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Speculative Authorization
Pranab Kini and Konstantin Beznosov

Abstract—We present Speculative Authorization (SPAN), a pre-
diction technique that reduces authorization latency in enterprise
systems. SPAN predicts requests that a system client might
make in the near future, based on its past behavior. SPAN
allows authorization decisions for the predicted requests to be
made before the requests are issued, thus virtually reducing the
authorization latency to zero. We developed SPAN algorithms,
implemented a prototype, and evaluated it using two real-world
data traces and one synthetic data trace. The results of our
evaluation suggest that systems employing SPAN are able to
achieve a reduced authorization latency for almost 60% of the
requests. We analyze the tradeoffs between the hit rate and
the precision of SPAN predictions, which directly affect the
corresponding computational overhead. We also compare the
benefits of deploying both caching and SPAN together, and find
that SPAN can effectively improve the performance of those
systems which have caches of a smaller size.

Index Terms—Access control, machine learning, prediction.

I. INTRODUCTION

With the emergence of tighter corporate policies and govern-

ment regulations, access control has become an integral part of

business requirements. Modern access control architectures [1]

follow the request-response model (dotted lines in Figure 1).

In this model, a request from a client (subject) is intercepted

by the policy enforcement point (PEP), which converts this

request to an authorization request, and forwards it to the

policy decision point (PDP). The PDP, with the help of the

policy database, computes an authorization response and sends

it back to the PEP for enforcement.

Resource access latency directly affects end user experience,

and as a result, company revenue. Neilsen suggests that a

response time of greater than 100 milliseconds (ms) makes end

users feel that the system is not responding instantaneously [2].

A study by Amazon reported an approximate 1% loss in sales

as the cost of a single extra 100 ms delay. Another study by

Google found that an extra 500 ms delay in displaying the

search results may reduce its revenues by up to 20% [3].

Computing an authorization response can take from a few

milliseconds to several seconds [4], [5]. Thus, although on the

one hand, authorization is imperative for securing protected

resources, on the other hand, it increases latency, hampering

systems’ responsiveness and ultimately the revenue of the

organization.

One straightforward approach would be to compute the

list of all accessible resources, as soon as the user logs

in, and cache them; a technique used in classical capability

list based systems. This approach is most appropriate for

systems with fairly small and static collection of resources, and
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Fig. 1. Architectures of enterprise access control systems and SPAN

permission mechanisms that allow inexpensive queries of the

accessible resources. However, it breaks down in most systems

based on access control lists and other similar permission

mechanisms where the list of authorized users can only be

queried through the reference to the corresponding resource.

It is also suboptimal for systems with very large or highly

dynamic collection of resources.

To address the need for reducing authorization latency

(referred in this paper as just latency), we propose Speculative
Authorization (SPAN), a technique that predicts which future

requests are likely to be made by a subject in a session.

A ‘session’ is defined as the time period between a subject

logging in and out of the system. As shown in Figure 1, before

the PEP sends authorization requests to the PDP, it (1) notifies

SPAN of the new request, and (2) checks the cache to see

if it already contains the corresponding response. Based on

the series of received requests, SPAN is able to predict which

future requests would likely be made by the subjects, and sends

the predicted requests to the PDP. SPAN places the responses

received from the PDP into the cache. If the subjects make the

requests predicted by SPAN, the PEP finds the corresponding

responses in the cache, reducing the latency to cache lookup.

Otherwise, it sends the request to the PDP as usual.

In designing SPAN, we used concepts similar to those

employed by web page prefetching techniques [6], [7], [8], [9],

[10], [11], [12], [13], [14]. However, none of these algorithms

consider the identity of the subjects making those requests. In

enterprise authorization systems, authorization policies restrict

the access of the subjects to a subset of resources, which in-

fluence the requests made. The likelihood of requests made on

resources would not only depend on the resources themselves,

but also on the authorization policies governing them, which

introduces an additional constraint for prefetching. This con-

straint is taken into account in SPAN’s design by associating

the identity of subjects to their requests, differentiating SPAN

from the approaches for web page prefetching.
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To make predictions, SPAN forms Markov chains of all the

possible sequences of requests and probabilistically (1) clus-

ters the sequences and (2) associates subjects to the clusters.

To achieve the association and clustering, SPAN extends the

Latent Dirichlet Allocation (LDA) model [15], developed for

unigrams, by adopting it to Markov models. Our approach of

finding associations of subjects to the clusters differentiates

our technique from clustering in web page prefetching [8], [9]

where users are randomly assigned to the clusters.

We evaluated SPAN using two datasets of request traces

from real-world systems and one synthetic dataset. Our first

dataset (WebCT) contained requests made by students, teach-

ing assistants, and course instructors in WebCT [16] for a

course at our university. Different subjects had different rights

for the course materials. We obtained the second dataset (FC)

from requests made by users in the ‘Fighters Club’ application

of Facebook [17]. In this application, users could start a virtual

fight with their friends, and request help from other friends.

This represents an application system where subjects (users)

can only request resources (friends) for which they have rights.

We generated our third dataset (Zipf) using Zipf distribution,

which was shown to closely match real world distributions of

web page requests [18].

We compared SPAN with the first and second order Markov

models, as well as with the algorithms proposed by Cadez et

al. [8] and Deshpande and Karypis [7]. For FC, SPAN achieved

an improvement of 11%, 31%, 21%, and 23% in hit rate as

compared to other algorithms. The corresponding improve-

ment for WebCT was 2%, 21%, 2%, and 11%. We believe

that the increase in the hit rate is due to the combination of

both association and clustering in our technique. Our results

also demonstrate that higher hit rates are directly proportional

to reduced latency. The percentage of requests experiencing

reduced latency is less than or equal to the hit rate obtained.

We also evaluated SPAN when it is combined with caching.

Simulation results suggest that SPAN improves the perfor-

mance of systems considerably for smaller sizes of cache. We

also found that the performance is significantly higher for FC

as compared to WebCT.

To summarize, the contributions of this paper are as follows:

1) We proposed SPAN, an approach for predicting future

authorization requests that takes authorization policies

into account without having direct access to the policies.

2) We compared SPAN with existing web prefetching algo-

rithms, and found that SPAN performs better than those

algorithms.

3) We evaluated SPAN when it is combined with PEP-

side caching and found SPAN to be more effective than

caching for smaller cache sizes.

The rest of the paper is organized as follows: Related

work is presented in Section II. In Section III, we present

the shortcomings of the algorithms in web page prefetching,

and present SPAN. We discuss the evaluation of SPAN in

Section IV. Finally, in Section VI, we conclude the paper,

and discuss future work.

II. RELATED WORK

One approach to combating latency is to replicate the autho-

rization service components. This also increases availability,

but such systems scale poorly, and become technically and

economically unfeasible when the number of entities in the

system reaches thousands [19].

Another state-of-the-practice approach that is used to im-

prove latency is the caching of authorization decisions at the

PEP-side. If a subject makes the same request as before,

the response is fetched from the PEP cache, reducing the

latency to cache look-up. However, it can be effective only

in those cases where the same subjects repeatedly make the

same requests. To overcome this problem, Crampton et al. [20]

propose the Secondary and Approximate Authorization Model

(SAAM), where cached responses are stored at a secondary

decision point (SDP), collocated with the PEP. The SDP infers

responses to requests that do not have their responses stored in

the cache. The idea is further explored by SDP’s co-operating

with each other to make decisions [21]. SAAM algorithms

for computing secondary authorizations for policies based on

the Bell-Lapadula model [22] and RBAC [23] have been

also proposed [20], [24]. The main limitation of the SAAM

approach is that it requires different inference algorithms to be

developed for each policy model, whereas the SPAN algorithm

is agnostic to the authorization logic used by the PDP.

Kohler and Schaad [25] propose an architecture for predict-

ing the actions required to complete the business processes

in enterprises. Their approach is based on the assumption

that the execution of every business process is comprised

of certain predefined sub-processes. As soon as a business

process is started, permissions for all sub-processes within

that process are computed, reducing latency. While their archi-

tecture depends on defining all the possible sub-processes for

every business process, our approach probabilistically finds the

dependencies between requests without any prior knowledge

of the business processes.

Several predictive models have been proposed for web page

prefetching [6], [7], [8], [9], [10], [11], [12], [13]. All the

approaches follow batch learning [26], where datasets are

divided into distinct training and testing sets. In the training

phase, a prediction model is developed using the training set.

In the testing phase, the surfing pattern of users in the testing

set is compared to the prediction model, and the web page(s)

that are most likely to be accessed are predicted. However,

there is a possibility that the behavior of users might change

over time, and this is something which cannot be captured

by batch learning. If training is performed using old behavior,

the prediction of requests that follow the new behavior might

suffer from a low predictive capability. To capture the changing

behavior of the subjects, iterative learning could be adopted,

in which feedback is provided for correcting the parameters

of the prediction model according to changing behavior of the

subjects. We adopted an iterative learning technique, where

we first train the model using requests from the training set.

Then, we use requests from the testing set to not only make

predictions, but also to run the training phase again in order

to adjust the model incrementally to the changing behavior of
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the subjects.

We now summarize the most relevant approaches to web

page prediction. Techniques that use Markov models [7] and

its variants [6], [7], [8] are used to find the popularity of

web surfing patterns. Deshpande and Karypis [7] and Sen and

Hansen [9] developed first, second, and third order Markov

models for predicting web pages. They found that increasing

the order of models results in better predictions, but that

they encounter higher memory usage and increased state-space

complexity. Deshpande and Karypis [7] proposed three prun-

ing techniques—(1) frequency pruning, (2) confidence prun-

ing, and (3) error pruning—that are combined with Markov

models to overcome the problems. Their reported evaluation

results [7] do not demonstrate a significant improvement in

predictive capabilities, but their ideas offer some guidance on

how to reduce search space and improve confidence in making

predictions. A technique that combines Markov models and

Support Vector Machines (SVM) is proposed by Awad et

al. [6]. However, longer training times— up to 26 hours for

23,028 requests [6]—can be a bottleneck for their algorithms.

In comparison, our SPAN algorithm completes the training for

50,000 requests in under two hours.

We adopted the clustering technique proposed by Cadez et

al. [8], which clusters sequences of requests formed using

first order Markov models. While their approach randomly

assigns users to clusters, SPAN, in contrast, probabilistically

finds the association of subjects to clusters, implicitly taking

access control policies into account.

A number of prediction techniques based on n-grams

are proposed for finding popular surfing patterns of web

pages [10], [14]. Su et al. [10] propose an algorithm for

gram size greater than or equal to 4. The request frequency

counts need to be large in order to attain better predictive

capability using n-grams [7], and they also face the problems

of state-space complexity and low coverage. Bonnin et al. [11]

propose to skip several places in longer n-grams resulting

in lower order Markov models, but they don’t address state-

space complexity. Association rule mining has been used to

find popular surfing patterns in web pages [12], [13]. Yet,

to have confidence that the predicted surfing patterns will be

sufficiently accurate, these techniques need large frequency

counts of request sequences.

To summarize, access to protected resources, unlike public

web pages, is controlled by authorization policies. As a result,

different subjects might have different access rights over the

same resource. Resources accessible to certain subjects might

not be even accessible to others. Models used for training

web pages consider only the resources, but not the identity of

subjects. On the contrary, the SPAN prediction algorithm not

only considers the resources, but also takes into account the

identity of subjects who request access to those resources.

III. PROBLEM FORMALIZATION AND APPROACH

SPAN algorithms are divided into two parts: training and

testing. In the training phase, the sequences of requests made

by subjects in the past are clustered. These sequences are used

to make predictions in the testing phase.

A. Training phase

In the training phase, SPAN first obtains all the possible

sequences of requests made by the subjects in the past. Next,

it splits the sequences into subsequences of fixed length, and

counts the number of times these subsequences were repeated.

It also counts the number of times every subject requested

these subsequences. Finally, it clusters the subsequences based

on these two counts. In the next subsection, we explain the

need to split into subsequences, and to maintain two different

sets of counts for clustering in SPAN. Afterwards, we describe

our clustering approach.

1) Building Blocks: To explain the rest of SPAN’s design,

let us consider a hypothetical website with five web pages,

access to which is controlled by authorization policies. The

link structure is shown in Figure 2(a), in which an arrow

between pages pi and pj indicates that there exists a hyperlink

on pi that points to pj . Figure 2(b) represents the authorization

policy for our example.

Figure 2(c) represents different sequences of web pages

visited by the three subjects over five sessions. It can be seen

that Alice has requested pages in sequence p2, p3, p4 only

once, but subsequence p2, p3 repeats in all of her sessions.

Such shorter subsequences have higher frequency counts. As

higher frequency counts improve the predictive capabilities of

Markov chains [7], [9], SPAN splits longer sequences into

smaller subsequences of fixed length. SPAN forms a first

order Markov model, an instance of which in our example

is shown in Figure 2(d). Every cell in the table, represents

the frequency count of transitions made by subjects. The last

column represents the total number of times subsequences

were requested by all subjects.

Unlike SPAN, algorithms for web page prefetching develop

their predictive models using frequency counts only from

the last column. While this column shows the popularity

of subsequences in general, it does not provide information

about the behavior of individual subjects. For example, let

us suppose that Bob requests p3. Algorithms designed using

total frequency counts would predict p5 as one of the probable

pages for Bob, because the total frequency count of viewing p5

after p3 is the same as for p2 and p4. However, Bob has never

requested to view p5 (probably because he is not authorized,

see Figure 2(b)), and the chances of him requesting this page

in the future are minimal. As web page prefetching algorithms

do not consider the identity of the subjects, they cannot

take individual access patterns in their prediction models

into account. SPAN algorithms, on the other hand, do take

into account the transitions made by individual subjects. To

maintain high-frequency counts while taking the behavior of

individual subjects into account, SPAN combines frequency

counts of transitions made by individual subjects and the total

frequency counts in clustering request subsequences.

2) Clustering: By definition of conditional probability for

first order Markov models, the probability of a subject ‘um’

requesting a subsequence ‘yt’ of length J is shown in Equa-

tion 1.
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p1

p4

p2 p3

p5

(a) Link structure

Pages Alice Bob Mike

p1 allow allow allow

p2 allow allow allow

p3 allow allow allow

p4 allow allow deny

p5 allow deny allow

(b) Access matrix

Session Alice Bob Mike

s1 p1, p2, p3 p1, p2, p3 p1, p3, p2

s2 p2, p3, p4 p2, p3, p4 p2, p3, p5

s3 p2, p3, p5 p2, p3, p4 p2, p3, p5

s4 p1, p2, p3 p1, p3, p2 p1, p2, p3

s5 p1, p2, p3 p1, p3, p2 p1, p2, p3

(c) Sequence of requests made by
the subjects

Transition Alice Bob Mike Total

p1, p2 3 1 2 6

p1, p3 0 2 1 3

p2, p3 5 3 4 12

p3, p2 0 2 1 3

p3, p4 1 2 0 3

p3, p5 1 0 2 3

(d) Transitions made by the subjects
using first order Markov models

Fig. 2. Hypothetical web site, authorization policy, request sequences, and frequency counts for first order Markov model

p(yt|um) = p(p1t
|um) ∗

J∏

j=2

[p(pj |pj−1, um)] (1)

As observed in Equation 1, first order Markov models

predict the next permission based on the current permission

being requested by the subject and fails to capture the history

of past requests in a subsequence. Clustering the request

subsequences retains the benefits of the first order Markov

model, while gathering information on the history of accesses

for making better predictions [8]. We cluster subsequences of

requests using frequency counts for individual subjects, as well

as total counts (see Figure 2(d) for an example).

We assume that there are a total of M subjects, N per-

missions, T subsequences, and K latent clusters formed. With

latent clusters in the model, equation 1 would be

p(yt|um) =
K∑

k=1

p(p1t
|zk)∗

J∏

j=2

p(pj |pj−1, zk)∗p(zk|um) (2)

The likelihood of all the subsequences and the clusters,

represented by Y and Z respectively, is given by,

p(Y,Z|θ, Φ) =
K∏

k=1

T∏

t=1

M∏

m=1

[p(p1t
|zk)N1,k ∗

J∏

j=2

p(pj |pj−1, zk)Nj,j−1,k ∗ p(zk|um)Nm,k ] (3)

We adopt a Bayesian approach [27] and attach priors α
and β to the two parameters θ and Φ, which denote the

association of subjects and subsequences to the clusters.

Clustering the subsequences into K factions is achieved us-

ing the Expectation Maximization (EM) algorithm [28]. The

parameters are optimized in two steps: the expectation step

(E-step) calculates the probability of subjects requesting sub-

sequences from particular clusters, given the current estimates.

The maximization step (M-step) optimizes these parameters

using the probabilities calculated in the E-step. To make the

calculations more tractable, we use the log of probabilities

(log-likelihood), which operates with probability sums. The

memory requirements for clustering are O(M × T + N2)
and the time complexity is O(I × M × T × N2). A detailed

explanation of our notation and clustering technique using the

Bayesian approach can be found in Section Sup:II-B.1

We summarize the design of the training phase using the

following steps:

1) Given all sequences across various sessions, find unique

subsequences of a fixed size.

2) Count the number of times each subsequence was re-

quested by every and all subjects.

3) Execute the EM algorithm, which can be summarized

as follows:

a) Randomly initialize the values of zk for the E-step

and choose the values of the hyperparameters (α-s

and β-s).

b) Calculate the parameters θ and Φ in the M-step

from the values obtained in E-step.

c) Using the new parameters of the M-step, execute

the E-step, i.e., the probabilities of subjects re-

questing for subsequences from different clusters.

d) Calculate the sum of log-likelihoods. If the differ-

ence between the log-likelihood of current iteration

and previous iteration does not exceed the prede-

fined threshold, terminate the algorithm, or else go

to step b.

B. Testing phase

Once SPAN has observed that um requested the sequence

yt = {p1, . . . , pJ} of length J , it computes the probabil-

ity of yt and um being associated with each cluster zk:

p(zk|yt, um) ∝ p(yt|zk) ∗ p(zk|um). SPAN computes the

probability of each permission in the system to be requested

next by subject um, given the previously requested sequence

yt and a set of latent clusters:

p(pJ+1|yt, um) =
K∑

k=1

p(pJ+1|zk) · p(zk|yt, um) (4)

SPAN selects a pre-configured number of permissions with

the highest probabilities, which are used for precomputing

authorization responses to be cached by the PEP.

So far, we have discussed the batch learning approach where

clusters are formed only once. Its predictive performance could

1References to all figures, tables, and sections from the supplementary
document are prefixed with “Sup:”. The reader can obtain this supplementary
document from the publisher’s web site.
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significantly degrade if access patterns significantly change

subsequent to the training phase. To overcome this problem,

we adopted an iterative technique of retraining the model after

a batch of requests have been read from the testing set. We

adopted this strategy since a single request is unlikely to result

in dramatic change to model parameters, and model rebuilding

is relatively expensive.

IV. EVALUATION

We used a simulation based approach for evaluating SPAN.

In this section, we first describe the datasets obtained for

evaluation, followed by an explanation of our experimental

setup. Then, we describe the measurement criteria, and present

results.

A. Datasets

To evaluate SPAN, we needed datasets that contained

information about subjects requesting actions on protected

resources in different sessions. We chose not to use traces

of access to publicly available web pages, such as [29]. In

such datasets, all users have access to all pages, whereas in

systems with protected resources, subjects differ in their rights

to access those resources. These differences affect the request

patterns. As a result, we used traces of requests made on

protected resources by different subjects.

Our first dataset was a WebCT request trace from a dis-

tance education course conducted at the University of British

Columbia (UBC). WebCT [16] is a commercial online learning

environment utilized in 80 countries by colleges and other

institutions with a user base of over 10 million. Instructors

can add course lecture notes and add tools, such as discussion

boards, mail, an assignment system, and live chat. Instructors

can also collect and grade assignments using WebCT. Students

who are registered for the course can read lecture notes,

participate in the discussions, view and submit their assign-

ments, view their grades, exchange mail, and chat with other

registered students, as well as the course teaching assistant(s)

and the instructor(s). There are also other roles such as course

designer, administrator, etc., that can be added to the course.

WebCT is an example of a typical web application, where

users have different levels of access to the system resources.

We obtained an anonymized trace of 210,000 requests for

one course offered at UBC over four months, from January

to April, 2007. Each record in the trace contained the subject

id, its action, the session id, time of the request, the resource

name, and the subject’s role. The course had 11 instructors (but

only 5 made more than 500 requests, and only 2 of the 5 were

active throughout the entire course), 3 teaching assistants, and

42 students, for a total of 56 subjects. Different subjects could

perform different actions on WebCT resources. For example,

instructors could read and modify course materials, whereas

students could only read them. In the WebCT dataset, we

counted 4,696 unique permissions, each permission comprised

of resource and action. The distribution of requests by different

roles was not spread evenly throughout the dataset. The first

15,000 requests were mostly made by instructors who were

setting up the course structure and content. The rest were

requests by students, TAs, and instructors. To understand the

effect of different access patterns on SPAN performance, we

evaluated SPAN using two sub-traces (the first 100K requests,

and requests between 75K and 175K), in addition to the whole

WebCT dataset.

We obtained our second dataset from requests made by the

users in the Fighters Club (FC) application of Facebook [17].2

This game has been played by over 3.44 million users.

FC allows users to pick virtual fights with their Facebook

friends and select fight durations lasting from 15 to 48 hours.

During the fight, each player may request support from their

Facebook friends, who then help the individual’s team defeat

the opponents through a series of virtual hits. In each fight,

a user can have one of the three possible roles: (1) an

offender, who instigates the fight with a (2) defender, and

(3) a supporter who helps either offender or defender (but

not both) in the fight. It was important for our evaluation

that every fight has a unique id. Our FC dataset contained

over 23 million requests made by 43,669 users. The FC trace

was appropriate for SPAN evaluation because it had protected

resources, subjects, and sessions. Users can be considered as

subjects, and fight ids as their sessions. In every fight, users

receive help from some of their Facebook friends. The order

in which offender or defender receives help can be considered

a sequence of requests made by subjects in their sessions on

protected resources.

We synthesized our third dataset using Zipf distributions,

which have been widely used to model heterogeneous popu-

larity distributions (e.g., web site popularity [18], and query

term popularity). The simulated dataset had a total of 100,000

requests made by 100 subjects over 3,000 permissions. Every

session had 100 requests. We varied the value of α from 0

(uniform distribution) to 1.5 in steps of 0.5.

B. Experimental setup

In this section, we present experimental settings. We con-

ducted all our experiments on a machine with Intel Pentium

1.73 GHz dual-core processor, which had a cache memory

of 1 MB and a RAM memory of 2 GB. SPAN training and

testing phases were implemented in Matlab version 2009a.

In the training phase, SPAN counted the total number of

unique requests in the training set, and recorded all subse-

quences of length three. For each subsequence, SPAN recorded

the number of times each subject requested the subsequence

and the total number of times the subsequence occurred.

SPAN also recorded all transitions between the requests (i.e.,

subsequences of length two).

To select the priors α and β, we conducted preliminary

experiments with both priors having values of 0.1, 0.3, 0.6,

and 1, and found that the relative difference between log-

likelihoods of clustering was less than 5%. Thus, we decided

to run all our experiments with both priors equal to 0.3. We

varied the number of clusters between 1 and 10, in steps of 1,

and measured the log-likelihood for every run. For the testing

phase, the number of clusters that we chose was the number

that provided the maximum log-likelihood during convergence

2This dataset is available online at [30].
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in the training phase.3 We followed the convergence criteria

of Cadez et al. [8], which assumes that the algorithm has

converged if the difference of log-likelihoods between two

iterations of EM algorithm is less than 0.1%. If it failed to

converge in 25 steps, we restarted the training phase with a

new random assignment of probability values in E-step. We

found that four clusters for WebCT and Zipf distribution, and

seven for FC were optimum. As we started the clustering

algorithm with random assignments, two runs in the training

phase were used to confirm that unique clusters were formed

each time.

In the testing phase, the evaluation engine read the requests

from the testing set sequentially. It then forwarded a copy

of each request to the SPAN module, which predicted future

requests based on the sequences of past requests. Based on its

configuration parameters and requests available in the cache,

the evaluation engine computed the predictive performance of

SPAN. We discuss the configuration parameters and cache in

Sections IV-B1 and IV-B2. We conducted two runs of the

testing phase to measure SPAN’s predictive performance.

For each of the WebCT and FC datasets, Table I provides

details about the number of subjects, unique permissions, and

unique sequences formed. The table also lists the average

number of iterations required during the training phase, and

also to make a prediction in the testing phase. Table I indicates

that while the training time increases with the number of

subjects and sub-sequences, the prediction times remain short.

We divided each trace into training and testing sets, with the

former always comprising the first part of the trace. To analyze

the effect of different proportions between training and testing

sets on SPAN performance, we varied the size of the training

set from 50% to 90% of the trace.

1) Configuration parameters: We set two configuration

parameters in the evaluation engine to determine for which

of the predicted requests the PDP should compute responses.

In any run, the evaluation engine used only one of these two

parameters:

• When the engine used the top-n parameter, it selected

only n requests with the highest probabilities (ignoring

the rest), and passed them to the PDP for computing

corresponding responses.

• When the evaluation engine used the confidence level pa-

rameter, it selected only the requests whose probabilities

were above this preset threshold value.

The use of top-n requests, as well as the setting of different

confidence levels allowed us to study tradeoffs between the

gain in predictive performance and the additional load on the

PDP.

2) Cache implementation: We combined conventional

caching and SPAN to compare the performance of each

technique, as well as the two in combination. In conventional

authorization subsystems, responses are cached by the PEP.

Since the SPAN testbed did not include a PEP, the evaluation

engine cached the incoming requests, i.e., the requests it read

from the testing set. To simulate the limited size of the PEP

3Notice that the number of clusters is specific to a dataset, and does not
have to be changed each time the training phase is executed.

Fig. 3. Simulation setup for latency calculation

cache, our cache also had a limited capacity, which varied

from 0 to 100% of all the requests. At the beginning of

each experiment, the cache was fully populated with requests

from the training set, using either the FIFO or LRU cache

replacement policy. During each run, the cache was updated

with requests read from the testing set.

3) Iterative learning technique: For evaluating the iterative

learning technique, we first trained SPAN by setting the size

of the training set to 50% and used the remainder as the

testing set. For every iteration of SPAN training, we moved

an additional 10K requests from the testing set to the training

set, while keeping the number of requests in the training

set constant by removing requests from the initial part of

training set. For instance, in WebCT2, we trained SPAN on

requests 10K to 60K, and measured its performance. The

initial assignments of subjects and subsequences to clusters

were chosen from the previous iteration. We performed two

sets of iterative learning for every set. We also repeated these

experiments with the increment of 20K.

C. Measurement criteria

First, we studied the hit rate, defined as the ratio of correctly

predicted requests to the total number of requests made by

the subjects. As the PDP precomputes the responses to the

predicted requests and pushes them to the PEP cache, a

higher hit rate indirectly indicates lower latency for accessing

protected resources.

Predicted requests that are not utilized can lead to an

unnecessary load on the PDP. To study the number of unused

predictions, we calculated the precision, which we defined as

the ratio of requests correctly predicted to the total number of

requests predicted. A higher precision rate indicates that the

PDP precomputes fewer responses that are unused.

D. Simulation setup for evaluating latency reduction

We built an experimental testbed shown in Figure 3 to study

latency reduction. We split the evaluation engine into two

modules: the PEP and the PDP. The PEP read every request

from the testing set in a period of 0 to 100 ms from the

end of the previous request, using uniform distribution. The

PEP forwarded these requests to the PDP and SPAN. SPAN
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Trace

Number of Training time Time for
Request Number Number of unique per iteration making

range of subjects unique requests sub-sequences of clustering each
of length 3 (minutes) prediction (ms)

WebCTALL 1− 210K 56 4, 696 22, 418 28 2.34
WebCT2 1− 100K 56 2, 642 12, 984 16 2.52
WebCT3 75− 175K 56 1, 482 9, 318 15 2.04

FC1 N/A 50 1, 780 5, 671 12 9.6
FC2 N/A 100 2, 424 10, 092 24 9.6
FC3 N/A 200 3, 211 19, 116 47 8.28

TABLE I
SUMMARY OF THE DATASETS USED FOR EXPERIMENTS.

(a) HR(3): WebCT2 (b) HR(3): WebCT3 (c) HR(1): WebCT2 (d) HR(1): WebCT3

(e) HR(3): FC1 (f) P(3):WebCT2 (g) P(3):WebCT3 (h) P(3):FC1

Fig. 4. Hit rate (HR) and precision (P) for WebCT2, WebCT3, and FC1 when either 3 or 1 most probable responses were fetched for every sequence.

predicted the future request(s) based on the received requests

and sent them to the PEP, which forwarded these predicted

requests to the PDP. We simulated fixed round trip delays of 40

ms between the PEP and the PDP, as done by Wei et al. [31],

and a computation delay of 10 ms for every request. Queuing

delays are added at the PDP depending on two factors: first,

the rate at which requests arrive from the PEP to the PDP; and

second, the delay introduced by the computation process at the

PDP. Queuing delays are zero if the PDP is idle when requests

arrive from the PEP. In our simulation, the PDP prioritized

requests read from the testing set over requests predicted by

SPAN. Latency was the difference between the time a request

was read by the PEP from the testing set and the time it

received a response from either its cache or the PDP. Latency

calculations were performed for a training and testing set ratio

of 50:50.

E. Results

1) Hit rate, precision, and latency reduction: Fig-

ure 4, Sup:2, Sup:3, and Sup:4 show the hit rate and precision

for different traces of the WebCT and FC dataset, when the

one most probable and the three most probable requests are

considered by the evaluation engine. The figures show that hit

rate and precision are not much affected by different sizes of

training and testing sets.

Observe that the hit rate and precision for the We-

bCT3 4(b), 4(d), and 4(g) are much higher than for We-

bCT2 4(a), 4(c), and 4(f). The WebCT3 trace corresponds

to the time of the course when requests were made mostly

for reading and discussing course contents. This implies,

unsurprisingly, that the hit rate and precision are higher when

the patterns found in the training and testing sets are similar

to each other.

SPAN achieves an average hit rate of 63%, 41%, and 64%
when the three most-probable requests are considered for

WebCTAll, WebCT2, and WebCT3. Corresponding precision

is 21%, 13%, and 23%, respectively. The average improvement

in hit rate achieved by SPAN, as compared to the first

order, second order, and Deshpande algorithm, was 6%, 15%,

and 25%, respectively. The corresponding improvement in

precision was 2%, 5%, and 7%. Overall, SPAN achieved a

better hit rate and precision. We also observed that SPAN

closely matched the Cadez algorithm in performance, offering

improvement only in the range of 2 to 4%. A possible reason

for this is provided in Section V.

Figures 4(e), 4(h), Sup:2, Sup:3, and Sup:4 show the hit

rate and precision obtained for the FC dataset. The average

hit rate obtained by SPAN was 70% (FC1), 60% (FC2), and

50% (FC3). The corresponding precision was 25% (FC1),

22% (FC2), and 18% (FC3). SPAN outperformed all the other
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algorithms in terms of hit rate by 10 to 31% and precision 3

to 11%.

For all datasets, when only the most probable request was

considered by the evaluation engine, the hit rate dropped by

10 to 20%, but the precision almost doubled, as can be seen in

Figures 4, Sup:2, Sup:3, and Sup:4. Interestingly, for the FC

dataset, the performance of Cadez dropped considerably when

only one request per sequence was predicted. Precision equals

hit rate when the one most probable request is considered.

Figure 5 shows the cumulative distribution functions (CDFs)

for the experiments conducted to study the reduction in

latency achieved by the SPAN and Cadez algorithms. From

Figures 4, 5, and Sup:2 we observe that higher hit rates

correspond to lower latencies for both datasets. We can also

conclude that the proportion of requests experiencing reduced

latency for obtaining responses was less than, or approximately

equal to, the hit rate obtained for that dataset. Consider hit rate

and latency for FC1, as an example. In Figure 4(e), we saw

that the hit rate obtained for FC1 was 68% for training and

testing set sizes of 50% each, when 3 most probable requests

were considered. Correspondingly, Figure 5(c) indicates that

responses were received by the PEP in less than 50 ms for

62% of requests. Furthermore, Figure 5(c) shows that 28% of

these requests experienced no delay at the PEP in obtaining

a response. In other words, responses were precomputed and

placed in the PEP cache before the corresponding requests

were made by the subjects. A similar correlation between

latency and the hit rate can be observed for the Cadez

algorithm. In the case of Cadez, when the three most probable

requests were considered for FC1, responses were received by

PEP in less than 50 ms for 51% of requests (Figure 5(c)), and

a corresponding hit rate of 57% was obtained (Figure 4(e)).

However, a queuing delay was observed when the three most

probable requests were considered, as the tail in Figures 5(a)

and 5(c) suggest. However, this tail cannot be seen for the

most probable requests case (Figures 5(b) and 5(d)).

2) Combining SPAN and Caching: Figures 6 and Sup:5

show the hit rates and the latency calculation obtained by

caching, SPAN, Cadez, and their combinations. Combining

caching and prefetching algorithms improved the overall hit

rate and reduced latency for all datasets and cache sizes.

Furthermore, prefetching appears to have played a dominant

role in improving the hit rate for smaller cache sizes. As

our cache with the least recently used policy performed just

slightly better than with first-in-first-out (FIFO), we show the

results for FIFO only.

In the case of SPAN, a better hit rate for cache sizes of

up to 20% for WebCT and up to 50% for FC was achieved.

As the cache size increased, the hit rate continued to improve

for cache and cache+SPAN configurations. However, after the

cache reached a certain size (30% for WebCT and 60% for

FC), SPAN’s contribution to the hit rate improvement became

negligible. In the FC dataset (Figure 6(b), Sup:5(c), Sup:5(d)),

increasing the cache size from 10% to 30% did not result in

any improvement in the hit rate. This anomaly is probably

because subjects in the FC dataset mostly only requested

permissions once per session, which resulted in most cached

responses never being used again in the same session.

We performed latency calculations for cache sizes of 20%,

40%, and 60%. The correlation between the hit rate and

latency holds true even in the case of caching and thus, we

report results only for a cache size of 40%. From Figure 6

and Sup:5, we observed the following: (1) For systems with

only caching, the probability of latency reduction was equal

to the hit rate obtained for the dataset. (2) In the case of

the FC dataset, when caching was combined with SPAN, the

probability of reduction in latency improved considerably (to

68% in FC1 for example Figure 6(d)) as compared to the

standalone use of caching (40%). This combination achieved

a slight improvement when compared to the standalone use

of SPAN (62%). (3) Also, the combination of caching and

SPAN improved the probability of zero latency from 40%

(caching) or 28% (SPAN) to 45% in the case of FC1. (4)

Similar observations hold true for algorithm proposed by

Cadez et al. (5) However, in the case of WebCT there was no

improvement achieved by combining prefetching and caching

over standalone caching. Since caching dominated prefetching,

there was no improvement achieved by the combination of the

two techniques over standalone caching.

3) Iterative learning technique: For implementing the iter-

ative learning technique, we started the training phase from the

previous stable assignment of clusters . This process reduces

the number of iterations from 15 to 25 initially, to less than 5

iterations. For example, for WebCT3 and WebCT2 traces, our

SPAN prototype found stable clusters in 1 and 3 iterations,

respectfully, when it was relearning with an additional 10,000

requests from the corresponding testing sets. Table II shows

the hit rates obtained for different traces of WebCT and FC

datasets for iterative learning. The hit rates did not vary much

for any set within a trace.

V. DISCUSSION

In our evaluation, SPAN achieved a higher hit rate and

precision, as compared to the other algorithms we evaluated.

A higher hit rate leads not only to a reduced latency, but

also to an increased computational load on the PDP, and

higher precision results in fewer precomputed responses being

unused.

The results of our evaluation show that SPAN performs

better when the request patterns of individual subjects are

different from overall request patterns. SPAN performs as

well as the prediction algorithm by Cadez et al. [8] for the

WebCT dataset, and it outperforms the Cadez et al. algorithm

for FC. The popular sequences of requests made in WebCT

were for accessing course materials, to which everyone had

access; resulting in similar request patterns for most subjects.

The WebCT dataset closely matched a dataset that would

be obtained for web pages without access control policies.

Since SPAN and Cadez are implemented using a clustering

approach, SPAN could not achieve a significant improvement

over Cadez for this dataset. On the other hand, Fight Club

players could receive help only from their Facebook friends,

which resulted in different requests made by different subjects.

From a total of 43,669 users, who played the game, each user

could receive help from a small set of other users. This is
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(a) 3: WebCT (b) 1: WebCT (c) 3: FC (d) 1: FC

Fig. 5. Latency calculation for WebCT and FC datasets when either 3 (a, c) or 1 (b, d) most probable responses were fetched for every sequence.

(a) hit rate: WebCTALL (b) hit rate: FC1 (c) latency: WebCTALL (d) latency: FC1

Fig. 6. Hit rates (a,b) and latency reduction (c,d) for implementations of FIFO cache, SPAN(3), Cadez(3), and their combination for WebCT and FC datasets.

similar to the accesses found in access control systems, where

subjects can request action on a small set of permissions from

the available pool of permissions. Our design of SPAN, which

considered individual subjects’ request patterns might have

resulted in better predictions for the FC dataset. However,

SPAN outperforms the other algorithms used in the evaluation

for both datasets.

Limiting the number of precomputed responses increased

precision—and therefore reduced the load on the PDP—at the

expense of the hit rate. Results (Supplementary file Sup:III-A)

show that precision increased by 50 to 100% but the hit rate

decreased by almost 50%, when the number of precomputed

requests was reduced from three most probable to the most

probable one. Increasing the probability threshold for predicted

requests also gave similar results. Limiting the number of

precomputed responses can be a good strategy where the

PDP’s computing resources are either expensive or limited.

SPAN achieved a better hit rate for smaller cache sizes, but

caching dominated the performance for larger sizes of cache.

Overall, combining caching and SPAN demonstrated a boost

in hit rate for all sizes of cache, as compared to standalone

caching techniques or SPAN.

The increased hit rate resulted in the reduction of latency.

In the case of FC1, for example, for the 62% of the requests,

responses were received in less than 50 ms. The impact of such

reduction on the user experience depends, of course, on the

overall waiting time, which includes not only the authorization

and communication but also the application delays. While it’s

hard to assess the impact of these savings on all applications,

WebCTAll WebCT2 WebCT3 FC1 FC2 FC3

1st set (10K) 66.8 43.2 69.9 68.6 58.8 49.8

2nd set (10K) 64.4 38.3 67.6 67.1 57.9 50.4

3rd set (10K) 63.5 40.9 66.5 69.8 61.1 52.8

1st set (20K) 66.8 43.1 69.8 68.6 58.8 49.8

2nd set (20K) 63.4 42.4 69.4 65.3 65.3 56.3

3rd set (20K) 64.8 43.7 67.9 69.5 61.0 57.4

TABLE II
HIT RATES (%) OBTAINED FOR ITERATIVE LEARNING. 10K AND 20K

REPRESENT THE REQUESTS CHANGED FOR EVERY NEW ITERATION. THE

1st SET IS THE ORIGINAL TRAINING SEQUENCE FOR THE TRACE.

online commerce companies report an approximate 1% loss

in sales as the cost of a single extra 100 ms delay, and search

engines find that an extra 500 ms delay in displaying the search

results may reduce their revenues by up to 20% [3].

From Table I, we found that training time is large, which

is directly proportional to the number of subjects, unique

sequences of requests, and iterations required to form clusters.

However, the time required to make predictions is low. In fact,

it only depends on the number of clusters formed, which is

much smaller than the number of subjects and sequences.

Although SPAN achieves a better hit rate and precision,

compared to other state-of-the-art systems, it is not perfect.

If, for example, due to a policy change, a subject’s access

pattern changes, it would take some time for SPAN to learn

the new pattern. Until then, SPAN’s hit rate and precision

might be degraded. This is a core limitation of all predicting

approaches [6], [7], [8], [9], [10], [11], [12], [13], as discussed
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in Section II. We have partially addressed this limitation by

our iterative learning technique. Note that when using SPAN,

incorrect predictions do not result in incorrect authorization

decisions being enforced by the PEP, as SPAN only predicts

requests but responses are computed by the PDP, which has

access to the current policy. Also, in the current design, SPAN

does not address the issue of multiple users using the same

account to access protected resources. This would be a possible

topic for future research.

VI. CONCLUSION

In this paper, we presented an approach for Speculative
Authorization (SPAN), which predicts the authorization re-

quests that are to be made by subjects in enterprise autho-

rization systems. After evaluating the results obtained with

our approach using one synthetic dataset and two real-world

datasets, SPAN achieved a hit rates between 30% and 70%,

and reduced latency for almost 60% of the requests. This is

an improvement of 2 to 55%, as compared other prominent

web prefetching algorithms. We also simulated caching and

prefetching in the same system, and found that SPAN improves

the performance of authorization systems considerably for

smaller sizes of cache.

In future studies, role-based access control (RBAC) [23]

could be explored as one of the solutions for reducing the

length of the training phase. This time is proportional to the

number of subjects, which can affect the scalability of SPAN.

With RBAC, subjects would be assigned to roles, and these

roles could be used during cluster assignments. A subject

can, however, possess multiple roles, which would have to

be considered while forming clusters.
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