Architecture-Centered Composition of Adaptive and Dependable Enterprise Security Services

Yi Deng

Konstantin Beznosov

Center for Advanced Distributed Systems Engineering (CADSE)

School of Computer Science

Florida International University

{deng,beznosov}@cs.fiu.edu

Outline

- Overview of CADSE
- Architecture-Centered Composition of Application Authorization Service - Research Approach
- Preliminary Research Results
- The next steps

CADSE Goals

- To establish a streamlined program that integrates basic research, applied R&D, graduate education and training
 - Establish proper balance between basic research with applied R&D
 - Use real-world problems to guide basic research and to facilitate technology transfer
 - Use R&D to facilitate and complement basic education
 - Integrate research & education with industry collaboration

CADSE Overview

- Personnel: 3 professors, 4 postdocs and research associates, close to 20 graduate students
- Facility: 5 research labs total over 3500 sq. ft, over 50 workstations, servers and other equipment
- Funding: Over \$3 million research funding from various Federal agencies and industry

Current Projects

- Distributed object technology
- Enterprise system development based on CORBA
- Software Security
- Software architecture and domain specific architecture
- Formal engineering methods, software verification and testing
- Distributed multimedia Information systems

Outline

- Overview of CADSE
- Architecture-Centered Composition of Application Authorization Service - Research Approach
- Preliminary Research Results
- The next steps

Composibility of Secure Enterprise Systems

- Support for integration
- Uniform administration of enterprise security policies
- Assurance to end-to-end properties
 - security policies, performance, availability, etc.
- Support for continuous evolution
 - add or change system/components
 - change policies or business process, etc

Problems in Application-Level Security

- Must handle fine grain, complex, dynamic policies
- Embedded in application systems today
 - multiple points of control
 - problems in administration
 - expensive life-cycle

What Solutions Available Today?

- Middleware security architectures
 - CORBA, EJB, DCE, DCOM
- Resource Access Decision (RAD) specification (to be discussed later)
- Open issues
 - support for fine-grain, complex policies
 - dynamic changes and configuration
 - performance and availability concerns
 - end-to-end properties assurance

Framework of Our Approach

Enterprise Security
Architecture
(structural basis of composition)

Constraint Patterns (behavioral basis of composition)

Modeling & Analysis Methods (Assessment & Assurance to composition)

Distributed Security Architecture: Research Issues

- Focus on CORBA-based Application Authorization Service (AAS) Architecture
 - Configurability
 - support dynamic policy changes
 - support different distributed, e.g. Internet based ecommerce, environments
 - Adequate performance (distributed authorization and load balancing)
 - High availability (replication and fault tolerance)
 - Application composibility

Aspect-Oriented Models of Security Service

Outline

- Overview of CADSE
- Composition of Adaptive and Dependable Application Authorization Service - Research Approach
- Preliminary Research Results
 - Research in application authorization service
 - An example
 - Modeling and analysis of AAS
- The next steps

Framework of Resource Access Decision Facility

RAD Components

Current Results

- Conceptual architecture of RAD
- A prototype CORBA-based Application Authorization Service (CAAS)
 - CORBA-based
 - highly configurable
 - portable (Java)
- Performance experiments
- Support for different types of policies
 - federations, multi-policy, RelBAC

CAAS Configuration Examples

Example

An Example: Initial Policies

No.	Description
P-1	Any caregiver can read patient's name.
P-2	Registration clerk can modify patient name and demographic information.
P-3	Nurse can read patient's name and demographic information, modify current episode
	demographic information, can read current episode regular records and current episode
	regular test results.
P-4	Technician can modify current episode regular and sensitive test results.
P-5	Assistant physician, in addition to what a nurse can do, can also read all regular records
	of patients.
P-6	Physician, in addition to what assistant physician can do, also can modify current episode
	regular and sensitive records, and read regular and sensitive records and test results from
	previous episodes.
P-7	Psychiatrist, in addition to what a physician can do, also can modify mental information.

Modeling with RBAC

Role Hierarchy

User to Role Assignment Relation (UA)

Registration Nurse Technician

Care-giver

Permission Assignment (PA) Relation

Resources													
Roles		PN	DD	CDD	CRR	CSR	CRT	CST	PRR	PSR	PRT	PST	AMD
	Psychiatrist												RW
	Physician				W	RW		R		R		R	
	Physician								R		R		
	Assistant												
	Nurse		R	RW	R		R						
	Registration	W	RW										
	Clerk												
	Technician						RW	RW					
	Care-giver	R											

Base Architecture Model

Sample constraints (reachability):

 $P2 \rightarrow AF P5$, $P7 \rightarrow AF P9$, $P8 \rightarrow AF P10$, $P11 \rightarrow AF P9$, $P6 \rightarrow AF P3$

Composition of DC&PEs based on RBAC Policies

- P13 Attributes
- P14 Decisions from PE
- P15 Attributes received by RBAC PE
- P16 Decision made by RBAC PE
- T6 DC invokes RBAC PE
- T7 RBAC PE passes decision to DC

Behavior Model of Policy Evaluator

Constraints:

```
 [\forall (SA, op, rsn, d) \square P15.(SA, op, rsn) \land (res \notin RES) \rightarrow \blacklozenge P16.d \land (d = `U')] 
 \land [\forall (SA, op, rsn, d) \square P15.(SA, op, rsn) \land (res \in RES) \land (\exists rl \in SA, (rl, op, rsn) \in PA) 
 \rightarrow \blacklozenge P3.d \land (d = `Y')] 
 \land [\forall (SA, op, rsn, d) \square P15.(SA, op, rsn) \land (res \in RES) \land (\forall rl \in SA, (rl, op, rsn) \notin PA) 
 \rightarrow \blacklozenge P3.d \land (d = `N')]
```

System-wide Constraint Decomposition

System-wide
Constraints
(access control
policies)

PE Component
Constraints
(policies assigned to PE)

.AND.

DC Component
Constraints
(combination rules)

Compositional Analysis of Behavior Model

- Component analysis
 - each component analyzed individually against component constraints
- Composition analysis
 - composition constraints defined on multiple components verified based on composition of component analysis
- Analysis driven by satisfaction of architectural constraints.

New Policies

No.	Description										
P2-1	Any care-giver can read patient's name.										
P2-2	Registration clerk can modify patient name and demographic information.										
P2-3	Nurse can read patient's name and demographic information.										
P2-4	Attending nurse, in addition to the rights of any other nurse, can modify current episode										
	demographic information, can read current episode regular records and current episode regular test										
	results.										
P2-5	Technician can read patient's name and modify current episode regular test results.										
P2-6	Related technician, in addition to the rights of any other technician, can modify current episode										
	sensitive test results.										
P2-7	Attending assistant physician, in addition to what a nurse can do, can also read all (i.e. from the										
	current and previous episodes) regular records and all regular test results, as well as to modify										
	current episode regular records.										
P2-8	Attending physician, in addition to the rights of attending assistant physician, can modify current										
	episode sensitive regular records and can read all regular and sensitive records from previous										
	episodes.										
P2-9	Attending psychiatrist, in addition to what an attending physician can do, also can modify mental										
	information.										
P2-10	Patient relative can read patient's current episode demographic and patient's name.										
P2-11	Patient guardian can read previous episode regular data.										
P2-12	Patient spouse can read previous episode sensitive data.										
P2-13	Patient representative can read previous episode regular data provided that patient gives a										
	consent.										

Relationship Hierarchy

Relationship to Permission Assignment Relation

			Resources											
		PN	DD	CDD	CRR	CSR	CRT	CST	PRR	PSR	PRT	PST	AMD	
	Attending												RW	
	Psychiatrist													
	Attending					RW		R		R		R		
	Physician													
Sd	Attending				RW		R		R		R			
shi	Physician													
Relationships	Assistant													
ati	Attending			RW	R		R							
Re	Nurse													
	Related							RW						
	Technician													
	Related	R												
	Care-giver													
	Patient													
	Spouse									R		R		
	Guardian								R		R			
	Relative	R	R											

2/14/00 CADSE/FIU 29

DC&PEs Model for Relationship-based Policies

- P13 Attributes
- P14 Decisions from PE's
- P15 Attributes received by RBAC PE
- P16 Decision made by RBAC PE
- P17 Attributes received by RelAC PE
- P18 Decision made by RelBAC PE
- T6 DC invokes RBAC PE
- T7 RBAC PE passes decision to DC
- T8 DC invokes RelBAC PE
- T9 RelBAC PE passes decision to DC

Performance Model of Policy Evaluator

(Transition *pe* is associated with stochastic firing times.)

Constraint:

 $[\forall (x, y) \Box P15.x \rightarrow \bullet P16.y \land (Expectation(y - x) \leq 10)]$

The Next Steps

- Distributed AAS architecture
 - prototype of distributed and CORBA-based AAS
- Case study
 - real life policies in healthcare (HIPAA)
 - sample application(s)
 - workload and scenario simulation
 - collaborators: NIST, Las Alamos National Lab
- Aspect-oriented modeling framework for security services
 - collaborator: University of Illinois at Chicago