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OpenID 2.0 is a user-centric Web single sign-on protocol with over one billion OpenID-

enabled user accounts, and tens of thousands of supporting websites. While the security

of the protocol is clearly critical, so far its security analysis has only been done in a partial

and ad-hoc manner. This paper presents the results of a systematic analysis of the protocol

using both formal model checking and an empirical evaluation of 132 popular websites that

support OpenID. Our formal analysis reveals that the protocol does not guarantee the

authenticity and integrity of the authentication request, and it lacks contextual bindings

among the protocol messages and the browser. The results of our empirical evaluation

suggest that many OpenID-enabled websites are vulnerable to a series of cross-site request

forgery attacks (CSRF) that either allow an attacker to stealthily force a victim user to sign

into the OpenID supporting website and launch subsequent CSRF attacks (81%), or force

a victim to sign in as the attacker in order to spoof the victim’s personal information (77%).

With additional capabilities (e.g., controlling a wireless access point), the adversary can

impersonate the victim on 80% of the evaluated websites, and manipulate the victim’s

profile attributes by forging the extension parameters on 45% of those sites. Based on the

insights from this analysis, we propose and evaluate a simple and scalable mitigation

technique for OpenID-enabled websites, and an alternative man-in-the-middle defense

mechanism for deployments of OpenID without SSL.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction were introduced.Their architectures separate the roleof identity
Back in 2007, a typical web user had about 25 password-

protected accounts, and entered approximately eight pass-

words per day (Florencio and Herley, 2007). In order to address

this problem, a number of web single sign-on (WSSO) solutions
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provider (IdP) from that of relying party (RP). An IdP maintains

the identity information of the user and authenticates it, while

an RP relies on the authenticated identity tomake authorization

decisions and customize the user experience. This separation

enables the use of the same centrally-managed authenticated
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credentials across multiple providers of web services, reducing

the number of passwords a user has to deal with.

OpenID 2.0 (Recordon and Fitzpatrick, 2007) is an open and

promising user-centric WSSO solution. According to the

OpenID Foundation (2009), there are currently more than one

billion OpenID-enabled user accounts provided by major

service providers (e.g., Google, Yahoo, and AOL), and over

50,000 websites that accept OpenID for logins. In addition, the

US Government has collaborated with the OpenID Foundation

to support the Open Government Initiative’s pilot adoption of

OpenID technology.3

Even though OpenID is rapidly being adopted, its security

has yet to be demonstrated. Besides the risks documented in

theOpenID specification itself (e.g., phishing, IdPmasquerade,

replay, denial-of-service attacks), several security issues have

been reported in the literature. Tsyrklevich and Tsyrklevich

(2007) demonstrated how to insidiously log a user into her RP

via a cross-site request forgery (we refer to this attack as a “SSO

CSRF”), and how a fast network attacker could sniff an

authentication response and reset the user’s TCP connection

to masquerade as that user (an “impersonation” attack). Barth

et al. (2008) showed that the OpenID protocol is vulnerable to

session swapping, which forces the user’s browser to initialize

a session authenticated as the attacker. Sovis et al. (2010)

examined the OpenID extension framework and found that

the extension parameters could be forged when the commu-

nication channel is not SSL-protected (a “parameter forgery”

attack). However valuable these findings are, there is a lack of

deeper understanding of the systemic causes of those vulner-

abilities found in the OpenID protocol, how prevalent they are,

and how to effectively address them. This paper fills this gap.

We started our investigation of OpenID from the perspec-

tives of the RP’s business incentives (Sun et al., 2010a), and the

user’s usability and security concerns (Sun et al., 2010b,

2011a,b). In this work, we aimed at furthering the understand

of the following questions:

� What are the root causes of the published vulnerabilities of

OpenID? How could those systemic weaknesses be exploi-

ted by new attack vectors?

� How prevalent are those weakness in real-word imple-

mentations? If they are rare then these vulnerabilities

would only be of academic interest.

� What are the limitations of existing countermeasures and

recommendations? How can we improve them in order to

address effectively the root causes of those weaknesses?

Finding new ways to attack the OpenID protocol is not the

focus of this work. Instead, we believe that understanding the

rootweaknesses in theprotocol ismore important thanfinding

new attacks. For instance, one of the attack traces from our

formal model revealed that the RP may accept an authentica-

tion response from another session. This particular weakness

can be exploited in many ways, such as session swapping,

sniffing and resetting the user connection, DNS/ARP cache

poisoning, or exploiting the exception handling vulnerability

in the browser; but the root cause remains the samedthe

protocol lacks bindings among the protocol messages and the
3 http://www.whitehouse.gov/open.
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browser that issued those requests. Understanding the proto-

col’s root weaknesses also leads us to identify new attack

vectors, examine the limitations of existing defense mecha-

nisms, and design effective countermeasures.

We formalized the OpenID 2.0 protocol in the High Level

Protocol Specification Language (HLPSL) and verified the

model using the Automated Validation of Internet Security

Protocols and Application (AVISPA) model checking engine

(Vigano, 2006). Based on this analysis, three root weaknesses

of the OpenID protocol were identified: (1) a lack of authen-

ticity guarantee of the authentication request, (2) a lack of

contextual bindings between the authentication messages

and the browser, and (3) a lack of integrity protection of the

authentication request.

To evaluate how prevalent those weaknesses are in the

real-world implementations of RP websites, we developed six

exploits and a semi-automated tool, and evaluated 132 RPs.

The results of our empirical evaluation show that many of the

tested RPs are vulnerable to at least one variant of SSO CSRF

attacks and/or are exploitable through the session swapping

attack. Our evaluation also found that after a successful SSO

CSRF attack, an adversary could use CSRF attacks to alter the

users’ profile information on two-thirds of the evaluated RPs.

Both the SSO CSRF and the session swapping attack could be

launched by a passive web attacker that lures the victim to

visit a web page with the exploit code. With additional prac-

tical adversary capabilities that enable an attacker to inter-

cept the authentication assertions, the attacker could

impersonate a user on the majority of RPs to gain complete

control of the victim’s data. In addition, the extension

parameters can be forged on almost half of the websites that

support OpenID Simple Registration or Attribute Exchange

extension.

The lack of security guarantees in the OpenID protocol

requires RPs to employ additional countermeasures.

However, our formal analysis and empirical evaluation

found that the existing countermeasures and recommenda-

tions are provided as piece-meal patches and do not address

the root causes of the vulnerabilities, which are further

discussed in Section 2.2. To address the uncovered weak-

nesses, two countermeasures are proposed and evaluated.

Both proposed countermeasures work with the existing

OpenID 1.1 and 2.0 protocol, and do not require modifica-

tions of IdPs or web browsers. We have made the formal

protocol specification, the vulnerability assessment tool, and

the reference implementation of the countermeasures

publicly available.4

To summarize, this work makes the following contribu-

tions: (1) a formal specification and analysis of the OpenID

protocol that identifies three weaknesses and correlates six

types of possible attack vectors, (2) a semi-automatic OpenID

vulnerability assessment tool, (3) an empirical evaluation of

132 OpenID-enabled websites, and (4) two proposed and

evaluated countermeasures for the attacks that exploit the

uncovered weaknesses in the protocol.

The rest of the paper is organized as follows: The next

section discusses related work, and Section 3 provides an

overview of our approach and the adversary model. The
4 http://sourceforge.net/projects/openidhack/.
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OpenID protocol and its formalization are presented in

Section 4 and 5. In Section 6, the results of our evaluation of

existing RP implementations are presented. We describe our

proposed countermeasures in Section 7, and summarize the

paper and outline future work in Section 8.
Fig. 1 e A high level view of how OpenID works.
2. Background and related work

The Web as we know it today is site-centric, which results in

users having multiple passwords and profiles. Web users face

the burden of managing this increasing number of accounts

and passwords, which leads to “password fatigue”.5 Aside

from the burden on human memory, password fatigue may

cause users to devise coping strategies that degrade the

security of the protected information (Gaw and Felten, 2006;

Florencio and Herley, 2007). In addition, the site-centric Web

makes online profile management and personal content

sharing difficult, as each user account is created andmanaged

in a separate administrative domain (Sun et al., 2009).

To address the problems resulted from the site-centric

Web, major content-hosting and service providers have

implemented various protocols that allow other websites to

accept user credentials from their domains (e.g., Microsoft

Live ID (Oppliger, 2004), Yahoo BBAuth (Yahoo Inc, 2008), AOL

OpenAuth (AOL LLC, 2008), and Facebook Connect (Facebook

Inc, 2010)). However, not only these systems are proprietary,

they are also centralized (i.e., identity information is main-

tained and controlled by a single administrative domain). In

contrast, federated identity solutions such as Liberty Alliance

Project6 and Shibboleth7 enable cross-domain single sign-on.

Nevertheless, these solutions require pre-established agree-

ments between organizations in the federation, making them

hard to scale to the Web.

OpenID 2.0 (Recordon and Fitzpatrick, 2007) is a de-

centralized WSSO solution. One key scalability feature of

OpenID is that it does not require any pre-registration of RP to

IdP, and users are free to choose or even setup their own

OpenID providers. Fig. 1 illustrates the following steps, which

demonstrate a high level view of how the OpenID protocol

works:

1. A user selects an IdP or enters her OpenID URL via a login

form presented by an RP.We refer to this HTTP request as

a “Login Request”.

2. The RP fetches the document on the given OpenID URL to

discover the IdP’s endpoint, and then redirects the user to

the IdP for authentication (an “authentication request” or

“Auth Request,” for short).

3. The user authenticates to the IdP by entering her user

name and password, and then consents to the release of

her profile information.

4. The IdP redirects the user back to the RP with the user’s

OpenID identifier and profile attributes, both of which are

signed by the IdP (an “authentication response”, “asser-

tion”, or “Auth Response”).
5 http://en.wikipedia.org/wiki/Password_fatigue.
6 http://www.projectliberty.org/.
7 http://shibboleth.internet2.edu.
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2.1. Known security issues

Several possible threats are documented in the OpenID spec-

ification itself, including (1) a phishing attack that redirects

users to a malicious replica of an IdP website, (2) the

masquerade of an IdP by an MITM attacker between the RP

and IdP to impersonate users on the RP, (3) a replay attack that

exploits the lack of assertion nonce checking by RPs, and (4)

a denial-of-service (DoS) attack that attempts to exhaust the

computational resources of RPs and IdPs.

In addition to the aforementioned phishing attack,

Tsyrklevich and Tsyrklevich (2007) demonstrate a series of

possible attacks on the OpenID protocol: (1) a malicious user

could trick an RP to perform port scans and exploit non-

accessible internal hosts; (2) an MITM attacker between the

RP and IdP could perform two distinct DH key exchanges with

each party to sign authentication assertions on behalf of the

IdP; (3) an IdP could track all the websites a user has logged

into via the return_to parameter; (4) a network attacker

could sniff the wire to intercept an authentication response to

log into the RP as the victim user; and (5) a Web attacker could

insidiously log a user into her RP via a cross-site forged login

request.

Barth et al. (2008) introduce login CSRF, in which an attacker

logs the victim into a site as the attacker by using the victim’s

browser to issue a forged cross-site login request embedded

with the attacker’s user name and password. The authors also

illustrate how the session swapping attack works in OpenID

and in PHP cookie-less authentication. In the case of OpenID

session swapping, the attacker first signs into an RP using the

attacker’s identity, intercepts the authentication response,

and then embeds the intercepted response in a web page that

victims will visit. Sovis et al. (2010) examined the OpenID

extension framework and found that, due to an improper

verification of OpenID assertions, the extension parameter

values sent within the OpenID protocol could be manipulated

if the channel is not SSL-protected. Wang et al. (2011) found

some RP implementations do not check that the information

passed through Attribute Exchange extension was signed,

which allows an attacker to modify the profile attributes

returned from an IdP. Jain et al. summarize existing OpenID

security issues on their OpenID reviewwebsite,8 and Delft and
8 https://sites.google.com/site/openidreview/issues.

breaking and fixing OpenID security: Formal analysis, semi-
, Computers & Security (2012), doi:10.1016/j.cose.2012.02.005

http://en.wikipedia.org/wiki/Password_fatigue
http://www.projectliberty.org/
http://shibboleth.internet2.edu
https://sites.google.com/site/openidreview/issues
http://dx.doi.org/10.1016/j.cose.2012.02.005
http://dx.doi.org/10.1016/j.cose.2012.02.005


10 Server Name Indication (SNI), a TLS extension (Blake-Wilson

c om p u t e r s & s e c u r i t y x x x ( 2 0 1 2 ) 1e1 94
Oostdijk (2010) present the OpenID security issues found by

others.

A formal OpenID model in AVISPA was presented by

Lindholm (2009), but the formalization only models the non-

association mode of the OpenID protocol (i.e., no DH shared

key between the RP and IdP), and it assumes that an MITM

attacker controls the communication between the RP and IdP.

In a non-association mode, the RP has to send the assertion

back to the IdP for validation via a direct communication (i.e.,

not via browser) and the validation result is not signed. It is

cleardand documented in Section 15.1.2 of the OpenID spec-

ification as welldthat an MITM attacker between the RP and

IdP could impersonate the victim by replying to the RP with an

unsigned positive assertion. Fundamentally, this adversary

model contradicts the basic assumption of the OpenID

protocol, which requires the communication between RP and

IdP to be secured.

2.2. Existing defense techniques

The OpenID Foundation’s Security Best Practices page9

suggests that “any URL that updates data on the user’s

behalf, or changes the state of the user’s account MUST be

CSRF protected.” Cross-Site Request Forgery (CSRF) is a widely

exploitedweb application vulnerability (OWASP, 2010). A CSRF

attack tricks a user into loading a page that contains a mali-

cious request that could disrupt the integrity of the victim’s

sessionwith a website. The attack URL is usually embedded in

an HTML construct (e.g., <img src¼http://bank.com/

transfer?to¼evil>) that causes the browser to automati-

cally issue the malicious request when the HTML construct is

viewed. As the malicious request originates from the victim’s

browser and the session cookies previously set by the victim

site are sent along it automatically, there is no detectable

difference between the attack request and the one from

a legitimate user request. To launch a CSRF attack, the mali-

cious HTML construct could be embedded in an email, hosted

on amaliciouswebsite, or planted on benignwebsites through

XSS or SQL injection attacks.

Validating the HTTP Referer header to ensure the request

in question was issued by an authorized source is a simple

way to prevent SSO CSRF and session swapping attacks.

However, due to privacy concerns, many web proxy servers

suppress the Referer headers before sending out the requests

(Barth et al., 2008), which makes this approach unreliable.

Although requiring an IdP to prompt the user to login on every

RP sign in attempt could be an effective way to prevent

SSO CSRF attacks, this option requires changes to IdPs and,

more importantly, would most likely turn users away from

OpenID.

Including a hard-to-guess secret token in HTTP requests to

ensure that the request in question was initiated by the

website itself is another common CSRF defense mechanism.

However, based on our formal analysis, the validation token

must also be included in the Login and Auth Request, bound to

the client, and signed by the IdP in order to ensure the origi-

nation of the authentication request. Thus, when using

a validation token to protect CSRF, if the token is not
9 http://wiki.openid.net/w/page/12995200/.
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embedded in the Auth Request, an attacker could simply

launch an SSO CSRF attack through the Auth Request instead

of from a token-protected Login Request. When the token is

embedded in the Auth Request, but not bound to the client, an

attacker could submit an RP login form from her browser with

the victim’s or an IdP’s OpenID identifier to acquire an Auth

Request that contains a valid token. Similarly, by using the

attacker’s identity and intercepting an authentication asser-

tion, a session swapping attack could be launched even when

the token is presented in Login and Auth Requests, but not

bound to the client. Moreover, if the token is simply a hard-to-

guess nonce, the parameters in the Auth Request could be

manipulated during the transmission.

To prevent session swapping attacks, Barth et al. (2008)

suggest that the RP should generate a fresh nonce at the start

of theprotocol, setacookiewith thevalueof thenonce, andthen

append the nonce to the return_to URL of an Auth Request.

Upon receiving an Auth Response, the RP could check whether

the nonce in the return_to URL matches the cookie sent from

the browser to ensure that the received Auth Response is from

the same browser as the request. However, this defense mech-

anism cannot prevent SSO CSRF via Login Request, or attacks

that manipulate the authentication requests.

SSL provides end-to-end protection and is commonly sug-

gested for mitigating attacks that manipulate network traffic.

However, SSL cannot prevent attacks launched froma browser

such as SSO CSRF and session swapping attacks. In addition,

an SSL server requires anRP tomaintain a valid certificate (e.g.,

setup, renew, key management), needs to run on its own IP

address10 (i.e., no virtual hosting), imposes performance

overhead, and introduces undesired side-effects. SSL makes

web contents non-cacheable for the proxies and content

delivery networks, and prohibits progressive content

rendering as web contents in a HTTPS page cannot be dis-

played by the browser until they are fully loaded and verified.

Additionally, to avoid browser warnings about mixed secure

(HTTPS) and insecure (HTTP) content, all related resources

included in an SSL-protected page must be delivered under

a computationally intensive SSL. This introduces an additional

computation overhead and non-cacheable latency for static

graphical content that typically requires no protection (e.g.,

images, Flashes), and it might not be practical if some content

is from external websites. Moreover, encrypted content

cannot be evaluated, scanned, or routed based on content by

intermediate security devices deployed by the website. Due to

these unwanted complications, many websites use SSL only

for login pages or certain services (e.g., credit card processing),

but do not use SSL for the rest of the site after authentication

(Adida, 2008; Singh et al., 2011). Nevertheless, the lack of

protection in the subsequent communication allows network

attackers to simply sniff the session cookies to hijack victims’

sessions, even though the login process is secured (Graham,

2007; OWASP, 2009).

At the time of this writing, OpenID Foundation is drafting

the next version of OpenID, named “OpenID Connect”

(Sakimura et al., 2011), which is completely different than the
et al., 2003), supports virtual hosts for SSL, but not fully sup-
ported by all browsers and servers yet.
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OpenID 2.0 protocol. OpenID Connect uses OAuth 2.0

(Hammer-Lahav et al., 2011) as the basic access authorization

protocol and adds identity and interoperability features (e.g.,

an ID token that contains claims about the authentication

event, endpoints for retrieving user profile attributes and

session management, dynamic IdP discovery and RP regis-

tration) so that a single implementation of an RPwebsite could

virtually interact with all OpenID Connect IdPs without

a tailored configuration, registration, or implementation.

While the adoption of OpenID Connection might be seen in

the near future, the security analysis and evaluation is

a research topic that requires further investigation.
3. Approach and adversary model

Fig. 3 illustrates the overall process of our approach, which

consisted of three stages: (1) formalizing the OpenID protocol

and identifying its vulnerabilities using an automatic security

protocol verification tool, (2) designing exploits and tools to

evaluate real-world RP websites, and (3) designing and eval-

uating countermeasures.

To formalize the OpenID protocol, we first interpreted the

OpenID specification into a sequence diagram and imple-

mented an RP website. The sequence diagram was then vali-

dated by using an HTTP proxy to examine the protocol

messages. Based on the OpenID sequence diagram, our

adversary model, and the weaknesses documented in the

OpenID specification, the protocol was formalized in Alice-

Bob (A-B) notationda simple way commonly used to

describe security protocols (Caleiro et al., 2005; LSV, 2003;

Denker and Millen, 2000; Lowe, 1998). The A-B notation gave

a clear illustration of the messages exchanged in a normal,

successful run of the protocol, which assisted initial analysis

and could be later translated into other protocol specification

languages. According to the A-B notation, the protocol was

modeled in HLPSL and validated using AVISPA (Vigano, 2006).

AVISPA is a security protocol verification tool that has been

widely employed to validate authentication and key exchange

protocols.11 The verification process outputted possible attack

traces on the model of the OpenID protocol.

When applying model checking approach for security

protocol analysis, one inherit limitation is that a model

checker stops its execution once an insecure state is reached

or when the computation resources are exhausted. Thus, in

order to formalize a concise model that could avoid the state

explosion problem and discover as many weaknesses as

possible, our formalization excluded all documented weak-

nesses in the OpenID specification. Our analysis also assumed

the integrity of the user’s computer and that the RP, the IdP,

and the channel between them are trusted.

The analysis of the AVISPA attack traces identified three

weaknesses in OpenID that could be exploited by several

attack vectors. For each attack vector, a corresponding exploit

was designed and manually tested on 20 RP websites. To

facilitate the assessment process, a semi-automatic vulnera-

bility assessment tool was then developed and used to
11 See http://www.avispa-project.org for the library of examined
protocols and related papers.
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evaluate 103 RP websites listed on an OpenID directory,12 and

29 websites from the Google Top 1000 Websites that accept

OpenID for logins.

To eliminate the identified vulnerabilities, potential coun-

termeasures were first modeled in AVISPA to ensure that the

proposed solutions could address the root cause of the

vulnerabilities. To be simple and scalable, the proposed

defensemechanisms are stateless and only use cryptographic

functions (i.e., HMAC and DH key exchange) and data that are

readily accessible to RPs. In addition, we designed a scheme

that allows the browser and the RP server to derive a DH

session key during the OpenID authentication process to

mitigate impersonation attacks after login. Both proposed

countermeasures were implemented and tested on an open-

source Java web application.

3.1. Adversary model

In this paper, we assume that both the RP and IdP are trust-

worthy and that the users’ machines are benign and not

compromised. We do not consider attacks that rely upon

subverting the RP and IdP’s administrative functions or

exploiting vulnerabilities in their infrastructures. In our

adversary model, an adversary is not affiliated with an RP or

IdP; and its goal is to gain unauthorized access to the user’s

personal data on RP’s website. In addition, “perfect cryptog-

raphy” in the protocol is assumed; that is, an attacker cannot

break cryptographywithout the decryption key. Moreover, the

known threats documented in the OpenID specification (e.g.,

phishing, IdP masquerade, replay, denial-of-service attacks)

are not considered. In this work, two different adversary types

are considered, which vary on their attack capabilities:

� A Web attacker can post comments that include static

content (e.g., images, style sheet) on a benign website, setup

a malicious website, send malicious links via spam or Ads

network, and exploit web vulnerabilities (e.g., XSS) at benign

websites. Malicious content crafted by a Web attacker can

cause the browser to issue HTTP requests to other websites

using both GET and POST methods, but these requests

cannot have custom HTTP headers, such as cookies.

� A network attacker can sniff and alter traffic between the

browser and the RP by eavesdropping messages on an

unencrypted network, or using MITM proxying techniques,

such as luring the victim to use a rogue wireless access

point, or employing “drive-by pharming” (Stamm et al.,

2007) attacks to alter the DNS server settings on the

victim’s home broadband router.
4. The OpenID protocol

OpenIDusesaURLorXRI (OASIS, 2008) asauser’s identifierand

the OpenID protocol asserts to an RP that the user owns the

resource of the given identifier. In this paper, the notation

described in Table 1 is used to denote the protocol messages

and entities. In particular, we use a capital letter to denote an

entity (e.g., User, RP, IdP) and a lower-case letter to represent
12 https://www.myopenid.com/directory.
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data in theprotocol.As illustrated in Fig. 2, theOpenIDprotocol

consists of four phases, each phase is described below:

Phase 1: Initialization and discovery:

1.1. User U selects an IdP (e.g., https://yahoo.com/), or enters

her OpenID identifier i into an OpenID login form on an RP.

The browser B then sends i to RPda “Login Request”.

1.2. RP makes an HTTP request on i to fetch the document

hosted on the ID server. The ID server can be located

within the domain of an IdP or can be a completely

different entity that delegates an IdP to authenticate the

user.

1.3. The ID server responds with either an XRDS or HTML

document that contains the IdP endpoint URL idp.

Phase 2: Association (optional):

2.1. RP generates a Diffie-Hellman (DH) modulus p, generator

g, and a random DH private key a to initiate an associ-

ation operation that establishes a session key k with IdP.

2.2. RP sends i, p, g, and the DH public key ga mod p to IdP.

2.3. IdP generates a new session handle h, a session key k, and

a random DH private key b.

2.4. IdP sends gb mod p, h, and an encrypted session key kenc ¼
ðk5HðgabmodpÞÞ to RP.

2.5. RP computes k ¼ HðgabmodpÞ5kenc and then stores the

tuple (h, k, i).

Phase 3: Authentication request:
Fig. 3 e Overall

Please cite this article in press as: Sun S-T, et al., Systematically
automated empirical evaluation, and practical countermeasures
3.1. RP sends i, h (optional), and a return URL r to IdP via B to

obtain an assertiondan “Auth Request”. The return URL r

is where IdP should return the response back to RP (via

B). If RP omits Phase 2, it must validate the received

authentication response via a direct communication

with IdP in the “Authentication response” phase (Steps

4.4 and 4.5).

3.2. B sends i, r, and h to IdP.

3.3. IdP checks i and h against its own local storage. If h is not

presented, IdP generates a new session handle h and

a session key k. In addition, if a cookie that was previ-

ously set after a successful authentication with U is

presented in the request, IdP could omit the next two

steps (3.4 and 3.5).

3.4. IdP presents a login form to authenticate the user.

3.5. U provides her credentials to authenticate with IdP, and

then consents to the release of her profile information.

3.6. If the user credentials are correct, IdP generates nonce n

and signature s ¼ HMAC(idp.i.h.r.n, k). Here, the “.” is

a concatenation operation between two values.

Phase 4: Authentication response:

4.1. IdP sends idp, i, h, r, n, and s to the URL specified in r via

Bdan “Auth Response”.

4.2. B redirects the authentication response to RP.

4.3. RP computes s0 ¼HMAC(idp.i.h.r.n, k) over the received idp,

i, h, r, and n, and checks whether s0¼s. Note that RP can
approach.
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Table 1 e Notation.

Notation Description Notation Description

i OpenID identifier h Session handle

k Session key n Nonce

r RP return url x.y Concatenation

of x and y

x5y XOR of x and y E(x, k) Encrypt x with

key k

H(x) Hash function

on x

HMAC(x, k) HMAC on x

with key k

U User B Browser

RP Relying party IdP Identity Provider

c om p u t e r s & s e c u r i t y x x x ( 2 0 1 2 ) 1e1 9 7
perform local validation on s only if it has established

a shared session key k with IdP in the Phase 2.

4.4. If RP omits Phase 2, it sends the authentication response

directly to IdP, i.e., not via B.

4.5. IdP answers whether the authentication response is valid.

4.6. If the authentication response is valid, RP allows U to sign

in using i as her identifier.
5. Protocol formalization

Since our adversary model assumes that both the RP and IdP

are trustworthy and that the integrity of the user machine is

guaranteed, the following assumptions are made when

formalizing the OpenID protocol:

� Secure discovery process: We assume that the RP knows the

endpoint URL of the IdP based on a given OpenID identifier.

Thus, the discovery steps (Steps 1.2 and 1.3 In Fig. 2) are

ignored in our model.

� Secure association process: The OpenID protocol uses the

DH key exchange protocol to establish a session key

between the RP and IdP; but DH is vulnerable to MITM

attacks.We do not attempt to address this problem and thus

omit the association steps (Steps 2.1e2.5) from the formal

model. Our model assumes that the RP has successfully

established a shared keywith the IdP and the authentication

response can be validated by the RP locally (i.e., Steps 4.4

and 4.5 are omitted).

� Secure channel between the user and the IdP: We assume

that the user-to-IdP communication is protected with SSL,

and the RP redirects the user to the correct IdP for authen-

tication (i.e., phishing attacks are not considered).
Fig. 4 e The Alice-Bob formalization of the OpenID protocol. The

in the end of each step.
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These assumptions allow us to derive a concise model that

could avoid the state explosion problem during verification,

and prevent the known weaknesses from blocking the

execution of the model checker when an insecure state is

reached. In addition, themechanism for authenticating a user

to an IdP is not defined in the OpenID specification (Steps 3.4

and 3.5). For the purpose of modeling user-to-IdP authenti-

cation, the following authentication protocol is adopted from

the HLPSL documentation:

1. A / B : E(na, k), A sends B a nonce na encrypted with

a shared key k

2. B / A : E(nb, k), B sends A another nonce nb also encrypted

with k

3. A / B : E(nb, k1), A computes a new key k1 ¼ H(na.nb) and

sends back B the value of nb encrypted with k1

The first two messages serve to establish k1, shared

between A and B, and the last one serves as a proof that A has

the new key, k1, and B can authenticate A using nb. This

protocol has been verified to be secure by AVISPA, and thus

the use of it would not affect the outcome of the analysis.

5.1. Alice-Bob formalization

Our formal model combines user U and browser B into one

single entity, denoted as UB. Based on the above assumptions

and the user-to-IdP authentication protocol, the shared

knowledge between each entity is defined as the follows: (1)

IdP and UB share a secret key kUI and an identifier i, (2) RP

shares a secret key kRI and a session handle hwith IdP, and (3)

RP does not have a prior knowledge of UB and i.

By taking out the omitted steps from the sequence diagram

based on our assumptions and using the shared knowledge

defined above, an Alice-Bob formalization illustrated in Fig. 4

is modeled. Each step in the A-B notation is annotated with

the corresponding steps from the protocol sequence described

in Section 4. Steps 3 to 5 use the aforementioned authentica-

tion protocol to authenticate UB to IdP.

5.2. HLPSL formalization

For a protocol to be verified with AVISPA’s back-end model

checking engines, it must be encoded in HLPSLdan expres-

sive, modular, role-based formal language that allows for the

detailed specification of the protocol in question. An HLPSL

model typically includes the roles played in the security
corresponding steps from the sequence diagram is denoted
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protocol, as well as the environment role and the security

goals that have to be satisfied.

The conceptual model of our HLPSL formalization is illus-

trated in Fig. 5, and the source code and attack traces are listed

in Appendix A. Each basic role (i.e., UB, RP, IdP) contains a set

of state transition definitions and local variables. Each tran-

sition represents the receipt of a message and the sending of

a reply message, and the local variables are set during a state

transition. In addition, each basic role contains a set of shared

constants defined by the environment role to model the

shared knowledge between different roles.

A role in HLPSL uses channels defined by the environment

role for sending and receiving messages. As illustrated in

Fig. 5, the message sequences between each role have a one-

to-one mapping to the A-B notation defined in Fig. 4. AVISPA

analyzes protocols under the assumptions of a perfect cryp-

tography and that the protocol messages are exchanged over

a network controlled by a Dolev-Yao intruder (Dolev and Yao,

1983). That is, the intruder can intercept, modify, and generate

messages under any party name, but he cannot break cryp-

tography without the decryption key.

The environment role also defines the intruder’s initial

knowledgedshared constants that are initially known to the

intruder. In our model, the intruder knows all shared

constants except the secret keys that are shared between

basic roles (i.e., kUI betweenUB and IdP, and kRI for RP and IdP).

Based on this initial knowledge, the intruder gains or derives

additional knowledge via the intercepted messages through

out the execution of the protocol.

An HLPSL model is a state machine, and an AVISPA model

checking engine tries to reach all possible states of the

protocol to find an insecure state that violates at least one of

the protocol’s safety propertiesdreferred as “security goals”

in AVISPA. There are two types of security goal supported by

HLPSLdsecrecy and authentication. Each security goal, declared

with a unique constant identifier, is an invariant that must

hold true for all reachable states. Three special statements in

HLPSL are used to specify the condition of a desired security

goal. For secrecy goals, the secret statement specifies which

value should be kept secret among whom; and if the intruder

learns the secret value, then he has successfully attacked the

protocol. For authentication goal, a pair of statements (witness

and request) are used to check that a principal is right in

believing that his intended peer is presented in the current

session, and agrees on a certain value. For instance, an
Fig. 5 e The conceptual model o
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authenticity goal “A authenticates B on the value of C” could

be read as “A believes B is presented in the current session and

agrees on value C.” Typically, C is a fresh value that is

unknown to the intruder and unique among concurrent

sessions. If an intruder manipulates protocol messages to

reach a state inwhich B agrees on a different value CwithA, or

the same value C is used in multiple sessions, then the

authentication goal has been successfully violated by the

intruder.

Our HLPSL model specifies six security goals based on the

Alice-Bob formalization in Fig. 4. The overall goal of the

OpenID protocol is to assert to an RP that the user owns

a specific OpenID URL controlled by the IdP. In order for the

user to participate in the authentication process, the

OpenID authentication request and response are passed

between the RP and IdP through the user’s browser. Thus,

when an RP receives an Auth Response, the RP has to assert

that the Auth Response is generated by the IdP (goal G1), the

same UB is used for the request and response (G2), and the

UB has been authenticated by the IdP (G3, G4). On the other

hand, when an IdP receives an Auth Request, the IdP has to

make sure that the Auth Request is originated by the RP

(G5), and the RP needs to ensure the Login Request is initi-

ated by the UB with the user’s OpenID identifier (G6).

Therefore, the security goals of our HLPSL model are spec-

ified as follows:

G1: RP authenticates IdP on the value of the signature s ¼
HMAC(IdP.i.h.RP.n, kRI).

G2: RP authenticates IdP on the value of UB.

G3: IdP authenticates UB on the value of nb.

G4: The session key k1¼ H(na.nb) should be kept secret

between UB and IdP.

G5: IdP authenticates RP on the value of the Auth Request

(IdP.i.h.RP).

G6:RP authenticatesUB on the value of theOpenID identifier i.

A run of AVISPA model checking found three violated

security goals, G2, G5 and G6. The violation of the G2 goal

reveals that the OpenID protocol lacks contextual bindings

between the Auth Request, Auth Response, and the browser.

This means that when an RP receives an Auth Response, the

RP cannot assert that the Auth Response is sending from the

same browser through which the authentication request was

issued. The lack of contextual binding in the protocol enables
f the HLPSL formalization.
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many possible attacks when an Auth Response is intercepted

by an intruder, such as (1) a session swapping attack that

forces the user’s browser to initialize a session authenticated

as the attacker, (2) an impersonation attack that impersonate

the user by sending the intercepted Auth Response via

a browser agent controlled by the attacker. Note that SSL

could prevent an MITM attacker from intercepting the Auth

Response transmitted in the network, but it could not stop

a session swapping attacker who intercepts the Auth

Response from his own browser.

The violation of the G5 goal indicates that the authenticity

and integrity of the Auth Request is not protected by the

OpenID protocol. That is, an IdPmight accept an Auth Request

sent from the intruder or the Auth Request might be altered

during the transmission. This weakness could be exploited in

many ways, such as (1) a SSO CSRF attack that forces the

victim to log into her RP website by sending a forged Auth

Request via the victim’s browser, (2) a parameter forgery

attack that manipulates the victims profile attributes

requested by the RP websites through a modification of the

Auth Request within the protocol.

Goal G6 cannot be satisfied either. Based on the attack

trace, an intruder can initiate a Login Request with the RP, and

then use role UB for the rest of the communications to violate

this goal. This indicates that the authenticity of the Login

Request is not guaranteed. This weakness can be exploited by

using a traditional CSRF technique to initiate a Login Request

using either the GET or POST method via the victim’s browser

to insidiously sign the victim into the RP in order to launch

subsequent CSRF attacks.
6. Attack vector evaluations

In addition to the three variants of SSO CSRF, session swap-

ping, impersonation, and parameter forgery, a replay attack

was included in our evaluation in order to assess how many

RPs had performed the assertion nonce check correctly, as an

RP must check the nonce values received from all IdPs.

Overall, seven attack vectors were evaluated on 132 real-

world RPs.

6.1. Manual evaluations

We describe below how each attack vector was manually

evaluated on 20 RP websites. Each evaluation began by

selecting an IdP or entering the OpenID identifier of a test

account on the RP login form to initiate a sign-on process.

The protocol messages (i.e., Login Request, Auth Request,

and Auth Response) were intercepted by a Firefox extension

we designed that allows the investigator to abort or manip-

ulate the intercepted messages. For attacks that could be

launched from a browser agent controlled by the attacker

(i.e., replay and impersonation attacks), which allow the

attacker to forge and manipulate the HTTP headers

including cookies, we designed and implemented a custom-

ized browser agent by reusing the GeckoFX web browser

control (Skybound Software, 2010). Note that before each

evaluation, all cookies in the browser are removed to reset

the browser to its initial state, and a protocol message does
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not reach the RP if it is “intercepted”, but does if it is

“captured”.

A1: SSO CSRF via Login Request through GET method

(exploits G6):

1. Intercept a Login Request and abort the rest of authenti-

cation process.

2. Construct an attack URL from the intercepted Login

Request and create an attack page that contains an

invisible HTML iframe element with src attribute set to

the attack URL. If the RP login form uses an HTTP POST

method for submitting the login request, take the request

parameters (key-value pairs) from the HTTP request body

and append them to the end of the request URL as part of

query strings to form an attack URL. If the Login Request

uses an HTTP GET method, then the request URL is used

as the attack URL directly. For example:

<iframe style¼‘display¼none’ src¼‘http://rp.com/

login?p1¼v1&p2¼v2’>

3. Open another browser andmake sure the testing account

has logged into the IdP but not logged into the RP yet.

Browse the attack page and then go to the RP website to

check whether the testing account has been forced to

login successfully.

A2: SSO CSRF via Login Request through POST method

(exploits G6): The evaluation procedures for this attack are

same as A1 except in Step 2, the iframe’s src attribute is set

to another page which contains (1) a web form with the

action attribute set to the request URL of the Login Request,

and each HTTP query parameter (key-value pair) in the Login

Request is added to the form as a hidden input field, and (2)

a JavaScript that submits the web form automatically when

the page is loaded. For example:

<iframe style¼‘display¼none’ src¼‘http://evil.-

com/sso_csrf_post.htm’>

sso_csrf_post.htm:

<body onload¼‘document.forms[0].submit();’>

<formaction¼‘http://rp.com/login’method¼‘post’>

<input type¼‘hidden’ name¼‘p1’ value¼‘v1’>

<input type¼‘hidden’ name¼‘p2’ value¼‘v2’>

.

<form>

A3: SSO CSRF via Auth Request (exploits G5): Similar to A1,

except an Auth Request instead of a Login Request is inter-

cepted in Step 1. Additionally, in order to reuse the attack URL,

the association handle (i.e., parameter assoc_handle) is

removed from the intercepted Auth Request before forming

the attack URL. Removing association handle makes the

exploit general and reusable because the association between

the RP and the IdP would expire after a certain period of time

specified by the IdP, and it might be bound to a specific OpenID

identifier.

A4: Parameter Forgery (exploits G5):

1. Capture an Auth Response and log all parameters related

to the OpenID Simple Registration or Attribute Exchange
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Fig. 6 e Main components of OpenIDVAT.

13 http://www.janrain.com/products/rpx.
14 http://www.gigya.com/.
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extensions. The extension parameters contains profile

information of the user such as email and date of birth.

2. Re-initiate a login process again. This time, strip out all

related extension parameters in the Auth Request, and

append forged extension parameters to the Auth

Response before sending it to the RP website.

A5: Session swapping (exploits G2): The steps for evalu-

ating this attack are the same as A1, except that this attack

intercepts an Auth Response passed from the IdP as the attack

URL in Step 1 (i.e., the Auth Response does not reach to the RP),

and the testing account has not logged into the RP in Step 3.

A6: Impersonation (exploits G2): Intercept an Auth

Response and then send the intercepted Auth Response

(including HTTP headers) to the RP via the customized

browser agent we designed.

A7: Replay: Similar to A6, except that an Auth Response is

captured instead of being intercepted in this attack (i.e., the

Auth Response reaches the RP).

6.2. The OpenID vulnerability assessment tool

To facilitate the vulnerability evaluation process and to

enable website developers to assess their RPs, we designed an

OpenID vulnerability assessment tool named “OpenIDVAT”

in C# .NET. The tool reuses the GeckoFX web browser control

(Skybound Software, 2010) for sending HTTP requests and

rendering the received HTML content. The original GeckoFX

exposes a read-only document-object-model (DOM) and does

not provide the capability to capture and intercept HTTP

requests. We modified GeckoFX to provide a writable DOM,

and make it capable of observing and blocking HTTP

requests.

Fig. 6 illustrates the main components of OpenIDVAT. The

primary user interface is the GeckoFX web browser control

augmentedwith awritable DOMand anHTTP interceptor. The

“Auto Form Filler” component fills and submits the IdP login

form automatically using the test account. It also fills in the

OpenID identifier field on the RP login form to reduce the

amount of user input. Each vulnerability is assessed by one

assessment class, which is a software module that imple-

ments a pre-defined interface. The tool can be extended with

new assessment classes, which could be implemented by

inheriting from an existing module that contains most of the

functions related to the assessment tasks.
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To assess whether an RP is vulnerable, the evaluator first

signs into the RP via OpenIDVAT using a pre-configured

testing OpenID account. OpenIDVAT records the mouse

clicks that initiate the login process and then captures the

protocol messages. Once logged in, the evaluator is instructed

to start an assessment process. For each vulnerability under

assessment, OpenIDVAT (1) resets the browser state by

removing all cookies from the GeckoFX web browser control,

(2) retrieves the captured protocol messages from logs, or

replays the mouse clicks to initiate a new login request and

then capture or intercept the requiredmessages, (3) simulates

switching to the victim’s browser by clearing all cookies, (4)

constructs and sends attack messages via GeckoFX, and (5)

prompts the user to check if the account under test has signed

into the RP successfully.
6.3. Evaluation of real-world RPs

To find a representative sample of RP websites, we went

through the OpenID site directory on myopenid.com (deno-

ted as “D1”, 249 entries) and the Google Top 1000 websites

(‘D2’, 1000 entries). We excluded these websites listed that

are not written in English (D1 20, D2 527), not a relying party

(D1 88, D2 442), or not accessible (D1 32, D2 2). Six RP web-

sites appeared on both lists, and they were removed from D1

to avoid double-counting. Together, OpenIDVAT was

employed to evaluate a total of 132 RPs websites. The

GeckoFX web browser control does not support popup

windows, thus for RPs that use a popup window during the

OpenID authentication, the protocol messages were exam-

ined manually.

We found 15% of RP websites use a proxy service (e.g.,

Janrain engine,13 Gigya14) for OpenID authentication. The

proxy service performs the OpenID communication on behalf

of the website, requests and stores the users’ profile attri-

butes, and then returns an access token for the website to

retrieve the user’s profile data via a direct communication

with the proxy service (i.e., not through the browser). Further

investigation revealed that although the communication

between the proxy service and the IdP is secure, the access

token returned to the RP may not be protected. If the token is

not SSL-protected, the RP is subject to impersonation and
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Table 2 e The results of the empirical RP evaluation. “SSO
CSRF” row denotes the percentage of RPs that are
vulnerable to at least one variant of SSO CSRF attacks.

No. of RPs D1 D2 Total

N ¼ 103 N ¼ 29 N ¼ 132

Full Secured 0% 10% 2%

Proxy Service 11% 31% 15%

SSL Protected 12% 45% 19%

SSO CSRF 88% 16% 81%

POST 73% 14% 67%

GET 44% 9% 41%

Auth Req 69% 13% 64%

Session Swap 76% 83% 77%

Impersonation 88% 55% 80%

Replay 10% 21% 12%

Support Extension N ¼ 76 N ¼ 26 N ¼ 102

Parameter Forgery 54% 7% 45%
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replay attacks (within 5e10 min) in addition to session

swapping and SSO CSRF attacks.

As shown in Table 2, the majority of RPs (98%) are vulner-

able to at least one attack. A significant percentage of D2 RPs

utilize a proxy service (D1 11%, D2 31%) and employ SSL to

protect the communication channel (D1 12%, D2 45%). RPs

listed on D2 are much more resilient to SSO CSRF and

parameter forgery than D1 RPs; but many of them are

vulnerable to session swapping, impersonation, or replay

attacks due to the lack of protection on the access tokens

returned from the proxy service. In addition, we found that

33% of RPs employed a CSRF protection mechanism to protect

their login form via the POST method, but 44% of them (D1

61%, D2 13%) failed to protect SSO CSRF using the GETmethod

or through an Auth Request. Furthermore, 77% of RPs support

OpenID Simple Registration or Attribute Exchange extension,

but we found the extension parameters can be forged on 45%

of these websites.
7. Defense mechanisms

The lack of security guarantee in the OpenID protocol means

that RP websites need to employ additional countermeasures.

We aimed to satisfy the following properties when designing

our defense mechanisms:
Fig. 7 e The revised OpenID protocol in Alice-Bob
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� Completeness: The countermeasure must address all

weaknesses uncovered from our formal model.

� Compatibility: The protection mechanism must be

compatible with the existing OpenID protocol and must not

require modifications to IdPs and the browsers.

� Scalability: Statelessness is a desirable property of the

defense mechanism. The countermeasure should not

require RPs to maintain an additional state on the server in

order to be effective.

� Simplicity: The countermeasure should be easy to imple-

ment and deploy. In particular, it should only use crypto-

graphic functions (i.e., HMAC and DH key exchange) and

data that are readily accessible to RPs.

To eliminate the uncovered weaknesses, we revised the

formal model in which (1) the Auth Request is signed by RP

and the UB is included in the signature, and (2) the Login

Request is signed by UB. Fig. 7 illustrates the revised protocol

in A-B notation with boldfaced elements showing the

changes. The revised model was encoded in HLPSL, and veri-

fied to be secured by AVISPA.

In order for our countermeasures to be easily implemented

and deployed by RPs, the defense mechanisms were designed

based on the revised model, but separated with respect to

different adversary models. SSL prevents network attackers

from intercepting or altering network traffic, but it cannot stop

attacks launching from the victim’s browser, such as SSO

CSRF and session swapping attacks. Hence, a defense mech-

anism complimentary to SSL is required to mitigate attacks

launched by Web attackers. On the other hand, as SSL intro-

duces unwanted complications, and only 19% of RP websites

in our evaluation employed SSL, an alternative defense

mechanism to SSL is needed to prevent network attackers

from impersonating the victim via a sniffed session cookie or

an intercepted Auth Response.
7.1. The web attacker defense mechanism

Designed as a complementary countermeasure to SSL, we

propose the following defense mechanism based on the

revised model:

1. When rendering a login form, RP generates token

t1 ¼ HMAC(sid, kRP) and appends it to the login form as

a hidden form field. Here, sid is the session identifier from

the session cookie and kRP is an application or session-
notation.The changes are shown in boldface.
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level secret key generated by RP. Token t1 is used to

ensure the Login Request is originated from the RP itself.

2. Upon receiving a Login Request, RP computes

t10 ¼ HMAC(sid,kRP) and checks whether t10 ¼ t1 from the

request. If it is, then RP initiates an Auth Request with

parameter t2 ¼ HMAC(sid.idp.i.h.r, kRP) appended to the

return_to URL of the Auth request.

3. Upon receiving an Auth Response, RP extracts t2 from the

return_to URL, computes t20 ¼ HMAC(sid.idp.i.h.r, kRP),

and checks whether t20 ¼ t2 in addition to the Auth

Response signature validation.

Our Web attacker defense mechanism is stateless, and

designed to be implemented completely on the RP server-side.

In addition, all required cryptographic functions (i.e., HMAC)

and data (i.e., Auth Request and session cookie) are readily

accessible to the RP. The mitigation approach uses an HMAC

function to bind the session identifier to the protocol

messages in order to provide contextual binding and ensure

the integrity and authenticity of the authentication request.

Using an HMAC code as a validation token avoids the expo-

sure of the session identifier, and prevents an attacker who

learned the token from inferring with the user’s session

identifier. In addition, for RPs that support an OpenID exten-

sion, the extension request parameters can be included in the

return_to URL to be protected by the defense mechanism.

Most web application development frameworks support

automatic session management, which makes the session

identifier readily accessible to the RP implementation. Web-

sites that do not issue a session before authentication need to

initiate an “unauthenticated” session (including setting the

session cookie) before rendering the login form, and then

switch to an authenticated session with a new session iden-

tifier after a valid assertion is received. Also note that the

OpenID protocol 2.0 allows an end user to enter an IdP’s

OpenID Identifier (e.g., "https://yahoo.com"; for Yahoo)

instead of her OpenID. When an IdP Identifier is entered, the i

in the Auth Request is a constant string15 defined by the

OpenID, and the i in the Auth Response is the user’s OpenID

URL. In this case, RP has to use the constant identifier defined

by the OpenID when initiating an Auth Request in Step 2, and

computing t20 in Step 3.

Our defense mechanism prevents SSO CSRF via Login

Request attacks (attacksA1 andA2) as an attacker is not able to

compute the validation token t1 without knowing the session

identifier and the RP’s secret key. SSO CSRF via Auth Request

(A3) and session swapping (A4) attacks are mitigated as well,

because the session identifier in the attacker’s browser session

is different from the one in the victim’s browser. In addition,

the integrity of Auth Request is guaranteed (A5) as the Auth

Request is accompanied by an HMAC, and anymodification to

the Auth Request would be detected in Step 3. Impersonation

attacks via an intercepted Auth Response (A6) can be pre-

vented when the communication between the browser and

the RP website is SSL-protected. However, SSL imposes

unwanted side-effects such as computation overhead, non-

cacheable latency, and mixed content warnings. In addition,

even if the login process is protected by SSL, if the attacker
15 http://specs.openid.net/auth/2.0/identifier_select.
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manages to find the session cookie in a subsequent commu-

nication that is not secured by HTTPS (e.g., pages, graphics,

JavaScripts, style sheets), the attacker could use the eaves-

dropped session cookie to impersonate the victim for the

length of the session. We found that only 19% of RP websites

in our evaluation employed SSL, and 84% of them were

vulnerable to session hijacking via an eavesdropped

session cookie after login. This speaks to the need for an

alternative defense mechanism to prevent impersonation

attacks without requiring SSL employed by RPs.
7.2. The MITM countermeasure

The stateless nature of the HTTP protocol makes it difficult to

be sure if two HTTP requests originated from the same client.

Web applications typically use browser cookies to identify

each instance of their browser clients. However, without the

confidentiality and integrity protections provided by SSL,

browser cookies can be eavesdropped on or altered by

network attackers. In the case of the OpenID protocol, an

MITM network attacker can intercept an Auth Response with

the corresponding session cookie, and then replay them from

a browser agent controlled by the attacker in order to imper-

sonate the victim. Moreover, even if the login process is

completely secured by SSL, if the session identifier is revealed

in any of the subsequent HTTP requests, a passive network

attacker can simply eavesdrop on the session identifier to

hijack the session after the user has successfully logged into

the RP website. One intuitive solution to the session identifier

eavesdropping problem is to associate web sessions with the

user’s IP address at the time of session initiation. If a session

cookie is received from a different IP address, it could be

detected by the web server. Unfortunately, many web users’

computers are located behind a web proxy server or Network

Address Translator so that they are effectively using the same

IP address to surf the web. From a server’s point of view, if an

attacker hasmanaged to sniff a victim’s session cookie behind

a network router, there is no detectable difference between

a legitimate HTTP request and the one sent by the attacker.

An impersonation attack is difficult to mitigate when there

is no shared secret between the browser and the RP server.

The OpenID protocol and our Web attacker countermeasure

use an HMAC message authentication code to verify both the

data integrity and the authenticity of a message. Similarly, an

accompanying HMAC code for each HTTP request could

provide an authenticity and integrity guarantee to prevent

impersonation attacks via eavesdropped session cookies.

However, an HMAC function needs a secret key, and the main

challenge is how to derive a shared secret among the browser and

the server in the presence of an MITM attacker. Thus, the goal of

our impersonation defense mechanism is to derive a shared

session key between the browser and the RP server without

employing SSL by the RP. With the shared key, the client can

encrypt sensitive information and compute an HMAC code for

each subsequent HTTP request to prevent impersonation

attacks launched by network attackers. To establish a shared

secret for the browser and the RP server during the OpenID

authentication process, we propose the following scheme

(illustrated in Fig. 8):
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Fig. 9 e The MITM defense mechanism with the presence

of an MITM attacker between the browser and the RP server

The OpenID authentication protocol will fail if the MITM

attacker attempts to interfere the DH key exchange. If the

Auth Response is successfully validated, then the DH key

sharedby thebrowserand theRP isunknownto theattacker.
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1. Before submitting the RP login form to the server, RP uses

a client-side JavaScript code to establish a Diffie-Hellman

session key with the server and store the session key on

the browser’s local storage (e.g., localStorage in HTML5,

userData for IE 5þ, and window.globalStorage for Fire-

fox 2þ) or as a fragment identifier of the Action URL of the

login form. A fragment identifier is the portion of a URL that

follows the # character; it is never sent over the network but

only used by the browser to scroll to the identified HTML

element. Note that the client-side session key kC might be

different from the server-side kS if an MITM attacker

intercepted the DH request and performed two distinct DH

key exchanges with the client and the server.

2. Upon receiving a Login Request, RP replies with a page

containing an Auth Request and a JavaScript code that (1)

retrieves kC from the fragment identifier by using the

command document.location.hash or from the

browser’s local storage, (2) appends a parameter

t3 ¼ HMAC(idp.i.h.r, kC) to r, (3) appends kC as a fragment

identifier of r if local storage is not supported by the

browser, and (4) sends the Auth Request to IdP using the

command window.location or anHTML form submission.

3. Upon receiving an Auth Response, RP computes

t30 ¼ HMAC(idp.i.h.r, kS) using kS (excluding t3 from the

return_to URL) and checks whether t30 ¼ t3, in addition to

the assertion signature validation. Note that t3 is included

in the IdP signature as it is appended to the return_toURL.

The DH key exchange protocol does not provide authenti-

cation of the communicating parties, and is thus vulnerable to

an MITM attack. As illustrated in Fig. 9, an MITM attacker

could perform two distinct DH key exchanges with the client

and the RP server to derive two session keys (kC and kS) with

each party. The attacker can then use the derived session keys

to decrypt the encryptedmessages between the client and the

server, or generate HMAC codes on behalf of each party.

Since the DH key exchange by itself is vulnerable to an

MITM attack, our countermeasure uses the assertion
Fig. 8 e The MITM defense mechanism establishes a DH

session key (gab mod p) between the browser and the RP

server during the OpenID authentication process. Here, g is

the DH generator, p is the modulus, and a and b are

random DH private keys for the browser and the RP server

respectively.
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signature generated by the IdP to prevent an MITM attacker

from interfering the DH key agreement protocol. Our defense

mechanism is designed based on the following observation:

As the DH private key a and b for the client and the server are

unknown to the MITM attacker, the two session keys, kC and

kS, are derived with different values (i.e., kC ¼ gac mod p and

kS ¼ gbc mod p) if an MITM attack is presented in the key

agreement protocol. In addition, given a message m, if kC and

kS are not the same, then the corresponding HMAC codes are

different as well (i.e., HMAC(m, kC) !¼ HMAC(m, kS)). In our

defense mechanism, the client appends a validation token

t3 ¼ HMAC(idp.i.h.r,kC) to the return_to URL using kC (Step 2),

and the RP verifies the token when an Auth Response is

received using kS (Step 3). To pass the token validation per-

formed by RP in Step 3, the attacker must replace t3 with

t30 ¼ HMAC(idp.i.h.r, kS) from the intercepted Auth Response

using kS. However, replacing the t3 will fail the signature

validation performed by RP as t3 is included in the signature.

Therefore, the DH key shared by the browser and the RP

is unknown to the attacker if the Auth Response is success-

fully validated. Our countermeasure requires the communi-

cation between the browser and the IdP to be SSL-protected

to prevent the attacker from replacing t3 with

t30 ¼ HMAC(idp.i.h.r,kS) in Step 2. This requirement is feasible

because, to the best of our knowledge, all major IdPs support

authentication over SSL.

Once the DH session key has been established, it can then

be used to protect the authenticity, confidentiality and integ-

rity of the subsequent communications after login. To prevent

an MITM attacker from impersonating the victim via a sniffed

session identifier, RPs could use the DH session key to encrypt

sensitive data and compute a timestamp and an HMAC for

every subsequent HTTP request. The RP should only respond

to requests that come with a valid timestamp and HMAC

authentication code, in addition to a valid session cookie

which may be sniffed by an attacker. This is similar to
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SessionLock (Adida, 2008) and other web-based APIs, such as

the Google and Facebook Platform APIs, but does not require

SSL support from the RP websites.

7.3. Reference implementation

To evaluate the proposed defensemechanisms, we developed

a reference implementation. We first used the OpenID4Java

(Bufu, 2009) library to augment OpenID support in an open-

source J2EE web application,16 and then implemented the

countermeasures on the web application.

The Web attacker defense mechanism was implemented

completely on the server-side using the javax.crypto.Mac

class to compute and validate the HMAC tokens. We used the

DH session key exchanged by the browser and the RP server as

the key for the HMAC function. Both the Login Request and

Auth Request validation tokens are computed in 10 lines of

code (LOC).

For the server-side implementation of our MITM defense

mechanism, the BigInteger Java class is used to compute the

DH session key with the client (8 LOC). To validate the HMAC

token computed by the browser, the Mac Java class is used

again (10 LOC). On the client-side, the XMLHttpRequest object

is used to initiate a DH key exchange with the server, and the

following JavaScript libraries were used through out the

reference implementation:

� BigInt (http://leemon.com/crypto/BigInt.html): Computes

DH session key kC (7 LOC).

� jStorage (http://www.jstorage.info): Stores and retrieves

the DH session key from the browser local storage (1 LOC).

� jshash (http://pajhome.org.uk/crypt/md5/scripts.html):

Computes the HMAC authentication token for the Auth

Request (15 LOC).
7.4. Limitations

Our Web attacker defense mechanism could be easily imple-

mented by RPs, because the HMAC function and all required

data are readily accessible to them. On the other hand, the

MITM countermeasure requires JavaScript to be enabled in the

browser, and the client-side code needs to be written in

a cross-browser manner. In addition, although the MITM

attacker cannot impersonate the user by initiating requests on

behalf of the victim, the attacker could still read all unen-

crypted data between the client and the server, and alter the

responded web page contents. While this threat exists and is

important, its prevention andmitigation are outside the scope

of this paper.
8. Conclusion

Similar to theway credit cards reduce the friction of paying for

goods and services, OpenID systems are intended to reduce

the friction of using the Web. While OpenID is rapidly gaining

adoption, for RPs and IdPs (and possibly users) to entrust the
16 BookStore from http://gotocode.com.
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exchange of sensitive information over the OpenID protocol,

they need to have confidence in its security properties.

In this work, we conducted a formal model checking

analysis of the OpenID 2.0 protocol, and an empirical evalua-

tion of 132 OpenID-enabled websites. Our model checking

analysis revealed that the OpenID protocol does not provide

an authenticity or integrity guarantee for the authentication

requests, and the protocol lacks contextual bindings among

the protocol messages and the browser that issued those

requests. The results of our empirical evaluation show that

the uncovered vulnerabilities are prevalent among the real-

word RP implementations, including popular RP websites lis-

ted on the Google Top 1000 Websites. In addition, we found

existing countermeasures are incomplete (e.g., fail to protect

both integrity and authenticity), or have been implemented

incorrectly (e.g., neglect GET method or Auth Request when

implementing SSO CSRF protection). We also found that

OpenID proxy services provide an integrated interface for RPs

to interact with variousWSSO systems, butmany RPs failed to

protect the returned access tokens. Furthermore, our evalua-

tion found that only 19% of RP websites in our evaluation

employed SSL, and 84% of them are vulnerable to session

hijacking via an eavesdropped session cookie after login. We

believe that the reasons behind this practice deserve further

investigation.

For an HTTP-redirection based protocol in which the

protocol messages are passed through the browser, our

analysis shows that the RP has to ensure that the authenti-

cation request originated from the RP website itself, was not

altered during transmission, and that the authentication

assertion is passed from the same browser through which the

request was issued. We provide a simple and scalable defense

mechanism for RPs to ensure the authenticity and integrity of

the protocol messages. In addition, for those RPs that find

deploying SSL impractical, the MITM countermeasure we

recommended can be used as an alternative. This is important

because impersonation attacks are possible and easy to

launch even after the OpenID authentication, when the

authenticity and integrity of the HTTP requests are not

protected. Nevertheless, we suggest that future protocol

development of OpenID should provide authenticity, confi-

dentiality, and integrity protection directly in the protocol to

free RPs from taking ad-hoc defense mechanisms. Further-

more, the vulnerabilities discussed in this paper may be

generalizable to other WSSO protocols. In future research,

we plan to employ our analysis methodology for investigating

the security of other WSSO systems.
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