




;1-%*$../0(&1*$%-*$11-&1*

K** Monthly active user (MAU): The basic user metric in Facebook 
** Facebook Quarterly Reports, Facebook Investor Relations: http://investor.fb.com  
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1.2 billion MAU in Q3’13 

Average MAU* in Facebook (Millions)** 
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* Facebook Quarterly Reports, Facebook Investor Relations: http://investor.fb.com  
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Average revenue per Facebook user* 
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Advertising

2 billion US dollars in Q3’13 
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Undesirable* accounts in Facebook (Millions)** 

* Undesirable Facebook accounts include both duplicates and fake accounts (worst case estimates) 
** Facebook Quarterly Reports, Facebook Investor Relations: http://investor.fb.com  

50 million fakes in Q3’13 



Q*

!"#$% !&#!% $#&% !'#'% !'#"%
(&#'%

()#$% ("#(%

!)#*% !"#"% !&#'%

(&#'%

"*#+% "+#)%

&(#+% &&#&% &*#+%

$)#$%

Q2'12 Q3'12 Q4'12 Q1'13 Q2'13 Q3'13 

,-./01234%

5264%78490:9;%

5264%7<2/010=->;%

86.6 87.6 

76 
79 83.2 

143.9 

P$,-*$../0(&1*$%-*%'1'()*

Undesirable* accounts in Facebook (Millions)** 

* Undesirable Facebook accounts include both duplicates and fake accounts (worst case estimates) 
** Facebook Quarterly Reports, Facebook Investor Relations: http://investor.fb.com  

17.4 thousand fakes per hour on average 
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* Boshmaf et al. Design and analysis of a social botnet. Computer Networks, 2013. 
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OSNs are attractive medium for abusive content* 

Free infrastructure to steal data, spread malware & misinform 
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* Resale indicates account was previously used in another activity 

** Phone Verified Accounts: A fake account verified by a text challenge-response using a cell phone  
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Web Service Price per Thousand 

Hotmail.com, resale* $2.00 

Hotmail.com $4.00 

Yahoo $6.00 

Twitter $20.00 

Google (PVA)** $100.00 

Facebook (PVA)** $100.00 

* Resale indicates account was previously used in another activity 
** PVA indicates a phone verified account; challenge response text to cell phone 

Prices from  

Already a multi-million dollar business 
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Attackers can create and control fakes in a botnet-like fashion 

Attackers first infiltrate the OSN then mount subsequent attacks 
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* Stein et al. Facebook Immune System. EuroSys SNS, 2011 

Identifies suspicious accounts using supervised machine learning 

Relies on features extracted from real and fake accounts 
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* Stein et al. Facebook Immune System. EuroSys SNS, 2011 

User Data 

& Logs 

Feature-

based 

Detection 

1 

Suspicious 
Accounts 

Analysts verify suspicious accounts and update ground-truth  

Roadblocks to “quarantine” highly-suspicious accounts 

Abuse Mitigation 

2 

Manual Analysis  

3 

Fake 
Accounts 
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* Boshmaf et al. Graph-based Sybil detection in social and information systems. ASONAM, 2013. 

Relies on the structural properties of real and fake accounts 

Identifies suspicious accounts using (network) graph analysis  
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* Spielman et al. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear 
systems. ACM Theory of computing, 2004. 

Real accounts 
subgraph

"

Fake accounts 
subgraph

"

Attack edges
"

Find a (provably) sparse cut between the regions 
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A Facebook community of 2,991 user accounts 

User account 
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* Boshmaf et al. The socialbot network: When bots socialize for fame and money. ACSAC, 2011. 

Red denotes fake 

Black denotes real 
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* Boshmaf et al. The socialbot network: When bots socialize for fame and money. ACSAC, 2011. 

Clique of 65 
fake accounts 

~12 attack edge 
per fake account 
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Detect fake accounts by first identifying their (potential) victims 

This leads to a more resilient defense mechanism (epidemiology?)  
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Manual Analysis  

4 

Fake 
Accounts 

Graph-

based 

Detection 

3 

Suspicious  
Accounts 

Social 

Graph 

Uses short random walks biased against identified victims to rank users 

B32'=`%-5'.&*'(*$*(0&1"-==*

Abuse Mitigation 

2 

Potential 
Victims 

Embeds predictions into graph to identify suspicious accounts '(*Gb(*=/)(*e*7c*time 
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Fork or clone B32'=`%-5'.&*now: https://grafos.ml  

On-going deployment at 

For SybilPredict technical report, please email at boshmaf@ece.ubc.ca  
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Non-Sybil region
"

Sybil region
"

Cut size = fZ]f*= 3
"



Cut size = fZ]f = 10
"
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Non-Sybil region
"

Sybil region
"

Idea: Artificially prune attack edges based of victim prediction 
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FPR = 8.3%, TPR = 75% 
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Trusted
"

Inspected
"

Victim
"

Not-victim
"

Penalizes relationships of identified victims (low edge weights)  

Cut size = 6/=bZ]c = 1.9
"

Assigns weights to edges based on victim predictions 
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Real accounts ! similar ranks but malicious accounts ! significantly smaller ranks 

Ranks accounts by degree-normalized landing probabilities of a short random walk 
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Early-terminates the random walk after Gb=/)(c steps 
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Ranks a node by its degree-normalized landing probability 
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Sorts accounts then estimates a threshold to identify suspicious ones 
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Identified as suspicious 

FPR = 0% 
TPR = 88% 
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Data were collected in 2011 January 28 through March 23*

A total of 8.8K users received friend 
requests (32.4% victims) 

More mutual friends more likely to 
accept a request sent by fakes 



C-$=^#/%=5*B32'=*$.&'6'&3*'(*P$.-2//,*

Data were collected in 2011 January 28 through March 23*

~2K different cities across 127 countries 
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Data were collected in 2011 January 28 through March 23*

43 different languages A mean of 5.4 years on Facebook 
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Data were collected in 2011 January 28 through March 23*

139K nodes, 660K edges, 74 communities, diameter of 9 

Most infiltrated 
community (65 fakes) 

Largest community 
(6.1K nodes) 
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Trace-driven simulation on most infiltrated community (3K nodes)*

Few (random) seeds are enough Near prefect ranking, up to 30% better 
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Trace-driven simulation on most infiltrated community (3K nodes)*

Seeds are sensitive to targeted attacks Clear cutoff threshold in rank distribution 
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Near linear scalability with exponentially increasing order 

RF is “embarrassingly parallel” Ranking is “PageRank scalable” 




