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Abstract—Sybil attacks in social and information systems
have serious security implications. Out of many defence schemes,
Graph-based Sybil Detection (GSD) had the greatest attention by
both academia and industry. Even though many GSD algorithms
exist, there is no analytical framework to reason about their
design, especially as they make different assumptions about the
used adversary and graph models. In this paper, we bridge this
knowledge gap and present a unified framework for systematic
evaluation of GSD algorithms. We used this framework to show
that GSD algorithms should be designed to find local community
structures around known non-Sybil identities, while incrementally
tracking changes in the graph as it evolves over time.

I. INTRODUCTION

Today’s online systems are open: any user can join the
system by providing an identity that is issued by either the
system itself or by a trusted third-party. For example, Facebook
users can join more than 9 million other websites and online
services by simply authenticating with their existing user
accounts [1]. In such identity-based systems, each user is
intended to have a single identity and is expected to use
this identity when interacting with other users in the system.
Without tight offline-online identity binding [2], these systems
are vulnerable to the Sybil attack [3]: the situation where
an attacker forges many identities, each called a Sybil, and
joins a target system for various adversarial objectives. For
example, socialbots in online social networks control hijacked
or adversary-owned user accounts in order to infiltrate these
networks, steal private user data, spread misinformation, and
distribute malware [4], [5].

A large body of work [6]–[10] on defending against the
Sybil attack models identity-based systems as graphs, where
nodes represent identities and edges between nodes repre-
sent well-defined relationships (e.g., user profiles and mutual
friendships in Facebook, respectively). These defence schemes
utilize Graph-based Sybil Detection (GSD) algorithms to find
identities that are likely to be Sybil based on their topological
properties in the graph [11], [12].

Even though many GSD algorithms exist, it is still un-
clear how these algorithms can be systematically evaluated,
especially given that they make different assumptions about
the used adversary and graph models. In this paper, we aim to
bridge this knowledge gap. We present an analytical framework
for systematic evaluation of GSD algorithms, along with an
open-source implementation. In this framework, we define
formal models to design, analyze, implement, and evaluate
existing and new GSD algorithms under different adversary
and graph models (Section III). We use this framework, along
with a dataset of a real-world Sybil activity in Facebook [4], to

systematically tackle important questions about the design and
analysis of GSD algorithms in social and information systems
(Section IV). We make the following contributions:

• We propose a unified framework for evaluating GSD
algorithms along with an open-source implementation.

• We analytically show that GSD algorithms should be
designed to find a local community structure around
known honest identities (i.e., non-Sybil), regardless of
the global community structure in the graph.

• We empirically show that GSD algorithms should be
run regularly in order to capture the evolution of the
graph, during which Sybils can be detected before they
“strongly connect” to honest identities.

In the context of GSD algorithms, our work sheds light
on the importance of graph evolution over time, introducing a
paradigm shift from graph statistics to dynamics [13].

II. BACKGROUND AND RELATED WORK

We now present the background required for the framework
we define later in this paper (Section II-A). We also survey
related work and compare it to ours (Section II-B).

A. Systems and graphs

We focus on open, online, and identity-based social and
information systems such as Facebook, Amazon, and Dropbox.
In these systems, user identities and their relationships can be
modeled as a graph G = (V,E), where every node u ∈ V
represents a user identity and every edge e = (u, v) ∈ E
represents a well-defined relationship between two identities
(e.g., friendship, financial transaction, or file sharing among
users in Facebook, Amazon, and Dropbox, respectively). In the
graph G, there are |V | = n nodes and |E| = m edges. A node
u ∈ V has a degree deg(u), which is the sum of the weights
on all edges incident to u. In unweighted graphs, every edge is
assigned a unit weight. In what follows, we present three basic
properties of graphs that are crucial for understanding GSD
algorithms. From now on, all graphs we describe are assumed
to be undirected, unweighted, non-bipartite, and connected,
unless we state otherwise.

1) Centrality: Given a graph of a system, there is typically
a subset of nodes that exhibit desirable topological features
which make them important for proper system operation [14].
For example, high-degree nodes in social networks represent
influential users who are good candidates for initial free
promotion of products in viral marketing campaigns [15]. To



capture this intuition, we define the node centrality κ of a
graph G = (V,E) as a mapping

κ : G→ {(ui, ci), (uj , cj) :

ui, uj ∈ V, ci, cj ∈ R, ci ≥ cj , i < j} (1)

which assigns a centrality index ci ∈ [0, 1] to every node
ui ∈ V quantifying how important the node is when compared
to all other nodes in G, where a larger centrality index indicates
higher importance. In other words, κ defines a total order
(u1, c1) � · · · � (un, cn) among nodes in G by their centrality
indices. For example, the degree centrality κD of a graph G
assigns an index ci to every ui ∈ V as defined by

ci :=
deg(ui)

max{deg(uj) : uj ∈ V }
· (2)

2) Mixing time: The mixing time of a graph is tightly
related to its connectivity, where a well-connected graph is
fast mixing and a poorly-connected graph is slow mixing [16],
[17]. We formalize this property in what follows. Given a graph
G = (V,E), the transition matrix P of G is an n×n stochastic
matrix, where every entry pij represents the probability of
moving from node ui ∈ V to node uj ∈ V , as defined by

pij =





1

deg(ui)
if (ui, uj) ∈ E,

0 otherwise.
(3)

The event of moving from one node to another in G is
captured by a Markov chain representing a random walk over
G. A random walk W = (ui, . . . , ut) of length k over G is
a sequence of nodes that starts at the initial node ui and ends
at the terminal node ut, following the transition probability
defined in Equation 3. The Markov chain is called ergodic
if it is irreducable and aperiodic. In that case, the Markov
chain has a unique stationary distribution to which the random
walk converges as k →∞. The stationary distribution π of a
Markov chain is a probability distribution that is invariant to
the transition matrix, that is, whenever πP = π. The stationary
distribution of the Markov chain over G is a 1×n probability
vector, and is defined as

π =

[
deg(u1)

2m
. . .

deg(un)

2m

]
, (4)

where π(ui) is the ith entry in π and represents the landing
probability of node ui ∈ V . The marginal distribution πk of
the Markov chain over G is a 1× n probability vector, where
πk(ui) is the landing probability of node ui ∈ V at step k
of the random walk. The total variation distance ||πk − π||TV
between the marginal and stationary distributions is a measure
of how “close” these distribution are, and is defined by

||πk − π||TV :=
1

2

∑

ui∈V
|πk(ui)− π(ui)|. (5)

The mixing time T (ε) of the Markov chain over G, when
parameterized by a total variation distance error ε > 0, is the
minimal length of the random walk required for the marginal
distribution to be ε-close to the stationary distribution in total
variation distance, and is defined by

T (ε) := min
{
k : ||πk − π||TV ≤ ε

}
, (6)

and bounded by [16]

λ

2(1− λ)
log

(
1

2ε

)
≤ T (ε) ≤ log(n) + log

(
1
ε

)

1− λ , (7)

where λ ∈ (−1, 1) is the second largest eigenvalue of P .
We say the Markov chain over G is fast mixing if T (ε) is
polynomial in log n and log(1/ε).

3) Community structure: Today’s open, identity-based so-
cial and information systems are referred to as complex
networks, as their graphs exhibit non-trivial topological fea-
tures [18]. One of these features is the community structure,
which was first formalized in mathematical sociology [19].
Given a graph G = (V,E), a community is a subgraph
G′ = (V ′, E′) representing a tightly-knit set of nodes that
are sparsely connected to the rest of the nodes in G. Accord-
ingly, we define community detection χ, also known as graph
clustering, as a mapping

χ : G→ G′1 × · · · ×G′c (8)

that partitions G into c non-empty, node-disjoint subgraphs
G′1 × · · · ×G′c representing a set of communities or clusters.
A widely used quality measure for community detection is the
modularity Q of the clustering χ(G) [20], which is a mapping

Q : χ(G)→ R (9)

that assigns a quality value q ∈ [−1, 1] to the clustering χ(G),
as defined by

q :=
∑

G′
i∈χ(G)

(
degG′

i
(V ′i )

degG(V )
− degG(V ′i )2

degG(V )2

)
, (10)

where degG(V ) is the sum of weights on all edges in G that are
incident to every node in V . The higher the quality value q is,
the better the detected community is. One possible definition
for χ is to maximize Q over all possible clustering χ(G) [21],
which was shown to be an NP-hard problem [22].

A related quality measure for community detection is the
conductance φ of the graph, which is a mapping

φ : G→ R (11)

that assigns a value h > 0 to G, known as the Cheeger constant
of the graph, as defined by

h := arg min
C∈H

ϕ(C), (12)

where H is the set of all pairs C = {G′L, G′R} ∈ χ(G), each
called a cut, representing all possible clustering in G of length
c = 2. In turn, the cut conductance ϕ is a mapping

ϕ : C → R (13)

that assigns a value ω > 0 to the cut C = {G′L, G′R} quantify-
ing how well-connected the graph is across the corresponding
left and right subgraphs of the cut, and is defined by

ω :=
|{(u, v) : u ∈ V ′L, v ∈ V ′R, (u, v) ∈ E}|

min{degG(V ′L),degG(V ′R)} . (14)

The Cheeger constant h of the graph G quantifies how well-
connected G is when all cuts in G are considered. A small h
indicates the existence of a relatively sparse cut separating two
well-knit subgraphs. For all clustering χ(G) of length c = 2,



a possible definition for χ is to compute φ, which was shown
to be an NP-complete problem [23].

Given a graph G, our previous intuition on the tight
relationship between connectivity, conductance, and mixing
time is reinforced by the bound [16]

1− λ
2
≤ φ ≤

√
2(1− λ), (15)

where λ is the second largest eigenvalue in Equation 7. The
graph conductance controls how fast a random walk in G
converges to its stationary distribution, which in turn quantifies
how well-connected the graph is. This observation, as we show
next, underlies state-of-the-art GSD algorithms.

B. Graph-based Sybil detection

We consider Sybil defences that leverage the system graph
to uncover latent Sybil identities. Ideally, each user in the
system is intended to have a single honest identity and is
expected to use this identity when interacting with other users
in the system. We call a user with multiple identities a Sybil
user and each of the used identities a Sybil identity.

Given a graph G of a system, state-of-the-art Graph-based
Sybil Detection (GSD) algorithms operate on G by making
the following assumptions [11], [12]: First, the system owner
knows at least one honest identity in G. Second, the adversary
cannot establish arbitrarily many relationships between Sybil
and honest identities. Third, the subgraph induced by the set
of honest identities is fast mixing. Given these assumptions,
GSD algorithms try to find a sparse cut C = {G′L, G′R} in G
that minimizes the graph conductance such that G′L consists
of mostly honest identities, as verified by the known ones,
and G′R consists of mostly Sybil identities. We formalize a
generalization of this intuition in Section III.

Recent research showed that graphs of real-world social
and information systems do not necessarily conform to the
assumptions above. For example, Leskovec et al. [24] showed
that such graphs have many small periphery communities
that do not form one big community or cluster. Likewise,
Mohaisen et al. [25] showed that these graphs are generally
not fast mixing. Moreover, Boshmaf et al. [5] showed that
an adversary can infiltrate a target online social network at a
large scale by tricking users into establishing relationships with
Sybils. To this end, it is unclear how GSD algorithms perform
when these assumptions do not hold in practice. Viswanath
et al. [9] were among the first to study this problem, and
they empirically showed that existing GSD algorithms work
by detecting communities around known honest nodes. We
build on their work and present a novel analytical framework
for systematic evaluation of GSD algorithms. Our framework
enables the design and analysis of existing and new GSD
algorithms with analytically-sound security guarantees that can
be easily evaluated empirically. To the best of our knowledge,
we are the first to provide a comprehensive treatment of this
topic.

III. A UNIFIED FRAMEWORK FOR GSD ALGORITHMS

We now define the models underlying our framework. We
implemented all of the discussed models for graph-based Sybil

Symbol Description

G Undirected, unweighted, non-bipartite graph
κ Centrality index of a graph
π Stationary distribution of a Markov chain
||·||TV Total variation distance
ε Error in total variation distance
T (ε) Mixing time of the Markov chain
λ Second largest eigenvalue of a matrix
χ Community detection in a graph
Q Modularity of communities in a graph
C Cut in a graph
φ Conductance of a graph
ϕ Cut conductance in a graph
N Network of a social or information system
H Honest region of a network
S Sybil region of a network
A Attack edges of a network
δ Sybil detector for a given network graph
τ Threshold of a Sybil detector
ψ Partitioner for a Sybil detector
∆ GSD algorithm
ρ Detection performance of a GSD algorithm
α Adversary in a system

TABLE I: Notation index

detection in a Python package called SyPy.1 The package
offers simple abstractions to design, implement, and evaluate
GSD algorithms. For a short overview of the implementation,
we point the reader to our technical report [26]. We also
summarize all of the notations used in this paper in Table I.

A. System model

Every identity in the system is either Sybil or honest. We
refer to this classification as the label of the identity. A region
R = (VR, ER,KR) of a system consists of a region graph
GR = (VR, ER) and a node set KR ⊂ VR. In the region graph
GR, every node in VR represents a unique identity and every
edge in ER represents a well-defined relationship between two
identities. The set KR contains nodes in VR that have known
labels as indicated by the ground truth `, which is a mapping

` : VR → {0, 1}, (16)

that is defined by

`(u) =

{
1 if u ∈ VR is a Sybil identity,
0 otherwise.

(17)

Given the ground truth `, we define two non-overlapping
regions. The first is the honest region H = (VH , EH ,KH),
and it consists of only honest identities along with their
relationships. In this region, we assume the system owner
knows at least |KH | ≥ 1 identities such that `(u) = 0 for every
u ∈ KH . Similarly, the second region S = (VS , ES ,KS) is the
Sybil region, and it consists of only Sybil identities along with
their relationships. We also assume the system owner knows
|KS | ≥ 0 identities such that `(u) = 1 for every u ∈ KS .
Typically, the set KS = ∅. To this end, every identity in the
system belongs to either H or S but not both.

1http://boshmaf.github.io/sypy/
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Fig. 1: The system model.

The network N = (H,S,A) of a system consists of an
honest region H , a Sybil region S, and a non-empty set A of
attack edges that connect the two regions, and is defined by

A := {(u, v) : u ∈ VH , v ∈ VS}· (18)

Typically, the system owner has knowledge of only the network
graph GN = (VN , EN ,KH ,KS), where VN = VH ∪ VS and
EN = EH ∪ ES ∪ A. The network graph models bilateral
and triadic relationships found in social and information sys-
tems [27]. The system owner does not know the ground truth `
nor the network N , but aims to label the nodes in GN correctly.
We demonstrate the system model in Figure 1.

B. Adversary model

The objective of an adversary is to manipulate the network
graph using some strategy in order to successfully mount a
Sybil attack. An attack, for example, may involve harvesting
private user data in online social networks [5], polluting the
voting scheme of online reputation systems [28], or subverting
routing and replication services in DHTs [29]. We formalize
this intuition in what follows. Given a snapshot of a network N
and its graph GN at some particular point in time, an adversary
α is a mapping

α : S ×A→ Sα ×Aα (19)

that alters the Sybil region S and the attack edges A, using
some adversarial strategy. For the defender (i.e., the system
owner), the adversary α is capable of transforming GN to
a new graph GαN = (V αN , E

α
N ,KH ,KS), which reflects all

alterations made by the adversary α, where V αN = VH ∪ V αS
and EαN = EH ∪ EαS ∪ Aα. We disregard changes made to
the honest region H , as they originate from honest identities
rather than Sybil ones.

We define two adversaries in the network N : A regular
adversary αr, and a social adversary αs. The regular adversary
αr has a complete control over the Sybil region S, but cannot
establish more than O(n/T (ε)) attack edges, where T (ε) is
the mixing time of the Markov chain over GN . This bound
is typically assumed in GSD algorithms [11], [12], as one
expects the adversary to require non-trivial social engineering
capabilities in order to establish many attack edges. The social
adversary αs, however, is more resourceful and has the same
capabilities of αr but can establish arbitrarily large number of
attack edges, which is motivated by recent empirical results in
online social networks [4], [30]. In practice, the adversary α is
limited by the scale of changes made between GN and GαN , in
addition to the behaviour of identities in the honest region H .

C. Detection model

Following the intuition of node centrality, Sybil identities
often exhibit unique topological features which make them
distinguishable from honest identities. For example, outliers,
nodes that have proportionally smaller degree centrality indices
when compared to others, represent isolated identities that are
likely to be Sybil [9]. Accordingly, we define a detector δ in
a given network graph GN as a mapping

δ : GN → {(ui, ri), (uj , rj) :

ui, uj ∈ VN , ri, rj ∈ R, ri ≥ rj , i < j},
(20)

which assigns a rank ri ∈ [0, 1] to every ui ∈ VN that
describes how Sybil-like the corresponding identity is, where
a higher rank value indicates the identity is more likely to be
Sybil. Thus, δ defines a total order (u1, r1) � · · · � (un, rn)
among nodes in VN by their rank values, which was shown to
be the case for GSD algorithms [9]. The detector δ is called
binary if for every ui ∈ VN , the rank value ri ∈ {0, 1}.
Otherwise, the detector δ is called scaler.

A detector by itself does not label identities, but rather finds
a linear ordering of the corresponding nodes. Accordingly, one
needs to define a cutoff position in the ordering after which
nodes are considered to represent Sybil identities. To capture
this intuition, we define a detection threshold τ ∈ [0, 1] for
every detector δ operating on GN . This allows us to define a
partitioner ψ for δ using τ , which is as a mapping

ψ : δ(GN )× R→ GδH ×GδS (21)

that splits the network graph GN into two non-empty, node-
disjoint subgraphs, GδH = (V δH , E

δ
H) and GδS = (V δS , E

δ
S),

such that
V δS := {ui : ri ≥ τ, (ui, ri) ∈ δ(GN )},
V δH := {ui : ri < τ, (ui, ri) ∈ δ(GN )},

V δH ∩KH 6= ∅.
(22)

The resulting cut C = {GδH , GδS} in GN represents the honest
region graph GδH and the Sybil region graph GδS , as identified
by δ using the detection threshold τ . To this end, we define
a GSD algorithm by the triple ∆ = (δ, τ, ψ), which in turn
defines the cut C := ψ(δ(GN ), τ) in GN .

We assume the system owner can estimate the threshold τ
for the used detector δ. For binary detectors, we set τ = 1.
For scaler detectors, the owner can manually verify random
samples of identities labeled as Sybil using different values
of τ , and then pick τ that achieves the best detection per-
formance [8]. This approach, however, is both expensive and
non-scalable. We tackle this problem based on the following
observation: As the nodes are ranked by how Sybil-like they
are, we can estimate τ by minimizing the conductance over all
subgraphs induced by the top-k ranked nodes, for 0 < k < n.
Formally, let R = {ri : (ui, ri) ∈ δ(GN )} be the set of ranks
computed by a scaler detector δ, we accordingly define its
detection threshold τ by

τ :=

{
rk : arg min

ri∈R
ϕ
({
G′ri , GN \G′ri

})}
, (23)

where G′ri = (V ′ri , E
′
ri) is a subgraph of GN induced by the

node set V ′ri ⊂ VN , which is defined by

V ′ri := {uj : (uj , rj) ∈ δ(GN ), rj ≥ ri}. (24)
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Fig. 2: The detection model. Node colors represent ranks. A greener
color indicates an identity that is less likely to be Sybil. A threshold
over the rank values partitions the network graph into two non-empty,
node-disjoint subgraphs or regions.

Although computing the graph conductance is an NP-complete
problem [23], the instance in Equation 23 considers only O(n)
unique cuts in GN . This means that τ can be computed in
O(ηn) time, where η = O(n) is the time required to compute
the conductance of a given cut, as defined in Equation 14. We
demonstrate the detection model in Figure 2.

D. Performance model

Given a GSD algorithm ∆ = (δ, τ, ψ) and its correspond-
ing cut C := ψ(δ(GN ), τ) in the graph GN of the network N ,
we define the detection performance ρ of ∆ as a mapping

ρ : C ×H × S → R (25)

that computes a performance score p ∈ [0, 1] describing how
well δ performs in labeling identities when partitioned by ψ
using τ , as compared to the correct labels identified by the
ground truth ` in H and S. A higher score means a better
performance, which also indicates a labeling that is “closer”
to the one defined by `. The ground truth labeling has a unit
performance score p = 1.

IV. FRAMEWORK ANALYSIS AND DISCUSSION

Armed with the framework presented in Section III, we
tackle three important questions regarding the systematic eval-
uation of GSD algorithms in social and information systems.
Our aim here is to relax the strong assumptions made about
the used adversary and graphs models by exploring the de-
sign space of GSD algorithms, and then picking the tech-
niques that offer both analytically-sound security properties
and practically-efficient computation.

A. How should one measure the detection performance?

GSD algorithms can be treated as classifiers that label
nodes as either Sybil; the positive class, or honest; the negative
class. This allows us to use well-known performance measures
that are suited for classification problems [31]. As presented
in Section III-D, let C := ψ(δ(GN ), τ) be a cut found by the
algorithm ∆ = (δ, τ, ψ) in the graph GN of a network N . We
accordingly define the algorithm’s true negative rate ρN, or its
specificity, by

ρN :=
|V δH ∩ VH |
|VH |

, (26)

where �(s, t) is the number of shortest paths between
nodes s and t in G, and �(s, t | ei) is the number of
shortest paths between the same nodes passing through
the edge ei in G. By convention, let �(s, t) = 1 if s = t,
�(s, t | ei) = 0 if ei = (s, t), and 0

0 = 0 in Equation 24.

From graph connectivity standpoint, edges that have
high betweenness centrality represent bridge-like con-
nectors between two dense subgraphs or communities.
The removal of these edges will affect the connectivity
between many pairs of nodes through the shortest paths
between them, and potentially disconnect the graph into
two communities. Further removal of high-betweenness
edges will result in communities within communities, a
structure captured in a tree called a dendogram in which
the root is the graph and the leaves are the nodes of the
graph. This process is known as Given-Newman com-
munity detection algorithm [13], which is often used
to detect global community structures by dissecting the
whole graph in a top-down, hierarchical fashion.

We now present a new heuristic-based GSD algorithm
�G = (�G, ⌧ = 1,  ) whose detector �G is a modified
version of Girvan-Newman community detection algo-
rithm. Given a network graph GN , the binary detector
�G ranks the nodes in GN by their membership to the
subgraphs defined by a sparse cut in GN . The cut is
found using Girvan-Newman community detection algo-
rithm that is terminated right after constructing the first
level of the dendogram, as described in Algorithm 1.

Algorithm 1: GLOBALCOMMDETECTOR �G
Input: Network graph GN = {VN , EN , KH , KS}
Output: Total order O := (u1, r1) ⌫ · · · ⌫ (un, rn)
while GN is not disconnected do

B  edge betweenness centrality of GN

ei  edge with highest centrality index ci in B
remove ei from GN

VC  connected component VC ⇢ VN in GN that
maximizes |VC \KS | or minimizes |VC \KH |

O  ;
for ui 2 VC do

append (ui, 1) to O

for ui 2 VN \ VC do
append (ui, 0) to O

return O

We can efficiently compute the edge betweenness of
GN in O(nm) time [6], in which time we can also de-
cide whether GN is disconnected [5]. If the regions H
and S are relatively balanced and fast mixing, we ex-
pect the attack edges established by a regular adversary
↵r to have the highest betweenness centrality. In this
case, the detector �G will take O(gnm) time to rank
all of the nodes in GN , where g 2 O(n/T (✏)) is the
number of attack edges. As GN becomes disconnected

after removing all of the attack edges, m is eventually
decreased by g, and thus the running time stated above
is not tight. In fact, this is the best attack scenario the
system owner can hope for. In GSD algorithms [35],
only the tighter case of ✏ = ⇥( 1

n ) is considered, and
thus T (✏) = O(log n) leading to a running time of
O(mn2/ log n), or O(n4/ log n).

4.2 Local community structures

One drawback of global community detection is that we
start by processing the largest possible input, which is
the whole network graph GN . Another drawback, in the
context of GSD algorithms, is that we make unrealistic
assumptions about the structure of the Sybil region S,
which we know is controlled by the adversary ↵. This
leads us to the direction of local community detection,
where we aim to find a sparse cut near a trusted set of
nodes, independently from the global community struc-
ture of the graph. We formalize this intuition in what
follows.

Given a network graph GN , let L be the set of all cuts
C = {G0

L, G0
R} 2 �(GN ) such that KH ✓ V 0

L, where
G0

L = (V 0
L, E0

L) is called a local subgraph near KH .
To find a local community near KH , we can optimize
one of the defined community quality measures over all
cuts in L, in which case the local subgraph near KH

becomes its local community. Accordingly, consider a
cut C = {G0

L, G0
R} 2 L whose local subgraph G0

L is
induced by KN . We call u 2 V 0

R a candidate node if
there exists another node v 2 V 0

L such that (u, v) 2 EN .
To optimize the conductance ' of the cut C, we can
use the following heuristic [19]: greedily expand G0

L by
adding the candidate node u 2 V 0

R that results in the
highest gain in '. This process is repeated until there
are no such nodes in V 0

R, after which G0
L is declared as

the local community around KN . This process can be
performed for the modularity Q when restricted to only
length c = 2 clustering [24].

We now present a new GSD algorithm �L =
(�L, ⌧ = 1,  ), which is based on local, greedy opti-
mization of graph conductance. Given a network graph
GN , the binary detecor �L ranks the nodes in GN

by their membership to the local community structure
around KN , which is found using the before-mentioned
heuristic, as is described in Algorithm 2.

We can compute the gain in conductance in O(n)
time, and at most, we compute it O(n2) times [19]. As-
suming a fast mixing honest region H and a regular ad-
versary ↵r, the detector �L will take O(n3) time to tank
all nodes in GN , regardless to the structure of the Sybil
region.

Fig. 3: GLOBALCOMMDETECTOR δG

and its true positive rate ρP, or its sensitivity, by

ρP :=
|V δS ∩ VS |
|VS |

· (27)

Given these performance measures, the analysis using Receiver
Operating Characteristic (ROC) becomes possible [32]. In the
absence of a ground truth `, which is the case for online
classification, GSD algorithms should provide formal bounds
on how many Sybil identities could be ranked lower than
honest identities, and thus limiting the false positive rate 1−ρN.
Alternatively, the algorithm should provide provable bounds on
how many Sybils per attack edge can exist in the system in the
worst case. We show an example of such a desirable guarantee
in what follows.

B. How should one design GSD algorithms?

GSD algorithms operate by finding a community structure
around known honest nodes [9]. This can be achieved by using
either global or local community detection. In what follows,
we present two GSD algorithms based the global community
detection algorithm by Girvan and Newman [33], and the
local community detection algorithm by Andersen, Chung, and
Lang [34]. We analytically show why the latter is more Sybil-
resilient in the context of GSD algorithms, while the earlier is
still needed for the case when the honest region has existing
community structures, and therefore, is not fast mixing.

We start with global community detection. The intuition of
node centrality of graphs, which we defined in Section II-A1,
can be extended to edges as well. This allows us to define
an edge centrality measure that is useful for detecting global
community structures. Given a graph G, the edge betweenness
centrality κB of G is a mapping that assigns every edge ei ∈ E
a centrality index ci ∈ [0, 1] as defined by

ci :=
1

n(n− 1)

∑

s,t∈V

σ(s, t | ei)
σ(s, t) (28)

where σ(s, t) is the number of shortest paths between the nodes
s and t, and σ(s, t | ei) is the number of shortest paths between
the same nodes that pass through the edge ei. In Equation 28,
let σ(s, t) = 1 if s = t, σ(s, t | ei) = 0 if ei = (s, t), and
0/0 = 0 by convention [35].



Algorithm 2: LOCALCOMMDETECTOR �L
Input: A graph GN = {VN , EN , KH , KS}
Output: A total order O := (u1, r1) ⌫ · · · ⌫ (un, rn)
C  a cut C = {G0

L, G0
R} such that V 0

L = KH

while C is changed do
� all candidate node in V 0

R

(km, v) (0, ;)
for u 2 � do

kg  gain in conductance by adding u to G0
L

if kg > km then
(km, v) (kg, u)

if km > 0 then
C  a cut C = {G0

L, G0
R} where V 0

L = KH [ {v}
O  ;
for ui 2 V 0

R do
append (ui, 1) to O

for ui 2 V 0
L do

append (ui, 0) to O

return O

4.3 Lazy random walks
In the context of GSD algorithms, we aim to identify
Sybil and honest identities with provable guarantees,
given a particular adversary and graphs models. This
means that we should be able to prove bounds on the
number of Sybils that get misclassified as honest, pos-
sibly in terms of the number of attack edges. To this
extent, heuristic-based local community detection typi-
cally fails at offering such guarantees, as we perform lo-
cal optimization that does not necessary find the sparsest
local cut in the graph. For this reason, we switch gears
to a more reliable techniques which is based on random
walks.

As discussed in Section 2.1.2, a well-connected graph
is fast mixing, which also means that a random walk over
such a graph reaches its stationary distribution in a rel-
atively few steps. For a given subgraph, the difference
between its mixing time and that of the entire graph is
an indicator whether the subgraph is dense, without hav-
ing to traverse the whole graph. Accordingly, random
walks in graphs can be used to detect local community
structures. We formalize this intuition in what follows.

Let us consider a random walk W = (ui, . . . , ut) of
length k over a network graph GN with a fast-mixing
honest region H , where the initial node ui 2 KH . As-
suming a regular adversary↵r, there are g = O(n/T (✏))
attack edges that represent a sparse cut between the re-
gions H and S in the network. We call W a lazy random
walk if k < T (✏). In this case, W is expected to contain
mostly nodes in H , as the walk is unlikely to traverse
one of the relatively few attack edges and enter S. In
other words, the landing probability ⇡k(ui) of every ui

at step k of the walk is expected to be relatively large

if ui 2 VH , as compared to ⇡k(uj) for every uj 2 VS .
Given that ⇡k is defined iteratively by [15]

⇡k := ⇡k�1P = ⇡0P
k, (25)

where ⇡0 is the initial landing probability distribution,
we can compute the landing probability ⇡k(ui) for every
ui 2 VN at step k as

⇡k(ui) =
X

(uj ,ui)2EN

⇡k�1(uj)

deg(uj)
. (26)

For the case of k � T (✏), it follows ||⇡k � ⇡||TV  ✏,
and Equation 4 can be used to approximate ⇡k.

Based on this observation, Cao et al. proposed a scaler
detector �R, called SybilRank [9], that assigns a rank
ri = 1� (⇡k(ui)/ deg(ui)) to every node ui 2 VN . The
rank value ri is the degree-normalized landing proba-
bility of ui in a random walk that starts from any node
uj 2 KN with probability 1/nH and terminates after
k = O(log n) steps. We describe SybilRank detector �S
in Algorithm 3.

Algorithm 3: SYBILRANKDETECTOR �R
Input: Network graph GN = {VN , EN , KH , KS}
Output: Total order O := (u1, r1) ⌫ · · · ⌫ (un, rn)
⇡0  ;
for ui 2 VN do

if ui 2 KH then
⇡0(ui) 1

|KH |

else
⇡0(ui) 0

for k  1 to O(log n) do
⇡k  ;
for ui 2 VN do

⇡k(ui) 
P

(uj ,ui)2EN

⇡k�1(uj)

deg(uj)

Ot  ;
for ui 2 VN do

append (ui, ri) to Ot where ri = 1� ⇡k(ui)
deg(ui)

O  ;
while Ot is not empty do

append (ui, ri) to O where ui has maximum ri in Ot

remove (ui, ri) from Ot

return O

The SybilRank detector �R runs in O(n log n) time,
and assuming an adversary who establishes attack edges
with honest nodes at random, �R guarantees that the to-
tal number of Sybil identities that get ranked lower than
honest identities is O(g log n) [9].

As �R is a scaler detector, there is still the problem of
deciding upon a value for its threshold ⌧R. As part of
SybilRank proposal [9], Cao et al. argued that ⌧R can

Fig. 4: LOCALCOMMDETECTOR δL

From graph connectivity perspective, edges that have high
betweenness centrality represent bridge-like connectors be-
tween two dense subgraphs or communities. The removal of
these edges will affect the connectivity between many pairs of
nodes through the shortest paths between them, and potentially
will disconnect the graph into two communities. Based on this
observation, we present a GSD algorithm ∆G = (δG, τ, ψ)
whose detector δG is binary and ranks the nodes in GN by their
membership to the subgraphs defined by a sparse cut in GN .
The cut is found by repeatedly removing edges with the highest
betweenness centrality until the graph becomes disconnected,
as described in Figure 3.

We can compute the edge betweenness of GN and decide
whether it is disconnected in O(nm) time [35], [36]. If the
regions H and S are relatively balanced and fast mixing, we
expect the attack edges established by a regular adversary αr
to have the highest betweenness centrality. In this case, the
detector δG will take O(gnm) time to rank all of the nodes
in GN , where g = O(n/T (ε)) is the number of attack edges.
In fact, this is the best attack scenario for the system owner.
In GSD algorithms [12], only the tighter case of ε = Θ(1/n)
is considered, and thus T (ε) = O(log n) leading to a running
time of O(mn2/ log n) or O(n4/ log n) in dense graphs.

One drawback of global community detection is that we
start by processing the largest possible input: The whole
network graph GN . A more serious drawback, in the context
of GSD algorithms, is that we make unrealistic assumptions
about the structure of the Sybil region S, which we know is
under the complete control of the adversary αr. For example,
if αr carefully alters S such that it consists of two identical
but disconnected components that are only connected to H
via attack edges, then δG will misclassify half of the Sybils.
This leads us to the direction of local community detection,
where we aim to find a sparse cut near a trusted set of nodes,
independently from the global community structure of the

T=1! T=2! T=3!

T=4! T=5! T=6!

Honest'region' Sybil'region'

Fig. 5: Graph dynamics and GSD algorithms. At timestamp T = 1,
the honest and the Sybil regions are disconnected. Over time, from
T = 2 to T = 6, the network graph transforms through a series of
alterations made by a social adversary αs. When compared to T = 3,
running a GSD algorithm at timestamp T = 6 results in a lower true
negative rate, where the number of attack edges doubles.

graph. We now formalize this intuition. Let us consider a
random walk W = (ui, . . . , ut) of length k over a network
graph GN , where the initial node is ui ∈ KH . We call
W a lazy random walk if k < T (ε). Assuming a regular
adversary αr and a fast mixing honest region H , there are
g = O(n/T (ε)) attack edges that represent a sparse cut
between H and S. In this case, a lazy random walk W in
GN is expected to contain mostly nodes from H , as the walk
is unlikely to traverse one of the relatively few attack edges
and enter S. In other words, the landing probability πk(ui) of
every ui at step k of the walk is expected to be relatively large
if ui ∈ VH , as compared to πk(uj) for every uj ∈ VS . Recall
that πk can be defined iteratively by

πk := πk−1P = π0P
k, (29)

where π0 is the initial landing probability distribution, we can
compute the landing probability πk(ui) for every ui ∈ VN at
step k by

πk(ui) =
∑

(uj ,ui)∈EN

πk−1(uj)

deg(uj)
. (30)

For the case of k ≥ T (ε), it follows that ||πk − π||TV ≤ ε, and
Equation 4 can be used to approximate πk [37].

Based on this observation, we present a GSD algorithm
∆L = (δL, τ, ψ) whose detector δL is scaler and assigns a
rank ri = 1− (πk(ui)/ deg(ui)) to every node ui ∈ VN . The
rank value ri is the degree-normalized landing probability of
ui in a random walk that starts from any node uj ∈ KN

with equal probability, but terminates after a small number of
steps k = O(log n) regardless to the mixing time of GN , as
described in Figure 4.

The detector δL runs in O(n log n) time, and assuming
the adversary αr establishes attack edges with honest nodes at
random, δL guarantees that the total number of Sybil identities
that are ranked lower than honest identities is O(g log n) [8],
[34]. Thus, local community detection is more efficient and
Sybil-resilient when compared to global community detection.
The network graph, however, may have many small periphery
communities that do not form one big community or clus-
ter [24], and thus, are not fast mixing [25]. To tackle this
problem, we can use the non-Sybil-resilient global community
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Fig. 6: Large-scale infiltration in Facebook over (a) the complete sampled graph, (b) its Largest Connected Component (LCC), and (c) the
corresponding average true positive rate of the GSD algorithm ∆L = (δL, τ, ψ). The LCC consisted of 155,622 nodes and 751,199 edges,
with an average clustering coefficient of 0.5405 and a diameter of 23. Overall, there were 2,143 attack edges connecting the LCC to the Sybil
region, which consisted of 100 Sybil identities. Each Sybil identity had at least one attack edge.

detection to split the graph into a set of non-empty, node-
disjoint subgraphs, as described in Equation 8. This could
be achieved efficiently by locally maximizing the gain in
modularity around every node in the graph, just as in the
well-known Louvain method [38]. After global community
detection, each identified community is considered a new but
smaller network graph where local community detection can
be applied to detect Sybils around a set of known honest
identities. For the likely case when the smaller network graph
does not contain any of the original known honest identities,
the system owner can construct one by manually verifying
a small random sample of the nodes [39], which has the
advantage of making the system more resilient to an adversary
who tries to established attack edges with known honest nodes,
as compared to a deterministic method.

C. How often should one run GSD algorithms?

Given a social adversary αs, we expect both ∆G and ∆L

to be ineffective, as the number of attack edges can grow
arbitrarily large. In fact, for ∆L the O(g log n) bound means
that O(n) identities can get misclassified if g = Ω(n/ log n),
which is explained by the absence of a sparse cut between
the Sybil and the honest regions. The adversary, however, is
expected to spend a relatively long time before the edges are
established, as this involves carrying out a non-trivial social
engineering attack [5]. This leads us to the direction of graph
dynamics, where one considers the growth of communities in
the network graph over time, as demonstrated in Figure 5.

To explore how often the system owner is required to run a
GSD algorithm, we used a dataset of a recent real-world Sybil
activity in Facebook [4]. The dataset describes the results of
a research experiment that evaluated the feasibility of running
a large-scale infiltration campaign by ∼ 100 automated fake
accounts in Facebook. The data were collected over the period
from January 28 through March 23 in 2011, during which a
total of 3, 190 attack edges were established between Sybil and
honest identities. Figure 6(a) shows how fast these edges were
established. The rapid increase after two weeks is explained by
the triadic closure principle [40]: After establishing the first
300 attack edges, the Sybils were able to have mutual connec-
tions with honest identities, which improved the subsequent
success rate of the infiltration.

Let us consider the Largest Connected Component (LCC)
in the BFS-sampled graph.2 We focus on the first two weeks of
the infiltration, January 28 through February 9, which we show
in Figure 6(b). During the two weeks, a total of 300 attack edge
were established between honest identities in the LCC and
100 Sybils, where the latter formed a clique or a completely-
connected graph. After applying Louvain method [38], the
honest identities that had at least one attack edge with the
Sybils were assigned to a single dense subgraph in the LCC,
which represented a community structure consisting of 10, 053
nodes and 41, 654 edges, with an average clustering coefficient
of 0.3271 and a diameter of 15. We marked this dense subgraph
as the honest region, and then for every new attack edge we
ran the local community detector ∆L on the resulting network
graph for 10 times and calculated its average true positive rate,
where in each run we picked a node in the honest region at
random and marked it as the known honest node. As shown
in Figure 6(c), as the number of attack edges increased, the
average true positive rate of ∆L decreased all the way down
to zero. This gives us an indicator that for GSD algorithms
to be effective, they need to be run regularly; at least on a
weekly basis in this case. To be computationally efficient, on
the other hand, GSD algorithms have to be adjusted so that
they perform incremental processing of the network graph as
it evolves, in a way similar to real-time graph mining [41].

V. CONCLUSION AND FUTURE WORK

We presented a unified framework to reason about and
evaluate Graph-based Sybil Detection (GSD) algorithms. Us-
ing the framework, along with a dataset of a real-world Sybil
activity in Facebook, we showed that GSD algorithms should
be designed to find local community structure around a set
of known honest identities, while incrementally tracking the
changes in the graph as nodes and edges are added and
removed. Moving from graph statistics to graph dynamics
promises better detection performance, as one expects to
achieve an early detection of Sybil identities in social and
information systems.

We are currently investigating different ways to design an
incremental GSD algorithm that scales to graphs consisting of

2As the Sybils initially targeted nodes at random, the complete BFS-sample
representing the honest region consisted of multiple connected components.



hundreds of millions of nodes, while providing near real-time
detection of Sybil identities with formal security guarantees.
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[23] J. Šı́ma and S. E. Schaeffer, “On the np-completeness of some graph
cluster measures,” in SOFSEM 2006: Theory and Practice of Computer
Science. Springer, 2006, pp. 530–537.

[24] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp.
29–123, 2009.

[25] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of
social graphs,” in Proceedings of the 10th annual conference on Internet
measurement. ACM, 2010, pp. 383–389.

[26] M. R. Yazan Boshmaf, Konstantin Beznosov, “Graph-based sybil detec-
tion in social and information system,” LERSSE Online Digital Library,
2013.

[27] M. E. Newman, “The structure and function of complex networks,”
SIAM review, vol. 45, no. 2, pp. 167–256, 2003.

[28] A. Jøsang and J. Golbeck, “Challenges for robust of trust and reputation
systems,” Sep. 2009.

[29] G. Urdaneta, G. Pierre, and M. van Steen, “A survey of DHT security
techniques,” ACM Computing Surveys, vol. 43, no. 2, Jan. 2011.

[30] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
“Uncovering social network sybils in the wild,” in Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference.
ACM, 2011, pp. 259–268.

[31] C. Parker, “An analysis of performance measures for binary classifiers,”
in Data Mining (ICDM), 2011 IEEE 11th International Conference on,
2011, pp. 517–526.

[32] T. Fawcett, “ROC graphs: Notes and practical considerations for re-
searchers,” Machine Learning, vol. 31, pp. 1–38, 2004.

[33] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[34] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning us-
ing pagerank vectors,” in Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE, 2006, pp. 475–486.

[35] U. Brandes, “On variants of shortest-path betweenness centrality and
their generic computation,” Social Networks, vol. 30, no. 2, pp. 136–
145, 2008.

[36] ——, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[37] G. H. Golub and H. A. Van der Vorst, “Eigenvalue computation in the
20th century,” Journal of Computational and Applied Mathematics, vol.
123, no. 1, pp. 35–65, 2000.

[38] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfold-
ing of communities in large networks,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2008, no. 10, 2008.

[39] R. Andersen and K. J. Lang, “Communities from seed sets,” in
Proceedings of the 15th international conference on World Wide Web.
ACM, 2006, pp. 223–232.

[40] A. Rapoport, “Spread of information through a population with socio-
structural bias: I. assumption of transitivity,” Bulletin of Mathematical
Biology, vol. 15, pp. 523–533, 1953, 10.1007/BF02476440.

[41] Z. Cai, D. Logothetis, and G. Siganos, “Facilitating real-time graph
mining,” in Proceedings of the fourth international workshop on Cloud
data management. ACM, 2012, pp. 1–8.


