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Abstract

Online Social Networks (OSNs) have attracted millions of active users
and have become an integral part of today’s Web ecosystem. Unfortu-
nately, in the wrong hands, OSNs can be used to harvest private user
data, distribute malware, control botnets, perform surveillance, influ-
ence algorithmic trading, and spread misinformation. Usually, an ad-
versary starts off by running an infiltration campaign using hijacked or
adversary-owned OSN accounts, with an objective to connect to a large
number of users in the targeted OSN. In this paper, we evaluate how
vulnerable OSNs are to a large-scale infiltration by socialbots: bots that
control OSN accounts and mimic actions of real users. We adopted a
traditional web-based botnet design and built a prototype of a Socialbot
Network (SbN): a group of coordinated programmable socialbots. We
operated our prototype on Facebook for eight weeks, and collected data
about users’ behavior in response to a large-scale infiltration by our so-
cialbots. Our results show that (1) OSNs, such as Facebook, can be infil-
trated with a success rate of up to 80%, (2) depending on users’ privacy
settings, a successful infiltration can result in privacy breaches where
even more users’ data are exposed, and (3) in practice, OSN security de-
fenses, such as the Facebook Immune System, are not effective enough
in detecting or stopping a large-scale infiltration as it occurs.
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1 Introduction

Online Social Networks (OSNs) such as Facebook1 and Twitter2 have far ex-
ceeded their original goal of connecting people together. With millions of users
actively using their platforms, OSNs have attracted third parties who exploit
them as an effective media to reach and potentially influence a large and di-
verse population of web users [36, 41]. For example, during the 2008 U.S.
presidential election, social media was heavily employed by Obama’s cam-
paign team who raised about half a billion dollars online, introducing the
digital era in presidential fundraising [69]. Similarly, it has been argued that
OSNs, as democracy-enforcing communication platforms, were one of the key
enablers of the recent Arab Spring in the Middle East [58, 62]. This pervasive
integration of social media into everyday life is rapidly becoming the norm,
and arguably is here to stay [11]. Today’s online social experience, however,
is not exclusive to only human beings.

A new breed of computer programs called socialbots are now online, and
they can be used to influence OSN users [44]. A socialbot is an automation
software that controls an account on a particular OSN, and has the ability to
perform basic activities such as posting a message and sending a connection
request. What makes a socialbot different from self-declared bots (e.g., Twit-
ter bots that post up-to-date weather forecasts) or spambots (e.g., Facebook
bots that distribute unsolicited messages to non-consenting users) is that it
is designed to pass itself off as a human being. This allows the socialbot to
infiltrate a targeted OSN in order to reach an influential position, that is, to
compromise the social graph by connecting to a large number of its users.
This position can be then exploited to influence OSN users [44], spread mis-
information and propaganda in order to bias the public opinion [46], perform
surveillance, or even influence algorithmic trading in stock markets [6, 9]. For
example, Ratkiewicz et al. [56] describe the use of Twitter bots to run astroturf
and smear campaigns during the 2010 U.S. midterm elections. Moreover, a so-
cialbot can exploit its new position in the network to promote and distribute
malicious content such as botnet executables [73]. For instance, the Koob-
face botnet [5] propagates by hijacking OSN accounts of infected machines,
after which it uses these accounts to send messages with a malicious link to
other OSN users. This link points to a legitimate but compromised website

1https://facebook.com
2https://twitter.com
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that attempts to infect its visitors with the Koobface malware.
As socialbots infiltrate OSN users, they can also harvest private user data,

such as email addresses, phone numbers, and other personal information that
have monetary value. To an adversary, such data are valuable and can be used
for online profiling and large-scale email spam and phishing campaigns [53].
It is thus not surprising that similar socialbots are being offered for sale in the
Internet underground markets, with prices starting from $29 per bot [3].

Recently, a number of techniques have been proposed that aim to auto-
matically identify spambots in OSNs based on their abnormal behavior [26,
54, 61, 74]. For example, Stein et al. [59] present the Facebook Immune Sys-
tem (FIS): an adversarial learning system that performs real-time checks and
classification on every read and write action on Facebook’s database, all for the
purpose of protecting its users and the social graph from malicious activities.
It is, however, not well-understood how such defenses stand against social-
bots that mimic real users, and how OSN users might behave in response to a
large-scale infiltration by such deceptive bots.

In this paper, we aim to fill this knowledge gap. We studied large-scale
infiltration in OSNs as an organized campaign run by an army of socialbots to
connect to either random or targeted OSN users on a large scale. Therefore,
we adopted a traditional web-based botnet design and defined what we call a
Socialbot Network (SbN): a group of programmable socialbots that are coordi-
nated by an adversary (referred to as a botherder) using a software controller
(referred to as a botmaster). The botmaster was designed to exploit the known
properties of social networks, such as the triadic closure principle [55], in order
to improve the magnitude of the potential infiltration.

We created a fairly small and simple, yet effective, SbN consisting of 102
socialbots and a single botmaster, and then operated this SbN on Facebook for
eight weeks. During that time, the socialbots sent a total of 8,570 connection
requests, out of which 3,055 were accepted. We recorded all data related
to the resulted infiltration by this SbN and the corresponding users’ behavior,
along with all accessible users’ profile information. We summarize our findings
in what follows:

(1) OSNs such as Facebook are vulnerable to large-scale infiltration campaigns.
From the OSN side, we show that today’s OSNs exhibit inherent vulner-
abilities that allow an adversary to automate the infiltration on a large
scale (Sections 3 and 4). From the user side, we show that most OSN
users are not careful enough when accepting connection requests, espe-
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cially when they share mutual connections with the sender. This behav-
ior can be exploited to achieve a large-scale infiltration with a success
rate of up to 80% (Sections 5 and 6).

(2) Depending on users’ privacy settings, operating an SbN can result in se-
rious privacy breaches. We show that after a large-scale infiltration, a
botherder can harvest large amounts of publicly inaccessible user data.
This data include email addresses, phone numbers, and other profile
information of the infiltrated users, all of which have monetary value.
Unfortunately, this also includes the private data of “friends of friends”,
that is, users who have not been infiltrated but are connected to infil-
trated users (Section 6).

(3) In practice, OSN security defenses such as the FIS are not effective enough
in detecting a large-scale infiltration as it occurs. Our results show that a
successful infiltration of an OSN user is expected to be observed within
the first three days after the request has been sent by a socialbot. This
means that the social graph will rapidly change in a relatively short time,
and the socialbots will get gradually integrated into the targeted online
community. We found that the FIS was able to block only 20% of the
accounts used by the socialbots. This, however, was the result of the
feedback from users who flagged these accounts as spam. In fact, we
did not observe any evidence that the FIS detected what was really going
on: an organized large-scale infiltration campaign (Section 6).

In conclusion, our findings shed light on the importance of considering
the human factor when designing OSN security defenses. We believe that
socio-technical solutions are required to effectively protect the social Web and
realize security defenses that are less vulnerable to both human and technical
exploits (i.e., automated social engineering and platform hacks, respectively).

2 Background and Preliminaries

In what follows, we present background information and define the notations
we use in the upcoming discussion.

7



2.1 Online Social Networks

An Online Social Networks (OSN) is a centralized web platform that facilitates
and mediates users’ social activities online. A user in such a platform owns
an account and is represented by a profile that describes her social attributes
such as name, gender, interests and contact information. We use the terms
“account”, “profile”, and “user” interchangeably. A social connection between
two users can be either undirected such as friendships in Facebook, or directed
such as follower-followee relationships in Twitter.

An OSN can be modeled as a social graph G = (V, E), where V represents a
set of users and E represents a set of social connections among these users. For
every user u ∈ V , the set Γ(u) is called the neighborhood of u, and it contains
all users in V with whom u has social connections. We denote the average
neighborhood size in G by N(G) = η, which is defined as follows:

N(G) =
1

|V |

∑

u∈V

|Γ(u)|= η.

Finally, we call the set ∆(u) the extended neighborhood of u, which is defined
as the union of the neighborhoods of all users in Γ(u) as follows:

∆(u) =
⋃

v∈Γ(u)

Γ(v).

2.2 Large-Scale Infiltration and Sybil Attacks

The Sybil attack refers to the situation where an adversary controls multiple
identities and joins a targeted system under these identities many times in
order to subvert a particular service [16]. In the Sybil attack, each adversary-
controlled identity is called a Sybil and is represented by an account or an
endpoint, depending on the targeted system. Accordingly, we define large-
scale infiltration in OSNs as an instance of the Sybil attack where an adversary
employs an automation software, which is scalable enough to control many
adversary-owned OSN accounts (i.e., Sybils), in order to connect to a large
number of users in the in the targeted OSN. We study large-scale infiltration
as an organized, adversarial campaign that has two objectives: compromising
the social graph of the targeted OSN and collecting users’ private data en
masse. We discuss these objectives in detail later on in Section 4.2.
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Recent research indicates that large-scale infiltration in OSNs is possible [50].
For example, in the context of identity theft, Bilge et al. [8] show that most
users in OSNs are not cautious when accepting connection requests that are
sent to them. The authors did an experiment to test how willing users are
to accept connection requests from forged user profiles of people who were
already in their friendship list as confirmed contacts. They also compared that
with users’ response to connection requests sent by people they do not know
(i.e., fake profiles representing strangers). In their experiment, they show that
the acceptance rate for forged profiles was always over 60%, and about 20%
for the fake profiles. Unlike their targeted attack, we do not expect the adver-
sary to forge profiles as this limits the scalability of the infiltration and makes
it more susceptible to detection. Moreover, we aim to characterize more de-
scriptive user behaviors that are important to improve today’s OSN security
defenses, and to evaluate the corresponding security and privacy implications,
all under the context of large-scale infiltration. To the best of our knowledge,
we present the first comprehensive treatment of this topic.

2.3 Social Engineering and Socialbots

Traditionally, social engineering is defined as the art of gaining access to se-
cure objects by exploiting human psychology, rather than using hacking tech-
niques [4]. Social engineering, however, has become more technical and com-
plex; social engineering attacks are being computerized and fully automated,
and are becoming adaptive and context-aware [5, 13]. In fact, some of these
attacks are sophisticated and use heuristics and learned observations about
users’ behavior in the targeted system in order to increase the magnitude of
their potential damage [5, 8, 34].

Huber et al. [32] present one of the first frameworks for automated social
engineering in OSNs, and show that a new breed of bots, which we gener-
ally call socialbots, can be developed in order to automate traditional social
engineering attacks in OSNs for many adversarial objectives. In fact, this au-
tomation has a strong economic rationale behind it. Herley [29] shows that
for an online attack to be scalable, it ought to be automated without manual
per-user adjustments. Otherwise, there are no economic incentives for a ra-
tional adversary to scale the attack, which is undesirable from an adversarial
standpoint.

In concept, a socialbot is an automation software that controls a profile in
a particular OSN, and has the ability to execute basic social activities. What is
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special about a socialbot is that it is designed to be stealthy, that is, it is able to
pass itself off as a human being. This is achieved by either simply mimicking
the actions of a real OSN user or by simulating such a user using artificial
intelligence, just as in social robotics [24]. For example, Realboy [14] is one
of the first experimental projects that aim to design believable Twitter bots
which imitate real Twitter users.

The socialbots can be used for non-adversarial objectives as well. For ex-
ample, the Web Ecology Project [63] envisions the design of socialbots that
have positive impact on online communities by advocating awareness and co-
operation among OSN users on civic or humanitarian issues. Furthermore,
the Pacific Social Architecting Corporation (PacSocial) employs socialbots for
social architecture [51]: the technology where advanced socialbots are used
to interact with, promote, or provoke online communities towards desirable
behaviors, including large-scale restructuring of social graphs.

3 OSN Vulnerabilities

We discuss four vulnerabilities found in today’s OSNs that allow an adversary
to run a large-scale infiltration campaign. We treat each vulnerability sepa-
rately and provide evidence to support it.

3.1 Ineffective CAPTCHAs

OSNs employ CAPTCHAs [70] to prevent automated bots from abusing their
platforms. An adversary, however, can often circumvent this countermeasure
by using different techniques such as automated analysis via optical character
recognition and machine learning [8], exploiting botnets to trick the infected
victims into manually solving CAPTCHAs [5, 18], reusing session IDs of known
CAPTCHAs [30], cracking MD5 hashes of CAPTCHAs that are validated on the
client side [75], or hiring cheap human labor [47].

Let us consider the use of cheap human labor to solve CAPTCHAs; a phe-
nomenon that is known as CAPTCHA-solving business. Motoyama et al. [47]
show that companies involved in such a business are surprisingly efficient:
they have high service quality with a success rate of up to 98%, charge $1
per 1,000 successfully solved CAPTCHAs, and provide software APIs to auto-
mate the whole process. Thus, even the most sophisticated CAPTCHA tech-
nology that only humans could solve can be effectively circumvented with a
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small investment from an adversary. In such a situation, the adversary acts
as an economist; he would invest in such businesses if the return on invest-
ment is considerably high. This allows researchers to study online attacks
from an economic context, and define cost metrics and structures that mea-
sure when it is economically feasible for an adversary to mount a large-scale
attack that involves, for instance, solving CAPTCHAs by employing cheap hu-
man labor [29].

3.2 Sybil Accounts and Fake Profiles

Creating a user account on an OSN involves three tasks: providing an active
email address, creating a user profile, and sometimes solving a CAPTCHA.
Each user account maps to one profile, but many user accounts can be owned
by the same person or organization using different email addresses. The latter
case represents a potential Sybil attack, which we further study in Section 6.4.
In what follows, we show that an adversary can fully automate the account
creation process in order to create a set of Sybil user accounts, where each
account is represented by a fake user profile. This, however, is not new as
similar tools are used for online marketing [2, 22]. The adversary can write
a customized software to create such accounts or buy OSN accounts in bulk
from online forums or freelance websites [12, 48].

3.2.1 Sybil User Accounts

When creating a new user account on an OSN, an email address is required
to first validate and then activate the account. The OSN validates the account
by associating it to the owner of the email address. After account validation,
its owner activates the account by following an activation link that is emailed
by the OSN. Accordingly, an adversary has to overcome two hurdles when
creating a new Sybil account: providing an active email address that he owns
and account activation. To tackle the first hurdle, the adversary can maintain
many email addresses by either using “temp” email addresses that are obtained
from providers that do not require registration such as 10MinuteEmail3, or by
creating email addresses using email providers that do not limit the number of
created email accounts per browsing session or IP address such as MailRu4. As

3http://www.10minutemail.com
4http://www.mail.ru
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for the second hurdle, an adversary can write a simple script that downloads
the activation email and then sends an HTTP request to the activation URL,
which is typically included in the downloaded email.

3.2.2 Fake User Profiles

Creating a user profile is a straightforward task for real users; they just have
to provide the information that represents their social attributes. For an ad-
versary, however, the situation is different. The objective of the adversary is
to create profiles that are “socially attractive”. We consider a purely adversar-
ial standpoint concerning social attractiveness; the adversary aims to exploit
certain social attributes that have shown to be effective in getting users’ atten-
tion. Such attributes can be inferred from recent social engineering attacks.
Specifically, using a profile picture of a good looking woman or man has had
the greatest impact [8, 23]. Thus, an adversary can use publicly available
personal pictures for the newly created profiles, with the corresponding gen-
der and age range. In fact, the adversary can use already-rated personal pic-
tures from websites like HotOrNot5, where users publicly post their personal
pictures for others to rate their “hotness”.In fact, such websites also provide
categorization of the rated personal pictures based on gender and age range.
It is thus possible for an adversary to automate the collection of the required
profile information in order to populate a fake user profile by crawling, or
scavenging in this case, the Web.

3.3 Crawlable Social Graphs

The social graph of an OSN is usually hidden from public access in order to
protect its users’ privacy. An adversary, however, can reconstruct parts of the
social graph by first logging in to the OSN platform using one or many ac-
counts, and then traversing through linked user profiles starting from a “seed”
profile. In the second task, web crawling techniques can be used to download
profile pages and then scrape their content. This allows the adversary to parse
the connections lists of user profiles, such as the “friends list” in Facebook,
along with their profile information. After that, the adversary can gradually
construct the corresponding social graph with all accessible social attributes
using an online search algorithm such as breadth-first search [45]. The ad-

5http://www.hotornot.com
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versary can build either a customized web crawler for this task or resort to
cheap commercial crawling services that support social-content crawling such
as 80Legs6.

3.4 Exploitable Platforms and APIs

Most OSNs provide software APIs that enable the integration of their platforms
into third-party software systems. For example, Facebook Graph API [1] en-
ables third parties to read from and write data into Facebook, and provides a
simple and consistent view of Facebook’s social graph by uniformly represent-
ing objects (e.g., profiles, photos) and the connections between them (e.g.,
friendships, likes, tags). An adversary, however, can use such APIs to auto-
mate the execution of social activities online. If an activity is not supported
by the API, then the adversary can scrape the content of the platform’s web-
site, and record the exact HTTP requests which are used to carry out such
an activity (i.e., HTTP-request templates). In particular, sending connection
requests is often not supported, and is usually protected against automated
usage by CAPTCHAs. This is also the case if a user sends too many requests
in a short time period. An adversary, however, can always choose to reduce
the frequency at which he sends the requests to avoid CAPTCHAs. Another
technique is to inject artificial connection requests into normal OSN traffic at
the HTTP level, so that it would appear as if the users added the adversary as
a friend [33].

4 The Socialbot Network

We first start with a conceptual overview of a Socialbot Network (SbN) and
briefly outline the adversarial objectives and the threat model behind main-
taining such a network. This is followed by a discussion on the SbN design
goals, after which we outline its construction details.

4.1 Overview

We define a Socialbot Network (SbN) as a set of socialbots that are owned and
maintained by a human controller called the botherder (i.e., the adversary). An

6http://www.80legs.com
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Botmaster'
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Socialbots'

Online'Social'Network'Botherder'

Figure 1: A Socialbot Network (SbN). Each node in the OSN represents a profile. The so-
cialbots are marked in black. Infiltrated profiles are marked in gray. Edges between nodes
represent social connections. The dashed arrow represents a connection request. The small
arrows represent social interactions. The SbN can be part of an existing botnet, where each
“zombie” machine is additionally infected by the socialbot malware that controls a fake user
profile in the targeted OSN.

SbN consists of three components: socialbots, a botmaster, and a Command &
Control (C&C) channel. Each socialbot controls a profile in a targeted OSN,
and is capable of executing commands that result in operations related to so-
cial interactions (e.g., posting a message) or the social structure (e.g., sending
a connection request). These commands are either sent by the botmaster or
predefined locally on each socialbot. All data collected by the socialbots are
called the botcargo, and are always sent back to the botmaster. A botmaster
is an OSN-independent software controller that the botherder interacts with
in order to define and then send commands through the C&C channel. The
C&C channel is a communication channel that facilitates the transfer of both
the botcargo and the commands between the socialbots and the botmaster, in-
cluding any heartbeat signals. Figure 1 gives a conceptual overview of an SbN.

4.2 Objectives

The botherder is a person or an organization that builds and operates an SbN
for two main objectives: (1) to carry out a large-scale infiltration campaign
in a targeted OSN, and (2) to harvest private users’ data. The first objective
involves connecting to a large number of either random or targeted OSN users
for the purpose of establishing an influential position, which can then be ex-
ploited to promote malicious content or spread misinformation. The second
objective, on the other hand, aims to generate profit by collecting private user
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data that have monetary value. Notice that these data can be then used to craft
personalized messages for subsequent spam, phishing, or astroturf campaigns.

4.3 Threat Model

We assume the threat model of a global passive adversary. Since an SbN can
be deployed as part of an existing botnet, we treat it as a distributed network
of compromised “zombie” machines acting cooperatively. Accordingly, we be-
lieve it is fair to assume that the defenders (i.e., OSNs and ISPs) are also able
to cooperate, and hence, have a global view of the communication traffic. We
also assume that botnet infections are not easily detected, that is, an SbN can-
not tolerate 100% clean up of all infected machines, just like any other botnet.
We expect, however, an SbN to tolerate random losses of a large number of
compromised machines because at least one machine is required to host all of
the socialbots, as we show in Section 5.

4.4 Design Goals

Ideally, an SbN has to be fully automated and scalable enough to control hun-
dreds of socialbots. This is achieved by adopting a traditional web-based bot-
net design. In order to be effective, however, an SbN has to meet three chal-
lenging goals: (1) each socialbot has to be designed in such a way that hides
its true face; a robot, (2) the botmaster has to implement heuristics that en-
able large-scale infiltration in the targeted OSN, and (3) the traffic in the C&C
channel has to look benign in order to avoid detecting the botmaster.

In this article, we decided to use a simplistic design in order to meet each
one of these goals. We used techniques that have shown to be both feasible and
effective. We acknowledge, however, that more sophisticated techniques that
utilize machine learning algorithms are possible, but we refrain from using
them as our objective is to evaluate the threat of large-scale infiltration and
characterize users’ behavior, rather than to optimize the performance of an
SbN. We discuss the details of the used techniques in the following section.

4.5 Construction

We now discuss how a botherder can construct an SbN that performs well in
practice while meeting the design goals outlined in the previous section.
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4.5.1 The Socialbots

A socialbot consists of two main components: a profile on a targeted OSN
(the face), and the socialbot software (the brain). Given that we develop the
socialbot software in an adverserial setting, we regard this software as being
malicious, and refer to it as malware. We enumerate the socialbots by the
profiles they control, that is, for a set B = {b1, . . . , bm} of m socialbots, we use
bi ∈ B to refer to both the i-th socialbot and the profile it controls. But how
should the socialbot malware be programmed in order to mimic real users, at
least naïvely?

First, we require the socialbot to support two types of generic operations in
any given OSN: social-interaction operations that are used to read and write
social content, and social-structure operations that are used to alter the social
graph. A description of these operations is shown in Table 1.

Second, we define a set of commands that each includes a sequence of
generic operations. Each command is used to mimic a real user action that re-
lates to social content generation (e.g., a status update) or social networking
(e.g., joining a community of users). Commands can be either defined locally
on each socialbots (called native commands), or sent by the botmaster to the
socialbots through the C&C channel (called master commands). For example,
we define a native command called status_update as follows: at arbitrary
times, a socialbot bi ∈ B generates a message m (e.g., a random blurb crawled
from the Web), and executes the operation write(m, o, bi) where o is the
object that maintains messages on profile bi (e.g., the profile’s “wall” in Face-
book). This command resembles an OSN user posting a status update message
on her profile, and is executed at arbitrary times in order to avoid creating de-
tectable patterns. Likewise, more sophisticated commands can be defined that,
for instance, allow the socialbots to comment on each others’ status updates.
Moreover, each socialbot can be enhanced with advanced social-interaction
capabilities by integrating existing chatterbots, such as Eliza [72], into the
socialbot’s malware.

Finally, each socialbot employs a native controller: a simple two-state Finite-
State Machine (FSM) that enables the socialbot to either socialize by executing
commands, or stay dormant.
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4.5.2 The Botmaster

A botmaster is a botherder-controlled automation software that orchestrates
the overall operation of an SbN. The botmaster consists of three main compo-
nents: a botworker, a botupdater, and a C&C engine. The botworker builds and
maintains socialbots. Building a new socialbot involves first creating a new so-
cially attractive profile in the targeted OSN as discussed in Section 3.2. After
that, the profile’s credentials (i.e., the user name and password) are delegated
to the socialbot’s malware in order to get a full control over this user profile. If
the SbN is operated as part of a botnet, the socialbot malware can use hijacked
OSN accounts instead. This, however, might make the socialbot more suscep-
tible to detection [5]. The botupdater pushes new software updates, such as
new native commands or updated HTTP-request templates, to the socialbots
through the C&C channel. Finally, the C&C engine maintains a repository of
master commands and runs a master controller: a many-state FSM that is the
core control component of the SbN. The botherder interacts with the C&C en-
gine to define a set of master commands, which are dispatched when needed
by the master controller and then sent to the socialbots. An interesting two-
fold question now follows: what kinds of master commands are required to
achieve a large-scale infiltration in the targeted OSN, and when should they
be dispatched by the master controller?

First, notice that at the beginning each socialbot is isolated from the rest
of the OSN, that is, |Γ(bi)| = 0 for each bi ∈ B, which is not a favorable
structure to start a large-scale infiltration. Tong et al. [64] show that the social
attractiveness of a profile in an OSN is highly correlated to its neighborhood
size, where the highest attractiveness is observed when the neighborhood size
is close to the network’s average N(G) = η. Usually, η is known or can be
estimated (e.g., η = 130 on Facebook [20]). Thus, in order to increase the
social attractiveness of a socialbot, the botherder defines a master command
cluster, which orders each socialbot to connect to at most η other socialbots.
Moreover, this might be helpful in order to elude OSN security defenses that
keep track of how many rejected connection requests each new user ends up
with when joining the OSN for the first time, which is usually used by such
systems as an indication of an automated activity or spam [74].

Second, it has been widely observed that if two users have a mutual con-
nection in common, then there is an increased likelihood that they become
connected themselves in the future [40]. This property is known as the triadic
closure principle, and it originates from real-life social networks [55]. Nagle et
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al. [50] show that the likelihood of accepting a connection request in an OSN
is about three times higher given the existence of some number of mutual
connections. Therefore, in order to improve the potential infiltration in the
targeted OSN, the botherder defines a master command mutual_connect,
which orders each socialbot to connect to user profiles with whom it has mu-
tual connections (i.e., users in the extended neighborhood ∆(bi) for each so-
cialbot bi ∈ B).

Finally, we design the master controller to switch between three super
states or phases: setup, bootstrapping, and propagation. In the setup phase,
the botmaster builds m socialbots, updates their malware, and then issues
the cluster command. After that, in the bootstrapping phase, the botmaster
issues the command rand_connect(k), which orders each socialbot to con-
nect to k profiles that are picked at random from the targeted OSN. When ev-
ery socialbot is connected to k non-botherder-owned profiles, the botmaster is-
sues the command decluster, which orders the socialbots to break the social
connections between them, and hence, destroying any m-clique structure that
could have been created in the earlier step.7 In the propagation phase, the bot-
master issues the command crawl_extneighborhood, which orders the so-
cialbots to crawl their extended neighborhoods, after which the botmaster uses
the crawled information and issues the command mutual_connect. When-
ever a socialbot infiltrates a user profile, the botmaster issues the command
harvest_data, which orders the socialbot to collect all accessible users’ pro-
file information in its neighborhood. A description of all master commands is
shown in Table 2.

4.5.3 The C&C Channel

The communication model of an SbN consists of two channels: the C&C chan-
nel and the socialbot-OSN channel. The socialbot-OSN channel carries only
OSN-specific API calls and normal HTTP traffic, which are the end product of
executing a command by a socialbot. From the OSN side, this traffic originates
from either an HTTP proxy in case of high activity, or from a normal user. It
is therefore quite difficult to identify a socialbot solely based on the traffic it
generates in the socialbot-OSN channel.

As for the C&C channel, how should it be built so that it is particularly hard

7In more advanced implementation, a socialbot would break one social connection with
another socialbot for every newly infiltrated user profile, and thus, gradually decluster.
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to identify the botmaster? To start with, we argue that detecting the botmaster
from the C&C traffic is as hard as it is in a traditional botnet; the botherder
can rely on an existing botnet infrastructure and deploy the SbN as part of the
botnet. Alternatively, the botherder can employ advanced techniques that, for
example, establish a probabilistically unobservable communication channel by
building a covert OSN botnet [49].

5 Evaluation

In order to evaluate how vulnerable OSNs are to a large-scale infiltration by
an SbN, we decided to build one according to the discussion in Section 4.5.
We chose Facebook as a target OSN because it is the largest OSN found to-
day, consisting of more than 750 million users [20]. Besides, we believe it is
particularly difficult to operate an SbN on Facebook as (1) unlike other OSNs,
Facebook is mostly used to connect to real-life friends and family but not to
strangers [19, 38, 39], and (2) Facebook employs the Facebook Immune Sys-
tem (FIS) [59]: an adversarial learning system which represents a potential
nemesis of any SbN.

5.1 Ethics Consideration

Given the nature of an SbN, a legitimate question follows: is it ethically ac-
ceptable and justifiable to conduct such a research experiment? We believe
that controlled, minimal-risk realistic experiments are the only way to reliably
estimate the feasibility of an attack in real-world. These experiments allow us,
and the wider research community, to get a genuine insight into the ecosystem
of online attacks, which are useful in understanding how similar attacks may
behave and how to defend against them. This seems to be the opinion of other
researchers as well [8, 18, 33, 34].

We carefully designed our experiment in order to reduce any potential
risk at the user side [10]. In particular, we followed the known practices
and got the approval of our university’s behavioral research ethics board. We
strongly encrypted and properly anonymized all collected data, which we have
completely deleted after we finished our planned data analysis.

As part of our code of ethics, we communicated the details of our exper-
iment to Facebook before any publication, and accordingly, we decided not
to include specific technicalities about a set of vulnerabilities we discovered
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in Facebook’s platform. We believe that these platform vulnerabilities can be
exploited by cyber criminals to mount different kinds of online attacks. We,
however, reported these vulnerabilities to Facebook through its platform’s on-
line vulnerability reporting tool [21].

5.2 Methodology

Our main research objective is to characterize users’ response to a large-scale
infiltration campaign in OSNs, along with the corresponding security and pri-
vacy implications. To that end, we built an SbN prototype targeting Facebook
for the reasons outlined above, and operated this SbN for eight weeks dur-
ing the first quarter of 2011. The duration of the experiment was informed
by how many data points we needed to properly capture users’ behavior, and
accordingly, we took the SbN down once we stopped observing new trends.
We report only the results we observed during the length of the experiment.
We used a single machine and two types of IP addresses at different stages of
the experiment. The first IP address was assigned by the university, and the
second IP address was assigned by a commercial ISP. We also implemented
a simple HTTP proxy on the machine we used in order to make the traffic
looks like as if it originated from multiple clients having different browsers
and operating systems. Even though the university assigned IP address might
have diluted the Facebook Immune System [7], we believe that it is unsafe to
completely white-list university IP addresses.8 In fact, today’s botnet owners
struggle over who has the largest number of “high-quality” infected machines,
including university, corporate, and even government machines [17].

5.3 The Facebook SbN

Figure 2 shows the architecture of the SbN we developed. Each socialbot
ran the same malware and was equipped with only one native command;
status_update. We implemented the generic operations described in Ta-
ble 1 using two techniques: API calls and HTTP-request templates, which we
now briefly describe. First, we exploited Facebook’s Graph API [1] to carry out

8During the SbN operation using a university IP address, we observed that some actions
were identified as malicious, and the used IP address was temporarily blocked, especially
during Sybil accounts creation. This supports the argument that even university IP addresses
were audited by Facebook, and they were not fully white-listed.
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Figure 2: The Facebook Socialbot Network.

the social-interaction operations. The API, however, requires the user (i.e., the
socialbot in this case) to be logged in to Facebook at the time of any API
call. To avoid this, we developed a Facebook application that fetches perma-
nent OAuth 2.0 access tokens in order to allow each socialbot to send API calls
without the need to login. Second, for the social-structure operations, we used
pre-recorded HTTP-request templates that allow each socialbot to send friend-
ship requests as if they were sent from a browser. We used an API provided by
iHeartQuotes9 to pull random quotes and blurbs, and used them as messages
for the status updates. As for the botmaster software, we implemented the
botworker to interface with three useful websites: DeCaptcher10; a CAPTCHA-
solving business, HotOrNot; a photo-sharing website, and MailRu; an email
provider. We also implemented the botupdater with an enhanced functionality
to update the HTTP-request template, along with any new native commands.
Finally, we implemented all master commands described in Table 2.

The master command rand_connect(k) requires some extra attention.
On Facebook, each profile has a unique identifier that is represented by a 64-
bit integer and is assigned at the time the profile is created. In order to get
a uniform random sample of Facebook profiles, we decided to use a simple
random sampling technique called rejection sampling [57], which we now de-
scribe. First, we generated 64-bit integers at random, but with a range that

9http://www.iheartquotes.com
10http://www.decaptcher.com
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is reduced to the known identifier ranges used by Facebook [25]. Next, we
tested whether each generated identifier mapped to an existing user profile by
probing the profile’s page using this identifier. Finally, if the profile existed, we
included this profile identifier in the random sample only if this profile was not
isolated. We define an isolated user profile as a profile that does not display its
“friends list” or has no friends of Facebook.

We deployed the simple two-state native controller and the three-phase,
many-state master controller. A more resourceful attacker, however, would
employ adversarial classifier reverse engineering techniques [42] in order to
learn sufficient information about the security defenses deployed by the tar-
geted OSN, and then construct an adversarial attack that maximizes the po-
tential infiltration and minimizes the detection rate.

5.4 Operating the Facebook SbN

We operated the Facebook SbN for eight weeks during the first quarter of 2011.
The socialbots were able to send a total of 8,570 friendship requests, out of
which 3,055 requests were accepted by the infiltrated users. We divide the
following discussion according to the three phases of the master controller.

5.4.1 Setup

As η= 130 on Facebook, we decided to create 102 socialbots and a single bot-
master, all of which were physically hosted on a single machine for simplicity.
A botherder, however, would resort to a more sophisticated deployments such
as peer-to-peer overlay networks [27]. Even though we could have built the
socialbots automatically using the botworker, we decided to create them man-
ually as we had no intention to support any CAPTCHA-solving business. In
total, we created 49 socialbots that had male user profiles, to which we refer
as m-socialbots, and 53 socialbots that had female user profiles, to which we
refer as f -socialbots. As expected, the socialbots clustered into a 102-clique
structure, representing a tightly-knit, cohesive community of OSN users that
is useful for bootstrapping the infiltration, as discussed in Section 4.5.2
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5.4.2 Bootstrapping

The socialbots generated a random sample of 5,053 valid profile identities.
These identities passed the inclusion criteria outlined in Section 5.3. Figure 3
shows the degree distribution of this sample.11

Based on a pilot study, we decided to send 25 friendship requests per so-
cialbot per day in order to avoid CAPTCHAs. The socialbots took two days to
send friendship requests to all of the 5, 053 profiles. In total, exactly 2,391
requests were sent from m-socialbots and 2,662 from f -socialbots. We kept
monitoring the status of the requests for six days. Overall, 976 requests were
accepted with an average acceptance rate of 19.3%. In particular, 381 of
the accepted requests were sent from m-socialbots (15.9% acceptance rate),
and 595 were sent from f -socialbots (22.3% acceptance rate). The difference
in the average acceptance rate was statistically significant (χ2 = 32.8702,
p = 9.852× 10−9), where the f -socialbots outperformed the m-socialbots by
6.4% on average.12 About 86% of the infiltrated profiles accepted the requests
within the first three days of the requests being sent, as shown in Figure 4. In
our implementation, the socialbots gradually broke the 102-clique structure
as they infiltrated more and more user profiles. Overall, the SbN spent two
weeks in the bootstrapping phase. For most of that time, however, the SbN
was setting idle.

5.4.3 Propagation

We kept the SbN running for another six weeks. During that time, the so-
cialbots added 3, 517 more user profiles from their extended neighborhoods,
out of which 2,079 profiles were successfully infiltrated. This resulted in an
overall average acceptance rate of 59.1%, which, interestingly, depends on
how many mutual friends the socialbots had with the infiltrated users, and
can increase up to 80% as shown in Figure 5.

By the end of the eighth week, we decided to take the SbN down as we
stopped observing new trends in users’ behavior. Moreover, the SbN resulted
in a heavy traffic with Facebook where we recorded approximately 250GB in-
bound and 3GB outbound of network traffic. We consider the operation time a
conservative estimate of the real performance of the SbN as we paused it sev-

11The degree of a node is the size of its neighborhood, and the degree distribution is the
probability distribution of these degrees over the whole network (or a sample of it).

12Using a two-sample test for equality of proportions.
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eral times for debugging and data analysis, especially during the bootstrapping
phase. For example, Facebook changed the HTTP-request parameters used for
sending a friendship request through their platform, and thus, we had to pause
the SbN operation in order to record the new parameters, use the botupdater
to push the new HTTP-request template to the socialbots, and then continue
the SbN operation. We believe that operating the SbN for a longer time is ex-
pected to increase the average acceptance rate as the propagation phase will
have a higher contribution, as suggested by Figure 5.

6 Discussion

In what follows, we discuss the results presented in the previous section and
focus on three main points: the observed users’ behavior, the harvested users’
data, the infiltration performance of the socialbots, and the security implica-
tions on other software systems.

6.1 Users’ Behavior

Given the results presented in Section 5, someone might ask: are the infiltrated
profiles real after all, or are they just other socailbots? To begin with, notice
that during the bootstrapping phase, the socialbots targeted profiles that were
picked at random out of hundreds of millions of user profiles, and thus, it is
highly unlikely to have picked mostly socialbots.13

We also support this argument by the following analysis of the observed
users’ behavior. First of all, consider Figure 5. The big jump in the acceptance
rate from users who were picked at random to those with whom the social-
bots had some mutual friends is expected. It directly exhibits the effect of
the triadic closure principle, which predicts that having mutual friends would
increase the likelihood of accepting a friendship request, as discussed in Sec-
tion 4.5.2. In fact, this resulted in the following correlation: the more mutual
friends a socialbot had with a user, the higher the chance was that the accepted
a friendship request send by the socialbot (Figure 5). The triadic closure, in-
terestingly, operated from the users’ side too, as the socialbots received a total
of 331 friendship requests from their extended neighborhoods.

13Assuming that Facebook is mostly populated by genuine user profiles.
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Second, the behavior depicted in Figure 4 matches the official statistics
about users’ login frequency in Facebook: 50% of the 750 million active Face-
book users log on in any given day [20], and thus, it is expected that approx-
imately half of the accepted friendship requests are observed within one day
of the requests being sent by the socialbots.

Third and last, the users who were infiltrated during the bootstrapping
phase, that is, those who were selected at random, showed another expected
correlation in their behavior [64]: the more friends they had, the higher the
chance was that they accepted a friendship request from a socialbot (i.e., a
stranger), as shown in Figures 6 and 7.

6.2 Harvested Data

As the socialbots infiltrated Facebook, they harvested a large set of users’
data. We were able to collect news feeds, users’ profile information, and
“wall” messages—practically everything shared on Facebook by the infiltrated
users—which could be used for large-scale user surveillance. Even though ad-
versarial surveillance, such as online profiling [28], is a serious online privacy
concern, we decided to only focus on users’ data that have monetary value
such as Personally Identifiable Information (PII).

After excluding all remaining friendships between the socialbots, the to-
tal size of all direct neighborhoods of the socialbots was 3,055 profiles. The
total size of all extended neighborhoods, on the other hand, was as large as
1,085,785 profiles. In Table 3, we compare users’ data revelation of some PII
before and after operating the SbN, as a percentage of the neighborhoods size.

For example, when considering all user profiles from both the direct and
the extended neighborhoods of the socialbots, which added up to 1,088,840
profiles, we were able to collect 9,000 Instant Messaging (IM) account IDs,
14, 509 physical mail addresses, 16, 682 phone numbers, 46,466 email ad-
dresses, and 580, 649 birth dates, all after the infiltration.

6.3 Infiltration Performance

One way to judge whether the resulting infiltration was the making of a small
number of “outstanding” socialbots is to compare them in terms of the number
of profiles they have infiltrated, as shown in Figure 8. Accordingly, we group
the socialbots into two leagues representing the two humps in the figure. The
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Neighborhoods Direct (%) Extended (%)
Profile Info Before After Before After
Gender 69.1 69.2 84.2 84.2
Birth Date 3.5 72.4 4.5 53.8
Married To 2.9 06.4 3.9 4.9
Worked At 2.8 4.0 2.8 3.2
School Name 10.8 19.7 12.0 20.4
Current City 25.4 42.9 27.8 41.6
Home City 26.5 46.2 29.2 45.2
Mail Address 0.9 19.0 0.7 1.3
Email Address 2.4 71.8 2.6 4.1
Phone Number 0.9 21.1 1.0 1.5
IM Account ID 0.6 10.9 0.5 0.8
Average 13.3 34.9 15.4 23.7

Table 3: Data revelation before and after operating the SbN, as percentage of neighborhoods
size. (Direct neighborhoods = 3,055 profiles, Extended neighborhoods = 1,085,785 profiles)

first one constitutes 86% of the socialbots and 70% of the overall infiltration,
where each socialbot has infiltrated 0–50 user profiles. The second league,
on the other hand, constitutes 10% of the socialbots and 23% of the overall
infiltration, where each socailbot has infiltrated 60–80 user profiles. The rest
of the socialbots constitute only 4% of the socialbots with 7% of the overall
infiltration. Notice, however, that some of these socialbots got blocked by
the FIS, which brings us to the following question: how did the FIS perform
against the SbN we have operated?

After operating the SbN for eight weeks, only 20 profiles used by the so-
cialbots were blocked by the FIS, and curiously, all of them were controlled
by f -socialbots. After further investigation, we found that these profiles were
blocked because some Facebook users flagged them as spam.14 In fact, we did
not observe any evidence that the FIS detected what was really going on other
than relying on users’ feedback, which seems to be an essential but potentially
dangerous component of the FIS.

Finally, we noticed that using the commands cluster and status_update,
as describe in Table 2, had a desirable effect. It appears that the socialbots
seemed more human-like as only 20% of the 102 profiles they controlled got
blocked, as opposed to 93% of the 15 profiles we used in our pilot study where

14Based on the content of a pop-up message that Facebook showed when we manually
logged in using the blocked socialbots’ profiles.
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we decided not to use these commands. This, in a sense, reflects one of the
drawbacks of relying on users’ feedback.

6.4 Implications on Other Systems

This section explores the wider implications of large-scale infiltration in OSNs
beyond today’s social Web. In particular, we show that large-scale infiltration
has alarming implications on software systems that use the social graph of
OSNs to personalize, fine-tune, or bootstrap socially-informed services. We
first outline the common assumption these systems make about the capabil-
ities of adversaries in OSNs, and then, we focus on a case study in order to
show that this assumption is generally unsafe and could lead to undesirable
situations.

6.4.1 The Capability of a “Social Adversary”

Today, many software systems are socially informed due to the availability of
huge, centralized OSNs that offer easy-to-use APIs. This enabled the develop-
ment of a new set of socially-informed services that rely on the social graph
of the used OSN. For example, OSNs are used to defend against Sybil attacks
in peer-to-peer systems [76], enable knowledge-sharing and personalization
in social search [31], model trust in recommender systems [71], and coop-
erate safely in online peer-based backup systems [65]. All of these systems,
however, make the following assumption—implicitly or explicitly—about the
capabilities of an adversary in OSNs:

It is particularly difficult for an adversary to establish arbitrarily
many social connections between his OSN accounts (i.e., Sybils) and
the rest of the users in the social graph.

This assumption has the indirect effect of transforming the used OSN into a
trust network, which brings in many advantages such as a well-defined trust
metric, credibility, and hassle-free integration. In the following section, we
evaluate how realistic this assumption is using a case study, and show that the
outcomes of the studied system can drastically change once the assumption
above does not hold in practice.
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6.4.2 Case Study: Sybil Detection via Social Networks

As outlined in Section 2.2, the Sybil attack refers to the situation where an ad-
versary controls a set of fake identities, each called a Sybil, and joins a targeted
system multiple times under these Sybil identities.15 The adversary can then
mount many follow-up attacks using these Sybil identities in order to disrupt
the targeted system. For example, an adversary can pollute the voting scheme
of a trust and reputation system [35], subvert the routing and data replica-
tion services in a Distributed Hash Table (DHT) [68], or cripple many critical
functions of a wireless sensor network such as routing, resource allocation, an
misbehavior detection [52]. In this section, we focus on Sybil attacks in DHTs:
decentralized, distributed systems that provide a lookup service, similar to a
hash table, for a group of collaborating peers or nodes.

To defend against the Sybil attack, recent research propose to exploit the
implicit social network among the nodes of a DHT in order to detect, and
thereof limit, the number of Sybil nodes it may contain [15, 66, 67, 77, 78].
To demonstrate the main idea behind these Sybil defenses, let us consider
the DHT in Figure 9(a). Each node is assigned a unique identifier and is
responsible for maintaining a set of (key, value) pairs of shared objects, which
are stored and maintained in the DHT. Any participating node can efficiently
retrieve the value associated with a given key of an object by following the
DHT protocol (e.g., Chord [60], Kademlia [43]). Figure 9(a) illustrate the
case where an adversary join the DHT under four Sybil identities, which are
represented as gray nodes.

A social network-based Sybil detection protocol is used to first learn the trust
network among the peers in the DHT, and then use the graph structure of this
social network to detect the Sybil nodes in the DHT. In particular, the protocol
classifies the peers in the social network into two groups called regions: the
Sybil region consisting of mostly Sybil nodes in the DHT, and the honest region
consisting of mostly non-Sybil nodes, as shown in Figure 9(b). The edges in
the social network connecting the Sybil region to the honest region are called
the attack edges, and their quantity plays an important role in the accuracy of
the classification. The basic idea is as follows: even if an adversary controls
many Sybil nodes in the DHT, it is particularly difficult for him to establish
many trust relationships with honest nodes in the social network, that is, it is
hard to increase the number of attack edges in the network. Thus, one can

15The attack is named after the subject of the book Sybil by Flora Schreiber, a case study of
a woman with multiple personality disorder whi had 16 different “alters”.
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Figure 9: Detecting Sybil nodes in a typical DHT. In (a), dashed nodes represent keys of
objects drawn from an identifier space, and un-dashed nodes represent peers where each peer
has a unique identifier drawn from the same identifier space. In (b), an edge is added between
two nodes if these nodes trust each other, forming a network of trust among the peers in the
DHT. The structure of the resulting social network can be used to label each node either Sybil
or honest (i.e., non-Sybil). This allows the classification of nodes in the DHT into two regions:
the Sybil region and the honest region.

devise a detection mechanism that relies on this observation in order to group
the nodes into honest and Sybil regions, and thus, cluster the network.

Most of the Sybil detection techniques via social networks are based on
random walks and mixing times in a given social graph [15, 66, 67, 77, 78].
Yu [76], however, shows that if an adversary introduces few Sybil nodes such
that the mixing time of the social graph is not affected, then no approach
based on the mixing time can possibly tell that these nodes are Sybil. The
mixing time describes how fast random walks in a given graph approach the
stationary distribution of that graph, and is not affected as long as the adver-
sary introduces at most as many Sybil nodes as the number of attack edges.
Thus, if the mixing time is not effected by the introduction of Sybils, none of
the major Sybil defenses will work effectively.16 This result is not surprising as
one would expect that if an adversary manages to establish many trust rela-
tionships with honest nodes, then the Sybil nodes will integrate into the honest
region, rendering ineffective any clustering technique that is solely based on
the social graph’s structure. Clearly, to avoid this pitfall, Sybil defenses via
social networks require the used network to have strong implicit trust such as
friendship networks.17 In online settings, however, the situation is different,

16The interested reader can refer to [76] for a formal treatment of this topic.
17The original proposal [77] requires the social network to be established “out-of-band”

through real-life interactions, which is impractical in today’s software systems.
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as we show in the coming section.

6.4.3 Sybil Detection via OSNs

Today’s Internet-based, open-access software systems, either centralized or
distributed, allow a user to join the system by presenting an online identity
that is borrowed from an existing OSN, which is usually achieved by utilizing
a Web single sign-on technology such as Facebook Connect [37]. We showed,
however, that OSNs such as Facebook are highly vulnerable to large-scale infil-
tration, where a network of few socialbots can be used to establish arbitrarily
many friendships with Facebook users. Therefore, and according to our discus-
sion in Section 6.4.2, we do not recommend using an OSN such as Facebook
to detect Sybil nodes in open-access, online systems (e.g., peer-to-peer file
sharing networks), as they are expected to be ineffective given the infiltration
capability of adversaries in OSNs.

The above conclusion extends to all open-access systems that integrate
OSNs such as Facebook, especially those that are Web-based. For example,
Facebook reports that more than 500 million of its users interact with third-
party applications on its Web platform or experience Facebook platform on
other websites every month, where more than seven million applications and
websites are integrated with Facebook [20]. Apparently, this is a welcoming
haven for Sybil attackers in today’s social Web, including SbN botherders and
their affiliates. Defending against threats such as large-scale infiltration is thus
important, which is a topic of future research.

7 Conclusion and Future Work

We have evaluated how vulnerable OSNs are to a large-scale infiltration by
a Socialbot Network (SbN). We used Facebook as a representative OSN, and
found that using bots that mimic real OSN users is effective in infiltrating
Facebook on a large scale, especially when the users and the bots share mu-
tual connections. Moreover, such socialbots make it difficult for OSN security
defenses, such as the Facebook Immune System, to detect or stop an SbN as
it operates. Unfortunately, this has resulted in alarming privacy breaches and
serious implications on other socially-informed software systems. We believe
that large-scale infiltration in OSNs is only one of many future cyber threats,
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and defending against such threats is the first step towards maintaining a safer
social Web for millions of active web users.

To that end, we are currently investigating two directions in the defense
side. The first involves understanding why users tend to accept friendship
requests from stranger in general, which could inform the design of a user-
centric security control that allows users to kmake more informed decisions.
The second, on the other hand, involves characterizing social network-based
Sybil defenses under the assumption of a social adversary, which could provide
us with insights on how to design similar defenses that are resilient to such a
resourceful adversary.

8 Acknowledgments

We would like to thank San-Tsai Sun, Elizeu Santos-Neto, Albina Muslukhova,
and Bader AlAhmad for their kind help and advice. We also would like to thank
Cormac Herley, Miranda Mowbray, and Adriana Iamnitchi for their feedback
on an early draft of this paper. This research is partially supported through
funding from the NSERC Internetworked Systems Security Network (ISSNet)
and GRAND Network of Centers of Excellence (NCE).

References
[1] Facebook Open Graph Protocol. http://developers.facebook.com/docs/

opengraph. 13, 21

[2] Sick profile maker. http://sickmarketing.com/sick-profile-maker. 11

[3] Jet bots. http://allbots.info, 2011. 6

[4] R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.
Wiley Publishing, 2 edition, 2008. ISBN 9780470068526. 9

[5] J. Baltazar, J. Costoya, and R. Flores. The real face of Koobface: The largest web 2.0
botnet explained. Trend Micro Research, July 2009. 5, 9, 10, 18

[6] J. Bates. Sniffing out socialbots: The combustive potential of social media-based
algorithms. http://www.businessinsider.com/sniffing-out-socialbots-
the-combustive-potential-of-social-media-based-algorithms-2011-
12, December 2011. 5

33

http://developers.facebook.com/docs/opengraph
http://developers.facebook.com/docs/opengraph
http://sickmarketing.com/sick-profile-maker
http://allbots.info
http://www.businessinsider.com/sniffing-out-socialbots-the-combustive-potential-of-social-media-based-algorithms-2011-12
http://www.businessinsider.com/sniffing-out-socialbots-the-combustive-potential-of-social-media-based-algorithms-2011-12
http://www.businessinsider.com/sniffing-out-socialbots-the-combustive-potential-of-social-media-based-algorithms-2011-12


[7] BBC News. Socialbots used by researchers to “steal” facebook data. http://www.bbc.
co.uk/news/technology-15553192, November 2011. 21

[8] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your contacts are belong to us:
automated identity theft attacks on social networks. In WWW ’09: Proceedings of the
18th International Conference on World Wide Web, pages 551–560, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-487-4. doi: http://doi.acm.org/10.1145/1526709.
1526784. 9, 10, 12, 20

[9] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal
of Computational Science, 2(1):1 – 8, 2011. ISSN 1877-7503. doi: 10.1016/j.jocs.
2010.12.007. URL http://www.sciencedirect.com/science/article/pii/
S187775031100007X. 5

[10] N. Bos, K. Karahalios, M. Musgrove-Chávez, E. S. Poole, J. C. Thomas, and S. Yardi.
Research ethics in the facebook era: privacy, anonymity, and oversight. In CHI EA ’09:
Proceedings of the 27th international conference extended abstracts on Human factors in
computing systems, pages 2767–2770, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-247-4. doi: http://doi.acm.org/10.1145/1520340.1520402. 20

[11] D. Boyd. Social media is here to stay... Now what? Microsoft Research Tech Fest, February
2009. 5

[12] M. Broersma. idefense: 1.5 million facebook accounts for sale. http:
//www.zdnet.co.uk/news/security-threats/2010/04/23/idefense-
15-million-facebook-accounts-for-sale-40088751/, April 2010. 11

[13] G. Brown, T. Howe, M. Ihbe, A. Prakash, and K. Borders. Social networks and context-
aware spam. In CSCW ’08: Proceedings of the ACM 2008 Conference on Computer Sup-
ported Cooperative Work, pages 403–412, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-007-4. doi: http://doi.acm.org/10.1145/1460563.1460628. 9

[14] Z. Coburn and G. Marra. Realboy: Believable twitter bots. http://ca.olin.edu/
2008/realboy, April 2011. URL http://ca.olin.edu/2008/realboy. 10

[15] G. Danezis and P. Mittal. SybilInfer: Detecting sybil nodes using social networks. In
NDSS, Feb. 2009. 30, 31

[16] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 251–260, London, UK, 2002. Springer-Verlag.
ISBN 3-540-44179-4. 8

[17] DSLReports. Trojan horse, and virus FAQ. http://www.broadbandreports.com/
faq/trojans/1.0_Trojan_horses, July 2011. 21

[18] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. Captcha smuggling: hijacking web browsing
sessions to create captcha farms. In SAC ’10: Proceedings of the 2010 ACM Symposium
on Applied Computing, pages 1865–1870, New York, NY, USA, 2010. ACM. ISBN 978-1-
60558-639-7. doi: http://doi.acm.org/10.1145/1774088.1774483. 10, 20

34

http://www.bbc.co.uk/news/technology-15553192
http://www.bbc.co.uk/news/technology-15553192
http://www.sciencedirect.com/science/article/pii/S187775031100007X
http://www.sciencedirect.com/science/article/pii/S187775031100007X
http://www.zdnet.co.uk/news/security-threats/2010/04/23/idefense-15-million-facebook-accounts-for-sale-40088751/
http://www.zdnet.co.uk/news/security-threats/2010/04/23/idefense-15-million-facebook-accounts-for-sale-40088751/
http://www.zdnet.co.uk/news/security-threats/2010/04/23/idefense-15-million-facebook-accounts-for-sale-40088751/
http://ca.olin.edu/2008/realboy
http://ca.olin.edu/2008/realboy
http://ca.olin.edu/2008/realboy
http://www.broadbandreports.com/faq/trojans/1.0_Trojan_horses
http://www.broadbandreports.com/faq/trojans/1.0_Trojan_horses


[19] N. B. Ellison, C. Steinfield, and C. Lampe. The benefits of Facebook “friends:” so-
cial capital and college students’ use of online social network sites. Journal of
Computer-Mediated Communication, 12(4):1143–1168, July 2007. ISSN 10836101. doi:
10.1111/j.1083-6101.2007.00367.x. URL http://dx.doi.org/10.1111/j.1083-
6101.2007.00367.x. 20

[20] Facebook. Facebook Statistics. http://www.facebook.com/press, March 2011. 18,
20, 27, 32

[21] Facebook. Facebook security. http://www.facebook.com/security, July 2011. 21

[22] Facebook Devil. Facebook devil: Facebook profile creator. http://www.
facebookdevil.com/, January 2011. 11

[23] N. FitzGerald. New Facebook worm. http://fitzgerald.blog.avg.com/2009/
11/, November 2009. 12

[24] T. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey of socially interactive robots.
Robotics and Autonomous Systems, 42(3Ű4):143–166, 2003. 10
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