
Íntegro: Leveraging Victim Prediction for Robust
Fake Account Detection in OSNs

Yazan Boshmaf∗, Dionysios Logothetis†, Georgos Siganos‡, Jorge Lería§,
Jose Lorenzo§, Matei Ripeanu∗, and Konstantin Beznosov∗

∗University of British Columbia
†Telefonica Research §Tuenti, Telefonica Digital

‡Qatar Computing Research Institute

Abstract—Detecting fake accounts in online social networks
(OSNs) protects OSN operators and their users from various ma-
licious activities. Most detection mechanisms attempt to predict
and classify user accounts as real (i.e., benign, honest) or fake (i.e.,
malicious, Sybil) by analyzing user-level activities or graph-level
structures. These mechanisms, however, are not robust against
adversarial attacks in which fake accounts cloak their operation
with patterns resembling real user behavior.

We herein observe that victims, benign users who control real
accounts and have befriended fakes, form a distinct classification
category that is useful for designing robust detection mechanisms.
As attackers have no control over victim accounts and cannot
alter their activities, a victim account classifier which relies on
user-level activities is relatively hard to circumvent. Moreover, as
fakes are directly connected to victims, a fake account detection
mechanism that integrates victim prediction into graph-level
structures can be more robust against manipulations of the graph.

To validate this idea, we designed Íntegro, a scalable defense
system that helps OSNs detect fake accounts using a meaningful
user ranking scheme. Íntegro starts by predicting victim accounts
from user-level activities. After that, it integrates these predictions
into the graph as weights such that edges incident to predicted
victims have lower weights than others. Finally, Íntegro ranks
user accounts based on a modified random walk that starts from
a known real account. Íntegro guarantees that most real accounts
rank higher than fakes so that OSN operators can take actions
against low-ranking fake accounts.

We implemented Íntegro using widely-used, open-source par-
allel computing platforms in which it scaled nearly linearly. We
evaluated Íntegro against SybilRank, the state-of-the-art in fake
account detection, using real-world datasets and a large-scale
deployment at Tuenti, the largest OSN in Spain. In particular,
we show that Íntegro significantly outperforms SybilRank in user
ranking quality, with the only requirement that the used victim
classifier is better than random. Moreover, the deployment of
Íntegro at Tuenti resulted in an order of magnitude higher fake
account detection precision, as compared to SybilRank.

I. INTRODUCTION

The rapid growth of online social networks (OSNs), such
as Facebook, Twitter, RenRen, LinkedIn, Google+, and Tuenti,
has been followed by an increased interest in adversely abusing
them. Due to their open nature, OSNs are particularly vulner-
able to the Sybil attack [1], where an attacker creates multiple
fake accounts called Sybils for various adversarial objectives.

The problem. In its 2014 earnings report, Facebook estimated
that up to 15 millions (%1.2) of its monthly active users are in

fact “undesirable,” representing fake accounts that are used in
violation of the site’s terms of service [2]. For such OSNs, the
existence of fakes leads advertisers, developers, and investors
to distrust their reported user metrics, which negatively impacts
their revenues [3]. Attackers create and automate fake accounts
for various malicious activities, including social spamming [4],
malware distribution [5], political astroturfing [6], and private
data collection [7]. It is therefore important for OSNs to detect
fake accounts as quickly and accurately as possible.

The challenge. Most OSNs employ detection mechanisms that
attempt to identify fake accounts through analyzing either user-
level activities or graph-level structures. In the first approach,
unique features are extracted from recent user activities (e.g.,
frequency of friend requests, fraction of accepted requests),
after which they are applied to a classifier that has been trained
offline using machine learning techniques [8]. In the second
approach, an OSN is formally modeled as a graph, with nodes
representing user accounts and edges representing social rela-
tionships (e.g., friendships). Given the assumption that fakes
can befriend only few real accounts, the graph is partitioned
into two regions separating real accounts from fakes, with a
narrow passage between them [9]. While these techniques are
effective against naïve attacks, various studies showed they
are inaccurate in practice and can be easily evaded [7], [10],
[11]. For example, attackers can cheaply create fakes that
resemble real users, circumventing feature-based detection, or
use simple social engineering tactics to befriend a large number
of real users, invalidating the assumption behind graph-based
detection. In this work, we aim to tackle the question: “How
can we design a robust defense mechanism that allows an OSN
to detect accounts which are highly likely to be fake?”

Implications. If an OSN can detect fakes efficiently and effec-
tively, it can improve the experience of its users by thwarting
annoying spam messages and other abusive content. The OSN
can also increase the credibility of its user metrics and enable
third parties to consider its user accounts as authentic digital
identities [12]. Moreover, the OSN can better utilize the time
of its analysts who manually inspect and validate accounts
based on user reports. For example, Tuenti, the largest OSN
in Spain with 15M active users, estimates that only 5% of the
accounts inspected based on user reports are in fact fake, which
signifies the inefficiency of this manual process [13]. The
OSN can also selectively enforce abuse mitigation techniques,
such as CAPTCHA challenges [8] and photo-based social
authentication [14], to only the most suspicious accounts while
running at a lower risk of annoying benign users.

Our solution. We present Íntegro, a robust defense system that
helps OSNs identify fake accounts, which can befriend many
real accounts, through a user ranking scheme.1 We designed
Íntegro for OSNs whose social relationships are bidirectional
(e.g., Facebook, Tuenti, LinkedIn), with the ranking process
being completely transparent to users. While Íntegro’s ranking
scheme is graph-based, the social graph is preprocessed first
and annotated with information derived from feature-based
detection techniques. This approach of integrating user-level
activities into graph-level structures positions Íntegro as the
first feature-and-graph-based detection mechanism.

Our design is based on the observation that victim accounts,
real accounts whose users have accepted friend requests sent
by fakes, are useful for designing robust fake account detection
mechanisms. In particular, Íntegro uses basic account features
(e.g., gender, number of friends, time since last update), which
are cheap to extract from user-level activities, in order to train a
classifier to predict unknown victims in the OSN. As attackers
do not have control over victims nor their activities, a victim
classifier is inherently more resilient to adversarial attacks
than a similarly-trained fake account classifier. Moreover, as
victims are directly connected to fakes, they form a “border-
line” separating real accounts from fakes in the social graph.
Íntegro makes use of this observation by incorporating victim
predictions into the graph as weights such that edges incident
to predicted victims have lower weights than others. Finally,
Íntegro ranks user accounts based on the landing probability of
a modified random walk that starts from a known real account.
The walk is “short” by terminating its traversal early before
it converges. The walk is “supervised” by biasing its traversal
towards nodes that are reachable through higher-weight paths.
As this short, supervised random walk is likely to stay within
the subgraph consisting of real accounts, most real accounts re-
ceive higher ranks than fakes. Unlike SybilRank [13], the state-
of-the-art in graph-based fake account detection, we do not
assume sparse connectivity between real and fake accounts,
which makes Íntegro the first fake account detection system
that is robust against adverse manipulation of the graph.

For an OSN consisting of n users, Íntegro takes O(n log n)
time to complete its computation. For attackers who randomly
establish a set Ea of edges between victim and fake accounts,
Íntegro guarantees that no more than O(vol(Ea) log n) fakes
are assigned ranks similar to or higher than real accounts in the
worst case, where vol(Ea) is the sum of weights on edges in
Ea. Even with a random victim classifier that labels accounts
as victims with 0.5 probability, Íntegro ensures that vol(Ea)
is at most equals to |Ea|, resulting in an improvement factor
of O (|Ea|/vol(Ea)) over SybilRank.

Main results. We evaluated Íntegro against SybilRank using
real-world datasets and a large-scale deployment at Tuenti. We
chose SybilRank because it was shown to outperform known
contenders [13], including EigenTrust [15], SybilGuard [16],
SybilLimit [17], SybilInfer [18], Mislove’s method [19], and
GateKeeper [20]. Moreover, as SybilRank relies on a ranking
scheme that is similar to ours, albeit on an unweighted graph,
evaluating against SybilRank allowed us to show the impact
of leveraging victim prediction on ranking quality. Our results

1In Spanish, the word “íntegro” means integrated, which suites our approach
of integrating user-level activities into graph-level structures.

show that Íntegro consistently outperforms SybilRank in user
ranking quality, especially as Ea grows large. In particular,
Íntegro resulted in up to 30% improvement over SybilRank in
the ranking’s area under ROC curve (AUC), which represents
the probability that a random real account is ranked higher
than a random fake account. Moreover, the deployment of
Íntegro at Tuenti resulted in up to an order of magnitude
higher fake account detection precision. For the bottom 20K
low-ranking users, Íntegro achieved 95% precision, as opposed
to 43% by SybilRank or 5% by Tuenti’s user-based abuse re-
porting system. More importantly, this percentage dramatically
decreased when moving up in the ranked list, which means
Íntegro consistently placed most of the fakes at the bottom of
the list, unlike SybilRank. The only requirement with Íntegro is
to use a victim classifier that is better than random. This can be
easily enforced during the cross-validation phase by deploying
a victim classifier with an AUC greater than 0.5.

From system scalability standpoint, Íntegro scales to OSNs
with multi-million users and runs on commodity machines. We
implemented Íntegro on top of open-source implementations of
MapReduce [21] and Pregel [22]. Using a synthetic benchmark
of an OSN consisting of 160M users, Íntegro takes less than 30
minutes to finish its computation on 33 commodity machines.

Contributions. This work makes the following contributions:

• Integrating user-level activities into graph-level structures.
We presented the design and analysis of Íntegro, a fake account
detection system that relies on a novel technique for integrating
user-level activities into graph-level structures. Íntegro uses
feature-based detection with user-level activities for predicting
how likely each user is to become a victim. By weighting the
graph such that edges incident to predicted victims have lower
weights than others, Íntegro guarantees that most real accounts
are ranked higher than fakes. These ranks are derived from the
landing probability of a modified random walk that starts from
a known real account. To our knowledge, Íntegro is the first
detection system that is robust against adverse manipulation of
the social graph, where fakes follow an adversarial strategy to
befriend a large number of accounts, real or fake, in an attempt
to evade detection (Sections III and IV).

• Implementation and evaluation. We implemented Íntegro on
top of widely-used, open-source distributed machine learning
and graph processing platforms. We evaluated Íntegro against
SybilRank using real-world datasets and a large-scale deploy-
ment at Tuenti. In practice, Íntegro has allowed Tuenti to detect
at least 10 times more fakes than their current process, where
reported user accounts are not ranked. With an average of 16K
reports per day [13], this improvement has been useful to both
Tuenti and its users (Sections V and VI).

II. BACKGROUND AND RELATED WORK

We first outline the threat model we assume in this work.
We then present required background and related work on fake
account detection, abuse mitigation, building a ground-truth,
social infiltration, and analyzing victims in OSNs.

A. Threat model

We focus on OSNs such as Facebook, RenRen, and Tuenti,
which are open to everyone and allow users to declare bilateral
relationships (i.e., friendships).

Capabilities. We consider attackers who are capable of cre-
ating and automating fake accounts on a large scale [23].
Each fake account, also called a socialbot [24], can perform
social activities similar to those of real users. This includes
sending friend requests and posting social content. We do not
consider attackers who are capable of hijacking real accounts,
as there are existing detection systems that tackle this threat
(e.g., COMPA [25]). We focus on detecting fake accounts that
can befriend a large number of benign users in order to mount
subsequent attacks, as we describe next.

Objectives. The objective of an attacker is to distribute spam
and malware, misinform, or collect private user data on a large
scale. To achieve this objective, the attacker has to infiltrate the
target OSN by using the fakes to befriend many real accounts.
Such an infiltration is required because isolated fake accounts
cannot directly interact with or promote content to most users
in the OSN [23]. This is also evident by a thriving underground
market for social infiltration. For example, attackers can now
connect their fake accounts with 1K users for $26 or less [26].

Victims. We refer to benign users who have accepted friend
requests from fake accounts as victims. We refer to friendships
between victims and fakes as attack edges. Victims control real
accounts and engage with others in non-adversarial activities.

B. Fake account detection

From a systems design perspective, most of today’s fake ac-
count detection mechanisms are either feature-based or graph-
based, depending on whether they utilize machine learning or
graph analysis techniques in order to identify fakes. Next, we
discuss each of these approaches in detail.

Feature-based detection. This approach depends on user-level
activities and user account details (e.g., user logs, profiles). By
identifying unique features of an account, one can classify each
account as fake or real using various machine learning tech-
niques. For example, Facebook employs an “immune system”
that performs real-time checks and classification for each read
and write action on its database, which are based on features
extracted from user accounts and their activities [8].

Yang et al. used ground-truth provided by RenRen to train
an SVM classifier in order to detect fake accounts [27]. Using
simple features, such as frequency of friend requests, fraction
of accepted requests, and per-account clustering coefficient, the
authors were able to train a classifier with 99% true-positive
rate (TPR) and 0.7% false-positive rate (FPR).

Stringhini et al. utilized honeypot accounts to collect data
describing various user activities in OSNs [28]. By analyzing
the collected data, they were able to build a ground-truth for
real and fake accounts, with features similar to those outlined
above. The authors trained two random forests (RF) classifiers
to detect fakes in Facebook and Twitter, ending up with 2%
FPR and 1% false-negative rate (FNR) for the earlier network,
and 2.5% FPR and 3% FNR for the latter.

Wang et al. used a click-stream dataset provided by Ren-
Ren to cluster user accounts into “similar” behavioral groups,
corresponding to real or fake accounts [29]. Using the METIS
clustering algorithm [30] with both session and clicks features,
such as average clicks per session, average session length, the
percentage of clicks used to send friend requests, visit photos,

and share content, the authors were able to calibrate a cluster-
based classifier with 3% FPR and 1% FNR.

Even though feature-based detection scales to large OSNs,
it is still relatively easy to circumvent. This is the case because
it depends on features describing activities of known fakes
in order to identify unknown ones. In other words, attackers
can evade detection by adversely modifying the content and
activity patterns of their fakes, leading to an arms race [31]–
[33]. Also, feature-based detection does not provide any formal
security guarantees and often results in a high FPR in practice.
This is partly attributed to the large variety and unpredictability
of behaviors of users in adversarial settings [13].

With Íntegro, we employ feature-based detection to identify
unknown victims in a non-adversarial setting. The dataset used
to train a victim classifier includes features of only known real
accounts that have either accepted or rejected friend requests
send by known fakes. As real accounts are controlled by benign
users who are not adversarial, a feature-based victim account
classifier is harder to circumvent than a similarly-trained fake
account classifier. As we discuss in Section IV, we only require
victim classification to be better than random guessing in order
to outperform the state-of-the-art in fake account detection.

Graph-based detection. As a response to the lack of formal
security guarantees in feature-based detection, the state-of-the-
art in fake account detection utilizes a graph-based approach
instead. In this approach, an OSN is modeled as a graph, with
nodes representing user accounts and edges between nodes rep-
resenting social relationship. Given the assumption that fakes
can establish only a small number of attack edges, the subgraph
induced by the set of real accounts is sparsely connected to
fakes, that is, the cut which crosses over attack edges is sparse.2

Graph-based detection mechanisms make this assumption, and
attempt to find such a sparse cut with formal guarantees [34]–
[36]. For example, Tuenti employs SybilRank to rank accounts
according to their perceived likelihood of being fake, based on
structural properties of its social graph [13].

Yu et al. were among the first to analyze the social graph
for the purpose of identifying fake accounts in OSNs [16], [17].
The authors developed a technique that labels each account as
either fake or real based on multiple, modified random walks.
This binary classification is used to partition the graph into two
smaller subgraphs that are sparsely interconnected via attack
edges, separating real accounts from fakes. They also proved
that in the worst case O(|Ea| log n) fakes can be misclassified,
where |Ea| is the number of attack edges and n is the number
of accounts in the network. Accordingly, it is sufficient for the
attacker to establish Ω(n/ log n) attack edges in order to evade
this detection scheme with 0% TPR.

Viswanath et al. employed community detection techniques
to identify fake accounts in OSNs [19]. In general, community
detection decomposes a given graph into a number of tightly-
knit subgraphs that are loosely connected to each other, where
each subgraph is called a community [37], [38]. By expanding a
community starting with known real accounts [39], the authors
were able to identify the subgraph which contains mostly real
accounts. Recently, however, Alvisi et al. showed that this local

2A cut is a partition of nodes into two disjoint subsets. Visually, it is a line
that cuts through or crosses over a set of edges in the graph (see Fig. 2).

community detection technique can be easily circumvented if
the fakes establish sparse connectivity among themselves [9].

As binary classification often leads to high FPR [19], Cao
et al. proposed to rank the users instead so that most fakes are
ranked lower than real accounts [13]. The authors developed
SybilRank, a fake account detection system that assigns each
account a rank describing how likely it is to be fake based on a
modified random walk, where a lower rank means the account
is more likely to be fake. They also proved that O(|Ea| log n)
fakes can outrank real accounts in the worst case, given the
fakes establish |Ea| attack edges with victims at random.

While graph-based detection offers desirable security guar-
antees, real-world social graphs do not conform with the main
assumption on which it depends. In particular, various studies
confirmed that attackers can infiltrate OSNs on a large scale
by deceiving users into befriending their fakes [7], [10], [11].
As we discuss next, social infiltration renders graph-based fake
account detection ineffective in practice.

With Íntegro, we do not assume that fakes are limited by
how many attack edges they can establish. We instead leverage
victim prediction to weight the graph and bound the security
guarantee by the aggregate weight on attack edges, vol(Ea),
rather than their number, |Ea|. In particular, by assigning lower
weights to edges incident to potential victims, we upper bound
the value of vol(Ea) by |Ea|, as we discuss later in Section IV.

C. Abuse mitigation and the ground-truth

Due to the inapplicability of automated account suspension,
OSNs employ abuse mitigation techniques, such as CAPTCHA
challenges [8] and photo-based social authentication [14], so
as to rate-limit accounts that have been automatically flagged
as fake or suspicious. Moreover, these accounts are pooled for
manual inspection by experienced analysts who build a ground-
truth of real and fake accounts along with their features, before
suspending or removing verified fakes [8], [13], [27], [40].

While maintaining an updated ground-truth is important to
retrain deployed classifiers and estimate how effective they are
in practice, it is rather a time-consuming and non-scalable task.
For example, on an average day, each analyst at Tuenti inspects
250–350 accounts an hour, and for a team of 14 employees, up
to 30K accounts are inspected a day [13]. It is thus important
to rank user accounts in terms of how likely they are to be fake
in order to prioritize the inspection by analysts. Íntegro offers
this functionality and leads to a faster reaction against potential
abuse by fakes, benefiting both OSN operators and their users.

D. Social infiltration

In early 2011, we conducted a study to evaluate how easy it
is to infiltrate large OSNs such as Facebook [23]. In particular,
we used 100 automated fake accounts to send friend requests to
9.6K real users, where each user received exactly one request.

Main results. We found that users are not careful in their be-
friending decisions, especially when they share mutual friends
with the requester. This behavior was exploited by the fakes
to achieve large-scale social infiltration with a success rate of
up to 80%, in which case the fakes shared at least 11 mutual
friends with the victims. In particular, we reported two main
results that are important for designing fake account detection

0

10

20

30

40

50

60

70

80

!
""
#
$
%&
'
"#
()
&
%#
(*
+
,(

-./0#)(12(2)3#'45(

(a) User Susceptibility

0.00

0.25

0.50

0.75

1.00

5 15 25 35 45 55 65 75 85 95

!
"
#
$

%&'()*$+,$-.-/0$)12)3$4)*$,-0)$-//+&56$

50% of fakes had more

than 35 attack edges

(b) Attack scalability

Fig. 1: Social infiltration in Facebook. In (a), while the fakes did not
share mutual friends with invited users, the more friends these users
had the more likely it was for them to accept friend requests sent
by the fakes (CI=95%). In (b), contrary to what is often assumed in
literature, fake accounts can use simple automated social engineering
to establish a large number of attack edges.

systems. First, some users are more likely to become victims
than others. As shown in Fig. 1a, the more friends a user has,
the more likely the user is to accept friend requests sent by
fakes posing as strangers, regardless to their gender or mutual
friends. Second, attack edges are generally easy to establish in
OSN such as Facebook. As shown in Fig. 1b, an attacker can
establish enough attack edges such that there is no sparse cut
separating real accounts from fakes [36].

Implications. The study suggests that one can predict victims
of fake accounts from user-level activities using low-cost
features (e.g., number of friends). In addition, the study shows
that graph-based detection mechanisms that rely solely on the
graph structure are not effective under social infiltration. As
social infiltration is prominent in other OSNs [41], [42], new
proposals for graph-based detection should extend their threat
model and include attackers who can infiltrate on a large scale.

E. Analyzing victim accounts

While we are the first to utilize victim accounts to separate
fakes from real accounts, others have analyzed victim accounts
as part of the larger cyber criminal ecosystem in OSNs [43].

Wagner et al. developed predictive models to identify users
who are more susceptible to social infiltration in Twitter [11].
They found that susceptible users, also called potential victims,
tend to use Twitter for conversational purposes, are more open
and social since they communicate with many different users,
use more socially welcoming words, and show higher affection
than non-susceptible users.

Yang el al. studied the cyber criminal ecosystem on Twit-
ter [44]. They found that victims fall into one of three cate-
gories. The first are social butterflies who have large numbers
of followers and followings, and establish social relationships
with other accounts without careful examination. The second
are social promoters who have large following-follower ratios,
larger following numbers, and a relatively high URL ratios in
their tweets. These victims use Twitter to promote themselves
or their business by actively following other accounts without
consideration. The last are dummies who post few tweets but
have many followers. These victims are actually dormant fake
accounts at an early stage of their abuse.

III. INTUITION, GOALS, AND MODELS

We now introduce Íntegro, a fake account detection system
that is robust against social infiltration. We first present the
intuition behind our design, followed by its goals and models.

A. Intuition

Some users are more likely to become victims than others.
If we can train a classifier to accurately predict whether a user
is a victim with some probability, we can then highlight the
cut which separates fakes from real accounts in the graph. As
victims are benign users who are not adversarial, the output
of this classifier represents a reliable information which we
can integrate in the graph. To find the cut which crosses over
mostly attack edges, we can define a graph weighting scheme
that assigns edges incident to predicted victims lower weights
than others, where weight values are calculated from prediction
probabilities. In a weighted graph, the sparsest cut is the cut
with the smallest volume, which is the sum of weights on edges
across the cut. Given an accurate victim classifier, such a cut
is expected to cross over some or all attack edges, effectively
separating real accounts from fakes, even if the number of
attack edges is large. We find this cut using a ranking scheme
that ideally assigns higher ranks to nodes in one partition of the
cut than others. This ranking scheme is inspired from similar
graph partitioning algorithms proposed by Spielman et al. [45],
Yu [34], and Cao et al. [13].

B. Design goals

Íntegro aims to help OSN operators in detecting fake ac-
counts using a meaningful user ranking scheme. In particular,
Íntegro has the following design goals:

• High-quality user ranking (effectiveness). The system should
consistently assign higher ranks to real accounts than fakes. It
should limit the number of fakes that might rank similar to or
higher than real accounts. The system should be robust against
social infiltration under real-world attack strategies. Given a
ranked list of users, a high percentage of the users at the bottom
of the list should be fake. This percentage should decrease as
we go up in the list.

• Scalability (efficiency). The system should have a practical
computational cost which allows it to scale to large OSNs. It
should deliver ranking results in only few minutes. The system
should be able to extract useful, low-cost features and process
large graphs on commodity machines, in order to allow OSNs
to deploy it on their existing computer clusters.

C. System model

As illustrated in Fig. 2, we model an OSN as an undirected
graph G = (V,E), where each node vi ∈ V represents a
user account and each edge {vi, vj} ∈ E represents a bilateral
social relationship among vi and vj . In the graph G, there are
n = |V | nodes and m = |E| edges.

Attributes. Each node vi ∈ V has a degree deg(vi) that is
equal to the sum of weights on edges incident to vi. Moreover,
vi has a feature vector A(vi), where each entry aj ∈ A(vi)
describes a feature or an attribute of the account vi. Each edge
{vi, vj} ∈ E has a weight w(vi, vj) ∈ (0, 1], which is initially
set to w(vi, vj) = 1.

Real
!

Trusted
!

Victim
!

Fake
!

Attack!
edge

!

Real region
!

Fake region
!

 Gender #Friends #Posts!

Male
! 3

!
…

! 10!

Feature vector of B
!

!"

Fig. 2: System model. In this figure, the OSN is represented as a graph
consisting of 14 users. There are 8 real accounts, 6 fake accounts,
and 5 attack edges. The cut, represented by a dashed-line, partitions
the graph into two regions, real and fake. Victim accounts are real
accounts that are directly connected to fakes. Trusted accounts are
accounts that are known to be real and not victims. Each account has
a feature vector representing basic account information. Initially, all
edges have a unit weight, so user B for example has a degree of 3.

Regions. The node set V is divided into two disjoint sets, Vr

and Vf , representing real and fake accounts, respectively. We
refer to the subgraph induced by Vr as the real region Gr,
which includes all real accounts and the friendships between
them. Likewise, we refer to the subgraph induced by Vf as the
fake region Gf . The regions are connected by a set of attack
edges Ea between victim and fake accounts. We assume the
OSN operator is aware of a small set of trusted accounts Vt,
which are known to be real accounts that are not victims.

IV. SYSTEM DESIGN

We now describe the design behind Íntegro. We start with
a short overview of our approach, after which we proceed with
a detailed description of each system component.

A. Overview

Íntegro extracts low-cost features from user-level activities
in order to train a classifier to identify unknown victims in the
social graph. We refer to these accounts as potential victims,
as there are probabilities attached to their labels. Íntegro then
calculates new edge weights from prediction probabilities such
that edges incident to identified victims have lower weights
than others. Finally, Íntegro ranks user accounts based on the
landing probability of a modified random walk that starts from
a trusted account picked at random. The walk is “short” as it is
terminated early before it converges. The walk is “supervised”
as it is biased towards traversing nodes which are reachable via
higher-weight paths. This short, supervised random walk has
a higher probability to stay in the real region of the graph, as
it is highly unlikely to escape into the fake region in few steps
through low-weight attack edges. Accordingly, Íntegro assigns
most of the real accounts a higher rank than fakes.

B. Identifying potential victims

For each user vi, Íntegro extracts a feature vector A(vi)
from its recent user-level activities. A subset of feature vectors
is selected to train a binary classifier to predict whether each
user is a victim and with what probability. As attackers have

no control over victims, such a victim classifier is inherently
more resilient to adversarial attacks than similarly-trained fake
account classifier. Let us consider one concrete example. In the
“boiling-frog” attack [31], fake accounts can force a classifier
to tolerate abusive activities by slowly introducing similar
activities to the OSN. Because the OSN operator has to retrain
deployed classifiers in order to capture new behaviors, a fake
account classifier will learn to tolerate more and more abusive
activities, until the attacker can launch a full-scale attack
without detection [7]. For victim prediction, on the other hand,
this is possible only if the accounts used for training have been
hijacked. This situation can be avoided by manually verifying
the accounts, as described in Section II-C.

Feature engineering. Extracting and selecting useful features
from user activities can be both challenging and time consum-
ing. For efficiency, we seek features that can be extracted in
O(1) time per user. One candidate location for low-cost feature
extraction is the profile page of user accounts, where features
are readily available (e.g., a Facebook profile page). However,
these features are expected to be statistically “weak,” which
means they may not strongly correlate with whether a user is
a victim or not (i.e., the label). As we explain later, we require
the victim classifier to be better than random in order to deliver
robust fake account detection. This requirement, fortunately, is
easy to satisfy. In particular, we show in Section V that an OSN
operator can train and cross-validate a victim classifier that is
up to 52% better than random, using strictly low-cost features.

Supervised learning. For each user vi, Íntegro computes a vul-
nerability score p(vi) ∈ (0, 1) that represents the probability
of vi to be a victim. For a fixed operating threshold α ∈ (0, 1)
with a default value of α = 0.5, we say vi is a potential victim
if p(vi) ≥ α. To compute vulnerability scores, Íntegro uses
random forests (RF) learning algorithm [46] to train a victim
classifier, which given A(vi) and α, decides whether the user
vi is a victim with a score p(vi). We picked this learning
algorithm because it is both efficient and robust against model
over-fitting [47]. It takes O(n log n) time to extract n low-cost
feature vectors, each consisting of O(1) features, and train a
victim classifier. It also takes O(n) to evaluate node scores,
given the trained classifier and users’ feature vectors.

C. Integrating victim predictions and ranking users

To rank users, Íntegro computes the probability of a modi-
fied random walk to land on each user vi after k steps, where
the walk starts from a trusted user account picked at random.
For simplicity, we refer to the probability of a random walk to
land on a node as its trust value, so the probability distribution
of the walk at each step can be modeled as a trust propagation
process [48]. In this process, a weight w(vi, vj) represents the
rate at which trust may propagate from either side of the edge
{vi, vj} ∈ E. We next describe this process in detail.

Trust propagation. Íntegro utilizes the power iteration method
to efficiently compute trust values [49]. This method involves
successive matrix multiplications where each element of the
matrix is the transition probability of the random walk from
one node to another. Each iteration computes the trust distri-
bution over nodes as the random walk proceeds by one step.
Let Tk(vi) denote the trust collected by each node vi ∈ V
after k iterations. Initially, the total trust, denoted by τ ≥ 1,

is evenly distributed among the trusted nodes in Vt:

T0(vi) =

{

τ/|Vt| if vi ∈ Vt,

0 otherwise.
(1)

The process then proceeds as follows:

Tk(vi) =
∑

{vi,vj}∈E

Tk−1(vj) ·
w(vi, vj)

deg(vj)
, (2)

where in iteration k, each node vi propagates its trust Tk−1(vi)
from iteration k−1 to each neighbour vj , proportionally to the
ratio w(vi, vj)/ deg(vi). This is required so that the sum of the
propagated trust equals Tk−1(vi). The node vi then collects the
trust propagated similarly from each neighbour vj and updates
its trust Tk(vi). Throughout this process, τ is preserved such
that for each iteration k ≥ 1 we have:

∑

vi∈V

Tk−1(vi) =
∑

vi∈V

Tk(vi) = τ. (3)

Our goal is to ensure that most real accounts collect higher
trust than fake accounts. That is, we seek to limit the portion of
τ that escapes the real region Gr and enters the fake region Gf .
To achieve this property, we make the following modifications.

Adjusted propagation rates. In each iteration k, the aggregate
rate at which τ may enter Gf is strictly limited by the sum of
weights on the attack edges, which we denote by the volume
vol(Ea). Therefore, we aim to adjust the weights in the graph
such that vol(Ea) ∈ (0, |Ea|], without severely restricting trust
propagation in Gr. We accomplish this by assigning smaller
weights to edges incident to potential victims than other edges.
In particular, each edge {vi, vj} ∈ E keeps the default weight
w(vi, vj) = 1 if vi and vj are not potential victims. Otherwise,
we modify the weight as follows:

w(vi, vj) = min {1, β · (1−max{p(vi), p(vj)})} , (4)

where β is a scaling parameter with a default value of β = 2.
Now, as vol(Ea) → 0 the portion of τ that enters Gf reaches
zero as desired. For proper degree normalization, we introduce
a self-loop {vi, vi} with weight w(vi, vi) = (1− deg(vi)) /2
whenever deg(vi) < 1. Notice that self-loops are considered
twice in degree calculation.

Early-terminated propagation. In each iteration k, the trust
vector Tk(V) = 〈Tk(v1), . . . , Tk(vn)〉 describes the distribu-
tion of τ throughout the graph. As k → ∞ the vector converges
to a stationary distribution T∞(V), as follows [50]:

T∞(V) =

〈

τ · deg(v1)
vol(V)

, . . . , τ · deg(vn)
vol(V)

〉

, (5)

where the volume vol(V) in this case is the sum of degrees
of nodes in V .3 In particular, Tk(V) converges after k reaches
the mixing time of the graph, which is larger than O(log n) for
various kinds of social networks [37], [51], [52]. Accordingly,
we early terminate the propagation process before it converges
after ω = O(log n) iterations.

Degree-normalization. As described in Equation 5, trust prop-
agation is influenced by individual node degrees. As k grows
large, the propagation starts to bias towards high degree nodes.

3The definition of vol(U) depends on whether U contains edges or nodes.

!" #"

$" %

&" '"

(

)

*"

+"

,++"

+"

+"

,++"

+"+"

+"

+"

!" #"

$" %

&" '"

(

)

*"

-./"

0//,1"

./2"

0/+,1"

,"

0.1"32"

0321"

/-4"

0//51"

/."

031"
-.5"

0//.1"

/."

031"

/+"

0,1"

!" #"

$" %

&" '"

(

)

*"

/+."

/,3"

/+."

,/"

,2"

/,4"/+5"

/,4"

/+6"

)789":"/;+"

$<=>?@=@ABCDE":"+;-,"
"

F<G":"+;/"

(a) Initialization
!

(b) After 4 iterations
!

(c) Stationary distribution
!

Fig. 3: Trust propagation in a toy graph. Each value is rounded to its nearest natural number. Values in parentheses represent degree-normalized
trust (i.e., rank values). In this example, we set α = 0.5, β = 2, τ = 1, 000, p(·) = 0.05 except for p(E) = 0.95, and ω = ⌈log

2
(9)⌉ = 4.

This implies that high degree fake accounts may collect more
trust than low degree real accounts, which is undesirable for
effective user ranking. To eliminate this node degree bias, we
normalize the trust collected by each node by its degree. That
is, we assign each node vi ∈ V after ω = O(log n) iterations a
rank value T ′

ω(vi) that is equal to its degree-normalized trust:

T ′
ω(vi) = Tω(vi)/ deg(vi). (6)

Finally, we sort the nodes by their ranks in a descending order.

Example. Fig. 3 depicts trust propagation on a toy graph. In
this example, we assume each account has a vulnerability score
of 0.05 except the victim E, which has a score of p(E) = 0.95.
The graph is weighted using α = 0.5 and β = 2, and a total
trust τ = 1000 in initialized over the trusted nodes {C,D}.

After ω = 4 iterations, all real accounts {A,B,C,D,E}
collect more trust than fake accounts {F,G,H, I}. The nodes
also receive the correct ranking of (D,A,B,C,E, F,G,H, I),
as sorted by their degree-normalized trust. In particular, all
real accounts have higher rank values than fakes, where the
smallest difference is T ′

4
(E)− T ′

4
(F) > 40. Moreover, notice

that real accounts that are not victims have similar rank values,
where the largest difference is T ′

4
(D) − T ′

4
(C) < 12. These

sorted rank values, in fact, could be visualized as a stretched-
out step function that has a significant drop near the victim’s
rank value. However, if we allow the process to converge after
k > 50 iterations, the fakes collect similar or higher trust
than real accounts, following Equation 5. Also, notice that the
attack edges Ea = {{E,G}, {E,F}, {E,H}} have a volume
of vol(Ea) = 0.3, which is 10 times lower than its value if the
graph had unit weights, with vol(Ea) = 3. As we soon show
in Section V, adjusting the propagation rates is essential for
robustness against social infiltration.

D. Trusted accounts and community structures

Íntegro is robust against social infiltration as it limits the
portion of τ that enters Gf by the rate vol(Ea), regardless to
the number of attack edges, |Ea|. For the case when there are
few attack edges so that Gr and Gf are sparsely connected,
vol(Ea) is already small, even if one keeps w(vi, vj) = 1
for each attack edge {vi, vj} ∈ Ea. However, Gr is likely to
contain communities [37], [53], where each represents a dense
subgraph that is sparsely connected to the rest of the graph.
In this case, the propagation of τ in Gr becomes restricted
by the sparse inter-community connectivity, especially if Vt is
contained exclusively in a single community. We therefore seek
a selection strategy for trusted accounts, or seeds, that takes
into account the existing community structure in the graph.

Selection strategy. We pick trusted accounts as follows. First,
before rate adjustment, we estimate the community structure
in the graph using a community detection algorithm called
the Louvain method [54]. Second, after rate adjustment, we
exclude potential victims and pick small samples of nodes
from each detected community at random. Third and last, we
inspect the sampled nodes in order to verify they correspond to
real accounts that are not victims. We initialize the trust only
between the accounts that pass manual verification by experts.

In addition to coping with the existing community structure
in the graph, this selection strategy is designed to also reduce
the negative impact of seed-targeting attacks. In such attacks,
fakes befriend trusted accounts in order to adversely improve
their ranking, as the total trust τ is initially distributed among
trusted accounts. By choosing the seeds at random, however,
the attacker is forced to guess the seeds among a large number
of nodes. Moreover, by choosing multiple seeds, the chance
of correctly guessing the seeds is further reduced, while the
amount of trust assigned to each seed in lowered. In practice,
the number of seeds depends on available resources for manual
account verification, with a minimum of one seed per detected
community.

Community detection. We picked the Louvain method as it is
both efficient and produces high-quality partitions. The method
iteratively groups closely connected communities together to
greedily improve the modularity of the partition [55], which is
a measure for partition quality. In each iteration, every node
represents one community, and well-connected neighbors are
greedily combined into the same community. At the end of the
iteration, the graph is reconstructed by converting the resulting
communities into nodes and adding edges that are weighted by
inter-community connectivity. Each iteration takes O(m) time,
and only a small number of iterations is required to find the
community structure which greedily maximizes the modularity.

While one can apply community detection to identify fake
accounts [19], doing so implies that fakes always form tightly-
knit communities, which is not necessarily true [27]. This also
means fakes can easily evade detection if they establish sparse
connectivity among themselves [9]. In Íntegro, we do not make
such assumptions that restrict the capabilities of an attacker to
adversely manipulate the graph, including modification to both
the fake region and attack edges.

E. Computational cost

For an OSN with n users and m friendships, Íntegro takes
O(n log n) time to complete its computation, end-to-end. We
next analyze the running time in detail.

Runtime analysis. Recall that users have a limit on how many
friends they can have (e.g., 5K in Facebook, 1K in Tuenti),
so we have O(m) = O(n). Identifying potential victims takes
O(n log n) time, where it takes O(n log n) time to train an RF
classifier and O(n) time to compute vulnerability scores. Also,
weighting the graph takes O(m) time. Detecting communities
takes O(n) time, where each iteration of the Louvain method
takes O(m) time, and the graph rapidly shrinks in O(1) time.
Propagating trust takes O(n log n) time, as each iteration takes
O(m) time and the propagation process iterates for O(log n)
times. Ranking and sorting users by their degree-normalized
trust takes O(n log n) time. So, the running time is O(n log n).

F. Security guarantees

For the upcoming security analysis, we consider attackers
who establish attack edges with victims uniformly at random.
Even though our design does not depend on the actual mixing
time of the graph, we assume the real region is fast mixing
for analytical tractability. This means that it takes O(log |Vr|)
iterations for trust propagation to converge in the real region.
In other words, we assume there is a gap between the mixing
time of the whole graph and that of the real region such that,
after O(log n) iterations, the propagation reaches its stationary
distribution in the real region but not in the whole graph.

Main theoretical result. The main security guarantee provided
by Íntegro is captured by the following theoretical result. For a
complete proof, we refer the reader to our technical report [56]:

Theorem 4.1: Given a social graph with a fast mixing real
region and an attacker who randomly establishes attack edges,
the number of fake accounts that rank similar to or higher than
real accounts after O(log n) iterations is O (vol(Ea) log n).

Proof sketch: Let us consider a graph G = (V,E) with a
fast mixing real region Gr. As weighting a graph changes its
mixing time by a constant factor [57], Gr remains fast mixing
after rate adjustment.

After O(log n) iterations, the trust vector Tω(V) does not
reach its stationary distribution T∞(V). Since trust propagation
starts from Gr, the fake region Gf gets only a fraction f < 1
of the aggregate trust it should receive in T∞(V). On the other
hand, as the trust τ is conserved during the propagation process
(Equation 3), Gr gets c > 1 times higher aggregate trust than
it should receive in T∞(V).

As Gr is fast mixing, each real account vi ∈ Vr receives
approximately identical rank value of T ′

ω(vi) = c · τ/vol(V),
where τ/vol(V) is the degree-normalized trust value in T∞(V)
(Equations 5 and 6). Knowing that Gf is controlled by the
attacker, each fake vj ∈ Vf receives a rank value T ′

ω(vj) that
depends on how the fakes inter-connect to each other. However,
since the aggregate trust in Gf is bounded, each fake receives
on average a rank value of T ′

ω(vj) = f · τ/vol(V), which is
less than that of a real account. In the worst case, an attacker
can arrange a set Vm ⊂ Vf of fake accounts in Gf such that
each vk ∈ Vm receives a rank value of T ′

ω(vk) = c · τ/vol(V),
while the remaining fakes receive a rank value of zero. Such a
set cannot have more than (f/c) ·vol(Vs) = O (vol(Ea) log n)
accounts, as otherwise, f would not be less than 1 and Gf

would receive more than it should in Tω(V).

Improvement over SybilRank’s bound. Íntegro shares many
design traits with SybilRank, which is the state-of-the-art in
graph-based detection [13]. In particular, modifying Íntegro by
setting w(vi, vj) = 1 for each (vi, vj) ∈ E will in fact result in
an identical ranking. It is indeed the prediction and incorpora-
tion of potential victims that differentiates Íntegro from other
proposals, giving it the unique advantages outlined earlier.

As stated by Theorem 4.1, the bound on ranking quality
relies on vol(Ea), regardless to how large the set Ea grows. As
we weight the graph based on the output of the victim classi-
fier, our bound is sensitive to its classification performance. We
next prove that if an OSN operator uses a victim classifier that
is uniformly random, which means each user account vi ∈ V
is equally vulnerable with p(vi) = 0.5, then Íntegro is as good
as SybilRank in terms of ranking quality [13]:

Corollary 4.2: For a uniformly random victims classifier,
the number of fake accounts that rank similar to or higher than
real accounts after O(log n) iterations is O(|Ea| log n).

Proof: This classifier assigns each user account vi ∈ V
a score p(vi) = 0.5. By Equation 4, each edge {vi, vj} ∈ E
is assigned a unit weight w(vi, vj) = 1, where α = 0.5 and
β = 2. By Theorem 4.1, the number of fake accounts that
rank similar to or higher than real accounts after ω = O(log n)
iterations is O (vol(Ea) log n) = O(|Ea| log n).

By Corollary 4.2, Íntegro can outperform SybilRank in its
ranking quality by a factor of O (|Ea|/vol(Ea)), given the used
victim classifier is better than random. This can be enforced
during the cross-validation phase of the victim classifier, which
we thoroughly describe in what follows.

V. SYSTEM EVALUATION

We analyzed and evaluated Íntegro against SybilRank using
two real-world datasets recently collected from Facebook and
Tuenti. We also compared both systems through a large-scale
deployment at Tuenti in collaboration with its “Site Integrity”
team, which has 14 full-time account analysts and 10 full-time
software engineers who fight spam and other forms of abuse.

Compared system. We chose SybilRank for two main reasons.
First, as discussed in Section IV-F, SybilRank utilizes a similar
power iteration method to rank users albeit on an unweighted
version of the graph. This similarity allowed us to clearly show
the impact of leveraging victim prediction on fake account de-
tection. Second, SybilRank outperforms other contenders [13],
including EigenTrust [15], SybilGuard [16], SybilLimit [17],
SybilInfer [18], Mislove’s method [19], and GateKeeper [20].
We next contrast these systems to both SybilRank and Íntegro.

SybilGuard [16] and SybilLimit [17] identify fake accounts
based on a large number of modified random walks, where
the computational cost is O(

√
mn log n) in centralized setting

like OSNs. SybilInfer [18], on the other hand, uses Bayesian
inference techniques to assign each user account a probability
of being fake in O(n(log n)2) time per trusted account. The
system, however, does not provide analytical bounds on how
many fakes can outrank real accounts in the worst case.

GateKeeper [20], which is a flow-based detection approach,
improves over SumUp [58]. It relies on strong assumptions that
require balanced graphs and costs O(n log n) time per trusted
account, referred to as a “ticket source.”

Feature Brief description Type
RI Score (%)

Facebook Tuenti

User activity:

Friends Number of friends the user had Numeric 100.0 84.5
Photos Number of photos the user shared Numeric 93.7 57.4
Feed Number of news feed items the user had Numeric 70.6 60.8
Groups Number of groups the user was member of Numeric 41.8 N/A
Likes Number of likes the users made Numeric 30.6 N/A
Games Number of games the user played Numeric 20.1 N/A
Movies Number of movies the user watched Numeric 16.2 N/A
Music Number of albums or songs the user listened to Numeric 15.5 N/A
TV Number of TV shows the user watched Numeric 14.2 N/A
Books Number of books the user read Numeric 7.5 N/A

Personal messaging:

Sent Number of messages sent by the user Numeric N/A 53.3
Inbox Number of messages in the user’s inbox Numeric N/A 52.9
Privacy Privacy level for receiving messages 5-Categorical N/A 9.6

Blocking actions:

Users Number of users blocked by the user Numeric N/A 23.9
Graphics Number of graphics (photos) blocked by the user Numeric N/A 19.7

Account information:

Last updated Number of days since the user updated the profile Numeric 90.77 32.5
Highlights Number of years highlighted in the user’s time-line Numeric 36.3 N/A
Membership Number of days since the user joined the OSN Numeric 31.7 100
Gender User is male or female 2-Categorical 13.8 7.9
Cover picture User has a cover picture 2-Categorical 10.5 < 0.1
Profile picture User has a profile picture 2-Categorical 4.3 < 0.1
Pre-highlights Number of years highlighted before 2004 Numeric 3.9 N/A
Platform User disabled third-party API integration 2-Categorical 1.6 < 0.1

TABLE I: Low-cost features extracted from Facebook and Tuenti datasets. The RI score is the relative importance of the feature. A value of
“N/A” means the feature was not available for this dataset. A k-Categorical feature means this feature can have one value out of k categories
(e.g., boolean features are 2-Categorical).

Viswanath et al. used Mislove’s algorithm [39] to greedily
expand a local community around known real accounts in oder
to partition the graph into two communities representing real
and fake regions [19]. This algorithm, however, costs O(n2)
time and its detection can be easily evaded if the fakes establish
sparse connectivity among themselves [9].

Compared to these systems, SybilRank provides an equiv-
alent or tighter security bound and is more computationally ef-
ficient, as it requires O(n log n) time regardless to the number
of trusted accounts. Compared to SybilRank, Íntegro provides
O(|Ea|/vol(Ea)) improvement on its security bound, requires
the same O(n log n) time, and is robust against social infiltra-
tion, unlike SybilRank and all other systems.

A. Datasets

We used two datasets from two different OSNs. The first
dataset was collected in the study described in Section II-D,
and contained public user profiles and two graph samples. The
second dataset was collected from Tuenti’s production servers,
and contained a day’s worth of server-cached user profiles.

Research ethics. For collecting the first dataset, we followed
known practices and obtained the approval of our university’s
research ethics board [7]. As for the second dataset, we signed
a non-disclosure agreement with Tuenti in order to access an
anonymized, aggregated version of its user data, with the whole
process being mediated by Tuenti’s Site Integrity team.

The ground-truth. For the Tuenti dataset, the accounts were
inspected and labeled by its accounts’ analysts. The inspection
included matching user profile photos to its declared age or
address, understanding natural language in user posts, exam-
ining the friends of a user, and analyzing the user’s IP address
and HTTP-related information. For the Facebook dataset, we
used the ground-truth of the original study [7], which we also
re-validated for the purpose of this work, as we describe next.

Facebook. The dataset contained public profile pages of 9,646
real users who received friend requests from fake accounts. As
the dataset was collected in early 2011, we wanted to verify
whether these users are still active on Facebook. Accordingly,
we revisited their public profiles in June 2013. We found that
7.9% of these accounts were either disabled by Facebook or
deactivated by the users themselves. Accordingly, we excluded
these accounts, ending up with 8,888 accounts, out of which
32.4% were victims who accepted a single friend request sent
by a fake posing as a stranger. As fakes initially targeted users
at random, the dataset included a diverse sample of Facebook
users. In particular, these users were 51.3% males and 48.7%
females, lived in 1,983 cities across 127 countries, practiced 43
languages, and have used Facebook for 5.4 years on average.

The dataset also included two graph samples of Facebook,
which were collected using a stochastic version of the Breadth-
First Search method called “forest fire” [59]. The first graph
consisted of 2,926 real accounts with 9,124 friendships (the
real region), 65 fakes with 2,080 friendships (the fake region),

and 748 timestamped attack edges. The second graph consisted
of 6,136 real accounts with 38,144 friendships, which repre-
sented the real region only.

Tuenti. The dataset contained profiles of 60K real users who
received friend requests from fake accounts, out of which 50%
were victims. The dataset was collected in Feb 10, 2014 from
live production servers, where data resided in memory and no
expensive, back-end queries were made. For Tuenti, collecting
this dataset was a low-cost and easy process, as it only involved
reading cached user profiles of a subset of its daily active users,
users who logged in to Tuenti on that particular day.

B. Victim prediction

We seek to validate the following claim: An OSN operator
can identify unknown victim accounts with a probability that
is better than random, using strictly low-cost features extracted
from readily-available user profiles.

Features. As described in Table I, we extracted features from
both datasets to generate feature vectors. The only requirement
we had for feature selection was to have the feature value
available for all users in the dataset, so that the resulting feature
vectors are complete. For the Facebook dataset, we were able
to extract 18 features from public user profiles. For Tuenti,
however, the dataset was limited to 14 features, but contained
user features that are not publicly accessible.

Validation method. To evaluate the accuracy of the classifiers,
we performed a 10-fold, stratified cross-validation method [47]
using the RF learning algorithm. First, we randomly partitioned
the dataset into 10 equally-sized sets, with each set having the
same percentage of victims as the complete dataset. We next
trained an RF classifier using 9 sets and tested it using the
remaining set. We repeated this procedure 10 times (i.e., folds),
with each of the sets used exactly once for testing. Finally, we
combined the results of the folds by computing the mean of
their true-positive rate (TPR) and false-positive rate (FPR).

Performance metrics. The output of the classifier depends on
its operating threshold, which is a cutoff value in the prediction
probability after which the classifier identifies a given user as a
victim. In order to capture the trade-off between TPR and FPR
in single curve, we repeated the cross-validation method under
different threshold values using a procedure known as receiver
operating characteristics (ROC) analysis. In ROC analysis, the
closer the curve is to the top-left corner at point (0, 1) the better
the classification performance is. The quality of the classifier
can be quantified with a single value by calculating the area
under its ROC curve (AUC) [47].

We also recorded the relative importance (RI) of features
used for the classification. The RI score is computed by the
RF algorithm, and it describes the relative contribution of each
feature to the predictability of the label (i.e., a victim or a non-
victim), when compared to all other features [46].

Results. For both datasets, the RF classifier ended up with an
AUC greater than 0.5, as shown in Fig. 4a. In particular, for
the Facebook dataset, the classifier delivered an AUC of 0.7,
which is 40% better than random. For the Tuenti dataset, on the
other hand, the classifier delivered an AUC of 0.76, which is
52% better than random. Moreover, increasing the dataset size
more than 40K feature vectors did not significantly improve the

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

!
"#
$
%&
'
()
*
+
$
%"
,
-$
%

.,/($%&'()*+$%",-$%

!#$0*%

.,1$2''3%

4,05'6%

AUC = 0.76

AUC = 0.7

AUC = 0.5

(a) ROC Analysis

0.747

0.749

0.751

0.753

0.755

0.757

0.759

0.761

10 20 30 40 50 60

!
"
#
$
%#
&"
#
%'
$
(
"
&%
)
*
+
%,
'
&-
"
%

.#/#0"/%012"%3/45'0#$(06%

(b) Sensitivity to dataset size

Fig. 4: Victim prediction using the RF algorithm. In (a), the ROC
curves show the tradeoff between FPR and TPR for both datasets.
In ROC analysis, the closer the curve is to the upper-left corner the
more accurate it is. The area under the ROC curve (AUC) summarizes
the classifier’s performance. Therefore, an AUC of 1 means a perfect
classifier, while an AUC of 0.5 means a random classifier. We require
the victim classifier to be better than random. In (b), during cross
validation on Tuenti dataset, we observed that increasing the dataset
size more than 40K vectors did not significantly increase the AUC.

AUC during cross-validation, as show in Fig. 4b. This means
an OSN operator can train a victim classifier using a relatively
small dataset, so fewer accounts need to be manually verified.

C. Ranking quality

We compared Íntegro against SybilRank in terms of their
ranking quality under various attack scenarios, where ideally
real accounts should be ranked higher than fake accounts. Our
results are based on the average of at least 10 runs, with error
bars reporting 95% confidence intervals (CI), when applicable.
We picked the Facebook dataset for this comparison because
it included both feature vectors and graph samples.

Infiltration scenarios. We consider two main attack scenarios.
In the first scenario, we consider attackers who establish attack
edges by targeting users with whom their fakes have mutual
friends. Accordingly, we used the first Facebook graph which
contained timestamped attack edges, allowing us to replay the
infiltration by 65 socialbots (n=2,991 and m=11,952). We refer
to this scenario as the targeted-victim attack.

In the second scenario, we consider attackers who establish
attack edges by targeting users at random [13]. We designated
the second Facebook graph as the real region. We then gen-
erated a synthetic fake region consisting of 3,068 fakes with
36,816 friendships using the small-world graph model [60].
We then added 35,306 random attack edges between the two
regions (n=9,204 and m=110,266). As suggested in related
work [34], we used a relatively large number of fakes and at-
tack edges in order to stress-test both systems under evaluation.
We refer to the this scenario as the random-victim attack.

Propagation rates. For each infiltration scenario, we deployed
the previously trained victim classifier in order to assign new
edge weights. As we injected fakes in the second scenario,
we generated their feature vectors by sampling each feature
distribution of fakes from the first scenario.4 We also assigned
edge weights using another victim classifier that simulates two
operational modes. In the first mode, the classifier outputs the

4We excluded the “friends” feature, as it can be computed from the graph.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

!
"
#
$
%#
&"
#
%'
$
(
"
&%
)
*
+
%,
'
&-
"
%

.'/0"&%12%#3#,4%"(5"6%

7$8"5&19:"68%

7$8"5&19);%

7$8"5&19)#$(1/%

<=0>?)#$4%

(a) Targeted-victim attack

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

!
"
#
$
%#
&"
#
%'
$
(
"
&%
)
*
+
%,
'
&-
"
%

.'/0"&%12%#3#,4%"(5"6%7891'6#$(6:%

;$8"5&1<="68%
;$8"5&1<)>%
;$8"5&1<)#$(1/%
?@0AB)#$4%

(b) Random-victim attack

Fig. 5: The ranking quality of both systems in terms of its AUC under
each infiltration scenario (CI=95%). SybilRank and Íntegro resulted in
a similar performance when a random victim classifier is used, which
represents a practical baseline for Íntegro. As the number of attack
edges increased, SybilRank’s AUC decreased significantly close to
0.7, while Íntegro sustained its high performance with AUC > 0.9.

best possible victim predictions with an AUC≈1 and proba-
bilities greater than 0.95. In the second mode, the classifier
outputs uniformly random predictions with an AUC≈0.5. We
used this classifier to evaluate the theoretical best and practical
worst case performance of Íntegro.

Evaluation method. To evaluate each system’s ranking qual-
ity, we ran the system using both infiltration scenarios starting
with a single attack edge. We then added another attack
edge, according to its timestamp if available, and repeated the
experiment. We kept performing this process until there were
no more edges to add. At the end of each run, we measured
the resulting AUC of each system, as explained next.

Performance metric. For the resulting ranked list of accounts,
we performed ROC analysis by moving a pivot point along the
list, starting from the bottom. If an account is behind the pivot,
we marked it as fake; otherwise, we marked it as real. Given
the ground-truth, we measured the TPR and the FPR across
the whole list. Finally, we computed the corresponding AUC,
which in this case quantifies the probability that a random real
account is ranked higher than a random fake account.

Seeds and iterations. In order to make the chance of guessing
seeds very small, we picked 100 trusted accounts that are non-
victim, real accounts. We used a total trust that is equal to n,
the number of nodes in the given graph. We also performed
⌈log

2
(n)⌉ iterations for both Íntegro and SybilRank.

Results. Íntegro consistently outperformed SybilRank in rank-
ing quality, especially as the number of attack edges increased.
Using the RF classifier, Íntegro resulted in an AUC which is
always greater than 0.92, and is up to 30% improvement over
SybilRank in each attack scenario, as shown in Fig 5.

In each infiltration scenario, both systems performed well
when the number of attack edges was relatively small. In other
words, the fakes were sparsely connected to real accounts and
so the regions were easily separated. As SybilRank limits the
number of fakes that can outrank real accounts by the number
of attack edges, its AUC degraded significantly as more attack
edges were added to each graph. Íntegro, however, maintained
its performance, with at most 0.07 decrease in AUC, even when
the number of attack edges is relatively large. Also, notice that
Íntegro performed nearly as good as SybilRank when a random

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

!
"
#
$
%#
&"
#
%'
$
(
"
&%
)
*
+
%,
'
&-
"
%

./01#$,"%2&34%15"%2#6"%&"7/3$%

8$1"7&39):%

;<=/>)#$6%

(a) Distant-seed attack

0

0.2

0.4

0.6

0.8

1

1 10 20 30 40 50 60 70 80 90 100

!
"
#
$
%#
&"
#
%'
$
(
"
&%
)
*
+
%,
'
&-
"
%

.'/0"&%12%-3,4/35"(%6&'76"(%#,,1'$67%

8$6"9&1:;"76%
8$6"9&1:)<%
8$6"9&1:)#$(1/%
=>03?)#$@%

(b) Random-seed attack

Fig. 6: The sensitivity of both systems to each seed-targeting attack
(CI=95%). In distant-seed attack, an attacker befriends users that are
at a particular distance from all trusted accounts, which represents
a practical worst case scenario for both system. In the random-seed
attack, the attacker directly befriends a subset of the trusted accounts.
Overall, both systems are sensitive to seed-targeting attacks.

victim classifiers is used, but performed much better when the
RF victim classifier was used. This clearly shows the impact
of leveraging victim prediction on fake account detection.

D. Sensitivity to seed-targeting attacks

Sophisticated attackers might obtain a full or partial knowl-
edge of which accounts are trusted by the OSN operator. As
the total trust is initially distributed among these accounts, an
attacker can adversely improve the ranking of the fakes by
establishing attack edges directly with them. We next evaluate
both systems under two variants of this seed-targeting attack.

Attack scenarios. We focus on two main attack scenarios. In
the first scenario, the attacker targets accounts that are k nodes
away from all trusted accounts. This means that the length of
the shortest path from any fake account to any trusted account
is exactly k+1, representing the distance between the seeds
and the fake region. For k=0, each trusted account is a victim
and located at a distance of 1. We refer to this scenario, which
assumes a resourceful attacker, as the distant-seed attack.

In the second scenario, attackers have only a partial knowl-
edge and target k trusted accounts picked at random. We refer
to this scenario as the random-seed attack.

Evaluation method. To evaluate the sensitivity of each system
to a seed-targeting attack, we used the first Facebook graph to
simulate each attack scenario. We achieved this by replacing
the endpoint of each attack edge in the real region with a real
account picked at random from a set of candidates. For the
first scenario, a candidate account is one that is k nodes away
from all trusted accounts. For the second scenario, a candidate
account is simply any trusted account. We ran both systems
under different values of k and measured the corresponding
AUC at the end of each run.

Results. In the first attack scenario, both systems had a poor
ranking quality when the distance was small, as illustrated in
Fig. 6a. Because Íntegro assigns low weights to edges incident
to victim accounts, the trust that escapes to the fake region is
less likely to come back into the real region. This explains why
SybilRank had a slightly better AUC for distances less than 3.
However, once the distance was larger, Íntegro outperformed
SybilRank as expected from earlier results.

[18] G. Danezis and P. Mittal, “Sybilinfer: Detecting sybil nodes using social
networks.” in Proceedings of the 9th Annual Network & Distributed

System Security Symposium. ACM, 2009.

[19] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove, “An analysis
of social network-based sybil defenses,” in Proceedings of ACM SIG-

COMM Computer Communication Review. ACM, 2010, pp. 363–374.

[20] N. Tran, J. Li, L. Subramanian, and S. S. Chow, “Optimal sybil-
resilient node admission control,” in INFOCOM, 2011 Proceedings

IEEE. IEEE, 2011, pp. 3218–3226.

[21] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Comm. of ACM, vol. 51, no. 1, pp. 107–113, 2008.

[22] G. Malewicz and et al., “Pregel: a system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. ACM, 2010, pp. 135–146.

[23] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, “Design and
analysis of a social botnet,” Computer Networks, vol. 57, no. 2, pp.
556–578, 2013.

[24] T. Hwang, I. Pearce, and M. Nanis, “Socialbots: Voices from the fronts,”
interactions, vol. 19, no. 2, pp. 38–45, 2012.

[25] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “COMPA: Detecting
compromised accounts on social networks.” in Proceedings of the 20th

Annual Network & Distributed System Security Symposium, 2013.

[26] M. Motoyama and et al., “Dirty jobs: The role of freelance labor in web
service abuse,” in Proceedings of the 20th USENIX Security Symposium.
USENIX Association, 2011, pp. 14–14.

[27] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
“Uncovering social network sybils in the wild,” in Proceedings of 2011

ACM Internet Measurement Csonference. ACM, 2011, pp. 259–268.

[28] G. Stringhini, C. Kruegel, and G. Vigna, “Detecting spammers on
social networks,” in Proceedings of the 26th Annual Computer Security

Applications Conference. ACM, 2010, pp. 1–9.

[29] G. Wang and et al., “You are how you click: Clickstream analysis
for sybil detection,” in Proceedings of the 22nd USENIX Security

Symposium. USENIX Association, 2013, pp. 1–8.

[30] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme
for irregular graphs,” Journal of Parallel and Distributed computing,
vol. 48, no. 1, pp. 96–129, 1998.

[31] J. Tygar, “Adversarial machine learning.” IEEE Internet Computing,
vol. 15, no. 5, 2011.

[32] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the

11th ACM SIGKDD. ACM, 2005, pp. 641–647.

[33] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, “Key
challenges in defending against malicious socialbots,” in Proceedings

of the 5th USENIX Workshop on Large-scale Exploits and Emergent

Threats, vol. 12, 2012.

[34] H. Yu, “Sybil defenses via social networks: a tutorial and survey,” ACM

SIGACT News, vol. 42, no. 3, pp. 80–101, 2011.

[35] B. Viswanath and et al., “Exploring the design space of social network-
based sybil defenses,” in In Proceedings of the 4th International

Conference on Communication Systems and Networks. IEEE, 2012,
pp. 1–8.

[36] Y. Boshmaf, K. Beznosov, and M. Ripeanu, “Graph-based sybil de-
tection in social and information systems,” in Proceedings of 2013

IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining. IEEE, 2013.

[37] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp.
29–123, 2009.

[38] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, 2010.

[39] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are
who you know: inferring user profiles in online social networks,” in
Proceedings of the third ACM international conference on Web search

and data mining. ACM, 2010, pp. 251–260.

[40] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng,
and B. Y. Zhao, “Social turing tests: Crowdsourcing sybil detection,” in
Proceedings of the 20th Annual Network & Distributed System Security

Symposium. ACM, 2013.

[41] S. Ghosh and et al., “Understanding and combating link farming in the
twitter social network,” in Proceedings of 21st international conference

on World Wide Web. ACM, 2012, pp. 61–70.

[42] A. Elyashar, M. Fire, D. Kagan, and Y. Elovici, “Homing socialbots:
intrusion on a specific organization’s employee using socialbots,” in
Proceedings of 2013 ACM International Conference on Advances in

Social Networks Analysis and Mining. ACM, 2013, pp. 1358–1365.

[43] G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng,
and B. Y. Zhao, “Follow the green: growth and dynamics in twitter
follower markets,” in Proceedings of the 2013 conference on Internet

measurement conference. ACM, 2013, pp. 163–176.

[44] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu, “Analyzing
spammers’ social networks for fun and profit: a case study of cyber
criminal ecosystem on twitter,” in Proceedings of WWW Conference.
ACM, 2012, pp. 71–80.

[45] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems,”
in Proceedings of the 36th annual ACM symposium on Theory of

computing. ACM, 2004, pp. 81–90.

[46] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[47] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statisti-

cal learning: Data mining, inference, and prediction, second edition.
Springer, 2009.

[48] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with trustrank,” in Proceedings of VLDB, 2004, pp. 576–587.

[49] G. H. Golub and H. A. Van der Vorst, “Eigenvalue computation in the
20th century,” Journal of Computational and Applied Mathematics, vol.
123, no. 1, pp. 35–65, 2000.

[50] E. Behrends, Introduction to Markov chains with special emphasis on

rapid mixing. Vieweg, 2000, vol. 228.

[51] M. Dellamico and Y. Roudier, “A measurement of mixing time in social
networks,” in Proceedings of the 5th International Workshop on Security

and Trust Management, Saint Malo, France, 2009.

[52] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of
social graphs,” in Proceedings of the 10th annual conference on Internet

measurement. ACM, 2010, pp. 383–389.

[53] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical
properties of community structure in large social and information
networks,” in Proceedings of the 17th international conference on World

Wide Web. ACM, 2008, pp. 695–704.

[54] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfold-
ing of communities in large networks,” Journal of Statistical Mechanics:

Theory and Experiment, vol. 2008, no. 10, 2008.

[55] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[56] Y. Boshmaf, D. Logothetis, G. Siganos, J. Lería, J. Lorenzo, M. Ri-
peanu, and K. Beznosov, “Íntegro: Leveraging victim prediction for
robust fake account detection in OSNs,” LERSSE technical report, 2014.

[57] A. Sinclair, “Improved bounds for mixing rates of Markov chains and
multicommodity flow,” in Proceedings of Latin American Symposium

on Theoretical Informatics. Springer-Verlag, 1992, pp. 474–487.

[58] D. N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online
content voting.” in NSDI, vol. 9, 2009, pp. 15–28.

[59] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Pro-

ceedings of the ACM SIGKDD Conference. ACM, 2006, pp. 631–636.

[60] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[61] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evalu-
ating collaborative filtering recommender systems,” ACM Transactions

on Information Systems (TOIS), vol. 22, no. 1, pp. 5–53, 2004.

[62] A. Mohaisen, H. Tran, N. Hopper, and Y. Kim, “On the mixing time
of directed social graphs and security implications,” in Proceedings of

the ASIACCS Conference. ACM, 2012, pp. 36–37.

[63] Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, J. Walter,
J. Huang, and Z. M. Mao, “Innocent by association: early recognition
of legitimate users,” in Proceedings of the 2012 ACM conference on

Computer and communications security. ACM, 2012, pp. 353–364.

