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ABSTRACT

The problem of spreading information is a topic of consid-
erable recent interest, but the traditional influence maxi-
mization problem is inadequate for a typical viral marketer
who cannot access the entire network topology. To fix this
flawed assumption that the marketer can control any arbi-
trary k nodes in a network, we have developed a decentral-
ized version of the influential maximization problem by influ-
encing k neighbors rather than arbitrary users in the entire
network. We present several reasonable neighbor selection
schemes and evaluate their performance with a real dataset
collected from Twitter. Unlike previous studies using net-
work topology alone or synthetic parameters, we use real
propagation rate for each node calculated from the Twitter
messages during the 2010 UK election campaign. Our ex-
perimental results show that information can be efficiently
propagated in online social networks using neighbors with a
high propagation rate rather than those with a high number
of neighbors.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online In-
formation Services; J.4 [Computer Applications]: Social
and Behavioral Sciences

General Terms

Human Factors, Measurement

Keywords

Information diffusion; Information dissemination; Online so-
cial networks; Viral marketing

1. INTRODUCTION
In the field of social network analysis, a fundamental prob-

lem is to develop an epidemiological model for finding an
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efficient way to spread information through the model. It
seems natural that many people are often influenced by their
friends’ opinions or recommendations. This is called the
“word of mouth” effect and has for long been recognized as
a powerful force affecting product recommendation [2].
Recent advances in the network theory have provided us

with the mathematical and computational tools to under-
stand them better. For example, in the Independent Cascade
(IC) model proposed by Goldenberg et al. [8], (1) some non-
empty set of nodes are initially activated (or influenced); (2)
at each successive step, the influence is propagated by acti-
vated nodes, independently activating their inactive neigh-
bors based on the propagation probabilities of the adjacent
edges. Here, activated nodes mean the nodes that have
adopted the information or have been infected. This models
how a piece of information will likely be spread through a
network over time. It enables us to investigate what sort
of information diffusion scheme might be the most effective
one under certain conditions.
This model is also highly relevant to security. For exam-

ple, cyberstalkers might be interested in spreading rumors,
gossips, news or pictures through social networks to damage
their victims’ (e.g., celebrity, political party, company or
country) reputation. The same model works in social media
campaign where spammers and propagandists want to share
their advertisements on online social networks; fake accounts
with automated bots are often used to amplify advertising
campaigns in social media [17, 3, 19].

Thus far, however, the models and analytic tools used to
analyze epidemics have been somewhat limited. Most pre-
vious studies [7, 11] aimed to analyze the process of infor-
mation diffusion by choosing a set of arbitrary k nodes in
a network as the initially activated nodes from a bird’s eye
perspective based on the full control of the entire network,
which may indeed be unacceptable in many real life applica-
tions since there is no such central entity (except the online
social network service provider itself).
From the point of view of an individual user (e.g., viral

marketer) who wants to efficiently spread a piece of infor-
mation (or a rumor) through a network, a more reasonable
epidemiological model would not assume the knowledge of
the entire network topology. Kim and Yoneki [14] recently
introduced the problem called Influential Neighbor Selection
(INS) where a spreader s spreads a piece of information
through carefully chosen k neighbors of hers instead of a set
of any arbitrary k nodes in a network. Under this model,
each user can only communicate with the user’s immediate



neighbors and has no knowledge of the global network topol-
ogy except for her own connections. However, their work
has two limitations: (1) it was simply assumed to use a con-
stant propagation rate, despite variations in user propaga-
tion rates in practice. For example, in real-world online so-
cial network services such as Twitter or Facebook, each user
has a distinct propagation rate for her neighbors on spread-
ing information according to the user’s reputation and/or
role, such as opinion formers, leaders or followers [4]; (2)
their experimental results were limited to undirected graphs
with parameter values chosen in a somewhat ad-hoc manner.

More recently, Kim [12] extended this model by intro-
ducing several parameters (user propagation weight, content
interestingness, and decay factor) to provide a more gen-
eral and practical information diffusion model. This gives
much finer granularity than the previous model [14]. How-
ever, their experiments still depended on synthetic parame-
ters that might significantly affect the information diffusion
process.

With a real dataset (Twitter users and messages related
to the 2010 UK election campaign), we revisited the INS

problem and evaluated the performance of four spreading
schemes from the simple random neighbor selection to a so-
phisticated neighbor selection scheme using both the “num-
ber of friends” and “user propagation rate” each neighbor
has. To measure the performance of these schemes, we used
the conventional Independent Cascade (IC) model [8], which
is widely used for the analysis of information diffusion [8,
11, 9].

We performed simulation with various parameters. Our
experimental results suggest that the scheme to select neigh-
bors who wrote popular posts produced the best overall re-
sults, even without consideration of the “number of friends”.
That is, we can efficiently spread information without know-
ing the “number of friends” each user has. Moreover, we
found that the information diffusion speed of some schemes
(e.g., random neighbor selection) in the previous study [12]
was quite exaggerated and thus contributed to the reduc-
tion of the performance gap between information diffusion
schemes. For example, we observed that the Random selec-
tion scheme is not practically effective even with a high
number k initially activated nodes; this is quite different
from previous studies [14, 12], which showed that the Ran-

dom selection scheme achieved reasonable performance when
k ≥ 3.

The rest of this paper is organized as follows. In Section 2
we formally define the INS problem and notations. Then,
we present the four reasonable neighbor selection schemes
in Section 3. In Section 4, we evaluate their performance
through simulation with a real dataset collected from Twit-
ter, and recommend the best neighbor selection scheme with
various conditions. Related work is discussed in Section 5.
We conclude in Section 6.

2. INFLUENTIAL NEIGHBOR SELECTION

PROBLEM
We begin with the definition of the Independent Cascade

(IC) model [8], and then introduce the Influential Neighbor

Selection (INS) problem, which will be used in the rest of
the paper.

We model an influence network as a directed graph G =
(V,E) consisting of a set of nodes V and a set of ordered

Figure 1: An example of the INS problem. With the

spreader node s, when k = 1, we should choose a as

an initially activated node to maximize |St|; however,

in the traditional IM problem, the optimal choice

might be either d or e rather than a.

pairs of nodes E called the edge set, representing the com-
munication channels between node pairs. A directed edge
(u, v) from node u to node v of G is associated with a prop-

agation probability λu,v, which is the probability that v is
activated by u through the edge in the next time step if u
is activated. Here, v is said to be a neighbor (or successor)
of node u. For node u ∈ V , we use N(u) to denote the
set of u’s neighbors. The out-degree of node u is denoted
as d(u) = |N(u)|, which could be used simply in estimating
the node u’s influence on information propagation.
In the IC model [8], we assume that the time during which

a network is observed is finite; without loss of generality, the
time period is divided into fixed discrete steps {1, . . . , t}.
Let Si ⊆ V be the set of nodes that are activated at the
time step i. We consider the dynamic process of information
diffusion starting from the set of nodes S0 ⊆ V that are
initially activated until the time step t as follows: At each
time step i where 1 ≤ i ≤ t, every node u ∈ Si−1 activates
its inactivated neighbors v ∈ V \ Si−1 with a propagation
probability λu,v. The process ends after the time step t with
St. A conventional Influential Maximization (IM) problem
is to find a set S0 consisting of k nodes to maximize |St|.
The Influential Neighbor Selection (INS) problem [14] is a

variant of the IM problem: Given a spreader s ∈ V and a
budget constraint k, we aim to maximize the number of ac-
tivated nodes in a network after the time step t by selecting
s’s min(k, d(s)) neighbors only (rather than any subset of k
nodes), as the set of nodes S0 ⊆ V that are initially acti-
vated. Compared to the conventional IM problem, the INS

problem has three additional requirements: (1) each node
only communicates with its immediate neighbors; (2) each
node has no knowledge about the entire network topology
except for its own connections; and (3) each message size is
bounded to O(log |V |) bits (more intuitively, each message
can only contain the node identity and some constant values
of the node properties). Figure 1 shows an example of the
INS problem. Given this graph with the spreader node s,
when k = 1, we should choose a as an initially activated
node to maximize the number of activated nodes in future;
however, in the traditional IM problem, the optimal choice
might be either d or e rather than a.

However, the initial IM problem in [14] – every edge has
the same propagation probability – is too simple to correctly
reflect the characteristics of the information diffusion process
in real-world situations. Clearly, in the most popular online
social network services such as Twitter or Facebook, each
user has a different propagation rate for her neighbors on



spreading information in a network according to the user’s
reputation or role such as opinion formers, leaders or fol-
lowers [4]. Kim [12] extended this epidemiological model by
introducing the three important parameters (user propaga-
tion weight ω, content interestingness φ, and decay factor γ)
to establish a more general and practical information prop-
agation model. The details are as follows:

The user propagation weight ω represents each user’s av-
erage propagation rate to her neighbors. Given a user u,
ω(u) is defined as τ(u)/(ρ(u)/d(u)) where τ(u) and ρ(u) are
the number of u’s posts shared by u’s neighbors and the
number of u’s all posts, respectively. For example, if a user
u with 1,000 neighbors wrote 10 posts and gets 100 shares,
ω(u) is 100/(10 · 1000) = 0.01.

The content interestingness φ(r) of information r repre-
sents a measure to determine how much users want to share
the information r with their neighbors. Naturally, higher
content interestingness φ of a piece of information may fa-
cilitate higher propagation for the information through a
network. Previous studies [22, 10] showed that propagation
probability λ can be greatly changed with the content of
information (i.e., content interestingness φ).

The decay factor γ at hop N represents the ratio between
the propagation probability at hop N and the propagation
probability at hop N−1. In practice, the propagation prob-
ability might decay exponentially as the cascades spreads
away from the information source. Here, one possible expla-
nation would be that the freshness of the information would
drop as the time goes on.

With these parameters, given an edge (u, v) ∈ E, a spreader
s ∈ V and a piece of information r, λ(u, v, s, r) is finally de-
fined as follows [12]:

λ(u, v, s, r) = min{ω(u) · φ(r) · γδ(u,s,r)−1, 1} (1)

where δ(u, s, r) is the number of times the information r is
to be relayed from s to u.

For example, when φ(r) = 0.0136, δ(u, s, r) = 3 and γ =
0.2, a user u with ω(u) = 1 would activate his (or her)
neighbor v with the probability of about 0.0005 (≈ 1·0.0136·
(0.2)2).

In this paper, we also use these parameters and the prop-
agation probability equation to provide more realistic simu-
lation results.

3. NEIGHBOR SELECTION SCHEMES
For the INS problem described in Section 2, we basically

use a greedy strategy to select the influential neighbors.
Assume that a spreader s ∈ V wants to spread a piece of

information r through the network G = (V,E) by sharing
r with its min(k, d(s)) neighbors at the initial step. Node s
first tries to assess the influence of information diffusion for
each neighbor v ∈ N(s), respectively, by collecting the infor-
mation about v. We note that neighbors’ influence should be
estimated based on s’s local information only, rather than
the whole network. Since online social networks, such as
Facebook, typically provide APIs to obtain the neighbor-
hood information about user, s can automatically collect
the information about her own neighbors. After estimat-
ing the neighbors’ influences, s selects the top min(k, d(s))
nodes with the highest influence values from N(s); that is,
for the IC model in Section 2, these nodes are selected as
the set of initially activated nodes S0 ⊆ V .

For the purpose of influence estimation, we test the follow-
ing four selection schemes based on the “number of friends”
and “user propagation weight” each user has:

• Random selection: Pick min(k, d(s)) nodes randomly
from N(s). This scheme is very simple and easy to
implement – the spreader s does not need any knowl-
edge of the network topology.

• Degree selection: Pick the min(k, d(s)) highest-degree
nodes from N(s). This scheme requires the degree
knowledge of neighbors.

• Propagation-weight selection: Pick the min(k, d(s))
highest user propagation weight nodes fromN(s). This
scheme requires the user propagation weight knowl-
edge of the nodes. To calculate ω(v) for s’s neighbor
v ∈ N(s), the information about τ(v), ρ(v) and d(v)
is required where τ(v) and ρ(v) are the number of v’s
posts shared by v’s neighbors and the number of v’s
all posts, respectively.

• Hybrid selection: Pick the min(k, d(s)) nodes v ∈ V
with the highest weighted node degree ωd(v) which is
defined as ωd(v) = ω(v) · d(v). At the first glance, this
scheme requires the knowledge of both the degree and
the user propagation weight of neighbors. In fact, how-
ever, this scheme can be simply implemented without
the knowledge about node degree since ω(v) · d(v) is
calculated as τ(v)/ρ(v); d(v) is automatically canceled
in the calculation.

We note that these schemes seem the most reasonable,
since we cannot calculate network centrality metrics, such as
closeness and betweenness [13], which require the knowledge
of the entire network topology. Here, we do not consider the
other metrics (e.g., [21]) to estimate node centrality based on
localized information alone since previous work [14] already
showed that these metrics are ineffective for the INS problem
compared with node degree.
The communication costs of all these schemes are O(d(s))

since the spreader s can obtain d(v), ω(v) or ωd(v) through
only direct communications with each neighbor v ∈ N(s).

4. EXPERIMENTAL RESULTS
In this section, we analyze the performance of the selection

schemes presented in Section 3.
For experiments, we used the Twitter dataset [1] related

to the 2010 UK general election between the 5th and 12th
of May since this dataset reflects typical behavior of infor-
mation diffusion in a political campaign.

To remove insignificant test cases, we filtered out users
who did not either write any posts or had any followers.
The used graph consists of 45,179 nodes and 1,938,734 edges
representing a sub-network of Twitter. Also, this graph has
the following properties: (1) its average degree is 42.91; (2)
its number of strongly connected components is 4559; and
(3) the number of weakly connected components is 18 (i.e.,
this graph is divided into 18 disconnected components).

In these experiments, our goal was to find the best neigh-
bor selection scheme to maximize information diffusion in
Twitter. Unlike previous studies that used network topology
alone [14] or synthetic datasets [12], we used real propaga-
tion rate ω(u) for each node u calculated from the Twitter
messages.
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(a) k = 1 (b) k = 4 (c) k = 7

Figure 2: Changes in the ratio of the average number of activated nodes to the total number of nodes in the

network over time t.

We used the IC model described in Section 2 to evaluate
the performance of the schemes presented in Section 3, with
varying the number of initially activated neighbors k. The
propagation probability λ(u, v, s, r) on an edge (u, v) ∈ E
was defined with the spreader s ∈ V and a piece of informa-
tion r described in Section 2.

In each simulation run, we randomly picked a spreader
with a piece of information r and then selected its k neigh-
bors according to a selection criterion presented in Section 3,
where the content interestingness φ(r) was randomly drawn
from the normal distribution with the mean of 0.0136 and
standard deviation of 0.0501, according to real data [22]. We
also set the decay factor γ from 0.2 to 1.0.

For evaluation, we observed the changes in the number of
activated nodes during the 200th time steps. With a fixed
k, we repeated this 500 times to minimize the bias of the
test samples (randomly selected spreaders); we measured
the ratio of the average number of activated nodes per test
sample to the total number of nodes in the network. To
establish a fair comparison, the parameter values were the
same for all selection schemes in the ith run. Figure 2 shows
how these values are changed over time t with k = 1, 4 or 7
and γ = 0.2 under the IC model.

From this figure, we can see that the Hybrid selection
scheme outperformed the other selection schemes: When
k = 1, in the Hybrid selection scheme, the ratio of the aver-
age number of activated nodes to the total number of nodes
were over 0.0024 while the ratios were around 0.0016 in De-

gree and Propagation-weight selection schemes. As k in-
creased to 7, the gap between Hybrid and other selection
schemes was rather reduced, but still seemed significant.
This shows that we can effectively spread information us-
ing the Hybrid scheme, even without consideration of the
“number of friends” information since the node degree is not
needed to use the Hybrid scheme. Interestingly, the Degree

selection was slightly better than the Propagation-weight
selection when k = 4 or 7, while these schemes produced
almost the same results when k = 1.

Paired one-tailed t-tests with α = 0.01 were used to com-
pare the performance of the neighbor selection schemes in
a statistically significant manner. We tested whether the
distributions of the numbers of the activated nodes between
schemes after the final time step (i.e., the 200th) were statis-
tically different. The test results show that the performance
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Figure 3: Changes in the ratio of the average num-

ber of activated nodes to the total number of nodes

in the network with the number of initially activated

neighbors k.

of all the schemes appeared to be significantly different, ex-
cept for the comparison of Propagation-weight and Degree

when k = 1 (p − value = 0.5202). These test results are
quite different from those in the previous study [12] using
synthetic parameters where Hybrid and Propagation-weight
selection schemes achieved almost the same performance re-
sults.

We now discuss how the performance of the different neigh-
bor selection schemes may change with the number of ini-
tially activated nodes k. To accelerate the speed of infor-
mation diffusion, a possible straightforward approach is to
increase the number of initially activated neighbors k. Prob-
ably, we can imagine that even the naive Random selection
scheme can also be used to efficiently disseminate a piece of
information if k increases sufficiently.
To demonstrate the effects of k, we analyzed the ratio of

the average number of activated nodes after the 200th time
steps with k ranging from 1 to 7. The experimental results
are shown in Figure 3.

Unsurprisingly, the performance of all selection schemes
overall improved as k increased. The ratios of activated
nodes, except the Random selection scheme, show almost a
similar pattern – the curves commonly had gentle slopes.
Although the Random selection scheme was relatively highly
affected by k, the average number of activated nodes in the
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Figure 4: Changes in the ratio of the average num-

ber of activated nodes to the total number of nodes

in the network with the decay factor γ.

Random selection scheme was still below 0.0016 even for k =
7. We can also see that the performance gaps between the
schemes still existed with k. The performance of the Hybrid
selection scheme, when k = 4, was better than the other
schemes even when k = 7. We note that these results are
quite different from previous work [12] where the effects of k
were rather limited – in all selection strategies, the number
of activated nodes were not greatly increased with k ≥ 3.

Finally, we now discuss the effects of the decay factor γ
presented in Section 2. We performed simulation with the
same parameters, while varying γ from 0.2 to 1. The exper-
imental results are shown in Figure 4. We use a different
y-axis scale on this figure since the numbers of activated
nodes were greatly increased with γ.

From this figure, we can see that the performance of all
selection schemes generally improved and the gaps between
the schemes grew with γ. Thus our suggestion is to use
the Hybrid selection scheme even with a large decay fac-
tor γ. Interestingly, we can also observe two different pat-
terns in Figure 4: one is for the Hybrid and Degree selection
schemes, which tends to increase quickly when γ = 0.6, and
the other one is for the Propagation-weight and Random se-
lection schemes, which tends to increase relatively slowly.

5. RELATED WORK
Influential Maximization (IM) problem has recently re-

ceived increasing attention, given the growing popularity of
online social networks, such as Facebook and Twitter, which
have provided great opportunities for the diffusion of infor-
mation, opinions and adoption of new products.

The IM problem was originally introduced for marketing
purposes by Domingos and Richardson [7]: The goal is to
find a set of k initially activated nodes with the maximum
number of activated nodes after the time step t. Kempe
et al. [11] formulated this problem under two basic stochas-
tic influence cascade models: the Independent Cascade (IC)
model [8] and the Linear Threshold (LT) model [11]. In the
IC model, each edge has a propagation probability and in-
fluence is propagated by activated nodes independently ac-
tivating their inactive neighbors based on the edge propaga-
tion probabilities. In the LT model, each edge has a weight,
each node has a threshold chosen uniformly at random, and
a node becomes activated, if the weighted sum of its ac-
tivated neighbors exceeds its threshold. Kempe et al. [11]

showed that the optimization problem of selecting the most
influential nodes in a graph is NP-hard for both models, and
also proposed a greedy algorithm that provides a good ap-
proximation ratio of 63% of the optimal solution. However,
their greedy algorithm relies on the Monte-Carlo simulation
on influence cascade to estimate the influence spread, which
makes the algorithm slow and not scalable.
A number of papers in recent years have tried to overcome

the inefficiency of this greedy algorithm by improving the
original algorithm [16, 6] or proposing new algorithms [15,
6, 5]. Leskovec et al. [16] proposed the Cost-Effective Lazy

Forward (CELF) scheme in selecting new seeds to reduce the
number of influence spread evaluations, but it is still slow
and not scalable to large graphs, as demonstrated in [5].
Kimura and Saito [15] proposed shortest-path based heuris-
tic algorithms to evaluate the influence spread. Chen et
al. [6] proposed two faster greedy algorithms called Mixed-

Greedy andDegreeDiscount for the ICmodel where the prop-
agation probabilities on all edges are the same; MixedGreedy
removes the edges that have no contribution for propagat-
ing influence, which can reduce the computation on the un-
necessary edges; DegreeDiscount assumes that the influence
spread increases with node degree. Chen et al. [5] proposed
the Maximum Influence Arborescence (MIA) heuristic based
on local tree structures to reduce computation costs. Wang
et al. [20] proposed a community-based greedy algorithm
for identifying the most influential nodes. The main idea is
to divide a social network into communities, and estimate
the influence spread in each community instead of the whole
network topology.
As a variant of the conventional IM problem, Kim and

Yoneki [14] introduced the problem called Influential neigh-

bor selection (INS) to select the most influential neighbors of
a node, rather than the most influential arbitrary nodes in
a network. More recently, Kim [12] extended this epidemio-
logical model by introducing several parameters (user prop-

agation weight, content interestingness, and decay factor) to
provide a more general and practical information diffusion
model. However, they still used synthetic parameters that
might significantly affect the information diffusion process.
In this paper, we found that the information diffusion speed
of some schemes (e.g., Propagation-weight and Random) in
the previous study [12] was quite overestimated.
Many studies noted that the levels of information shar-

ing activity varied greatly between users in social networks.
Romero et al. [18] argued that a majority of Twitter users
might be passive, not engaging in creating and sharing infor-
mation. Cha et al. [4] found that users with many followers
do not necessarily influence in terms of spawning retweets or
mentions – the Spearman’s rank correlation coefficient be-
tween the “ranking by followers” and “ranking by retweets”
for all users was 0.549. Zhou et al. [22] showed that in Twit-
ter, the content of a tweet might be an important factor
in determining the “retweet rate” – the mean retweet rate
was 0.0136 but standard deviation was as high as 0.0501.
Also, they observed that cascades tend to be wide and not
too deep suggesting that the retweet rate may decay as the
cascades spreads away from the source – the mean of decay
factors was about 0.2.

6. CONCLUSIONS
Given the increasing popularity of online social network-

ing services, there has been growing interest in investigating



the characteristics of epidemic spreading, in order to accel-
erate or mitigate it. Kim and Yoneki [14] introduced the
optimization problem to find influential neighbors for max-
imizing information diffusion. We have extended their work
by introducing several important parameters (user propa-

gation weight, decay factor and content interestingness) to
provide a more general and practical information diffusion
model.

We presented four neighbor selection schemes (Random,
Degree, Propagation-weight and Hybrid selection) and ex-
plored their feasibility. We compared these selection schemes
by computing the ratio of the average number of activated
nodes to the total number of nodes in the network. We dis-
cussed which selection methods are generally recommended
under which conditions.

Our experimental results showed that the Hybrid selection
scheme produced the best results of maximizing information
diffusion through intensive simulation. Even with a small k,
the Hybrid selection scheme outperformed the other selec-
tion schemes with a relatively large k. Since the Hybrid

selection scheme can use the information about users’ posts
alone, we can efficiently spread information without the in-
formation about the “number of friends” each user has.

As an extension to this work, we are considering a theo-
retical study to formally generalize and verify our results in
order to consider a wide range of application environments
(e.g., each of which will have different levels of content in-
terestingness). We will also develop a more extended frame-
work for information diffusion. We may consider not only
a spreader with the knowledge about user’s neighbors but
also a spreader with a partial knowledge of network topol-
ogy (e.g., a subset of users or neighbors of neighbors). For
example, we will extend the concept of the INS problem by
expanding the set of the initially activated nodes with the
distance from the information spreader.

Another interesting problem is to consider a new problem
in the opposite direction to prevent (or reduce) the spread
of information (e.g., rumor) by carefully monitoring (impor-
tant) users with a high “user propagation weight” and/or
“number of friends”.
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