’s current episode demographic and patient’s
name.

P2.11 Patient Guardian can read previous episode regular data.
P2.12 Patient Spouse can read previous episode sensitive data.

P2.13
Patient Representative can read previous episode regular data provided that
patient gives a consent.

Table 5-5. New Policy (Policy 2)

151

only if the relationship between the patient and the user is taken into account. It is very chal-

lenging to make authorization decisions if only the RBAC model is employed. This means

that, without more expressive authorization mechanisms, additional control must be exer-

cised via manual procedures in the medical records department, which would severely

inhibit the automation of the hospital health care process. To avoid this situation, the rela-

tionship between the user and the patient should be computed each time an authorization

decision is to be made.

When AC logic is tightly coupled with application logic, the main challenge is to

modify authorization logic in all clinical applications of the hospital so that they reflect the

changes in hospital policy. This is a tremendously difficult, time consuming, expensive and

error-prone process! For example, in order to accommodate the new policy, our hypothet-

ical hospital would have to make changes in all its application systems that access patient

records. With RAD, however, such changes can be made by dynamically reconfiguring the

authorization service without any changes to the applications.

In order to enforce the new policy, we configure RAD service with new DAS and DC,

as well as two different PEs. One PE is RBAC PE (the same as before). The other PE uses

relationships instead of roles while making authorization decisions. For the sake of brevity,

we employ name RelBAC to signify the use of relationships in authorization decisions.

Therefore, the other is RelBAC PE. The new configuration is shown in Figure5-9. The

state of the authorization system for the new policy is described by 1) a role hierarchy,

which is the same as the one shown in Figure5-7, 2) a new PA relation (Table 5-6), 3) a

152

relationship hierarchy (RSH) (Figure5-10), and 4) a relationship to permission assignment

(RSPA) (Table 5-7).

We outlined the support for such dynamic factors as relationships with RBAC mecha-

nisms in [Barkley 1999]. Here we give a more concrete example of how the support of rela-

tionships can be implemented using the RBAC model and RAD service. Putting it simply,

RelBAC is the same as RBAC1 except that in RelBAC, role hierarchies should be viewed

Figure 5-9. RAD Configuration for Relationship-based Policies

Roles

Resources

P
N

D
D

C
D

D

C
R

R

C
SR

C
R

T

C
ST

P
R

R

P
SR

P
R

T

P
ST

A
M

D

Psychiatrist
Physician
Physician
Assistant
Nurse R
Registration
Clerk

W RW

Technician RW
Caregiver R

Table 5-6. Permission Assignment (PA) Relation for Role Hierarchy (New Policies)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

Access Decision
Object

Application System

Policy EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: evaluate

RAD

Relationships

RBAC

Logical OR

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PolicyEvaluator
RelBAC

6: evaluate

153

in the context of a particular resource owner. In our example, relationship hierarchies are

patient-centric, and they represent “roles” towards the patient. For instance, attending phy-

sician is a relationship that could be between a hospital physician and a patient. Role phy-

Figure 5-10. Relationship Hierarchy Relation (RSH)

Relationship

Resource

P
N

D
D

C
D

D

C
R

R

C
SR

C
R

T

C
ST

P
R

R

P
SR

P
R

T

P
ST

A
M

D

Attending
Psychiatrist

RW

Attending
Physician

RW R R R

Attending
Physician
Assistant

W R R R

Attending
Nurse

RW R R

Related
Technician

RW

Related
Caregiver

R

Patient
Spouse R R
Guardian R R
Relative R R

Table 5-7. Relationship to Permission Assignment Relation (RSPA)

Attending
Psychiatrist

Attending Physician

Assistant Attending
Physician

Attending Nurse

Related Care-giver

Related Technician

Patient

Spouse

Guardian

Relative

154

sician is an attribute of a user session, which persists through all actions undertaken during

the session, whereas the value of the relationship between the user and the patient is always

determined when a request to access patient data is authorized. A distinguishing feature of

supporting RelBAC by RAD is that every time a request is to be authorized, the dynamic

attribute service determines the relationship between the user and the patient whose records

the user requested to access. The relationship information is added to the list of security

attributes as new attributes of type relationship and values listing all the relationships junior

to the one in question.

The two PEs work in concert coordinated by the DC. RBAC PE grants access only to

those users who perform roles authorized to access patient data according to the PA relation

showed in Table 5-6. For example, a user acting in role physician assistant is granted access

to read demographic data (DD) for all patients in the hospital. On the other hand a user

acting in role physician is denied access for reading patient current episode sensitive

records (CSR) unless the user is determined to have attending physician relationship with

the patient whose CSR records are to be accessed. The RelBAC PE grants such an access

by basing its evaluation decision on RSPA (Table 5-7) and the value of relationship

attributes inserted by DAS. The DC invokes RBAC and RelBAC PEs, and grants access if

any of the two do so. Otherwise, it denies access, i.e. DC implements logical OR.

Let us walk through with a sample authorization request for the new policy. For illus-

tration purposes, assume that a nurse with user_id d attends a patient with patient_id

29984329. Consider an authorization request for operation read on current episode regular

155

records (CRR) associated with patient_id 29984329 on behalf a user with user_id d, who

activated role nurse. The event sequence, illustrated in Figure5-9, is the following:

1. The ADO receives the authorization request from the application.

2. The ADO obtains a list of references to PEs and DC, which should be used for making

authorization decisions on resource with name {patient_id=29984329,

record_part=CRR}. The PEL returns a reference to the DC and two PEs – RBAC PE

and RelBAC PE.

3. The DAS adds two new attributes of type relationship with values attending nurse and

related caregiver to the list of existing attributes which already has user id d and roles

caregiver and nurse.

4. The ADO delegates the DC to make the decision.

5. RBAC PE denies access because, according to its PA relation (Table 5-6), neither role

nurse nor caregiver has permission to read CRR data. The decision reflects the new

authorization rules (P2.1 and P2.3 in Table 5-5) that do not allow reading CRR by any-

one unless that person acts as physician assistant and attends the patient.

6. The DC requests RelBAC PE to evaluate the request. The PE uses its RSPA relation

(Table 5-7) to determine that the access should be granted because RSPA[attending

nurse, CRR] contains permission R. Thus the PE grants access.

Finally, the DC (implementing logical union) returns to ADO the same answer, and the

ADO authorizes the application to access current episode regular records of patient with ID

29984329 on behalf of user d.

156

Now the RBAC and the RelBAC PEs work together to enforce the new authorization

policy. However, it is possible to assign each rule from the policy to a specific PE based on

its distinguishing function. By checking the Policy 2 (Table 5-5), we can find that rules

P2.1, P2.2, P2.3 and P2.5 are suitable to be evaluated by the RBAC PE, while the RelBAC

PE evaluates all other rules.

5.5 Discussion and Conclusions

In this chapter we presented an approach to separating authorization and application

logic for those distributed applications which resort to application-level access control. The

decoupling is a means to achieve the established earlier objectives of controlling access to

the resources of enterprise distributed applications.

Our approach is formulated as an authorization service architecture -- RAD. The archi-

tecture is simple, generic and yet capable of supporting authorization decisions for wide

variety of application domains. The main property, separation of authorization and appli-

cation logic, is maintained when RAD approach is used because application delegates

authorization decisions RAD-based authorization service. The architecture can support any

level of protected resource granularity because of the generic data structure representing a

resource name, which is used by applications for referring to the resources in question. The

architecture is policy-neutral as opposed to other authorization service architectures

[Varadharajan 1998, Zurko 1998], which allows implementation of various types of poli-

cies. For example, we demonstrated how role-based policies can be supported by RAD.

157

The architecture is also neutral to the nature of information used for making authori-

zation decisions, as long as the information can be syntactically represented in the form of

principal security attributes. This feature allows RAD-based services to support wide vari-

ety of authorization information. Moreover, the introduction of dynamic attribute service

(DAS) defines a standard way to utilize request-specific information. We showed how

RBAC policy engine can be combined with DAS that supplies user-patient relationships,

in order to support policies based on caregiver-patient relationships in health care organi-

zations. Because authorization requests to RAD-based services are invoked from within

applications, the applications can provide the service with information available only while

the application processes the client request, which is not supported, for example, by [Woo

1998]. Because the architecture enables encapsulation of authorization logic into a server,

which can serve more than one application, the consistency of policies enforced across mul-

tiple applications is inherently supported.

New applications can be added and removed from the enterprise computing environ-

ment without affecting such a server. Changes to authorization policies, as we showed,

cause re-configuration of RAD components or their composition and possibly replacement

of some of them, which theoretically can be done dynamically without shutting down the

server. The architecture enables administration scalabil ity because changes to authorization

policies can be done in one location. We will show in Chapter 5 using a CORBA-based pro-

totype that RAD architecture enables component replacement with minimum affect on the

work of the server. The above substantiates our earlier claim that RAD approach is adapt-

able to frequent changes in policies, applications, computing environment, and users.

158

The design of Adage [Zurko 1998] follows a pattern similar to that of our work. Their

Authorization Decision Server (ADS) is encapsulated into a separate entity in the distrib-

uted environment with administrative and authorization interfaces. They are exposed to the

management clients and the application servers via CORBA interfaces. In each authoriza-

tion request to ADS, an application specifies the name of the accessing subject, the name

of the resource (target in Adage terminology), and the action to be performed on the

resource.

There are also many differences in the design. The foremost difference is in the parti-

tioning of the authorization service into internal components. In Adage, an RBAC authori-

zation engine, two rule databases and a translator are predefined and built into the ADS.

Also Adage’s authorization language syntax and semantics are fixed and predefined in the

language interpreter. RAD architecture, on the other hand, allows different evaluation

engines with their own rule languages and administrative interfaces to co-exist as long as

few simple obligations for integrating those engines are fulfilled. This is achieved by defin-

ing not only interfaces for RAD clients and administrators but also interfaces for policy

evaluators, decision combinators and other RAD internal components. The definit ion of

RAD internal interfaces allows dynamic installation of third party RAD-compliant compo-

nents in a RAD server. Furthermore, Adage authorization server can be used as one of RAD

policy evaluators.

RAD re-uses CORBA Security service infrastructure. It relies on the service to provide

all other security functionalities such as user security administration (group membership,

role assignment, etc.), authentication, communication integrity and confidentiality, audit

159

and non-repudiation. The authorization engine and ADS administrative tools in Adage,

however, are meant to be tightly integrated with user administration and authentication

parts of the security infrastructure in order to evaluate activation rules used when a user is

entering or leaving a role. This is needed to maintain static and current cardinaliti es of each

role and the current labels of each subject if the enforced policies require static and dynamic

separation of duties [Gligor 1986]. Moreover, the engine is designed to perform partly the

user administration work (to enforce static separation of duty) and authentication work

(dynamic separation of duty). Another difference is the existence of two logically distinct

databases in Adage ADS. One is used to store Adage policy objects defined through the AL

interpreter. Another stores a compiled form of the AL definitions that is optimized for eval-

uation by the authorization engine.

The body of work described in this chapter has been served as a foundation for

Resource Access Decision Facil ity specification [OMG 1999c] from the Object Manage-

ment Group which shows its practical usability. However, no matter how promising this

approach is, it is important to establish its functional and performance feasibilit y. This is

why we have developed a prototypical authorization service according to RAD architec-

ture. We describe the service and the results of our studies in the next chapters.

160

6CAAS -- Prototypical
Implementation of RAD

In the previous chapter, we proposed a solution to the problem of controll ing access to

the resources of distributed enterprise applications -- an architecture for an application

authorization service, RAD. We also showed that the architecture features key benefits: it

enables the separation of application and authorization logic; it supports AC on fine-grain

resources; it can be configured to implement different AC models, particularly RBAC; it

supports the use of factors specific to the application domain or to the organizational work-

flow, such as relationships between the user and the resource owner; it enables the use of

authorization engines created by different developers and administered by disparate author-

ities; and its distributed nature enables the consistency of authorization decisions across

enterprise applications.

However, it is an open issue as to how one can design and implement a flexible (i.e.

responsive to the changes in policies and conditions), extendable (i.e. capable of accommo-

dating new functionality), and portable authorization server based on the conceptual archi-

tecture of RAD and what performance implications arise from employing such an

approach. Answering these questions is critical in order to understand the validity of our

and any other approach in this problem area. To the best of our knowledge, no research on

authorization mechanisms for application systems reported in the literature, which we sur-

161

veyed in Chapter3, examined the aspects of designing, constructing, and addressing per-

formance in such mechanisms.

In order to study these issues, we designed and implemented an experimental test-bed

-- CORBA-based Application Authorization Service (CAAS). It adheres to RAD architec-

ture, and serves as a framework for our research on the RAD approach. Besides developing

CAAS to serve as a test-bed, we also wanted to gain an understanding of the principles for

constructing application authorization services.

This chapter is devoted to the design and implementation of CAAS. The main design

requirements were flexibilit y, extensibility, portabili ty and configurability. We actively uti-

lized design patterns which provided us with simple and elegant solutions to general prob-

lems of constructing object-oriented component-based distributed security services. The

service is based on CORBA and Java technologies, and utilizes CORBA Naming service.

We showed by the means of implementation that RAD architecture is feasible and its

computational model, defined in IDL, is correct. Besides the feasibility proof, we gained

more understanding of the design and implementation of an authorization service for dis-

tributed applications.

The chapter is organized as follows. The next section gives an extensive overview of

CAAS design and explains the main elements of its components. We illustrate the points

of the section by describing in detail designs of DC and PE in Sections 6.2 and 6.3. We dis-

cuss the results of designing and developing CAAS and conclude the chapter in Section6.4.

162

6.1 Overview of CAAS Design

As mentioned earlier, the main goals for CAAS construction were proving RAD

approach feasibility, and developing an experimental framework for further research on the

support of application-specific fine-grain, complex and dynamic access control policies,

while providing a necessary degree of usability, fault tolerance, scalabilit y and availability.

This is why, besides making CAAS design confirm to RAD architecture, we strived to

achieve its configurabili ty, implementation affordability, portability, as well as flexibil ity

and extensibility sufficient for the current and future research. In this section we give an

overview of CAAS main design elements that allowed us to achieve the objectives.

6.1.1 Middleware Technology

To make CAAS implementation portable and extendable, we used standard technolo-

gies as much as possible. CORBA became the middleware technology of choice. Its secu-

rity service provided the functionality necessary to model different authorization policies.

CORBA Naming service allowed CAAS distributed components to discover each other in

a platform-independent way. We were free to choose any implementation language for

each CAAS component. The choice of CORBA influenced the overall composition of the

service’s main elements, shown in Figure6-1. All of them interact via Interoperable Inter-

Figure 6-1. CAAS Main Elements

ClientClient ASAS CAAS

CORBA ORB

NamingObject
Resolver

CAASASClient

163

ORB Protocol (IIOP) [OMG 1999a], which is a standard communication protocol for

CORBA-based systems communicating over TCP/IP. The next major design decision was

about the interfaces CAAS components should provide.

6.1.2 Component Interfaces

IDL interfaces defined in RAD architecture expose functionality common to all ser-

vices based on the architecture. CAAS design is required to provide additional functionality

exposed via interfaces. The functionality should allow run-time interfaces to obtain refer-

ences to administrative interfaces and enable graceful shutdown of the components. There-

fore, we introduced extensions to RAD run-time and administrative interfaces listed in

Table 6-1. These extensions allow the implementation of additional functions without alter-

ing the RAD interfaces. Due to CORBA IDL interface inheritance capability, newly

defined interfaces were seen by CAAS clients as base RAD interfaces unless additionally

defined operations and attributes were used.

RAD
Component

IDL Interface Defined by RAD
Architecture

Extended IDL Interface Defined by
CAAS Design

ADO AccessDecision AccessDecisionExt

AccessDecisionAdmin AccessDecisionAdminExt

PEL PolicyEvaluatorLocator

PolicyEvaluatorLocatorAdmin

PolicyEvaluatorLocatorBasicAdmin PolicyEvaluatorLocatorAdminExt

PolicyEvaluatorLocatorNameAdmina

PolicyEvaluatorLocatorPatternAdmina

DAS DynamicAttributeService DynamicAttributeServiceExt

DynamicAttributeServiceAdminExt

DC DecisionCombinator

PE PolicyEvaluator PolicyEvaluatorExt

PolicyEvaluatorAdmin PolicyEvaluatorAdminExt

Table 6-1. Correspondence Between IDL Interfaces Extended by CAAS Design and RAD

a. Not implemented in the current version of CAAS

164

6.1.3 Implementation Language

The next design decision was about the implementation language. It was influenced by

two requirements -- the implementation portability and the ease of programming for grad-

uate students, mostly unprofessional developers. To address them, we used Java as the

implementation language. Implementations of Java Virtual Machine (JVM) are available

for most operating systems, and the language provides several advantages for rapid devel-

opment such as object-orientation, thread and garbage collection support. Java also pro-

vides dynamic loading of classes, and this allows great flexibility i n configuring and

changing CAAS behavior at boot- and run-time, and loading of Java classes compatible

with underlying ORB middleware.1

However, Java imposed several constraints. Most CAAS components provide multiple

IDL interfaces -- run-time and administrative. Run-time interfaces are used during the com-

putation of authorization decisions. Administrative interfaces define operations through

which the behavior of CAAS components can be configured. Given that, we decided for

each CAAS component to implement both types of IDL interfaces using a single Java class,

as shown in CAAS architecture in Figure6-2. For example, Java class DynamicAt-

tributeSer vice implements both IDL interfaces Dynami cAttributeService-

Ext and DynamicAttributeServiceAd minExt . In Java, an IDL interface is

implemented using a class which defines public methods corresponding to the operations

and attributes of the IDL interface [OMG 1999b]. However, we could not use inheritance

1. For the time of developing CAAS only few ORB vendors had Portable Object Adapter (POA), which
precluded us from using POA in order to achieve complete code portability on the server side.

165

for implementing run-time and administrative IDL interfaces because Java does not support

multiple class inheritance.

To work around the single-inheritance restriction of Java, we implemented compo-

nents using a delegation mechanism known as the Tie approach [Pedrick 1998]. In this

approach, a single tie class implements a number of CORBA interfaces. However, the tie

only implements the minimum mechanisms needed to interact with the ORB environment.

The actual implementation of the component’s operations is done in a delegate class imple-

menting the ComponentOperation interface, as shown in Figure6-3. With this

approach, we obtained greater flexibility in composing objects since the delegate class is

not restricted to inherit from any particular class. The only requirement is that the delegate

class implements the ComponentOperation interface.1

Figure 6-2. CAAS Architecture

1. One drawback of delegation is that systems relying on object composition may be more diff icult to com-
prehend [Gamma 1995].

DecisionCombinator

combine_decisions()

<<IDL Interface>>

PolicyEvaluator

evaluate()

<<IDL Interface>>

ObjectResolver

loader

COSNaming

resolves OR to

DecisionCombinatorContextPolicyEvaluatorLocatorContext

ResourceAccessDecider
DynamicAttributeServiceContext

PolicyEvaluatorContext

loads

1..1

1..n

loads

1..1

1..n

loads
1..1

1..n

loads

1..1

1..n

loads
1..1 1..n

PolicyEvaluatorLocatorAdminExt
<<IDL Interface>>

PolicyEvaluatorAdminExt
<<IDL Interface>>

DynamicAttributeServiceExt

<<IDL Interface>>

DynamicAttributeServiceAdminExt
<<IDL Interface>> +admin

PolicyEvaluatorLocator

get_policy_decision_evaluators()

<<IDL Interface>>

AccessDecisionAdmin
<<IDL Interface>>AccessDecision

access_allowed()
multiple_access_allowed()

<<IDL Interface>>
1..*11

+admin

166

Current versions of Java ORBs support concurrent invocations by executing the

instances of a CORBA object in more than one thread. Although a performance benefit, this

feature requires carefulness in changing an object state. To address this issue, we decided

in the current version to use fully synchronized methods for the implementation of CAAS.

Although this property does not guarantee that the system will be free of liveliness failures

such as deadlocks and resource starvation, it does guarantee consistency of values at the

object level. This design solution allows synchronized method implementations to be used

in concurrent settings [Lea 1996]. However, this introduced unnecessary synchronization

which can affect overall run time performance because calls to synchronized methods are

more expensive, than to un-synchronized ones. Also, synchronized operations on CAAS

components are of a coarse granularity which can cause threads to block and unblock

unnecessarily.

Figure 6-3. Implementing a CORBA Object Using the Tie Approach

Com ponent

servic e()

<< IDL Interfac e>>
Com ponentIm pl Ba se

servic e()

Compo nentO perations Imp l

Com ponentOperations

servic eIm plem entat ion()

<< Interface>>

{tie.service()=delegate.s erviceIm plem entat ion()}

{delegate objec t that im plem ents
the Com ponent operat ions }

t ie delegate

B OA

regis ters with

167

6.1.4 Design Extensibility

During the design process, it became evident that different instances of the same

CAAS component, such as DC and PE, must implement different logic. For instance, a DC

can combine results from multiple PEs in more than one way. One solution would be to

implement one class per component behavior. However, this would create many related

classes that differ only slightly in their functionality. The solution we chose was based on

the design pattern Strategy [Gamma 1995].

In Strategy pattern, a Context class implements the logic common to all other imple-

mentations, and a Strategy class provides behavior specific to the concrete implementation,

as illustrated in Figure6-4. The pattern allowed us to implement families of algorithms

related to each CAAS component (strategy classes) and common functionali ty (context

classes).

Since Java was our implementation language, we defined strategies as Java interfaces.

In this case, component contexts are Java classes implementing the services published by

Figure 6-4. Implementing a server using Strategy pattern

Com ponent

s ervic e()

< < IDL In terfac e> >

{Com ponentContex t.s ervic e= theS trategy .s ervic eLogic ()}

Com ponentIm plB as e

s ervic e()

Com ponentContex t

s ervic e()

Com ponent Stra tegy

s ervic eLogic ()

< < Interfac e> >

S trategy P at tern

theS trategy

S trate gy Im pl em entat ion

s ervic e Logic ()

{ St ra tegy Im p lem entat i on provides im ple mentat ion for s ervic eLogic ()}

168

the strategy interfaces. With the implementation of the strategies for the DC and PE com-

ponents, we took a step further: their implementation is based on a design pattern known as

the Template Method [Gamma 1995]. The idea (il lustrated in Figure6-5) behind the pattern

is to define an outline or skeleton of an algorithm in a base class while leaving some steps

to be defined in subclasses.

Template Method pattern was used in the design of DC and PE because implementa-

tions of each of these components tend to share a common functionality. For example,

implementations of DC need to resolve references to PE objects received from the ADO

regardless of the decision combination policy being implemented. Similarly, PE implemen-

tations need to maintain associations of policies to resource names independently of how

the policies are stored and evaluated. Such a common functionality can be implemented in

an abstract strategy class (Figure6-5). This class is later refined to obtain specific imple-

mentations (strategies A, B, C in the example in Figure6-5).

Figure 6-5. Applying Template Method Pattern

Com ponentS trategy

s ervic eLogic ()

< < Interfac e> >

A b s trac tS tra tegy

< < virtua l> > s pec ific A lgorithm ()
s ervic eLogic ()
c om m onB ehavior()

St ra tegy A

s pec ific A lgorithm ()

S trategy B

s pec ific A lgorithm ()

S trategy C

s pec ifi c A lgo ri thm ()

A bs trac tS trategy .s ervic eLogic ()= Com m onB ehavior ^ s pec ific A lgorithm ()

Tem plate P attern

169

6.1.5 General Component Structure

We structured all components in the same fashion, as shown in Figure6-6. This made

the design and coding faster, because the former could be re-used and the developers had

to learn only one structure in order to understand the principles of work for each compo-

nent. It was also easier to see the differences. For example, PEL does not have an extension

to its administrative interface, whereas DC lacks an administrative interface due to its sim-

plicity.

6.1.6 Component Initialization and Discovery

We wanted to study CAAS performance under different configurations and loads. Do

so would require CAAS to provide a number of capabiliti es: to use different policy evalu-

ators and/or decision combinators; to allow the deployment of different components in dif-

Figure 6-6. Structure Common to Most CAAS Components

A u th o ri za ti o n In te rfa ce
< < IDL In te rfa ce > >

A d m i n istra ti o n In te rfa ce
< < IDL In te rfa ce > >

A cce ss De ci sio n V ie w A d m i n stra t i o n V ie w

A u th o ri za ti o n E xt O p era ti o n s

g e t_ a d m i n _ i n te rfa ce ()

< < IDL In te rfa ce > >

A u th o ri za ti o n E xte n si o n
< < IDL In te rfa ce > >

ti e

A d m i n E xt O p e ra t io n s

sh u td o wn ()

< < I DL I n te r fa ce > >

A d m i n istra ti o n E xte n sio n
< < I DL I n te r fa ce > >

ti e

Co m po n e n t S tra te gy
< <I n te r fa ce > >

Co m p o n e n t Co n te xt

th e St ra te gy

S ta r t (L o a d e r)

b o o tstra p s

E n vi ro n m e n t se tt i n g /d e te cti o n
Re m o te o b j e ct l o ca l i za tio n
Re g istra t i o n wi th B O A
P u b l i sh in g re fe re n ce s
E xce p ti o n h a n d l i n g

Im p l e m e n ts
co m m o n b e h a vio r

Im p l e m e n ts
sp e ci fi c b e h a vi o r

A b stra ct S tra te g y

S tra te g y A

sp e ci fi cA l g o ri th m ()

S tra te g y B

sp e ci fi cA l g o ri th m ()

S tra te g y C

sp e cif ic A l g or it h m ()

170

ferent locations on the network and in the system by co-locating components in the same

process or host; and to change its configuration with relative ease and repeat the same

experiments over time. For example, it should be possible to combine application and

authorization logic in one process, as shown in Figure6-7, or to load each CAAS compo-

nent in a separate process (Figure6-8). Moreover, we wanted to have the capability of load-

ing the service in different configurations without recompiling the source code.

In order to ease the process of booting CAAS components in different configurations,

we introduced two techniques. First is the use of a component loader, shown in Figure6-2,

which enables any number of instances of the same component to be loaded in one process.

All the information needed by the loader was provided via either configuration file or the

command line parameters. However, once the components are loaded, it is necessary for

them to discover each other, i.e. obtain corresponding object references, no matter if they

are located in one process, on one machine or on different network nodes. It was also

desired to avoid the use of the middleware when process co-located components commu-

nicate with each other, in order to avoid unnecessary overhead. This is why the second tech-

nique -- uniform URL-like representation of component references -- was introduced. The

technique allowed us to choose the ways of posting and obtaining object references of the

components by simply changing the content of the symbolic readable reference represen-

Figure 6-7. Reference Configuration

C li ent
CA A S
L o g ic

A p p li cati o n
L o g ic

Client H ost S erv er H ost

A p p li cati o n Pro cess

171

tations, specified in the configuration fil e or command line, and to avoid superfluous use of

middleware when both the client and the target are located in the same process.

For discovering components located in different processes, either interoperable object

reference (IOR) stored in the stringified form in a text file, or CORBA Naming service can

be used. The latter is most convenient when the components are located on different

machines. Since CORBA Interoperable Naming Service [OMG 1998a] implementations

were not available at the time of the development, we utilized object locator approach

(shown in Figures 6-1 and 6-2) similar to the one in TAO [Schmidt 1998] and discussed in

[Schmidt 1999]. The main benefit of the locator is the complete portability in locating

naming service. It is done by sending a UDP broadcast to a predefined port. If the locator

instance is available on the network, it will respond with a stringified IOR for the naming

service root context, which is sufficient for finding a component IOR by its name in the

naming hierarchy. The design is sufficiently generic to discover IORs of other CORBA

objects.

To illustrate CAAS design elements discussed above, we discuss DC and PE in the

next two sections. Although other components are equally important, their design is similar

to DC and PE. A more detailed description of ADO, PEL and DAS can be found in [Espinal

2000].

Figure 6-8. CAAS Configuration with Each Component in a Separate Process

Client

CAAS Processes

Appli cation
Process

Client Host Server Host

ADO DAS
DAS

DC
DC

PELPEL PEPE

172

6.2 Decision Combinator

DC encapsulates the “decision combination” logic which is delegated to an object

implementing DecisionCombinatorStrategy interface (Figure6-9). DC only has

a run-time interface in the current version of CAAS, the Decision Combinator with

DecisionCombinatorContext as the class implementing the IDL interface. None-

theless, the design of DecisionCombinatorContext uses the Tie approach to

accommodate the introduction of future administrative interfaces.

DC features the simplest design of all CAAS components. However, DC objects can

exhibit different behavior. For instance, a DC can combine results from multiple PEs in

more than one way, e.g. one type of DC can combine multiple results using a logical AND

combination policy, whereas another type can combine multiple results using a majority

vote policy. These two forms of policy, however, do not necessarily change the way a DC

consults the PEs; that is, in both cases a DC may not need to consult all of them. Taking

Figure 6-9. DecisionCombinator Design

S t ra t eg y
P a t t e rn

D e c is i o nC om b in a to r C o n te x t

D e c is io n C o m b in a t o rC o n t e x t ()
c o m b in e _ d e c is io n s ()

D e c is io n C o m b in a t o rS t ra t e g y

m a k e D e c is i o n()

< < In t e r fa c e > >

0 . . * 1 . . 10 . . *
-s t ra t e g y

1 . . 1

A b s t ra c t A n d O rC o m b in a t o r

s h o u ld D e n y ()
m a k e D e c is io n ()

O p e n W o rld A n d O rC o m bi n a tio n P o l ic y C lo s e d W o rld A n d O rC o m b in a t io n P o l ic y

T e m p la t e
M e t h o d P a t t e rn

D e c is i o nC om b in a to r O p e ra t io n s
< < In t e rf a c e > >

D e c is io n C o m b in a t o r

c o m b in e _ d e c is io n s ()

< < ID L In t e r fa c e > >

t ie
m e c h a n is m

{g ra n t a c c e s s i f n o P E re t u rn s " N O " } {g ra n t a c c e s s i f a l l P E 's re t u rn " Y E S " }

173

these issues into account, we designed DC using the Strategy pattern. With this pattern, a

DecisionCombinatorContext class implements functionality required to consult

PEs handed by ADO. Different decision combination policies are then delegated to an

object implementing the Decisi onCombinatorStrategy Java interface. One of the

interface implementations is class AbstractAndOrComb inator . The class is further

refined (using the Template pattern) into two classes, OpenWorldAndOrCombina-

tionPolicy and CloseWorldAndOrCombinationPolicy . With the former pol-

icy, a DC grants access if no PE object denies access, and with the latter it implements a

stricter combination policy -- it grants access only if all PE objects do so.

Having described the simplest component -- DC -- we will discuss the design of PE,

which is the most complex.

6.3 Policy Evaluator

The function of a PE is to evaluate one or more of the authorization policies in regards

to a resource given a list of principal security attributes, the resource and operation names.

The PE has run-time and administrative IDL interfaces -- PolicyEvaluator and Pol-

icyEvaluat orAdmin . The two are extended with PolicyEvaluat orExt and

PolicyEval uatorAdminExt IDL interfaces (see Figure6-10). For their implementa-

tion, we use a single Java class, PolicyEvaluatorCon text .

As mentioned in Section6.1, an IDL interface is implemented in Java with an imple-

mentation class [OMG 1999b], and thus inheritance cannot be used for implementing mul-

tiple IDL interfaces. Because of this constraint, we used the Tie approach for implementing

174

PolicyEval uatorExt and PolicyEvaluatorAdminE xt IDL interfaces. In the

case of PE, PolicyEvaluatorContext delegates the functionali ty of its operations to

objects that implement the PolicyEvaluatorExtO perations and PolicyEval-

uatorAdmin Ext Java interfaces (see Figure6-10).

Different instances of PE can exhibit different behavior. For instance, a CAAS service

may utilize PE components implementing policy evaluation mechanisms based on filesys-

tem permissions, RBAC, or even default evaluation policies which always grant or deny

access. However, most of these instances of PE may use the same mechanisms to associate

resource names to access control policies.

To avoid the introduction of many related PE classes that differ only in their evaluation

policy, we use a solution based on the Strategy pattern. With this pattern, PolicyEval-

uatorConte xt implements functionality common to most other implementations of PE.

For example, addition and removal of authorization policies is not likely to change between

Figure 6-10. PolicyEvaluator Design

P o l i c y E v a l u a to r
ev a lu a t e ()

<< I D L I n t e r f a c e >>

P o l ic y E v al u a to rA d m i n

s e t _ p o lic ie s ()
a d d _ p o lic i e s ()
li s t_ p o l i c ie s ()
s e t _ d e f a u lt _ p o lic y ()
d e le t e _ p o lic i es ()

<< I D L I n t e r f a c e >>

S tra te g y
P a t te rn

A l w a y sD e n y E v a l u a to r A l w a y sG ra n tE v a l u a to r

N u l l P o l i c i e sB y R e so u rc e N a m e M a p

A l w a y s G ra n tD e n y A b s tra c t E v a l u a to r

P o l i c y E v a l u a to rA d m i n E x tO p e ra t i o n s
<< I n t e r f a c e > >

P o l i c y E v a l u a to rA d m i n E x t
s h u t d o w n ()

<< I D L I n t e r f a c e >>

P o l i c y E v a l u a to rE x t
<< I D L I n t e r f a c e >>

+ t h e P o l ic y E v a l u a to rA d m i n Ex t

P o l i c y E v a l u a to rE x tO p e ra t i o n s
<< I n t e r f a c e > >

P o l i c y E v a l u a to rS t ra te g y
e v a lu a t e U s in g P o lic y ()
a re V a lid P o lic ie s ()
lis t _ p o l ic ie s ()
g e tD af u lt Po li c y ()

<< I n t e rf a c e > >

P o l i c i e sB y R e so u rc e N a m e M a p
c le a r ()
h a s R e s o u rc e N a m e ()
g e t P o lic ie s ()
is E m p t y ()
p u t P o lic ie s ()
re m o v e P o lic ie s ()

<< I n t e r f a c e > >

P o l i c y E v a l u a to rC o n te x t

s e t _ p o lic ie s ()
a d d _ p o lic ie s ()
lis t _ p o l ic ie s ()
s e t _ d e f a u lt _ p o lic y ()
d e le t e _ p o lic ie s ()
e v a lu a t e ()

0 . . *

1 . . 1

0 . . *

1 . . 1

0 . . *

1 . . 1

0 . . *

1 . . 1

t ie
m e c h a ni sm

N u l l O b j e c t
P a t te rn

T e m p l a te
P a t te rn

N t fsF i l e S y st e m P e rm i ssi o n sE v a l u a to rU ni x Fi l e S y st em P erm is i on sE v a lu a to r

F i l e S y ste m P e rm i ssi o n sE v a l u a to r

R B A C E v a l u a to r

175

PE instances. Different evaluation policies are then delegated to an object implementing the

PolicyEval uatorStrategy Java interface (see Figure6-10). Similarly, the manage-

ment of resource name associations for accessing policies may vary between PE instances.

Consequently, PolicyEvaluatorContext delegates the implementation of such

functionality to objects implementing the PoliciesByResourceNameM ap . By using

this interface, the association can be implemented by employing any form of storage suit-

able to the current needs independently of PolicyEva luatorStrategy implementa-

tion.

Implementations of PolicyEvaluatorStrategy interface are further refined

using the Template Method pattern, as shown in Figure6-10, which allows extensions and

modifications to policy evaluation mechanisms with relative ease as the needs for different

evaluation logic change during the system life cycle.

Another pattern we used in the design of CAAS components is the Null Object pattern

[Grand 1998]. With this pattern, developers can provide “do-nothing” versions of classes

for which no particular implementations exist during execution. In the case of PE design,

it was used to define the Null PoliciesByResourceNameMap class as the default

implementation of PoliciesByResourceNam eMap interface (see Figure6-10). The

class relieves PolicyEvaluatorCont ext from testing for null values before access-

ing the interface methods.

176

6.4 Discussion and Conclusions

We claimed in the previous chapter that RAD architecture has the following proper-

ties: simplicity, flexibility and generality. Simplicity is achieved by using simple interfaces,

by requiring AS to make simple operation invocations on RAD service, and by using

simple structures for exchanging information between applications and a RAD service.

Simplicity is also achieved by using encapsulation principles in RAD architecture and

CAAS design. The programming complexity of making authorization decisions for an indi-

vidual policy is encapsulated in PEL, DAS, and PE objects. While constructing CAAS, we

found that DC greatly contributes to the simplification of CAAS design. This is because

DC encapsulates decision combination policies which can completely change the overall

authorization logic of CAAS. Total complexity increases only when complex access poli-

cies are added to CAAS, yet such complexity is still contained within the appropriate com-

ponents. Increased complexity within PE implementation does not increase the complexity

encapsulated by DAS or PEL and vice versa. However, it might be possible that in some

cases, the introduction of more complex policy evaluators could increase the complexity of

decision combinators.

Flexibilit y is another property present in CAAS. Changes in CAAS would manifest as

changes in access control policies, policy evaluations and dynamic attributes; new access

control polices, for example, can be implemented by changing or replacing existing PE and

DC objects, as we showed it in the example of the previous chapter. In order to demonstrate

the extensibility and flexibil ity of RAD, we designed CAAS to support run-time shut down,

re-initialization, or replacement of its components. For example, we implemented different

versions of DC, and showed that those versions can be replaced “on the fly.”

177

More evidence of RAD architecture flexibilit y is the support for different configura-

tions of CAAS components. For conducting performance experiments using CAAS differ-

ent configurations, we designed it to support the deployment of the components, without

changing source code, co-located in a process, computer or distributed over a network (see

Figure6-11 for examples). This configurability allows such CAAS deployments that max-

imum performance (by avoiding ORB middleware and network overhead), availability, or

flexibili ty (by having any component in any system in the network) are achieved.

After designing and implementing CAAS, we find RAD architecture sufficiently gen-

eral in the sense that it can be implemented for different environments, with different

requirement and design priorities. A straight-forward implementation, intended for envi-

ronments with tolerant requirements, could be done with few lines of code without usage

of design patterns. On the other hand, a RAD service can be implemented using a complex

design to achieve fault-tolerance, high-performance and scalability. Our current implemen-

tation of CAAS tries to obtain a balance with a simple design which allows it to be flexible,

extendable and configurable.

Figure 6-11. CAAS under different configurations

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

NETWORK INFRASTRUCTURE

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
CORBA ORB

CLIENT AS CAAS

CAAS and Application Server
in different hosts

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

NETWORK INFRASTRUCTURE

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CLIENT A S CAAS

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

CORBA ORB

CAA S co-located with
A pplication Server

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

NETWORK INFRASTRUCTURE

CAAS and AS co-located
CAAS using an external PE

CLIENTCLIENT

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ASAS CAASCAAS PEPE

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

CORBA
ORB

178

By utilizing standard technologies, namely CORBA and Java, we have developed a

concrete implementation of RAD architecture -- CAAS. The implementation is flexible,

configurable, extendable and portable. The design and implementation of components

available in CAAS is covered with more detail in our technical report [Espinal 2000].

The main contribution of the work presented in this chapter is a concrete design of a

prototype (CAAS) of RAD architecture. The design is sufficiently flexible to deploy CAAS

under different configurations, and to experiment with different authorization policies of

different granularity and complexity. We showed that RAD architecture is feasible and its

computational model, defined in IDL, is correct. Besides the feasibility proof, we gained

important insights into the design and implementation of an authorization service for dis-

tributed applications.

During our work on CAAS we actively utilized design patterns, which provided us

with simple and elegant solutions to general problems of constructing object-oriented com-

ponent-based distributed information systems. CAAS design and implementation is a

required step towards a comprehensive study on support of application-specific fine-grain,

complex and dynamic access control policies in heterogeneous distributed enterprise appli-

cations that are to constitute current and future information enterprises. The initial goal of

using CAAS was to study the implications of RAD architecture on the system end-to-end

performance. We report on the study and its results in the next chapter.

179

7CAAS Performance Measurements

One of the main concerns about RAD-based authorization services is the overall

system performance. Regardless of how attractive the approach is, if the resulting imple-

mentation impedes the application capability to comply with its performance constraints,

the approach would not be of much help to the developers. In this chapter we report on our

studies about CAAS performance.

The main question with the performance of authorization services based on RAD

architecture is not whether a performance fee has to be paid but how much it is. One would

expect middleware and communication overhead to affect the application response time the

most. However, we need to quali fy and quantify the overhead. Because RAD architecture

defines multiple components that can be located in the same process, in the same host or in

different hosts in a network environment their different compositions will affect overall

run-time performance to various extent.

Another question is what features of RAD architecture or the design based on it inher-

ently affect the performance of application systems. The third, equally important, question

is what application domains can absorb the performance penalty, since not all the applica-

tions have the same strict constraints on their response time or the time is determined by

other factors more then by the authorization delay. Knowing the performance penalty, can

we identify the application groups where such a penalty is acceptable? So far, we have not

180

seen any reports in the literature about studies on either the performance trade-offs for

authorization services or other questions stated above. In this chapter, we discuss how we

addressed these questions.

We used CAAS as a test-bed. The focus of the experiments was the run-time perfor-

mance of application systems that obtain authorization decisions from CAAS. We mea-

sured the performance under various configurations, loads and server-side application logic

delays using a simple performance model.

The main contributions of the work are our performance measurements and the con-

clusions we have drawn from them. We identified factors affecting run-time performance

of systems using CAAS and possible solutions for improving the performance of authori-

zation services based on RAD approach. Moreover, we believe the performance results can

be used to measure and reason about the performance of authorization servers in general.

We also gained the understanding of how the amount of time spent on executing application

logic affects the performance penalty experienced by an application. This helped us to qual-

ify the applicability of CAAS and similar implementations to the different application

domains.

The organization of this chapter is as follows. The next section discusses the perfor-

mance model. We describe CAAS configurations used for the experiments in Section7.2.

The test environment and the experimental procedures are explained in sections 7.3 and 7.4

respectively. We report on the data and interpret it in Section7.5. Based on the experimen-

tal data interpretation, we suggest the ways for achieving adequate performance for RAD-

based services in Section7.6. Conclusions are drawn Section7.7.

181

7.1 Measurement Model

It was crucial to define the model for our experiments, which would enable answers to

the stated questions. A measurement model determines the scope of an experiment, what

results could be obtained, and how they should be interpreted. It also determines the com-

plexity and affordability of experiments. Since performance studies are not the central con-

tribution of our research, we decided to follow a minimalistic approach, i.e. to use such a

model that would allow us to obtain required performance measurements with the simplest

and most affordable experimental framework.

While defining the framework, the first question for us to answer was if we should use

absolute or relative performance measurements. Absolute measurements could be inter-

preted correctly only in the context of a standard benchmark with strictly defined imple-

mentation platform, language, middleware technology, and many other factors. Since we

were not aware of any standard benchmark that would fit our goals, we saw little value in

reporting absolute times to anybody who uses different implementation languages, ORBs,

etc. or even their versions. Therefore, we decided to collect measurements relative to a ref-

erence model implemented with exactly the same programming and communication tech-

nologies as well as execution platforms.

The reference model we choose was an application system (AS) that has coupled appli-

cation and authorization functionaliti es in one process with the former having exactly the

same computational complexity as in the experimental configurations. Thus, by comparing

performance of this and an experimental system, where authorization mechanism is encap-

sulated in CAAS, we could measure the difference in their performance.

182

The second question was about the meaning of performance in the context of this

study. System performance has many meanings and multiple aspects. The way system per-

formance is measured depends on how it is defined. If we defined the performance as a

number of authorization requests served per a unit of time, or the latency time for each

request, then we could have used time Tcaas (Figure7-1-b), when CAAS completes the pro-

cessing of an authorization request, as the measure of CAAS performance. However, it,

besides other reasons, would not allow us to have a reference model because there would

be nothing to refer to. Nor did we decide to use time Tas, when an AS finishes processing

an application request, which in turn contains time Tcaas. Instead, we chose to measure

response time Tc perceived by clients since it included response times at the other two

points, and it was the main concern from the performance point of view, when authorization

decisions were computed by CAAS. This is why our performance metric for CAAS is end-

to-end response time that a client observes while interacting with an AS.

The definition of performance and the time representing it determined the reference

model and the reference time shown in Figure7-1-a. Using measured times Tc, and Te, we

calculated the percentage of response time increase I in the case of external authorization

(a) Reference Model (b) Response Times for Configurations with
CAAS

Figure 7-1. Times for Measuring Performance

UserUser

Te

Client AS
UserUser

using CAAS

CAASASClient

Tc Tas Tcaas

183

for each configuration of CAAS with respect to embedded access control using the follow-

ing formula:

(1)

Since CAAS first design was not optimized for concurrent access, we decided to leave

performance scalability experiments outside of these experiments’ scope. This is why for

this study we measured run-time performance of CAAS in the presence of only one client,

which sent requests to a single application system in a sequential manner as shown in

Figure7-1-b. That is, the client waited until it received the reply from its previous request

before it made a new one.

We expected that, given the same complexity of authorization logic, the number of

remote invocations made per each authorization request would effect the overall system

performance the most. In its turn, the number depended on the composition of CAAS com-

ponents and their location relatively to each other. For that reason we used different CAAS

configurations to see how the composition of CAAS components affected the response

time observed by the client.

7.2 CAAS Configurations

Given the multitude of different configurations that can be composed out of CAAS

components, we needed to determine which of them should be used in the experiments.

CAAS configurations determine the boundaries crossed by the messages sent during the

computation of an authorization request. There are three types of these boundaries: object,

process, and host. Note that whenever a message crosses process boundaries, it inevitably

I
Tc

Te

----- 1–
 100×=

184

goes through the ORB layer too. Thus ORB and process boundaries are considered as a one

atomic layer. Whenever host boundaries are crossed, the messages travel over network as

well. Thus by “crossing host boundaries” we imply traveling over network.

Another general observation important for understanding our choice of CAAS config-

urations is illustrated in Figure7-2. Messages between CAAS components can travel in

three ways: 1) from object to object in the same process, 2) from object in one process to

an object in another process, and 3) between objects located in different processes, which,

in their turn, are running on different hosts. There is a hierarchy of the boundaries: object,

process, host. When a boundary is crossed, then all boundaries lower in the hierarchy are

also crossed.

Figure 7-2. Boundaries Crossed by Messages

Host

Object

P rocess /ORB

Host

Object

P rocess /ORB

Object

P rocess /ORB Object

12

3

185

Messages cross object boundaries when components are co-located in the same

address space and use direct method calls through JVM to communicate. Messages cross

process boundaries when communicating components are co-located in the same host but

run in their own processes. In this case, communication takes place through the ORB mid-

dleware, which is why we also call these boundaries as middleware boundaries. This form

of communication, however, can take place using other mechanisms such as IPC [Nutt

1997, Stevens 1993]. Finally, messages cross host boundaries when components reside on

separate hosts; this involves middleware and communication subsystem overhead.

CAAS can be deployed in many different configurations. When composing CAAS

configurations, the main choice is the boundaries crossed between different components.

We wanted to measure a wide range of boundary crossing configurations. On the one end

of the range is a configuration when all CAAS components are collocated in one process

and messages among them cross only object boundaries, which, we expected, would be the

most efficient but the quantitative answer was not known. To highlight this, the correspond-

ing CAAS configurations (shown in A, B, and D in Figure7-3) end with word “Object.”

On the other end is the composition, in which all CAAS components are running on differ-

ent hosts, which should yield the best flexibility and the worst overall performance. Again,

we wanted to give a quantitative answer about the performance. We decided not to measure

such a configuration because it seemed unlikely that anybody would use the service in this

way. Instead, we tested cases when all the components are in separate processes, as shown

in C, E and G. We also anticipated the use of a PE located on a separate host in case a legacy

policy engine is utilized as a PE (configurations F and G).

186

We expected that application performance is affected not only by the type of bound-

aries the messages among CAAS components cross but also by the communication over-

head associated with the messages between the AS and CAAS. This is why we measured

the performance for configurations where CAAS is located on the same (B and C) and dif-

ferent (D--G) hosts as the application. To stress this difference, the names of the corre-

sponding configurations begin with either “Process” or “Host.”

(A) Reference Model

(B) Process/Object (C) Process/Process

(D) Host/Object (E) Host/Process

(F) Host/Object/PE-Host (G) Host/Process/PE-Host

Figure 7-3. Reference Model and Experimental CAAS Configurations

C li ent
CA A S
L o g ic

A p p li cati o n
L o g ic

Client H ost S erv er H ost

A p p li cati o n Pro cess

C li ent C A A S
Process

A pplic ation
Process

C lient H ost S erver H ost

Client

CAAS Processes

Appli cation
Process

Client Host Server Host

ADO DAS
DAS

DC
DC

PELPEL PEPE

Client
CAAS
Process

Application
Process

Client Host Server Host Authorization Host

Client

CAA S Processes

Application
Process

Client Host Server Host Authorization Host

ADO DAS
DAS

DC
DC

PELPEL PEPE

Client
CAAS
Process

Application
Process

Client Host Server Host Authorization Host PE Host

PE
Process Client

CAAS Processes

Application
Process

Client Host Server Host Authorization Host PE Host

PE
Process

ADO
DAS

DCDC

PELPEL

187

In order to produce relative performance measurements we needed a reference config-

uration that would have the authorization logic, with the same computational complexity

as in all other configurations, coupled with the application logic. For this, we simulated our

Reference Model by co-locating all CAAS components within the application process as

shown in Figure7-3-A. Our reasoning was based on the assumption that even though the

code responsible for application and authorization logic could be highly coupled, it can be

re-arranged into the equivalent code in such a way that it will allow for every computer

operation to identify whether it contributes to application or authorization performance

overhead. Once identified, it should be possible to encapsulate the authorization instruc-

tions into a separate application module.

Having the rationale behind CAAS configurations outlined, let us walk through and

explain each of them. With Process/Object configuration, AS and CAAS are co-located as

independent processes in the same server host, and CAAS components are co-located

within the same process as illustrated in Figure7-3-B. Messages between AS and CAAS

are transmitted via ORB middleware (process boundaries) whereas CAAS components

communicate using native method calls using the JVM (object boundaries). Figure7-3-C

shows Process/Process configuration where CAAS components are deployed in their own

processes (process boundaries). In Host/Object configuration shown in Figure7-3-D,

CAAS components are co-located in the same process; however, AS and CAAS are on dif-

ferent hosts. That is, messages between AS and CAAS are delivered through the ORB mid-

dleware and communication subsystem (host boundaries) while messages among CAAS

components cross only object boundaries.

188

In Host/Process (Figure7-3-E), AS and CAAS are on different hosts, and CAAS com-

ponents are in their own processes in the same host. Figure7-3-F illustrates Host/Object/

PE-Host configuration. This configuration is similar to Host/Object except that PE compo-

nent runs in a different host. Communication among CAAS components incur object and

host boundaries. Finally, in Host/Process/PE-Host configuration (Figure7-3-G), PE is

located in a host other than the authorization host while the other CAAS components run

in different processes co-located in the authorization host. It is important to note that when

two components exchange messages through process boundaries, message passing

involves middleware overhead and possibly context switch overhead at the host where the

two reside. Host boundaries, on the other hand, do not involve such context switch over-

head since the communicating components do not compete with each other for execution

time.

This configurabil ity allows developers and administrators to deploy CAAS in a way to

obtain maximum performance (by avoiding ORB middleware and network overhead), or

flexibili ty (by having any component in any system in the network). For example, admin-

istrators may deploy CAAS using Host/Object configuration to avoid middleware and net-

work overhead. However, in an organization where one or more PE components are

remotely located (perhaps in a different subnet), CAAS can be deployed using Host/Object/

PE-Host or Host/Process/PE-Host configurations. Host/Process or Process/Process con-

figurations can be used to deploy CAAS components developed by third parties, which are

not enabled to run in the same address space with other components. In a real scenario, we

expect to see most components be co-located in the same process or host while one or more

components, possibly PE, be deployed in remote locations.

189

After defining the measurement model, the reference and experimental configurations,

the next question was what environment for conducting experiments should be used. This

is discussed in the next section.

7.3 Test Environment

Our test environment was composed of 4 Gateway E-4200 400MHz Pentium III PC's

running Windows NT Workstation 4.0 service pack 4. Each workstation had 128MB of

physical memory, 139MB of swap space and its performance properties were set to maxi-

mum boost for foreground applications. Also, each workstation was equipped with an Intel

PRO/100+ Management network adapter. These workstations interoperated on an 100Mb

Ethernet with one hub, and connected to the rest of the campus network through a 100Mb

switch. Furthermore, during testing we used JDK 1.1.7 and Visibroker 3.3 ORB, and all

java classes and jar fi les were located on the local hard-drives. We used CORBA Naming

service located on a separate host to discover the CAAS components and application. We

carried out the performance measurements only when network utilization was less than 1%

to minimize the effects of unrelated network load.

7.4 Experiment Procedure

Our experiment setting consisted of a client, an AS, and an instance of CAAS com-

posed of one Access Decision Object (ADO), a Policy Evaluator Locator (PEL), a Dynamic

Attribute Service (DAS), a Decision Combinator (DC), and a Policy Evaluator (PE). The

goal of the performance measurements was to estimate a worst case performance penalty

experienced by clients when CAAS serves authorization requests. We measured the

response time experienced by the client when external access control is implementedTc

190

using CAAS. Then, the response time was measured. Using these two numbers, we cal-

culated the response time increase I percentagewise using Equation1. The DC object

implemented logical AND combination policy while the PE object always granted access.

This procedure was repeated using all six configurations described in Section7.2.

Other parameters for our performance measurements were application processing (or busi-

ness) logic time B and the number of authorization requests N generated for each client

request. Application processing time represents delays experienced by an AS while serving

client requests and enforcing authorization decisions returned by ADO. It does not include

processing time incurred by CAAS. Although we used one client during the experiment, in

an actual system, a client request can trigger any number of authorization requests by AS.

This was simulated using a variable number of authorization requests per each client

request.

It was an open question what authorization policies should be used for performance

experiments. Since our goal was to measure a worst case performance penalty relative to

the Reference Model, we used computationally least expensive combination and evaluation

policies. This is because more complex authorization policies would increase computation

overhead without increasing middleware and communication overhead, provided that no

new inter-component messages are introduced. The increase in the computational overhead

would occur within embedded authorization logic for the Reference Model as well as

within CAAS while communication overhead would remain unaltered. The change can be

il lustrated by Equation 2, where is the increase associated with the additional computa-

tional complexity of authorization logic. This means that < I, because Tc > Te and .

Te

∆

I ′ ∆ 0>

191

(2)

For our performance experiments we did not use caching techniques. Caching was not

considered since it reduces communication overhead and therefore reduces relative

response time increase I. We did not utilize secure communications for remote invocations

because the overhead due to the communication security is something we cannot control.

Moreover, communication protection is application and implementation dependent. Differ-

ent applications require different levels of protection, and different security products have

different performance. As a result, we decided not to employ communication protection

and estimate a worst case response time increase strictly in terms of middleware and com-

munication due to RAD architecture.

7.5 Measurement Results

The measurements were carried out using CAAS configurations shown in Figure7-3,

and the results are il lustrated in Figure7-4. We calculated the increase of the response time

as a function of application processing time per authorization request. For example, in the

case of configuration Host/Object (Figure7-3-D), the response time increased compara-

tively to the Reference Model by 31%, when the application was executing application

logic for 10 ms each time before it would make an authorization request.

Two groups of CAAS configurations can be observed. The group with the best perfor-

mance results consists of those configurations, in which all or most CAAS components

were process co-located. Even when configured with the PE located on a host, separate

from the one with all other CAAS components, CAAS performed better than in any other

configuration from the second group. This group consists of CAAS configurations, when

I ′
Tc ∆+

Te ∆+
--------------- 1–

 100×=

192

all the components interacted with each other via messages crossing process boundaries. It

is worth noting that we used no ORB optimization for interprocess communications on the

same host, although some ORBs have them.

The results imply that the amount of time spent executing application logic per each

authorization request drastically affects the relative performance experienced by the appli-

cation client. Its increase in the order of magnitude causes relative performance increase

anywhere between 2 and 10 times in both groups. The results also revealed that those appli-

cations, which do not actively use the authorization service and spend one second or more

executing application logic for each authorization request, are almost insensitive to CAAS

configurations. This makes them the primary candidates for employing CAAS. But even

more authorization-intensive applications can utilize such an authorization service as

CAAS, if all the components are process co-located and the application owners can afford

10% decrease in the performance in return for all the benefits of RAD approach.

Figure 7-4. Response Time Increase for Various CAAS Configurations (Error size: ±0.5)

100

0

100

200

300

400

500

600

700

Application Processing Time/Authorization (ms)

R
es

p
o

n
se

 T
im

e
In

cr
ea

se
 %

Process/Object 32 10 1 0 0

Host/Object 76 31 4 0 0

Host/Object/PE-Host 139 52 7 1 0

Host/Process 533 188 26 3 0

Process/Process 529 200 27 3 0

Host/Process/PE-Host 633 211 30 3 0

1 10 100 1000 10000

B
D
F
E
C
G

193

7.6 Performance Considerations

Our performance experiments suggest that in order to develop and utilize successfully

RAD-based authorization services using current middleware technologies, several critical

implications on the overall system performance should be considered. We summarize our

findings in Table 7-1.

First, the pattern of using the authorization service by the application must be studied.

As Table 7-1 shows, if the usage is mild (i.e. no more than one authorization request in

every 10 seconds or so), then such applications (last column) can use RAD-based services

configured in any reasonable way. Second, the performance constraints imposed on the

application should be used to understand where the application and the service should be

located relatively to each other and how the service should be composed. For example,

applications that can afford an increase of the response time due to the use of authorization

service by more than 30% do not have to be host-collocated with the service, and the ser-

vice can be configured in any way. On the other hand, applications intensively using the

Limitations on
Response Latency
Increase

 Authorization Service Usage (app. logic time per request)

Intensive
(10ms or less)

Medium
(between 100ms and 1s)

Mild
(10s or more)

Strict (5% or less)
Authorization and appli-
cation functions located
in one process

CAAS components in
one process

Any configuration or
location

Medium (between 10%
and 30%)

1.CAAS components in
one process
2.CAAS and applica-
tion on the same host

Any configuration or
location

Any configuration or
location

Lax (over 30%)
Any configuration or
location

Any configuration or
location

Any configuration or
location

Table 7-1. Recommended CAAS Configurations Depending on Application
Requirements

194

service by making 100 or more authorization requests per second of application logic exe-

cution, and having strict performance constraints affording no more than 5% performance

degradation, should have authorization and application logic process co-located.

The configuration and location requirements can be relaxed if some techniques for

increasing performance in distributed systems are applied. For example, communication

overhead can be minimized by using ORBs with communication layer optimized for

objects located on the same host. Another technique is the caching of results previously

obtained from the service components. The technique can be very helpful when authoriza-

tion requests repeat over time.

The deployment and implementation of RAD-based authorization services should take

into consideration the interactions among components. That is, described optimization

techniques should be applied to components that have a high rate of interaction. For exam-

ple, evaluations of policies that require more than one PE can be optimized by co-locating

corresponding PEs with the appropriate DC in the same process.

Performance in the presence of concurrent requests is another aspect that should be

taken into account. Although processing of concurrent requests were not part of our perfor-

mance measurements, it is an aspect that warrants further research. Concurrency is not a

trivial issue to handle in component-based systems. Safety preservation, the insurance that

all objects in a system maintain valid states in the presence of concurrent access, requires

the avoidance of read/write and write/write conflicts [Lea 1996]. To address this issue, we

decided in the current implementation of CAAS to use fully synchronized methods.

Although this property does not guarantee the system to be free of liveliness failures such

195

as deadlocks and resource starvation, it does guarantee consistency of values at the level of

Java language object. Synchronized object instances are ready to be used in concurrent set-

tings [Lea 1996] but this introduces unnecessary synchronization, which can affect overall

run time performance because invocations of synchronized methods are more expensive,

than to regular ones. If operations on CAAS components are synchronized, the granularity

of synchronization should be carefully considered. Otherwise it can cause threads to block

and unblock unnecessarily. The research issue, which is beyond the scope of this work, is

the design of a RAD-based service optimized for concurrent access by multiple applica-

tions.

7.7 Conclusions

The main question about the feasibilit y of RAD approach, after its functional suffi-

ciency, is whether RAD-based authorization services can deliver required performance.

We have used CAAS to study the performance aspects of RAD architecture and found that

there is no simple answer to the question. The experiments suggest that the two main factors

affecting the performance are the ratio of the application execution time to the number of

authorization requests and CAAS distribution configuration. Due to the variations of these

factors the overall response time experienced by the application clients can increase as high

as 600% and drop to as little as 1%. We identified several groups of applications that differ

in their use of authorization service and the performance constraints. For each group, we

determined what is required in order to assure adequate performance when RAD-based

authorization service is used.

196

The service performance can be improved further if well -known techniques for opti-

mizing distributed systems are used. For instance, utilization of the ORBs that optimize

communications between objects located on the same host have the potential to signifi-

cantly improve the response time. In situations when this is not possible, co-locating most

CAAS components in the same address space in order to avoid middleware overhead will

improve the performance as well . Also, caching the results previously obtained from vari-

ous CAAS components will enhance the performance. These optimizations should focus

on components with high rate of interaction such as DC and PE components. However, the

performance might degrade when such properties as security of middleware communica-

tions are imposed.

Our measurements results are not only relevant to CORBA-based systems using RAD

approach. The performance results for Process/Object and Host/Object configurations

(Figure7-3-B,D) can be used to estimate the response time increase for authorization serv-

ers in general.

197

8Conclusions

Existing middleware technologies are necessary but not sufficient for effectively pro-

tecting the resources of distributed enterprise applications. In this dissertation, we proposed

a two-tier approach that allows a comprehensive solution to the problem.

Foremost, we showed the adequacy of the CORBA authorization mechanism for the

support of RBAC0--RBAC3 models and developed a framework for implementing them

using CORBA Security. This delivers all the advantages of the external, scalable and yet

comparatively fine-grain AC of CORBA Security along with the well studied powerful

modeling concepts of RBAC. But our solution does not stop here because there are appli-

cations with more advanced requirements.

For those applications which require finer granularity than operation level and/or pro-

tection according to the policies that are diff icult or impossible to model using just RBAC,

we developed an architecture, RAD, for furnishing authorization decisions to such applica-

tions. It was shown via modeling, prototypical implementation, and performance experi-

ments that the architecture features a number of important characteristics. These include

separation of application and authorization logic, arbitrary granularity of protected

resources, the use of information specific to the application domain, policy-neutrality,

inherent consistency of AC enforcement across multiple applications, and high adaptability

to various changes experienced by the enterprise environment.

198

Achieved via the use of either the CORBA authorization mechanism or a RAD-based

service, the separation of authorization and application logic simplifies the development of

both distributed systems and their security functions, and therefore makes it easier to

enhance their quality. Equally important, it paves the way for uniformly utili zing authori-

zation mechanisms across (heterogeneous) system boundaries, as well as for centralizing

enterprise security administration and management, traditionally time consuming, costly

and error prone processes.

By defining the state of the CORBA protection system, mapping it into RBAC models

and developing RAD approach for application-level authorization, we created a structural

foundation for modeling authorization architectures, which are central to the design of

secure distributed enterprise applications.

8.1 Open Problems

Although our approach addresses the needs of most applications, the problem of engi-

neering access control for distributed enterprise application resources is far from being

solved. There are numerous open questions and opportunities for future research. Here we

suggest some.

We developed two separate yet related steps. Each addresses the needs of a particular

application group. An important question is how to integrate AC administration in uniform

way if both solutions are employed. We can see two distinct ways. One is the use of a RAD-

based service to furnish authorization decisions not only to application systems but also to

middleware layers, and maybe even network, DBM and operating systems. Another fol-

199

lows the approach of policy agents where authorization rules are administered in a central

location and then propagated into middleware and application AC mechanisms with the

help of agents. Which of these two, or maybe some other, approaches is more attractive?

When authorization decisions are delegated to a service, one more potential perfor-

mance and availability bottleneck emerges. New research is needed in order to understand

how and what distribution techniques can be applied for achieving performance scalabil ity

and availability of authorization services based on RAD architecture.

The RAD approach is valuable for the solutions based on most middleware technolo-

gies. We implemented and conducted performance experiments with a CORBA-based pro-

totype. Because information enterprises usually use more than one middleware technology,

it is interesting to see how complex a design of multi-technology authorization service

could be?

As with any complex software systems, the composition of applications with RAD-

based services is not only to make constituent components work together, but also to ensure

that the composition as a whole behaves consistently and guarantees certain end-to-end

properties. Although this goal is beyond the scope of this dissertation, it is critical to model

and design such compositions with the properties guaranteed even before the actual sys-

tems are deployed and composed.

The RAD approach has been proposed in the context of access control. However, we

believe the approach can be applied to other security functionalities, for instance audit, non-

repudiation, and communication protection. Can the architecture be re-used without any

200

significant changes? If not what should be different? Can a unified solution be proposed

that would uniformly and comprehensively support the decisions regarding not only AC

but most security functionali ties that tend to be re-implemented in applications?

201

Bibliography

[Abrams 1991] M. Abrams, J. Heaney, O. King, L. J. LaPadula, M. Lazear, and I. Olson,
“A Generalized Framework for Access Control: Towards Prototyping
the Orgcon Policy,” In Proceedings of National Computer Security Con-
ference, 1991, pp. 257-266.

[Abrams 1990a] M. D. Abrams, K. W. Eggers, L. J. LaPadula, and I. W. Olson, “A Gen-
eralized Framework for Access Control: an Informal Description,” The
MITRE Corporation, McLean, Virginia, USA MP-90W00043, August
1990.

[Abrams 1989] M. D. Abrams, A. B. Jeng, and I. M. Olson, “Generalized Framwork for
Access Control: An Informal Description,” The MITRE Corporation,
Springfield, VA, USA MTR-89W00230, September 1989.

[Abrams 1990b] M. D. Abrams, L. J. LaPadula, and I. M. Olson, “Building Generalized
Access Control on UNIX,” I n Proceedings of USENIX workshop on
UNIX Security, Portland, Oregon, USA, 1990, pp. 65-70.

[Amoroso 1994] E. Amoroso, Fundamentals of Computer Security Technology. Prentice
Hall, 1994.

[Anderson 1972] J. Anderson, “Computer Security Technology Planning Study,” Air
Force Electronic Systems Division ESD-TR-73-51, Vols. I and II, 1972.

[Ashley 1997] P. Ashley, “Authorization for a Large Heterogeneous Multi-Domain
System,” In Proceedings of Australian Unix and Open Systems Gorup
National Conference, 1997.

[Awischus 1997] R. Awischus, “Role Based Access Control with Security Administration
Manager (SAM),” In Proceedings of the Second ACM Workshop on
Role-Based Access Control, Fairfax, Virginia, USA, 1997, pp. 61-68.

[Barkley 1995] J. Barkley, “Implementing Role-based Access Control Using Object
Technology,” In Proceedings of The First ACM Workshop on Role-
Based Access Control, Fairfax, Virginia, USA, 1995, pp. 93-98.

202

[Barkley 1999] J. Barkley, K. Beznosov, and J. Uppal, “Supporting Relationships in
Access Control Using Role Based Access Control,” In Proceedings of
ACM Role-based Access Control Workshop, Fairfax, Virginia, USA,
1999, pp. 55-65.

[Barkley 1998] J. Barkley and A. Cincotta, “Managing Role/Permission Relationships
Using Object Access Types,” In Proceedings of The Third ACM Work-
shop on Role-Based Access Control, Fairfax, Virginia, USA, 1998, pp.
73-80.

[Bell 1975] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Unified
Exposition and Multics Interpretation,” MITRE, Bedford, MA, USA,
Technical Report ESD-TR-75-306, March 1975.

[Benantar 1996] M. Benantar, R. Guski, and K. M. Troidle, “Access control systems:
From host-centric to network-centric computing,” IBM Systems Jour-
nal, vol. 35(1), pp. 94-112, 1996.

[Bertino 1996a] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “Supporting Periodic
Authorizations and Temporal Reasoning in Database Access Control,”
In Proceedings of 22th International Conference on Very Large Data
Bases, Mumbai (Bombay), India, 1996, pp. 472-483.

[Bertino 1996b] E. Bertino, S. Jajodia, and P. Samarati, “Supporting Multiple Access
Control Policies in Database Systems,” In Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland, Cali fornia,
1996.

[Beznosov 1997]K. Beznosov, “Applicability of CORBA Security to the Healthcare
Problem Domain,” Object Management Group corbamed/97-09-11,
September 1997.

[Beznosov 1998a] K. Beznosov, “Issues in the Security Architecture of the Computerized
Patient Record Enterprise,” In Proceedings of Second Workshop on
Distributed Object Computing Security, Baltimore, Maryland, USA,
1998.

[Beznosov 1998b]K. Beznosov, “Requirements for Access Control: US Healthcare
Domain,” In Proceedings of Third ACM Workshop on Role-Based
Access Control, Fairfax, Virginia, USA, 1998, pp. 43.

[Beznosov 2000] K. Beznosov, “Information Enterprise Architectures: Problems and Per-
spectives,” School of Computer Science, Florida International Univer-
sity, Miami technical report 2000-06, June 2000.

203

[Beznosov 1999a] K. Beznosov and Y. Deng, “A Framework for Implementing Role-based
Access Control Using CORBA Security Service,” In Proceedings of
Fourth ACM Workshop on Role-Based Access Control, Fairfax, Vir-
ginia, USA, 1999, pp. 19-30.

[Beznosov 1999b]K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A Resource
Access Decision Service for CORBA-based Distributed Systems,” In
Proceedings of Annual Computer Security Applications Conference,
Phoenix, Arizona, USA, 1999, pp. 310-319.

[Blakley 1999] B. Blakley, CORBA Security: an Introduction to Safe Computing with
Objects, First ed. Addison-Wesley, 1999.

[Bloomer 1992] J. Bloomer, Power Programming with RPC. O'Reilly & Associates,
1992.

[BullSoft 1995] BullSoft, “AccessMaster,” Bull Soft, 1995.

[Burrows 1990] M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication,”
ACM Transaction on Computer Systems, vol. 8(1), pp. 18-36, 1990.

[CA 1998a] CA, “CA-ACF2 for OS/390,” Computer Associates International,
1998.

[CA 1998b] CA, “CA-Top Secret for OS/390,” Computer Associates International,
1998.

[CA 1999] CA, “Unicenter TNG: Product Information,” Computer Associates
International, 1999.

[Caswell 1995] D. L. Caswell, “An Evolution of DCE Authorization Services,”
Hewlett-Packard Journal: technical information from the laboratories
of Hewlett-Packard Company, vol. 46(6), pp. 49--54, 1995.

[CIST-NRC 1999]CIST-NRC, Trust in Cyberspace. Committee on Information Systems
Trustworthiness, National Research Council. National Academy Press,
1999.

[Curry 1992] D. A. Curry, UNIX System Securi ty: A Guide for Users and System
Administrators. Addison-Wesley, 1992.

[DeBoever 1997] L. R. DeBoever, “Concept of “Highly Adaptive” Enterprise Architec-
ture,” In Proceedings of Enterprise Architecture Conference, 1997.

[DEC 1989] DEC, “Guide to VAX/VMS System Security --- Version 5.2,” Digital
Equipment Corporation, 1989.

204

[DHHS 1998] DHHS, “Security and Electronic Signature Standards; Proposed Rule,”
45 CFR Part 142, Department of Health and Human Services, 1998.

[DHHS 1999] DHHS, “Standards for Privacy of Individually Identifiable Health Infor-
mation; Proposed Rule,” Department of Health and Human Services,
1999.

[Eddon 1999] G. Eddon, “The COM+ Security Model Gets You out of the Security
Programming Business,” Microsoft Systems Journal, vol. 1999(11),
1999.

[Epstein 1995] J. Epstein and R. Sandhu, “NetWare 4 as an Example of Role-Based
Access Control,” In Proceedings of Proceedings of the First ACM
Workshop on Role-Based Access Control, Gaithersburg, Maryland,
USA, 1995, pp. 71-82.

[Espinal 2000] L. Espinal, K. Beznosov, and Y. Deng, “Design and Implementation of
Resource Access Decision Server,” Center for Advanced Distributed
Systems Engineering (CADSE) - Florida International University,
Miami technical report 2000-01, January 2000.

[Filman 1996a] R. Filman and T. Linden, “Communicating Security Agents,” In Pro-
ceedings of The Fifth Workshop on Enabling Technologies: Infrastruc-
ture for Collabarative Enterprises, Stanford, CA, USA, 1996, pp. 86-91.

[Filman 1996b] R. Filman and T. Linden, “SafeBots: a Paradigm for Software Security
Controls,” In Proceedings of New Security Paradigms Workshop, Lake
Arrowhead, CA USA, 1996, pp. 45-51.

[Fowler 1997] M. Fowler, Analysis Patterns: Reusable Object Models, First ed. Addi-
son Wesley Longman, 1997.

[Gamma 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Design. Addison-Wesley, 1995.

[Gittler 1995] F. Gittler and A. C. Hopkins, “The DCE Security Service,” Hewlett-
Packard Journal, vol. 46(6), pp. 41-48, 1995.

[Giuri 1998] L. Giuri, “Role-Based Access Control in Java,” In Proceedings of Pro-
ceedings of the Third ACM Workshop on Role-Based Access Control,
Fairfax, Virginia, USA, 1998, pp. 91-99.

[Gligor 1986] V. Gligor, C. Burch, R. Chandersekaran, L. Chanpman, M. Hecht, W.
Jiang, G. Luckenbaugh, and N. Vasudevan, “On the Design and the
Implementation of Secure Xenix Workstations,” In Proceedings of

205

IEEE Symposium on Security and Privacy, Oakland, CA, 1986, pp. 102-
117.

[Gong 1997] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going
Beyond the Sandbox: An Overview of the New Security Architecture in
the Java Development Kit 1.2,” In Proceedings of The USENIX Sym-
posium on Internet Technologies and Systems, Monterey, Cali fornia,
1997, pp. 103-112.

[Grampp 1984] F. T. Grampp and R. H. Morris, “UNIX Operating System Security,”
AT& Bell Laboratories Technical Journal, vol. 63(8), pp. 1649-1672,
1984.

[Grand 1998] M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns
Illustrated with UML, vol. 1. Wiley Computer Publishing, 1998.

[Grimes 1997] R. Grimes, Professional DCOM Programming. Wrox Press Inc., 1997.

[Grimm 1999] R. Grimm and B. Bershad, “Providing Policy-Neutral and Transparent
Access Control in Extensible Systems,” Lecture Notes in Computer Sci-
ence, pp. 317-338, 1999.

[Grimshaw 1998] A. S. Grimshaw, M. J. Lewis, A. J. Ferrari, and J. F. Karpovich, “Archi-
tectural Support for Extensibility and Autonomy in Wide-Area Distrib-
uted Object Systems,” Department of Computer Science, University of
Virginia CS-98-12, 1998.

[Grimshaw 1997]A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide
Virtual Computer,” Communications of the ACM, vol. 40(1), pp. 39-45,
1997.

[Grimson 2000] J. Grimson, W. Grimson, and W. Hasselbring, “The System Integration
Challange in Health Care,” Communications of the ACM, vol. 43(6), pp.
48-55, 2000.

[Hailpern 1990] B. Hailpern and H. Ossher, “Extending Objects to Support Multiple
Interfaces and Access Control,” IEEE Transactions on Software Engi-
neering, vol. 16(11), pp. 1247-1257, 1990.

[Hale 1999] J. Hale, P. Galiasso, M. Papa, and S. Shenoi, “Security Policy Coordi-
nation for Heterogeneous Information Systems,” In Proceedings of
Annual Computer Security Applications Conference, Phoenix, Arizona,
USA, 1999, pp. 219-228.

[Heydon 1994] A. Heydon and J. D. Tygar, “Specifying and Checking UNIX Security
Constraints,” Computing Systems, vol. 7(1), pp. 9-12, 1994.

206

[Hommes 1990] R. Hommes, “VMS Security Architecture,” In Proceedings of DECUS
Europe Symposium, Cannes, France, 1990.

[HP 1996] HP, “HP Adds Value to DCE Security Framework with Praesidium
Authorization Server,” DCE application development trends Magazine,
1996.

[IBM 1976] IBM, Resource Access Control Facility (RACF). General Information.
IBM Red Books, 1976.

[IEEE] IEEE, IEEE P1003.6.1 Standard for Information Technology: Portable
Operating System Interface (POSIX): Protection, Audit, and Control
Interfaces. IEEE Computer Society Press.

[IETF 1993] IETF, “RFC 1510, The Kerberos Network Authentication Service, V5,”
Internet Engineering Task Force, 1993.

[Jonscher 1995] D. Jonscher and K. R. Dittrich, “Argos -- A Configurable Access Con-
trol System for Interoperable Environments,” In Proceedings of IFIP
WG11.3 Ninth Annual Working Conference on Database Security,
Rensselaervil le, NY, 1995, pp. 39-66.

[Kaijser 1998] P. Kaijser, “A Review of the SESAME Development,” Lecture Notes in
Computer Science, vol. 1438, pp. 1-8, 1998.

[Karger 1991] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn,
“A Retrospective on the VAX VMM Security Kernel,” IEEE Transac-
tions on Software Engineering, vol. 17(11), pp. 1147-1165, 1991.

[Karjoth 1998] G. Karjoth, “Authorization in CORBA Security,” In Proceedings of
Fifth European Symposium on Research in Computer Security (ESO-
RICS), 1998, pp. 143-158.

[Kleinoder 1996] J. Kleinoder and M. Golm, “MetaJava: An Efficient Run-Time Mete
Architecture for Java,” In Proceedings of Fifth IEEE International
Workshop on Object-Orientation in Operating Systems, Seattle, WA,
USA, 1996.

[Kong 1995] M. M. Kong, “DCE: An Environment for Secure Client/Server Comput-
ing,” Hewlett-Packard Journal, vol. 46(6), pp. 6-15, 1995.

[Lai 1999] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers, “User Authen-
tication And Authorization In The Java Platform,” In Proceedings of
Annual Computer Security Applications Conference, Phoenix, Arizona,
USA, 1999, pp. 285-290.

207

[Lampson 1991] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “A uthentication in
Distributed Systems: Theory and Practics,” In Proceedings of ACM
Symposium on Operating Systems Principles, Asilomar Conference
Center, Pacific Grove, Cali fornia, 1991, pp. 165-182.

[Lampson 1971] B. W. Lampson, “Protection,” In Proceedings of 5th Princeton Confer-
ence on Information Sciences and Systems, Princeton, 1971, pp. 437.

[LaPadula 1990] L. J. LaPadula, “Formal modeling in a Generalized Framework for
Access Control,” In Proceedings of Computer Security Foundation
Workshop III, 1990, pp. 100-109.

[Lea 1996] D. Lea, Concurrent Programming in Java: Design Principles and Pat-
terns. Addison-Wesley, 1996.

[Linn 1993] J. Linn, “Generic Security Service Application Program Interface,”
Internet Engineering Task Force, Internet Draft RFC 1508, September
1993.

[Linn 1997] J. Linn, “Generic Security Service Application Program Interface,”
IETF RFC 2078, January 1997.

[Luckenbaugh 1986]G. L. Luckenbaugh, V. D. Gligor, L. J. Dotterer, and C. S. Chander-
sekaran, “Interpretation of the Bell -LaPadula Model in Secure Xenix,”
In Proceedings of DoD-NBS Conference on Computer Security, 1986.

[Maes 1987] P. Maes, “Computational Reflection,” in Artificial Intelligence Labora-
tory. Vrije Universiteit Brussel, 1987.

[McCauley 1979] E. J. McCauley and P. J. Drongowski, “KSOS -- The Design of a Secure
Operating System,” In Proceedings of National Computer Conference,
1979.

[McInerney 1999] M. J. McInerney, Windows NT Security. Prentice Hall, 1999.

[McMahon 1995] P. McMahon, “Making the Internet Safe for Business,” ICL Systems
Journal, vol. 10(2), 1995.

[Meyers 1997] W. J. Meyers, “RBAC Emulation on Trusted DG/UX,” In Proceedings
of Proceedings of the Second ACM Workshop on Role-Based Access
Control, Fairfax, Virginia, USA, 1997, pp. 55-60.

[Microsoft 1998] Microsoft, “DCOM Architecture,” Microsoft, 1998.

[Molva 1992] R. Molva, G. Tsudik, E. V. Herreweghen, and S. Zatti, “KryptoKnight
Authentication and Key Distribution System,” In Proceedings of Euro-

208

pean Symposium on Research in Computer Security, Toulouse, France,
1992.

[Mowbray 1997] T. J. Mowbray and R. C. Malveau, CORBA Design Patterns. Wiley
Computer Publishing, 1997.

[Mowbray 1995] T. J. Mowbray and R. Zahavi, The Essential CORBA: Systems Integra-
tion Using Distributed Objects. Wiley Computer Publishing, 1995.

[Mull ender 1990] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum, R. v. Renesse, and H.
v. Staveren, “Amoeba: A Distributed Operating System for the 1990s,”
Computer, vol. 23(5), pp. 44-53, 1990.

[NCSC 1987] NCSC, “A Guide to Understanding Discretionary Access Control in
Trusted Systems,” National Computer Security Center NCSC-TG-003,
September 30 1987.

[Neuman 1993] B. C. Neuman, “Proxy-Based Authorization and Accounting for Dis-
tributed Systems,” In Proceedings of International Conference on Dis-
tributed Computing Systems, Pittsburgh, Pennsylvania, 1993.

[Neuman 1994a] B. C. Neuman and T. Ts'o, “Kerberos: an Authentication Service for
Computer Networks,” IEEE Communications Magazine, vol. 32(9), pp.
33-38, 1994.

[Neuman 1994b] B. C. Neuman and T. Y. Ts'o, “Kerberos: an Authentication Service for
Computer Networks,” University of Southern Cali fornia, Information
Sciences Institute ISI/RS-94-399, 1994.

[Notargiacomo 1995]L. Notargiacomo, “Role-Based Access Control in ORACLE7 and
Trusted ORACLE7,” In Proceedings of the First ACM Workshop on
Role-Based Access Control, Gaithersburg, Maryland, USA, 1995, pp.
65-69.

[NSF 1999] NSF, “I nformation Technology Research Program Requirements,”
National Science Foundation, 1999.

[Nutt 1997] G. Nutt, Operating Systems: A Modern Perspective. Addison-Wesley,
1997.

[OMG 1996a] OMG, “CORBAservices: Common Object Services Specification,”
Object Management Group, 1996.

[OMG 1996b] OMG, “Security Service Specification,” Object Management Group,
1996.

209

[OMG 1997] OMG, “Clinical Observations Access Service RFP,” Object Manag-
ment Group December 1997.

[OMG 1998a] OMG, “Interoperable Naming Service, Joint Revised Submission,”
Object Management Group, document orbos/98-10-11, October 1998.

[OMG 1998b] OMG, “Person Identification Service,” Object Management Group,
specification corbamed/98-02-29, February 1998.

[OMG 1999a] OMG, “The Common Object Request Broker: Architecture and Speci-
fication,” Object Management Group, Specification formal/99-10-08,
1999.

[OMG 1999b] OMG, “IDL to Java Language Mapping,” Object Management Group,
Specification formal/99-07-53, 1999.

[OMG 1999c] OMG, “Resource Access Decision Facility,” Object Management
Group OMG document number: corbamed/99-05-04, May 1999.

[OSF 1996] OSF, “A uthentication and Security Services,” Open Software Founda-
tion, 1996.

[Parker 1995] T. Parker and D. Pinkas, “SESAME V4 - Overview,” SESAME Decem-
ber 1995.

[Pedrick 1998] D. Pedrick, J. Weedon, J. Goldberg, and E. Bleifield, Programming with
VisiBroker: A Developer’s Guide to Visibroker for Java. Wiley Com-
puter Publishing, 1998.

[Pfleeger 1989] C. P. Pfleeger, Securi ty in Computing. Prentice-Hall, 1989.

[Postel 1982] J. B. Postel, “RFC 821: Simple Mail Transfer Protocol,” University of
Southern Cali fornia Information Sciences Institute RFC 821, August
1982.

[Postel 1983] J. B. Postel, “TELNET Protocol Specification,” DDN Network Infor-
mation Center, Request for Comments 854, May 1983.

[Postel 1985] J. B. Postel, “File Transfer Protocol,” DDN Network Information Cen-
ter, Request for Comments 959, October 1985.

[Quarterman 1985]J. S. Quarterman, A. Silberschatz, and J. L. Peterson, “4.2BSD and
4.3BSD as Examples of the UNIX System,” ACM Computing Surveys,
vol. 17(4), pp. 379-418, 1985.

210

[Riechmann 1997]T. Riechmann and F. J. Hauck, “Meta Objects for Access Control:
Extending Capability-based Security,” In Proceedings of New Security
Paradigms Workshop, Langdale, Cumbria, UK, 1997, pp. 17-22.

[Riechmann 1998]T. Riechmann and F. J. Hauck, “Meta Objects for Access Control: A
Formal Model for Role-based Principals,” In Proceedings of New Secu-
rity Paradigms Workshop, Charlottesville, VA USA, 1998, pp. 30-38.

[Rubin 1999] W. Rubin and M. Brain, Understanding DCOM. P T R Prentice Hall ,
1999.

[Ryutov 2000a] T. Ryutov and C. Neuman, “Access Control Framework for Distributed
Applications (Work in Progress),” Internet Engineering Task Force,
Internet Draft draft-ietf-cat-acc-cntrl-frmw-03, March 9 2000.

[Ryutov 2000b] T. Ryutov and C. Neuman, “Generic Authorization and Access control
Application Program Interface: C-bindings,” Internet Engineering Task
Force, Internet Draft draft-ietf-cat-gaa-bind-03, March 9 2000.

[Ryutov 2000c] T. Ryutov and C. Neuman, “Representation and Evaluation of Security
Policies for Distributed System Services,” In Proceedings of DARPA
Information Servability Conference Exposition, Healton Head, South
Carolina, 2000.

[Saltzer 1974] J. H. Saltzer, “Protection and the Control of Information Sharing in Mul-
tics,” Communications of the ACM, vol. 17(7), pp. 388-402, 1974.

[Sandhu 1996] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based
Access Control Models,” IEEE Computer, vol. 29(2), pp. 38-47, 1996.

[Sandhu 1998a] R. Sandhu and Q. Munawer, “How to Do Discretionary Access Control
Using Roles,” In Proceedings of ACM Workshop on Role-based Access
Control, Fairfax, Virginia, USA, 1998, pp. 47-54.

[Sandhu 1998b] R. Sandhu and J. S. Park, “Decentralized User-Role Assignment for
Web-based Intranets,” In Proceedings of the Third ACM Workshop on
Role-Based Access Control, Fairfax, Virginia, USA, 1998, pp. 1-12.

[Sandhu 1994] R. Sandhu and P. Samarati, “Access Control: Principles and Practice,”
IEEE Communications Magazine, vol. 32(9), pp. 40-48, 1994.

[Schiller 1988] J. I. Schiller, S. P. Miller, B. C. Neuman, and J. H. Salzer, “Project
Athena Technical Plan - Kerberos Authentication and Authorization
System,” 1988.

211

[Schmidt 1999] D. C. Schmidt, “Dove: A Distributed Object Visualization Environ-
ment,” C++ Report, vol. 11(3), 1999.

[Schmidt 1998] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design of the TAO
Real-time Object Request Broker,” Computer Communications, vol.
21(4), 1998.

[Simon 1997] R. Simon and M. E. Zurko, “Adage: An Architecture for Distributed
Authorization,” OSF Research Institute, Cambridge 1997.

[Soley 1996] R. M. Soley and C. M. Stone, Object Management Architecture Guide,
3 ed. John Wiley & Sons, 1996.

[Stevens 1993] W. R. Stevens, Advanced Programming in the UNIX Environment.
Addison-Wesley, 1993.

[Sumner 1999] M. Sumner, “Critical Success Factors in Enterprise Wide Information
Management Systems Projects,” In Proceedings of ACM SIGCPR Con-
ference on Computer Personnel Research, 1999, pp. 297 - 303.

[Tardo 1991] J. J. Tardo and K. Alagappan, “SPX: Global Authentication Using
Public Key Certificates,” In Proceedings of IEEE Symposium on
Research in Security and Privacy, Oakland, California, USA, 1991, pp.
232-244.

[Thomas 1994] R. K. Thomas and R. S. Sandhu, “Conceptual Foundations for a Model
of Task-based Authorizations,” In Proceedings of IEEE Computer
Security Foundations Workshop, Franconia, NH, USA, 1994, pp. 66-79.

[USA 1996] USA, “Health Insurance Portability and Accountability Act, Public Law
104–191,” US Goverment, 1996.

[Varadharajan 1998]V. Varadharajan, C. Crall, and J. Pato, “Authorization in Enterprise-
wide Distributed System: A Practical Design and Application,” In Pro-
ceedings of 14th Annual Computer Security Applications Conference,
1998.

[Walker 1980] B. J. Walker, R. A. Kemmerer, and G. J. Popek, “Specification and Ver-
ification of the UCLA Unix Security Kernel,” Communications of the
ACM, vol. 23(2), pp. 118, 1980.

[Weiderhold 1992]G. Weiderhold, “Mediators in the Architecture of Future Information
Systems: A New Approach,” IEEE Computer, vol. 25(3), pp. 38-49,
1992.

212

[Wilson 1997] W. Wilson and K. Beznosov, “CORBAmed Security White Paper,”
Object Management Group corbamed/97-11-03, November 1997.

[Wong 1997] R. K. Wong, “RBAC Support in Object-Oriented Role Databases,” In
Proceedings of the Second ACM Workshop on Role-Based Access
Control, Fairfax, Virginia, USA, 1997, pp. 109-120.

[Woo 1992] T. Y. C. Woo and S. S. Lam, “Authentication for Distributed Systems,”
Computer, vol. 25(1), pp. 39-52, 1992.

[Woo 1993a] T. Y. C. Woo and S. S. Lam, “Authorizations in Distributed Systems: A
Formal Approach,” In Proceedings of The 13th IEEE Symposium on
Research in Security and Privacy, Oakland, CA, USA, 1993, pp. 33-50.

[Woo 1993b] T. Y. C. Woo and S. S. Lam, “Authorizations in Distributed Systems: A
New Approach,” Journal of Computer Security, vol. 2(3), pp. 107-136,
1993.

[Woo 1993c] T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorization
Service,” University of Texas at Austin, Computer Sciences Department
TR93-29, September 1993.

[Woo 1993d] T. Y. C. Woo and S. S. Lam, “A Framework for Distributed Authoriza-
tion,” In Proceedings of Conference on Computer and Communications
Security, Fairfax, Virginia, USA, 1993, pp. 112-118.

[Woo 1998] T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorization
Service,” In Proceedings of IEEE INFOCOM, San Francisco, 1998.

[Wreder 1998] K. Wreder, K. Beznosov, A. Bramblett, E. Butler, A. D'Empaire, E. Her-
nandez, E. Navarro, A. Romano, M. Tortolini-Taylor, E. Urzais, and R.
Ventura, “Architecting a Computerized Patient Record with Distributed
Objects,” In Proceedings of Health Information Systems Society Con-
ference, 1998, pp. 149-158.

[Wulf 1996] W. A. Wulf, C. Wang, and D. Kienzle, “A New Model of Security for
Distributed Systems,” In Proceedings of New Security Paradigms
Workshop, Lake Arrowhead, CA USA, 1996, pp. 34-43.

[Yoder 1997] J. W. Yoder and J. Barcalow, “Archictectural Patterns for Enabling
Application Security,” In Proceedings of Pattern Languages of Pro-
gramming, Monticello, Illinois, USA, 1997.

[Zachman 1997] J. A. Zachman, “Enterprise Architecture: The Issue of the Century,”
Database Programming and Design, pp. 44-53, 1997.

213

[Zurko 1998] M. E. Zurko, R. Simon, and T. Sanfilippo, “A User-Centered, Modular
Authorization Service Built on an RBAC Foundation,” In Proceedings
of Annual Computer Security Applications Conference, Phoenix, Ari-
zona, 1998.

214

VITA

KONSTANTIN BEZNOSOV

Born, Novosibirsk, Siberia, Russia

1987-1989 Mi litary Service, Siberia, Russia

1991-1994 Assistant System Administrator and Analyst
Information Technology, Budker Institute of Nuclear Physics
Akademgorodok, Siberia, Russia

1993 B.S., Physics
Novosibirsk State University
Akademgorodok, Siberia, Russia

1994-1998 Research Assistant
High Performance Database Research Center
School of Computer Science (SCS)
Florida International University (FIU)
Miami, Florida, USA

1997 M.S., Computer Science
FIU
Miami, Florida, USA

1997-1999 Information Security Architect
Information Technology
Baptist Health Systems of South Florida
Miami, Florida, USA

1998-1999 Co-chair, Security Special Interest Group
Object Management Group (OMG)

1998-2000 Research Associate
Center for Advanced Distributed System Engineering
SCS, FIU
Miami, Florida, USA

1999 Program Committee member
OMG Workshop on Distributed Object Computing Security
July 12-15, Baltimore, Maryland, USA

Vita

215

 PUBLICATIONS

J. Barkley, K. Beznosov, and J. Uppal, “Supporting Relationships in Access Control
Using Role Based Access Control,” In Proceedings of ACM Role-based Access Control
Workshop, Fairfax, Virginia, USA, 1999, pp. 55-65.

K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A Resource Access Deci-
sion Service for CORBA-based Distributed Systems,” In Proceedings of Annual Computer
Security Applications Conference, Phoenix, Arizona, USA, 1999, pp. 310-319.

K. Beznosov and Y. Deng, “A Framework for Implementing Role-based Access Con-
trol Using CORBA Security Service,” In Proceedings of Fourth ACM Workshop on Role-
Based Access Control, Fairfax, Virginia, USA, 1999, pp. 19-30.

K. Beznosov, “Requirements for Access Control: US Healthcare Domain,” position
paper, In Proceedings of Third ACM Workshop on Role-Based Access Control, 1998, p.
43.

K. Beznosov, “Taxonomy of CPR enterprise security concerns at Baptist Health Sys-
tems of South Florida,” Baptist Health Systems of South Florida, 1997.

K. Beznosov, “CPR Security CORBA-based Security and Intranet Services: Object
Technology Group Position Paper,” Baptist Health Systems of South Florida, 1997.

K. Beznosov, “Issues in the Security Architecture of the Computerized Patient Record
Enterprise,” In Proceedings of Second Workshop on Distributed Object Computing Secu-
rity, Baltimore, Maryland, USA, 1998.

L. Espinal, K. Beznosov, and Y. Deng, “Design and Implementation of Resource
Access Decision Server,” Center for Advanced Distributed Systems Engineering, FIU,
Miami, Technical Report 2000-01, January 2000.

OMG, “Resource Access Decision Facili ty,” Object Management Group, corbamed/
99-05-04, May 1999.

K. Wreder, K. Beznosov, A. Bramblett, E. Butler, A. D'Empaire, E. Hernandez, E.
Navarro, A. Romano, M. Tortolini-Taylor, E. Urzais, and R. Ventura, “Architecting a
Computerized Patient Record with Distributed Objects,” In Proceedings of Health Infor-
mation Systems Society Conference, 1998, pp. 149-158.

W. Wilson and K. Beznosov, “CORBAmed Security White Paper,” Object Manage-
ment Group, document corbamed/97-11-03, November 1997.

