

FLORIDA INTERNATIONAL UNIVERSITY

SCHOOL OF COMPUTER SCIENCE

TECHNICAL REPORT

2000-06

INFORMATION ENTERPRISE ARCHITECTURES:

PROBLEMS AND PERSPECTIVES

Konstantin Beznosov
beznosov@cs.fiu.edu

http://cs.fiu.edu/~beznosov

June 14, 2000

Abstract
Current problems, constrains, goals, and approaches in developing architecture of informa-

tion enterprises are reviewed. Research directions for solving the main problems of information
enterprise architecture field are proposed.

Keywords
Information enterprise architecture, software architecture, software engineering.

-
n

m, have
 period

 chief
iews
th the
n sys-

es for
IO’s job
 posi-

] even
por-

systems
for the
ledge in
hieving
-level

onality

archers.
ruction
ile, the
any of

es at the
guages,
typing

is. The
denti-
al ones.
archers
ction 7.
s oth-
Information Enterprise Architectures: Problems and Perspectives

Konstantin Beznosov
beznosov@cs.fiu.edu

Current problems, constrains, goals, and approaches in developing architecture of informa
tion enterprises are reviewed. Research directions for solving the main problems of informatio
enterprise architecture field are proposed.

1. INTRODUCTION

The problems caused by inadequate enterprise architectures, or in most cases a lack of the
become more and more topical. Periodic studies by Brancheau et al [1, 2] showed that during the
1990-1994 the problem of building “responsive” information infrastructures moved to the top of US
information officers’ (CIO) list of issues. According to Zachman [3], an IBM internal report on interv
with CEOs and CIOs of 108 of IBM’s largest customers registered nearly universal frustration wi
state of information availability for management purposes and the inability of the current informatio
tems to respond to business enterprise changes.

In the field of information technologies (IT), the enterprise level represents supreme challeng
information departments and IT professionals whose responsibilities span enterprise scopes. The C
at this level is one of the most highly compensated, but it also experiences very high turnover. CIO
tions typically turn over every two years, often due to burn-out and project failures [4]. Zachman [5
names the problem of building good IEA “the issue of the century,” due to its complexity, growing im
tance, and the amount of resources that will be allocated to address it.

The software engineering community has been studying the principles and patterns of software
architecture and has been collecting positive knowledge about building such systems [6-9]. As
architecture of information enterprises, there is much less public experience and systematic know
this area. This report reviews the area of IEA, identifies the problems, and proposes ways for ac
progress. The problem of IEA will serve as a large context of the work on engineering application
access control in enterprise distributed applications. It shows why any distributed application functi
should always be considered from the perspective of the ever-changing enterprise environment.

We found that practitioners made more progress in developing enterprise architectures than rese
They borrowed the practice of constructing complex systems from other manufacturing and const
industries, and they adapted it according to their experience and available knowledge. Meanwh
research community took a systematic approach in the field of software system architecture, and m
the their results can be extrapolated into IEAs. However, there are differences between architectur
software system level and the enterprise level. Development of enterprise architecture definition lan
bridging the languages with work-flow description languages, and development of enterprise proto
and modeling techniques can impact the progress in this field the most.

The report is organized as follows. In the next section we define what an information enterprise
definition of the IEA concept follows in Section 3. Then, in Section 4, we survey the issues in IEAs i
fied by various sources and systemize them to separate the essential problems from the margin
Afterwards, we analyze existing approaches in designing IEAs by practitioners (Section 5) and rese
(Section 6). Finally, we propose directions where research can go to solve the main problems in Se
In this thesis, we will always mean “information enterprise” when we use the word “enterprise” unles
erwise stated.
1

e per-
rrect, is
oftware
o iden-

 which
terprise
tion of

mprised
rprise in
e enter-
ny into
lthough

 hier-
, enter-

 goals
hat we
lutions.

 func-
t infor-

nt is the
Boever
pproxi-

for IEs is
at will

logies
efine a

ning
ain and

at the

cific
ent. The
ith
 to fre-

le, man-
tomer
2. INFORMATION ENTERPRISE

We must clarify the notion of an enterprise before discussing the problems it presents. An intuitiv
ception of an IE tells us that it is a system of information systems. Such a description, although co
not complete. If we have two computers connected through a network that run several different s
programs, they comprise a “system of systems,” although it is not an enterprise yet. It is important t
tify scope and scale when we refer to enterprises.

Mowbray and Malveau [4] define an enterprise more precisely -- “an organizational scope upon
a common set of information technology policies can be imposed.” As can be seen, they define en
level as the largest scale within an organization according to their scope hierarchy: object, collec
objects, frameworks, application, system, enterprise, global scope. Enterprise level software is co
of multiple systems, where several applications constitute each system. Zachman [5] places ente
the following scope hierarchy: program, system, application, department, enterprise, conglomerat
prise, industry enterprises. Zachman’s hierarchy takes into account traditional division of a compa
departments and the fact that federations of different companies might constitute a conglomerate. A
these hierarchies do not match exactly, they are relatively close to each other.

We combine advantages of both views, while slightly modifying them, and suggest the following
archy: object, module, collection of modules, framework, program, application, system, department
prise, conglomerate enterprise, industry enterprises, and global infrastructure.

After defining an IE and its scope in the hierarchy of software constructs, we identify enterprise
and constraints. The former will allow us to understand liveliness properties of an enterprise -- w
want eventually to happen. The latter will serve as a necessary limit on the freedom of proposed so

2.1. Goals

Clearly, the main goal of an enterprise, as for any other informational construction, is to satisfy its
tional and non-functional requirements. For a software system, requirements are its input and outpu
mation and the system’s functional and non-functional properties. For an enterprise, the requireme
business work-flow it is to support. Today, business work-flow changes more and more rapidly. De
observes [10] that the rate of change in business enterprises has grown from a full cycle period of a
mately 7 years in the 1970s and 1980s to 12-18 months in the 1990s. He suggests the main goal
not only to align the enterprise with the business work-flow but also “to have such an enterprise th
allow quick re-aligning when the business work-flow changes.”

Another important goal for an enterprise is to allow the gradual migration towards new techno
with the retirement of old ones as well as the evolution of systems constituting the enterprise. We d
well constructed IE as one that fully supports business work-flow and allows sufficiently quick re-alig
according to the work-flow changes while requiring only a reasonable amount of resources to maint
manage the enterprise. In each case, the notion of quick and reasonable has to be determined.

2.2. Constraints

Architectural choices in constructing an IE are limited by the imposed constraints. We found th
constraints fall into the following groups:

• Amount and nature of change [4, 10]: At the enterprise level, change is aggregated from many system-spe
changes. At this level, change appears to be frequent and continuous. The nature of change itself is differ
rate of change in business processes, especially in administrative work-flow, is often faster than the rate w
which an IE can accommodate those changes. The demand in enterprise capacity is a dynamic factor due
quent work-flow changes. Different business work-flow processes have different change rates. For examp
ufacturing, financial and human resource work-flows change at a comparatively slow rate. Meanwhile, cus
support, supply chain, and decision support change more quickly.
2

 can
informa-

 qual-
nal

essity to

fine the
rding to

ifferent

re only
cribing a
eful life”
between
some-
e com-

is the-

 set of
teroper-
ractions
n enter-
s from

es posed
sts. Zach-
cribing
 over the
esign,
astruc-

nd sci-
 infra-
rties.”

ys more
). Such
• Architecture development [10, 11]: There is an upper limit to the size of a chunk of enterprise modeling that
be tackled at one time. Due to the significant amount of resources invested in any enterprise, the existing
tion infrastructure has to be reused -- no “cold turkey” solutions.

• Organizational restructuring [12]: Such broad organizational change initiatives as process re-engineering,
ity management, down-sizing, employee improvement, and transition to flexible and adaptable organizatio
forms introduce additional constraints on how an enterprise is built.
The main constraints are the amount and nature of change on the enterprise level, and the nec

reuse the existing information infrastructure.

3. ENTERPRISE ARCHITECTURE

After defining the concept of an IE and discussing its goals and constraints, we proceed to de
notion of enterprise architecture. First, it is necessary to agree on exactly what architecture is. Acco
the dictionary [13], architecture is “the art or practice of designing and building structures.”1 The next step
is to define the meaning of architecture in the context of a software system in order to see how it is d
from IEA.

There is no consensus on the definition of software system architecture in the literature. Here a
some samples: “a set of design artifacts, or descriptive representations, that are relevant for des
system such that it can be produced to requirements as well as maintained over the period of its us
[5]; “a description of the subsystems and components of a software system and the relationships
them” [9]; “abstract view of a system as a configuration of components and connectors” [14]; and
thing that “defines that system in terms of computational components and interactions among thos
ponents” [8]. Software Engineering Institute even has a WWW page2 with a discussion and various
definitions of the term “software architecture.”

The most precise and useful definition of software system architecture, which will be used for th
sis, was given by Garlan and Perry [6]:

“The structure of the components of a program/system, their interre-
lationships, and principles and guidelines governing their design and
evolution over time.”

The meaning of IEA also varies. Mowbray and Malveau [4] define enterprise architecture as “a
rules, guidelines, interfaces, and conventions used to define how applications communicate and in
ate with one another.” They add that the architect’s main concern is defining a robust set of abst
that manage complexity, change, and other forces. In other sources [15, 16], Mowbray describes a
prise architecture as “a set of diagrams, text, and tables that define a system or a family of system
various stake-holder viewpoints.” He suggests that each view of the architecture addresses the issu
by principal stake-holders, such as end-users, developers, system operators, and technical speciali
man [5] views an IEA as a “set of descriptive representations (i.e. “models”) that are relevant for des
an enterprise such that it can be produced to management’s requirements (quality) and maintained
period of its useful life (change).” DeBoever [10] defines IEA as a set of principles which guide d
selection, construction, implementation, deployment, support, and management of information infr
ture.

Darnton and Giacoletto [17] define an IEA as “a framework for agreement that provides the art a
ence of identifying, planning, and implementing integrated information systems and their related
structure, and that provides activities of an organization or enterprise having certain desirable prope

As can be seen from the diverse definitions above, enterprise architecture is defined these da
broadly and less precisely than a software system architecture (we could even say “very vaguely”

1. The word was found originally in the English of 16th century.
2. http://www.sei.cmu.edu/~architecture/definitions.html
3

and that

itecture
ystem of
rences

sed in
ecture
e can
rprise
itect
 IEA.
nce,

nt, and

able
 due
 to be

 system
niques

es face
ick and
ademic
evelop-

l-built
causes,

it does

ming

to the
looseness and diversity is mostly due to the facts that enterprise architecture is a field in its infancy
no scientific research methodology has been applied to this area.

3.1. Differences Between System and Enterprise Architecture

Someone might suggest applying principles and techniques of developing software system arch
directly to enterprise architectures, since we can sometimes consider an enterprise simply as a s
information systems. However, information enterprise architecture has its own specifics and diffe
from system architecture. There are several main differences system and enterprise architecture:

• The requirements for a system and for an enterprise are different as discus
Section 2.1. We believe this is the key to the difference between a system archit
and an enterprise architecture. A requirement for software system architectur
define precisely its behavior, input/output, and its properties. In contrast, an ente
architecture has its requirements in the form of company work-flow, and an arch
has to produce specifications for each of the enterprise systems according to the

• The focus of concern in IEA is moved from single system structure, its performa
and decomposition, to the structure of the whole enterprise, change manageme
its decomposition into services and systems that support the work-flow.

• Another difference is the level of abstraction. For an IEA to have reason
complexity in order to avoid delivering an architecture which is already out of date
to rapid work-flow changes and the lengthy design time, the IEA languages have
of a higher abstract level than system architecture languages.

As discussed later in this report, we recommend extrapolating some approaches to software
architecture and applying them to IEA due to the similarities between them. However, different tech
are needed in order to succeed in developing IEAs.

4. PROBLEMS WITH ENTERPRISES AND THEIR ARCHITECTURES

Architecture is responsible for the final success or failure of an IE. The main problems enterpris
today are due to the fact that most of them are built in ad hoc fashion. As von Halle observes, qu
dirty information systems projects are the rule rather than the exception for enterprises [18]. The ac
community can help to address this problem by, for example, educating and popularizing ideas of d
ing enterprises with a well defined process.

In the rest of this section, we will concentrate mainly on technical problems of constructing wel
enterprises. We will describe two groups of problems. The first group is consequences of actual
which is the second group.

4.1. Consequences

There are four major problems with IE reported in the literature:

1. When an enterprise is built out of systems, piece by piece and product by product,
not work as expected because the built systems do not fit together well [5, 11].

2. Maintenance of systems’ relevance to a company work-flow in an IE is time-consu
and expensive [5].

3. The increase of costs and time for maintenance is approximately exponential
increase in the number of applications deployed at the enterprise [5].
4

By the

ties are
achman

f magni-
.

evalu-
wledge
d hoc

 tax-
l mis-

rprise
nd con-

 was
 the

archi-
ures:
4. Enterprise-wide modeling, as opposed to single system modeling, takes too long.
time it is completed, the result is usually discredited and out of date [11].

Problem 2 is featured in software systems as well. On the enterprise level, maintenance difficul
aggregated from all systems, and they become one of the major obstacles for IT professionals as Z
[5] points out. The other three problems are not experienced in software system construction.

4.2. Causes

Our research suggests that the following are the main causes of the problems by IE owners:

1. Resources and changes are accumulated from each system and become orders o
tude more than for any single system, which leads to unmanageable enterprises [4]

2. The lack of ability to consistently and meaningfully describe, analyze, change, and
ate an enterprise structure as well as to communicate and accumulate positive kno
about building well-constructed enterprises [3]. This leads to IEAs that are made in a
fashion, are informal, un-analyzable, un-maintainable and not reusable.

3. Architectural mismatch is described by Garlan et al [14]. If we project their mismatch
onomy onto the enterprise level, we have the following main reasons for architectura
match:

a) assumptions about the nature of the systems constituting an enterprise;

b) assumptions about the nature of the connectors between systems;

c) assumptions about the global architectural structure -- about topology of the ente
communications and about the presence or absence of particular components a
nectors;

d) assumptions about the construction process.

Even though the notion of architectural mismatch in the software engineering field
first identified for information systems, clearly architectural mismatch prevents
deployment of “well constructed” enterprises.

4. We believe some problems with today’s practice of documenting software system
tectures identified by Shaw and Garlan [8] are also projected on enterprise architect

a) inability to localize information about interactions,

b) poor abstraction,

c) lack of structure on interface definitions,

d) poor support for components with incompatible packaging,

e) poor support for multi-paradigm systems,

f) poor support for legacy systems.
5

ngineer-

ework
Organi-

frame-
0].

cturing
tions in
and the
hitecture
 main
nding
In the next two sections, we describe current approaches in practice and research of software e
ing to the development of IEAs and analyze them from the perspective of these main causes.

5. STATE OF THE PRACTICE

We found two major approaches in developing enterprise architectures. They are Zachman’s fram
and the reference model for open distributed computing recommended by International Standards
zation (ISO) and International Telecommunications Unit (ITU).1

5.1. Zachman’s Framework

The most popular approach among IT practitioners is the information systems architecture (ISA)
work introduced by John Zachman in 1987 [19] and enhanced five years later together with Sowa [2

Description
The framework is essentially based on the premise derived from observations of some manufa

industries (particularly airplane business). There are three “fundamental” architectural representa
manufacturing and construction works, one for each “player in the game”: the owner, the designer,
builder. Those representations correspond to the few main views that capture an enterprise arc
from different perspectives. This should be done in such a way that it would be sufficient for every
“player” to work on their own level of abstractions and concepts. Such “players” and the correspo
representations are:

1. Planner -- scope/objectives

2. Owner -- model of business

3. Designer -- model of the information system

4. Builder -- technology model

5. Sub-contractor -- detailed representations
The framework considers six aspects that include information processing and work-flow:

1. What -- data organization

2. How -- control flow

3. Where -- systems location

4. Who -- people and departments involved

5. When -- duration of the business processes

6. Why -- motivation of the enterprise via objectives and strategies

1. ITU used to have another name -- CCITT.
6

trix of
 1. Each

n. For

ns are
 com-

 the
general
e about
the frame-

e enter-
veloping
 can be
 a com-
 each
n enti-

e into
te-
 “tech-
ns to
 of pos-

ral
nd

veral
The proposed framework is a place-holder for a set of views allocated in the two-dimensional ma
representations (scope, business model, etc.) and “aspects” (what, how, etc.) as depicted in Table

cell is filled out with a particular view according to the meaning of the corresponding row and colum
example, the cell corresponding to the business model row and data column is supposed to be filled with
the data entity-relationship logical model. Different techniques and different graphic representatio
appropriate for different cells. The composite or integration of all cell models in one row constitutes a
plete model of the enterprise from the perspective of that row.

The use conceptual graphs1 for describing data and control flow aspects is the main contribution of
extensions to the framework by Sowa and Zachman [20]. They claim that conceptual graphs are
enough to represent any cell in the framework and the relationships among cells. No other literatur
the framework and its usage has showed that the graphs have been used to represent models for
work cells.

Sowa and Zachman state [20] that the framework is useful for segmenting the descriptions of th
prise: for separating independent variables into understandable, designable components; for de
appropriate design formalisms; and for establishing an enterprise infrastructure in which change
assimilated in a manageable fashion. The proposed framework promises to be helpful for setting up
mon ground for IEA view so that all involved in the enterprise construction can communicate with
other. Sowa and Zachman even claim that “the framework serves as a ‘periodic table’ for informatio
ties.”

Analysis
The main contribution of the framework is the explicit decomposition of an enterprise architectur

distinctly defined views. For an average2 IT professional involved in the design, construction, and main
nance of the enterprise, such a matrix of views with simple labels (e.g. “business model of data” or
nology model of network”) is much better than no “recipes” at all. The framework gives provisio
describe and analyze (to some degree) an IEA. It also allows the accumulation and communication

Presentation/Aspect Data
(what)

Function
(how)

Network
(where)

People
(who)

Time
(when)

Motivations
(why)Scope/objective

Scope/Objective
Model

(planner)

Business Model
(owner)

data entity-
relationship

logical model

Model of
Information System

(designer)

Technology Model
(builder)

Detailed
Representations
(sub-contractor)

Table 1: Zachman’s Information Systems Architecture Framework

1. Conceptual graphs [21] are a graphic notation for typed first-order logic, which has applied domains including natu
language processing, information systems modeling, program specification, information retrieval, machine learning a
case based reasoning.
2. We regard as average those IT professionals who do not have a formal computer science background but have se
years of work experience in IT industry.
7

ow vari-

ider
iption
the sup-
ire-

ich the
ention
erstand-
rther,

observe
re a lack
 consis-

ecifying
t is to
scrip-

ulated

 views.
ccumula-
n. The
hange

 is the
r parts
were

y and
viron-

ts, in
of those
fers as

ces,

an-
itive knowledge about building enterprises to others. However, since the approach does not state h
ous views are specified, it is not clear if such knowledge will be of high quality and usefulness.

Another significant merit of the framework is explicit recognition of business workflow. We cons
the last three columns (people, time, motivations) as a way of naturally including work-flow descr
into the enterprise architecture. As we discussed in Section 2.1, the main requirement for any IE is
port for business work-flow. Including work-flow into IEA can help architects follow work-flow requ
ments.

The main disadvantage of Zachman’s approach is the lack of a scientific foundation on top of wh
framework is constructed. Sowa and Zachman admit [20] that the framework “is not so much an inv
as it is an observation -- an observation of some natural rules for segmenting an enterprise into und
able parts without losing the definition of its total integration.” For this approach to be developed fu
we need to understand the laws and principles that govern those “natural rules” in order not only to
them but also to discover new rules and to be in a position to explain them. Other disadvantages a
of a means to derive a view in one cell from a view in another cell and methods that would ensure
tency and absence of conflicts among different views.

Other important steps needed in order to make the framework more useful are techniques for sp
each of those 30 views precisely. A potential direction for developing the framework in this respec
define exact techniques for specifying each view. For instance, instead of re-inventing work-flow de
tions for the last three columns, the framework author might take advantage of already accum1

knowledge and experience with work-flow and process management.
In summary, Zachman’s framework proposes to decompose enterprise architecture into various

It addresses the issue of an enterprise structure description as well as of the communication and a
tion of positive knowledge about building enterprises. The approach lacks a scientific foundatio
framework does not address most of the problems for IEAs, particularly architectural mismatch, c
management, and various problems pointed by Shaw and Garlan and discussed in Section 4.2.

5.2. RM-ODP

Another approach (more popular in Europe and Australia than in the US) used by practitioners
reference model of open distributed processing (RM-ODP) recommendations [22-25]. Most of thei
were completed in the mid-1990’s by ISO jointly with ITU. Revisions and additions to the RM-ODP
made at the end of 1998 [26].

Description
The goal of the reference model is to provide a common, well defined language of terminolog

notations for specifying functional and non-functional properties of a distributed system and its en
ment, that is IE.

The RM-ODP defines the following [22]: a division of an ODP system specification into viewpoin
order to simplify the description of complex systems; a set of general concepts for the expression
viewpoint specifications; a model for an infrastructure supporting the general concepts that it of
specification tools; and the principles for assessing conformance for ODP systems.

The separation of concerns is established by the identification of five viewpoints:

1. enterprise -- the role of the system in the business,

2. information -- use and interpretation of information,

3. computational -- description of the system as a set of objects that interact via interfa

1. See, for example, WORP - a repository of resources for researchers and practitioners in work-flow and process m
agement in information systems at http://holbrooke.cs.uga.edu/worp/.
8

uting

istrib-

sign lay-
 is lay-
nt. The
roviding
; infor-
ntics as

d most
del. All

ODP
about

uch a
vides a

 reloca-

he per-
pecifi-
cturally,
terprise
enterprise

ecify-

ion
ic or

ation
ys true
orma-
odel
repre-

ible
 envi-

 pro-
4. engineering -- mechanisms supporting system distribution (i.e. networked comp
infrastructure that supports the system),

5. technology -- the details of the components (hardware, software) from which the d
uted system is constructed.

The viewpoints should be considered as projections onto certain sets of concerns rather than de
ers. Thus it is wrong to assume that enterprise viewpoint is layered on top of information one, which
ered on top of computational viewpoint and so on. Furthermore, the viewpoints are not independe
same entities can be represented in more than one viewpoint. For example, a system function of p
access to the information is presented at the following viewpoints: enterprise -- by defining its users
mation -- by specifying data it accepts and returns; computational -- by defining its syntax and sema
well as dependencies on other functions and its pre/post-conditions.

Object modeling was chosen as a technique for defining RM-ODP viewpoints because it seeme
suitable for ODP. Objects and actions are the most basic modeling concepts in the reference mo
things of interest are objects. Anything of interest that can happen is an action. Other concepts are roles,
contracts, contexts, liaisons, templates, object instantiation and object introduction. The reference model
defines a set of modeling concepts:

• Basic concepts -- object-based model.
• Specification concepts, which allow their user to describe and reason about

system specifications. They include notions of type and class to reason
properties of objects.

• Concepts of organization, properties of systems, objects, policies, naming, etc.
A set of concepts provides a language for writing specifications of systems from that viewpoint. S

specification constitutes a model of a system in terms of the concepts. The reference model pro
means to define and specify different types of transparencies: access, failure, location, migration,
tion, replication, persistence, and transaction.

The recommendations introduce the notion of enterprise language, which is a contract, linking t
formers of various roles and expressing their mutual obligations. Different notations for enterprise s
cation can be expected to support specific organizational structures and business practices. Archite
however, the ODP is neutral, requiring only that an appropriate specification is generated. The en
language introduces basic concepts necessary to represent an ODP system in the context of the
in which it operates. The system is represented by one or more objects and their roles.

The RM-ODP recommendations define the responsibilities of languages for all five views for sp
ing an ODP system. Here are descriptions of three view languages:

1. Information language contains concepts enabling an architect to specify the meaning of informat
manipulated by and stored within an ODP system. The information is represented either by atom
composite information objects and possible relationships over a set of these objects. The inform
specification consists of a set of related schemata. A distinction is made between invariant (alwa
relationships), static (assertions that must be true at a single point in time) and dynamic (how inf
tion can evolve, and deletion/addition of information objects) schemata. Different specification m
notations (for example Unified Modeling Language (UML) [27, 28]) can be used as long as they
sent concepts required by the recommendations.

2. Computational language enables the expression of constraints on the application distribution: an
object model that defines an object interface, the way that interface can be bound, and the poss
forms of interaction. Computational interfaces are characterized by a signature, behavior, and an
ronmental contract -- a contract between an interface and its environment.

3. Engineering language supports the notion of clusters of objects, capsules (conventional notion of
cesses) and nodes, as well as stubs, binders and protocol objects.
9

nguage
terface

guages
wpoint
d to for-
sage of

some-
s the use

e con-
bligated
, should

ormal
lication
ificant
 inter-
n nota-
all five
 enter-
nity. We
unicate
ntractors
 specifi-

ms dis-

ication
r that

 to be

rise

uages
 not

n for
tional

icularly
truction

ms, and
The recommendations define [24] a first order type system that consists of a simple type la
together with type equality rules and signature sub-typing rules. Further, they define signature in
types using the type system as well as an algorithm for type checking.

In the section on architectural semantics [25], the recommendation discusses how the formal lan
LOTOS [29] and/or Z [30] may be used to formalize the concepts and rules of the computational vie
language. It also discusses how the specification and description language (SDL) [31] may be use
malize the concepts and rules of the information viewpoint language. The intent to describe the u
formal languages for specifying other viewpoints is stated.

For every term used in RM-ODP recommendations, there is either a definition in natural, and
times, formal language, or a reference to another recommendation where it is defined. This ensure
of predefined terminology and concepts.

The recommendations include a basic framework for conformance. They also define the form th
formance statements should take in each viewpoint. Standard ODP-compliant specifications are o
to contain a conformance statement that must document which reference points, according to [32]
be used during the conformance testing.

Analysis
The RM-ODP was apparently influenced by Zachman’s framework, object orientation, and f

methods. The main contribution of the ODP reference model to the work on IEA and enterprise app
development is a provision of standard definitions of most concepts and terminology. Another sign
merit is the definition of the concepts required for specifying distributed information systems and
faces between them and their environment -- IE. These contributions allow architects to use commo
tions and languages for describing and communicating IEA. When formal languages for describing
views are identified, practicing architects will be able to specify precisely systems constituting an
prise and their properties. Such languages are already available from the formal methods commu
hope that, when various viewpoint languages are standardized, IE architects will be able to comm
enterprise architecture and specifications for its components to system vendors and other sub-co
involved in enterprise development and maintenance. The RM-ODP is a step towards standardized
cation languages, terminology, viewpoints, and concepts.

The reference model addresses to some degree the following issues from the list of IEA proble
cussed in Section 4.2:

• Architectural mismatch:
• Assumptions about the nature of the systems constituting an enterprise: a specif

language for each viewpoint is required to define the systems in such a manne
they are considered as black boxes with defined properties and interfaces.

• Assumptions about the global architectural structure: the structure is supposed
explicitly described for each viewpoint in the corresponding language.

• Other architectural problems:
• Inability to localize information about interactions: all interactions between enterp

systems are explicit and defined for each interaction instance.
• Poor abstraction: properties of specified systems are abstracted via formal lang

used in viewpoint descriptions. However, we believe this level of abstraction is
sufficient for specifying properties of an enterprise as a whole.

• Lack of structure on interface definitions: the reference model requires a definitio
every interface exposed to the enterprise environment by the means of computa
language.

The RM-ODP recommendations do not address other problems of enterprise architecture, part
management of change, specifications of the connectors between systems, definition of the cons
process, as well as the support for components with incompatible packaging, multi-paradigm syste
10

her are
er lan-

ges for
f formal
 can be
terprise
ed out in

s. So far,
 enter-
ture that

for
ut enter-
e archi-

al
 poten-
aches

es of
istakes

cture
 what

ng
 codifi-
ment of
nce.
the
hould
ll as for

ate IT
l design.

t work is

rchitec-
ositive
legacy systems. There is no algorithm for translation from one viewpoint language into another. Neit
there any algorithms for transforming a specification written in one language into into one in anoth
guage.

The ODP reference model is a good starting point towards standardized notations and langua
describing enterprises and constituting systems. It needs to be augmented with a complete set o
languages for describing each of the viewpoints. Especially important is enterprise language that
used to describe enterprise requirements -- company work-flow. Abstractions suitable for the en
level have to be defined in the model. Issues not addressed by the reference model should be work
order to make it suitable for describing IEAs.

6. THE STATE OF RESEARCH

Most of the research in software architecture is concentrated on systems, and not on enterprise
only practitioners have made noticeable efforts to understand how the architecture of information
prises should be developed. In this section, we will discuss those achievements in software architec
have applications in IEA.

Architecture description languages (ADL): ADLs are developed to provide expressive notations
representing architectural designs and styles [33]. When enough knowledge and experience abo
prises are accumulated, enterprise-oriented ADLs will help to express and communicate enterpris
tectures, and to avoid implicit assumptions about information systems and their environment.

Formal underpinnings of software architecture: Researchers in this area are working on form
models of architectures and mathematical foundations for architectural styles. This direction can
tially contribute the most to the resolution of IEA issues by developing formal foundations for appro
similar to Zachman’s framework and the ODP reference model.

Architecture analysis techniques: These techniques are aimed to determine and predict properti
software system architectures. Application of such techniques to IEs will help to avoid expensive m
and to analyze enterprise models.

Architecture recovery and re-engineering: These processes are needed for extracting the archite
of existing enterprises in order to reconstruct them. This direction is important for understanding
enterprise architectures are successful and for learning from already built enterprises.

Architectural codification and guidance: The work on extracting positive experience and codifyi
expertise in enterprise architectures is a must as in any other engineering field. Some work on IEA
cation and guidance has already been done by the software patterns community [4]. More involve
researchers from knowledge engineering will help in effectively extracting and recording the experie

Tools and environments for architectural design: After languages and notations are developed,
practicing community will need environments for enterprise architects to work. The environments s
have tools for architecture analysis, recovery and re-engineering, codification, and guidance, as we
IEA description and documentation.

Case studies: One of the efficient ways to popularize ideas of enterprise architecture and to educ
professionals, as well as to share experiences, is to publish case studies of enterprise architectura
More and more case studies have been reported in the system architecture field [34, 35]. Equivalen
needed for IEA.

7. PROPOSED DIRECTIONS
We have discussed the state of the practice in developing IEAs and the directions of software a

ture research applicable to the IEA problem domain. Now, we propose particular ways to make a p
impact in this area.
11

 imper-
l allow

tional

about

IEA

rprise
for prac-
e cod-

ncy of
level of

, enter-
suffi-
 need

rprise
ts work-
 emerg-
t step is to
 should

erprise
a set of

 differ-
roblems
nment
lications,
lems are

 efficient
h; poor

rking in
d better

ribed
cture,
Taking into account the current issues with IEAs, and the state of the practice and research, it is
ative to develop a set of enterprise architecture definition languages (EADL). Such languages wil
practitioners and researchers to do the following:

• precisely describe architecture of an enterprise capturing functional and nonfunc
properties from different perspectives,

• accumulate, codify and communicate common knowledge and experience
designing enterprises,

• directly derive specifications for the enterprise systems,
• provide a common ground for formal analysis of IEAs,
• allow for codifying solutions to architectural mismatches and other common

problems.
A set of EADLs might include several languages. Each of them will be good for a particular ente

view or aspect. The EADLs from such a set should: be precise and expressive; have notation easy
ticing IT professionals to understand; allow the expression of multiple views of an enterprise and th
ing of multiple aspects including the main requirement -- work-flow support; assure the consiste
representation; avoid conflicts between different views and aspects; and have an appropriate
abstraction.

Having such a set of EADLs and using either Zachman’s framework or the ODP reference model
prise architects will have a powerful methodology for tackling IEAs. But just a methodology is not
cient for the success. Practicing architects need enabling technology for efficient work. They
architecture development environments and tools.

Another direction towards solving enterprise problems is to learn how to derive information ente
requirements (even better, architecture) directly from a company’s business model represented by i
flow. For this, we want to have languages to describe business work-flow. Some efforts are already
ing among researchers [36, 37]. Once such languages are developed and become mature, the nex
provide techniques to ensure that a particular enterprise supports a given work-flow. That is, there
be ways of checking if an IEA supports its requirements.

Yet another important direction is the development of means to prototype and model an ent
before implementing it to avoid costly mistakes in requirements, analysis and design. Again, once
EADLs exists, such modeling will be feasible.

8. SUMMARY AND CONCLUSIONS
Information enterprise architecture is similar to software system architecture although there are

ences in the form of requirements, the focus of concerns, and the level of abstraction. The major p
encountered in the IEA construction are low semantic compatibility of resulted systems, high re-alig
and maintenance cost, and its exponential increase to the increase in the number of deployed app
enterprise modeling takes too long and becomes outdated too soon. The main causes of the prob
the lack of efficient solutions to manage changes accumulated across an enterprise; the lack of an
and precise way to describe, analyze, and communicate the architecture; architectural mismatc
abstraction; and poor support for legacy, component-based and multi-paradigm systems.

So far, practitioners have made more progress in the IEA area than researchers. However, wo
the similar field of software system architecture, the research community took a more systematic an
founded approach. Most of the directions in this field can be applied to the problem domain of IEA.

The R&D directions that can highly impact the enterprise architecture progress are as follows:
• development of enterprise architecture definition languages,
• bridging work-flow languages and EADLs so that a precisely and completely desc

work-flow process can be used as the main requirement for an enterprise archite
• development of enterprise prototyping and modeling techniques.
12

l issues

ues for
,

ement:
y

 of

n for

m-
In this report we defined the notion of information enterprise architecture, described the genera
of IEAs and reviewed existing solutions, as well as discussed prospects of addressing the issues.

9. REFERENCES

[1] F. Neiderman, J. Brancheau, and J. Wetherbe, “Information Systems Management Iss
the 1990s,” Management of Information Systems Quarterly, vol. 15(December), pp. 475-502
1991.

[2] J. C. Brancheau, B. Janz, and J. Wetherbe, “Key Issues in Information Systems Manag
A Shift Toward Technology Infrastructure,” Management of Information Systems Quarterl,
1995.

[3] B. Greene, D. McDavid, and J. Zachman, “Back to the Issue of the Century,” Database Pro-
gramming and Design(June), pp. 8-9, 1997.

[4] T. J. Mowbray and R. C. Malveau, CORBA Design Patterns. New York: Wiley Computer
Publishing, 1997.

[5] J. A. Zachman, “Enterprise Architecture: The Issue of the Century,” Database Programming
and Design), pp. 44-53, 1997.

[6] D. Garlan and D. Perry, “Introduction to the Special Issue on Software Architecture,” IEEE
Transactions on Software Engineering, vol. 21(4), pp. 269-274, 1995.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Design. Reading: Addison-Wesley, 1995.

[8] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline:
Prentice-Hall, 1996.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal, Pattern-Oriented Soft-
ware Architecture: A System of Patterns: John Wiley & Sons, 1996.

[10] L. R. DeBoever, “Concept of “Highly Adaptive” Enterprise Architecture,” In Proceedings
Enterprise Architecture Conference, 1997.

[11] M. Fowler, Analysis Patterns: Reusable Object Models: Addison Wesley Longman, 1997.

[12] W. D. Nance, “Growing Pains in Information Systems: Transforming the IS Organizatio
Client/Server Development,” in Reinventing IS Managing Information Technology in
Changing Organizations, 1994, pp. 78 - 86.

[13] Merriam-Webster, “Merriam-Webster's Collegiate Dictionary,” , F. C. Mish, Ed.: Merria
Webster, 1994.
13

ild
terna-

ation

ess-
tion

ess-
5.

ess-
5.

ess-

n

DP
e Dis-
[14] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch or Why It's Hard to Bu
Systems Out of Existing Parts,” In Proceedings of Proceedings of the Seventeenth In
tional Conference on Software Engineering, 1995.

[15] T. J. Mowbray, “What is Architecture?,” Object Magazine), pp. 20-22, 1997.

[16] T. J. Mowbray, “Architecture in the Large,” Object Magazine), pp. 24-26, 1997.

[17] G. Darnton and S. Giacoletto, Information in the Enterprise: It's More than Technology. Bed-
ford, MA: Digital Equipment Corporation, 1992.

[18] B. v. Halle, “Architecting in a Virtual World,” Database Programming and Design(Novem-
ber), pp. 13-18, 1996.

[19] J. A. Zachman, “A Framework for Information Systems Architecture,” IBM Systems Journal,
vol. 26(3), pp. 276-292, 1987.

[20] J. F. Sowa and J. A. Zachman, “Extending and Formalizing the Framework for Inform
Systems Architecture,” IBM Systems Journal, vol. 31(3), pp. 590-616, 1992.

[21] J. Sowa, Conceptual Structures: Information Processing in Mind and Machine: Addison-
Wesley, 1984.

[22] I. T. U. ITO, “Recommendation X.901: Information technology -- Open Distributed Proc
ing -- Reference model: Overview and Guide to Use,” : International Telecommunica
Union, 1995.

[23] I. T. U. ITO, “Recommendation X.902: Information technology -- Open Distributed Proc
ing -- Reference model: Foundations,” : International Telecommunication Union, 199

[24] I. T. U. ITO, “Recommendation X.903: Information technology -- Open Distributed Proc
ing -- Reference model: Architecture,” : International Telecommunication Union, 199

[25] I. T. U. ITO, “Recommendation X.904: Information technology -- Open Distributed Proc
ing -- Reference model: Architectural Semantics,” : International Telecommunication
Union, 1995.

[26] I. T. U. ITO, “Status of X-series Recommendations,” : International Telecommunicatio
Union, 1998.

[27] X. Blanc, M.-P. Gervais, and R. Le-Delliou, “Using the UML Language to Express the O
Enterprise Concepts,” In Proceedings of The 3rd International Conference on Enterpris
tributed Object Computing, 1999.
14

s by
uted

OS -
hav-

e-

Test-
Orga-

itec-

tain-
sium

,
dings

gs of
, pp.
[28] P. F. Linington, “Options for Expressing ODP Enterprise Communities and Their Policie
Using UML,” In Proceedings of The 3rd International Conference on Enterprise Distrib
Object Computing, 1999.

[29] I. S. O. ISO, “Information processing systems -- Open Systems Interconnection -- LOT
- A formal description technique based on the temporal ordering of observational be
iour,” : International Standards Organization, 1989.

[30] S. Valentine, “The Programming Language Z,” Information and Software Technology, vol.
37(5-6), pp. 293-302, 1995.

[31] I. T. U. ITU, “CCITT Specification and description language (SDL),” : International Tel
communication Union, 1993.

[32] I. S. O. ISO, “Information technology - Open Systems Interconnection - Conformance
ing Methodology and Framework - Part 4: Test Realization,” : International Standards
nization, 1991.

[33] M. Shaw and D. Garlan, “Characteristics of Higher-level Languages for Software Arch
ture,” CMU Software Engineering Institute CMU-CS-94-210, December 1994.

[34] A. W. Brown, D. J. Carney, and P. C. Clements, “A Case Study in Assessing the Main
ability of a Large, Software-Intensive System,” In Proceedings of International Sympo
on Software Engineering of Computer Based Systems, 1995.

[35] A. Brown, D. Carney, P. Clements, C. Meyers, D. Smith, N. Weiderman, and B. Wood
“Assessing the Quality of Large, Software Intensive Systems: A Case Study,” In Procee
of European Conference on Software Engineering, 1995.

[36] P. Makey, “Workflow: Integrating the Enterprise,” Butler Group June 1996.

[37] W. Du, S. Peterson, and M.-C. Shan, “Enterprise Workflow Architecture,” In Proceedin
The 11th International Conference on Data Engineering, Los Alamitos, CA, USA, 1995
63-64.
15

	Information Enterprise Architectures: Problems and Perspectives
	Abstract
	1. Introduction
	2. Information Enterprise
	2.1. Goals
	2.2. Constraints

	3. Enterprise Architecture
	3.1. Differences Between System and Enterprise Architecture

	4. Problems with Enterprises and Their Architectures
	4.1. Consequences
	4.2. Causes

	5. State of the Practice
	5.1. Zachman’s Framework
	Description
	Analysis

	5.2. RM-ODP
	Description
	Analysis

	6. The State of Research
	7. Proposed Directions
	8. Summary and Conclusions
	9. References

