Telefónica
Investigación y Desarrollo

Thwarting fake accounts by predicting their victims

Yazan Boshmaf
University of British Columbia

Dionysios Logothetis, Georgios Siganos Telefonica Research

Matei Ripeanu, Konstantin Beznosov University of British Columbia

Why are users accounts valuable?

User accounts are assets

Average MAU* in Facebook (Millions)**

* Monthly active user (MAU): The basic user metric in Facebook
** Facebook Quarterly Reports, Facebook Investor Relations: http://investor.fb.com

User accounts generate revenue

Average revenue per Facebook user*

2 billion US dollars in Q3'13

Average revenue per Facebook user*

How many user accounts are fake?

Fake accounts are rising

Undesirable* accounts in Facebook (Millions)**

Fake accounts are rising

Undesirable* accounts in Facebook (Millions)**

* Undesirable Facebook accounts include both duplicates and fake accounts (worst case estimates) ** Facebook Quarterly Reports, Facebook Investor Relations: http://investor.fb.com

Why are fake accounts harmful?

Fake accounts are bad for business

cBCnews |Technology \& Science

Facebook shares drop on news of fake accounts

83 million accounts false or duplicates, company reveals
The Associated Press Posted: Aug 03, 2012 10:47 AM ET | Last Updated: Aug 03, 2012 2:11 PM ET
"... If advertisers, developers, or investors do not perceive our user metrics to be accurate representations of our user base, or if we discover material inaccuracies in our user metrics, our reputation may be harmed and advertisers and developers may be less willing to allocate their budgets or resources to Facebook, which could negatively affect our business and financial results..."

Fake accounts are bad for users

OSNs are attractive medium for abusive content*

Free infrastructure to steal data, spread malware \& misinform

* Boshmaf et al. Design and analysis of a social botnet. Computer Networks, 2013.

Bad for users is bad for business

APRIL 08, 2013
Your Facebook friends may be evil bots
Computer scientists have unleashed hordes of humanlike social bots to infiltrate Facebook -- and they're awfully effective
By Eagle Gamma | InfoWorld

Koobface virus hits Facebook

An e-mail lure and a fake Adobe Flash update request could load a nasty virus on your PC.
by Robert Vamosi। December 4, 2008 4:36 PM PST

PCWorld

'Socialbots' Invade Facebook: Cull 250GB of Private Data

What's the role of fake accounts in today's underground economy?

Fake accounts are market enablers

* Thomas et al. The role of the underground market in OSN spam and abuse. Usenix Security, 2013.

Fake account are profitable "commodity"

Prices from Buyficcs.com
 СЕРВИС РЕГИСТРАЦИИ АККАУНТОВ

Web Service	Price per Thousand
Hotmail.com, resale*	$\$ 2.00$
Hotmail.com	$\$ 4.00$
Yahoo	$\$ 6.00$
Twitter	$\$ 20.00$
Google (PVA)**	$\$ 100.00$
Facebook (PVA)**	$\$ 100.00$

Already a multi-million dollar business

* Resale indicates account was previously used in another activity
** Phone Verified Accounts: A fake account verified by a text challenge-response using a cell phone

How do OSNs fight against fakes?

Threat model

Attackers can create and control fakes in a botnet-like fashion

ـ Strong tie
------- Weak tie

Attackers first infiltrate the OSN then mount subsequent attacks

Fake-centered security paradigm

Detect fake account by identifying what "fakeness looks like"

Defined by anomalies in social content or structure

Feature-based detection

Identifies suspicious accounts using supervised machine learning

Relies on features extracted from real and fake accounts

Which features to use?

Is this account fake or real?

Fake accounts \approx real accounts

* Barreno et al. The security of machine learning. J. on Machine Learning, 2010

How to build a ground-truth?

Analysts verify suspicious accounts and update ground-truth

Roadblocks to "quarantine" highly-suspicious accounts

How to build a ground-truth?

Internet crowds verify suspicious accounts to update ground-truth

Roadblocks to "quarantine" highly-suspicious accounts

Proactive protection

 \square Near real-time responses\square Scales to millions of users
\square Hard to circumvent
\square Accurate detection
\square Provably secure

What else can we do?

Graph-based detection

Identifies suspicious accounts using (network) graph analysis

Relies on the structural properties of real and fake accounts

* Boshmaf et al. Graph-based Sybil detection in social and information systems. ASONAM, 2013.

Which structural properties?

Find a (provably) sparse cut between the regions

[^0]
What about real-world graphs?

A Facebook community of 2,991 user accounts

Is the community infiltrated?

No sparse cut \approx no fake accounts

But users are easily deceived...

* Boshmaf et al. The socialbot network: When bots socialize for fame and money. ACSAC, 2011.

But users are easily deceived...

* Boshmaf et al. The socialbot network: When bots socialize for fame and money. ACSAC, 2011.

Proactive protection

\square Near real-time responses
\square Scales to millions of users
\square Hard to circumvent
\square Accurate detection (conditional)
V Provably secure

Can we do better?

Victim-centered security paradigm

Detect fake accounts by first identifying their (potential) victims

This leads to a more resilient defense mechanism (epidemiology?)

SybilPredict in a nutshell

Predicts victims who (are likely to) have attack edges with fakes in O(n logn) time

Pros:
(0) Proactive protection
© Near real-time responses
(0) Scales to millions of users
© Hard to circumvent

Cons:
© Doesn't identify fakes
© Introduces usability problems
© Not provably secure

SybilPredict in a nutshell

Embeds predictions into graph to identify suspicious accounts in O(n logn + m) time

Pros:

© Scales to millions of users
© Hard to circumvent
© Accurate detection
© Provably secure

Cons:
© Retroactive detection
© Batch processed

Uses short random walks biased against identified victims to rank users

SybilPredict in a nutshell

Uses distributed machine learning and graph processing infrastructure

Runs in $O(n \log n+m)$ time end-to-end

We claim SybilPredict is:

\checkmark Proactive protection \square Near real-time responses
\square Scales to millions of users
\square Hard to circumvent
\square Accurate detection
\checkmark Provably secure

Challenges and research directions

SPONSORS
General Sponsor

twitter
Tweets Follow
(.) Usenix 20 Mar Association ©usen

Home $*$ Key Challenges in Defending Against Malicious Socialbots
 Key Challenges in Defending Against ${ }^{\text {comect }}$

Malicious Socialbots

Open access to the papers is sponsored by USENIX.
Authors: Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu, University of British Columbia

Open Access Content
Paper content is restricted to registered attendees until the event begins. Once the event begins, the content becomes free and open to everyone.

> Boshmaf PDF 国 View the slides BibTeX

Abstract:
The ease with which we adopt online personas and relationships has created a soft spot that cyber criminals are willing to exploit. Advances in artificial intelligence make it feasible to design bots that sense, think and act cooperatively in social settings just like human beings. In the wrong hands, these bots can be used to infiltrate online communities, build up trust over time and then send personalized messages to elicit information, sway opinions and call to action. In this position paper, we observe that defending against such malicious bots raises a set of unique challenges that relate to web automation, onlineoffline identity binding and usable security.

* Boshmaf et al. Key challenges in defending against malicious socialbots. Usenix LEET, 2012

More info?

Fork or clone SybilPredict now: https://grafos.ml

On-going deployment at istuenti

Details: Example \& prelim results

How does it work?

Graph-based detection fails now

Idea: Artificially prune attack edges based of victim prediction

Victim prediction

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends
\#Photos \#Posts Victim? 1 54 \cdots 22\mathbf{c} Feature vector

Trusted
Inspected
Victim
Not-victim

Victim prediction

\#Friends

4		\#Phosts			
Victim?					
4	42	\cdots	33		$\mathbf{0}$
:---:	Feature vector				

Target variable

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends
\#Photos \#Posts Victim? 6 512 \cdots 1024 Feature vector $\mathbf{1}$

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends

		\#Photos			
\#Posts	Victim?				
5	476	\cdots	688		$\mathbf{1}$
:---:	Feature vector				

Target variable

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends
\#Photos \#Posts Victim? 4 564 \cdots 2033 Feature vector $\mathbf{1}$

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends
\#Photos \#Posts Victim? 3 2066 \cdots 766$\mathbf{0}$ Feature vector

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends	\#Photos		\#Posts	Victim?
2	32	\ldots	58	0
Feature vector				get vari

Trusted
Inspected
Victim

Not-victim

Victim prediction

\#Friends	\#Photos		\#Posts	Victim?
2	32	\ldots	58	0
Feature vector				get vari

Trusted
Inspected
Victim

Not-victim

Victim prediction

FPR = 8.3\%, TPR = 75\%

Malicious account detection

Assigns weights to edges based on victim predictions

$$
\begin{aligned}
\text { High }=1 & \\
\text { Medium }<1 & \square \\
\text { Low }=0.1 &
\end{aligned}
$$

Penalizes relationships of identified victims (low edge weights)

Malicious account detection

Ranks accounts by degree-normalized landing probabilities of a short random walk

Real accounts \approx similar ranks but malicious accounts \approx significantly smaller ranks

Malicious account detection

Malicious account detection

Malicious account detection

Early-terminates the random walk after O(logn) steps

Malicious account detection

Ranks a node by its degree-normalized landing probability

Malicious account detection

Sorts accounts then estimates a threshold to identify suspicious ones

Malicious account detection

Theorem: Number of fake accounts that rank equal or higher than real accounts is $\mathrm{O}\left(\operatorname{vol}\left(\mathrm{E}_{\mathrm{A}}\right) \operatorname{logn}\right)$ where $\operatorname{vol}\left(\mathrm{E}_{\mathrm{A}}\right) \leq\left|\mathrm{E}_{\mathrm{A}}\right|$

Theorem: Number of fake accounts that rank equal or higher

How does it perform in practice?

Real-world Sybil activity in Facebook

Data were collected in 2011 January 28 through March 23

A total of 8.8 K users received friend requests (32.4\% victims)

More mutual friends more likely to accept a request sent by fakes

Real-world Sybil activity in Facebook

Data were collected in 2011 January 28 through March 23

~2K different cities across 127 countries

Real-world Sybil activity in Facebook

Data were collected in 2011 January 28 through March 23

43 different languages

A mean of 5.4 years on Facebook

Real-world Sybil activity in Facebook

Data were collected in 2011 January 28 through March 23

139K nodes, 660 K edges, 74 communities, diameter of 9

Predicting victims

Random Forests (RF) is 40% better than random

18 features from public profiles

Random Forests classifier with $\mathrm{AUC}=0.7$

Detecting malicious accounts

Trace-driven simulation on most infiltrated community (3K nodes)

Few (random) seeds are enough

Near prefect ranking, up to 30% better

Detecting malicious accounts

Trace-driven simulation on most infiltrated community (3K nodes)

Seeds are sensitive to targeted attacks

Clear cutoff threshold in rank distribution

Detecting malicious accounts

Near linear scalability with exponentially increasing order

RF is "embarrassingly parallel"

Ranking is "PageRank scalable"

In conclusion, SybilPredict is:

\checkmark Proactive protection
Near real-time responses
\square Scales to millions of users
\square Hard to circumvent
\square Accurate detection
\square Provably secure
(patent disclosure submitted!)

[^0]: * Spielman et al. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. ACM Theory of computing, 2004.

