
STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

1VIRUS BULLETIN CONFERENCE OCTOBER 2011

STRATEGIES FOR MONITORING
FAKE AV DISTRIBUTION

NETWORKS
Onur Komili, Kyle Zeeuwen

Sophos, Vancouver, Canada

Email {onur.komili, kyle.zeeuwen}@sophos.com

Matei Ripeanu, Konstantin Beznosov
University of British Columbia, Vancouver, Canada

Email {matei, beznosov}@ece.ubc.ca

ABSTRACT
We perform a study of Fake AV networks advertised via search
engine optimization. We use a high interaction fetcher to
repeatedly evaluate the networks by querying landing pages
that redirect to Fake AV distribution sites. We identify several
distinct Fake AV distribution networks, and we show that each
network exhibits distinct updating behaviours. We propose
optimizations for crawlers that explore Fake AV networks to
leverage the strong fan-in property of these networks and,
where possible, the periodic update behaviour of the network
elements. We evaluate these optimizations and show that they
can be used to drastically reduce the number of visits to the
network, which in turn reduces the likelihood of being
blacklisted.

1. INTRODUCTION

Fake anti-virus (Fake AV) attacks are a relatively recent social
engineering scam. In the past few years these attacks have
increased in prevalence [1] and profi tability [2]. The scam is
fairly simple: it deceives the user into believing that their
computer has been compromised, and then offers an anti-virus
solution for a fee. There are several reasons why the Fake AV
scam is a tactic of choice for malware distributors: fi rst, it
relies on social engineering, thus affecting both patched and
unpatched users. Second, the result of a successful attack is
money, as opposed to something that can potentially be
exchanged for money (e.g. a rare World of Warcraft [3] sword).

Monitoring Fake AV is challenging for several reasons:
distributors use sophisticated malware distribution networks
(MDNs) that rapidly change in composition and use numerous
anti-crawler techniques including IP blacklisting. This presents
a unique problem to security vendors: the MDNs update
frequently so they must constantly be monitored to obtain
up-to-date information that will help protect customers.
However, repeated evaluations of the network can lead to
blacklisting which prevents the security vendor from
monitoring the network.

The purpose of this work is to explore solutions to overcome
these challenges. In particular, we wish to maintain effective
monitoring of Fake AV MDNs while avoiding blacklisting for
as long as possible. To this end we study Fake AV networks by
repeatedly evaluating the infected landing pages using a high
interaction fetcher (HIF) that makes requests from multiple
pools of IP addresses. We identify means to group Fake AV
networks into distinct MDNs using pattern matching on URLs,
and show that each MDN exhibits distinct update behaviours.

After studying the update behaviour of the MDNs, we propose
optimizations to the re-evaluation logic that controls the
re-evaluation frequency for each MDN. These optimizations
provide a drastic reduction in the volume of fetches required to
maintain a fi xed level of monitoring. In turn this reduces the
likelihood of blacklisting (which we observed on several
occasions during our experiments).

2. BACKGROUND

Fake AV is one of the top malware threats today, in part due to
the profi t it generates for malware authors. Stone-Gross et al.
[2] showed that three particular Fake AV MDNs generated a
combined revenue of more than $130 million dollars annually.

This section presents the anatomy of Fake AV malware
distribution networks (MDNs) and the challenges researchers
face when studying them.

Figure 1: An example of how a typical Fake AV MDN changes
over time.

Fake AV MDNs have evolved in several ways to evade the
efforts of security researchers. A standard Fake AV attack starts
when a user visits a landing page (e.g. one that appears as a
search engine result). Landing pages are normally hosted on
compromised but otherwise legitimate websites, typically
running vulnerable content management software such as
Joomla or Wordpress. Once they gain access to such a site,
Fake AV distributors upload a malicious script (typically
written in PHP) to the server that generates content to boost
the ranking of the compromised pages. The generated content
is usually related to trending topics [4] that users are likely to
search for.

Our previous study [5] of search engine optimization (SEO)
poisoning kits showed that these scripts use the HTTP user
agent to differentiate crawlers from users. Additional checks are
made on the HTTP referrer to confi rm that the user came from
an expected source (e.g. a search engine or a social networking
site). We speculate that this is done to cloak the malicious
behaviour from anti-malware researchers that may visit the site
directly. If a user passes these checks, the script redirects the
user into the MDN via a server side or client side redirect.

The use of client side redirection complicates the task of
automatically harvesting Fake AV. Following a server side

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

2 VIRUS BULLETIN CONFERENCE OCTOBER 2011

redirection is a simple task. However, following client side
redirects requires interpreting JavaScript. This is further
complicated by the use of complex obfuscation and other
anti-crawler JavaScript techniques [6]. Using a real web
browser provides a solution to this problem; if a browser
cannot interpret the content then the attack has failed, so in all
cases a browser should be able to interpret the content
rendered by an MDN.

When a user arrives at the fi nal destination, they are presented
with the standard ‘Windows XP My Computer’ page.
Recently, variants of this page have appeared to match the OS
and version of the user, for example a ‘Windows 7 My
Computer’ screen [7], Google’s Safebrowsing warning page
for Firefox users [8], OSX Mac Finder for Mac users [9], the
Microsoft Windows Update page as shown in Internet
Explorer, and numerous variations of the ‘Windows XP My
Computer’ page. Regardless of the variant, the user is
prompted to download and install a binary. To automate this
process, some form of simulated human-computer interaction
(HCI) is required; something needs to push the button. With
the emergence of multiple looks and feel comes the need for
more sophisticated HCI.

An additional challenge to effi ciently monitor Fake AV
MDNs comes from their dynamic nature: the malware
delivery tree [6] (i.e. the path of redirections from a landing
page to the executable download) and the binaries
themselves are constantly changing. A study by Rajab et al.
[1] showed that the median lifetime of a Fake AV domain
decreased from 10 hours in September 2009 to under one
hour in January 2010. Not only are the lifetimes of Fake AV
domains dropping, but so too are the intermediary traffi c
direction systems (TDSs).

TDSs are used to direct traffi c to malicious sites based on
conditions such as the browser type, operating system,
referrer, and so on. They are frequently found on bulk
subdomain service providers (e.g. co.cc, cz.cc, co.be, co.tv)
and have become increasingly popular over the past couple of
years. Most of these offer free or low-cost subdomains –
sometimes as little as $0.07–$0.10 for each domain when
bought in bulk. At that price it is feasible for a malware
distributor to rapidly throw away subdomains to circumvent
the URL blacklisting and sample collection efforts of AV
vendors. While not all Fake AV MDNs use these services,
many do due to the reluctance of many AV vendors to block
these services.

Fake AV MDNs make frequent updates to the malicious
executable, in some cases on every request (i.e. server-side
polymorphism). This requires frequent re-evaluation of the
MDN to ensure that the malware is still detected.
Unfortunately, simply re-fetching the repository URL is
ineffective for several reasons. The fi rst issue is that many
binaries are served through a one-time or a time-sensitive
URL that will deliver an executable only for a short window
of time and then become inactive. The second issue is that the
repositories are frequently changed, and so re-fetching a
repository may result in downloading malware that is no
longer being served to users. Finally, the lifetime of the
repository domains themselves is often short, sometimes only
a few hours. For the reasons above, it is clear that we need to
start at the landing page and uncover the current malware
delivery tree in order to guarantee a successful fetch of the
latest version of malware.

We must also account for the unpredictable lifetime of landing
pages. Landing pages are almost always innocent victims, and
often (though not often enough), the landing pages themselves
are cleaned up once the site administrator has become aware
of the infection. This means we need to constantly fi nd new
landing pages or risk losing track of the MDN. We do this
through a number of methods, including using Sophos
customer feedback data and using the Google API [10].

A fi nal, particularly challenging issue is that of blacklisting.
We need to be careful not to expose our fetching infrastructure
to the Fake AV distributors to the point where they can
identify and blacklist it. Once a research client has been
identifi ed, the blacklisting response can take several forms.
The simplest is a denial response where the malware is not
delivered or the redirect is not issued. More devious responses
include providing a static or non-malicious binary fi le.

These considerations lead us to conclude that the volume of
resources required to monitor Fake AV is signifi cant. We need
to fi nd heuristics that minimize client exposure (the number
of requests) while maximizing the number of malware
repositories and binaries discovered. This is the focus of the
remainder of this paper.

3. DESIGN
The system we use is an in-house research tool named
Tachyon Detection Grid (TDG)1 [12, 13] (Figure 2). The
system executes customizable experiments aimed at proving
specifi c hypotheses by making HTTP requests at precise
patterns using fetchers distributed across multiple IP pools.
Our experiments consume lists of SEO poisoned landing
pages and fetch them repeatedly using a high interaction
fetcher (HIF). The system outputs a series of packet captures
(PCAP) which are processed offl ine to draw conclusions.

Central Server
Processes

Internets

Client
Client

fetch
instructions

Key Value
Store

Process
Log

RDBMS

Message
Broker

Client
Jobs

update URL
summary

visit URLs

Add to
Experiment

Scheduler

Experiment
Downloader

Downloader

fetch
instructions

fetch log

new URL

commit
fetch log

Tachyon Detection Grid (TDG)

Figure 2: New URLs are added to the system and added to
one or more experiments. The experiments delegate the role of
fetching to the downloaders. The downloaders send command

to the clients, which execute the HTTP requests. New fetch
results are sent back to the central sever, where the

experiment is invoked to process the new fetch.

1 In StarTrek: The Next Generation, the Federation deploys a Tachyon
Detection Grid (TDG) to detect cloaked Romulan vessels [11].

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

3VIRUS BULLETIN CONFERENCE OCTOBER 2011

3.1 Landing page URL sources

The primary source of landing pages for our experiments are
the confi rmed SEO landing pages seen by Sophos customers.
These enter SophosLabs through a feedback mechanism in
our products that provides a detection name as well as the
URL that triggered the detection. After some initial
experiments with the Google API, we decided to rely solely
on customer feedback for this research, as this feed contained
far less noise than the feed from the Google API.

3.2 High interaction fetcher

We combined a number of technologies to create a fairly
simple high interaction fetcher. With the constant need to start
with a clean slate due to the possibility of infection, we chose
to use Virtual Box with a snapshot of a Windows XP image.
For our browser, we chose Firefox. This decision was
motivated by the ease of modifying the initial HTTP referrer
using a Firefox plug-in. A consequence of this decision is that
we were not able to study exploits that target IE specifi cally.
However, as our study focuses on Fake AV spread by social
engineering, this is not an issue.

The landing pages check that the HTTP referrer is set to a
search engine before redirecting. We were able to spoof this
header using a Firefox add-on called RefControl [14]. In
order to automate the human interaction component of the
social engineering attack – the ‘clicking of the buttons’ – we
use a tool called Sikuli [15]. Sikuli is written in Jython and
uses image recognition capabilities to recognize when certain
dialogs or links need to be clicked on the screen. We have a
snapshot of the Virtual Box in a booted and ready state with
our Sikuli script running in the background and actively
looking for things to click.

3.3 IP address pools

In order to mask our infrastructure to reduce the likelihood of
blacklisting, we need to be able to make requests from many
different IP addresses. We use the PlanetLab network [16], a
global research network with nodes spread across the world.
We used roughly 75 PlanetLab nodes to proxy our traffi c.

3.4 Post analysis

For post-analysis, we used an instrumented version of
jsunpack [17] to parse the captured PCAP fi les and generate a
structured JSON object representing the malware delivery
tree. Details include fetch time, a full list of URLs visited and
the SHA1 key of the content, the Sophos detection for each
fi le, the method of redirection between pages, DNS
information for each domain, and many other details.

4. RESULTS
We present results from analysis of 573 landing page URLs
evaluated over a one-month period, which resulted in a total
of 335 Fake AV repositories and 473 unique binary fi les. We
identify specifi c MDNs that each have distinct characteristics.
This section focuses on three main topics: fi rst, it describes
our solution to identify each Fake AV MDN; second, it
presents the behavioural differences between the different
families; and fi nally, it presents optimizations that reduce the
number of MDN re-evaluations and, consequently, the
likelihood of blacklisting.

4.1 Identifying the distinct malware distribution
networks
The fi rst step was to identify if there were any differences
between all the various SEO poisoned landing pages. When
investigating the landing pages, we found that there was no
single particular exploit being used to infect all sites. Looking
at the websites themselves, as best we could tell, the majority
of the sites were infected through vulnerable versions of
Wordpress, osCommerce and Joomla. Unfortunately, just
looking at the URLs of the landing pages does not provide
enough information to identify an MDN, since most use some
randomly named PHP script, followed by query parameters
that include the poisoned terms and in some cases a page
number.

The next step was to visit the poisoned pages. At this point a
number of differences became clear: the injected HTML was
distinct for each MDN, as were the characteristics of the
malware delivery tree. In all cases the initial redirection was
done using JavaScript, however in the subsequent steps there
was variation. One of the MDNs linked directly to the Fake
AV repository page, while the remaining three linked to bulk
subdomain service sites, which act as intermediary nodes.

The social engineering scam pages all look fairly similar, with
some minor differences and varying levels of obfuscation.
Some used regular HTML and JavaScript to render their scam
page, while others obfuscated this content in order to make
detection of this page non-trivial. Finally, when being
prompted to download the Fake AV binary, some would host
the content on the same host as the social engineering page
while others would host the binary on a separate host.

The data set consists of 22,393 fetch logs. After fi ltering out
fetch logs that did not yield a binary executable, we are left
with 5,075 fetch logs. Analysis of this subset reveals patterns
in the malware repositories. We were able to organize the
repositories into groups by pattern matching on common fi le
names, bulk subdomain service providers, and host strings.
Using this repository grouping technique we identifi ed six
distinct MDNs. Two of them were very short lived and are
discounted from the remainder of our analysis. To confi rm
that our grouping technique was accurate we looked for
patterns in the resulting groups. The landing pages in each
MDN contained injected redirection code that was distinct for
each MDN. Further, the observed life spans of the repositories
in each MDN had strong temporal correlations: only one
repository was active at a given time for each MDN we
identifi ed. To illustrate the organizing effect of this procedure,
we plot the repository and sample lifetimes for the entire
dataset as a whole and then separately for each MDN. This is
shown in Figure 3. Based on the fact that the MDNs were
organized using only one of the three factors, and the
resulting sets were also organized according to the remaining
two factors, we are confi dent that our identifi cation approach
was accurate for the data in our study.

4.2 Behavioural differences between MDNs

For quick reference we have summarized the four Fake AV
MDNs in Table 1 and refer to them by their MDN numbers.

Now that we’ve identifi ed the various MDNs, we’re better
able to analyse each one in depth. One thing each MDN
seems to have in common is the fact that each updates its
landing pages so that they all point to the same destination at

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

4 VIRUS BULLETIN CONFERENCE OCTOBER 2011

any given time. We know this because looking at the lifetimes
of all our fetch logs, at no point did any of the lifetimes of
malware repositories overlap with another belonging to the
same MDN.

Of the four MDNs, MDN
1
 was by far the most widespread as

far as infected landing page counts were concerned.
Compared to the next highest MDN, MDN

1
 was almost nine

times more prevalent based on our customer feedback results.
Interestingly it also happens to be the longest running MDN,
as the other three dropped from our results sets during the
experiment.

Some characteristics of each MDN worth analysing include:
the observed lifetime of the repositories; the observed lifetime
of the binaries, which indicates the degree of polymorphism
employed by the MDN; and whether a particular MDN
appears to employ blacklisting (and if so what the observed
blacklisting response is).

4.2.1 Repository update behaviours

We found two distinct patterns in the malware repository
lifetimes. MDN

1
 and MDN

2
 took the approach of frequently

changing the host of the malware repository, rotating them

once every one to two hours, while the other groups updated
far less frequently, every half day to two days. The main
difference here is that when faced with a URL blacklist, the
former groups are more resistant due to the frequency with
which they update their hosts. It’s worth pointing out that
MDN

1
 used a ‘.info’ top-level domain (TLD) while MDN

2

used both the ‘rr.nu’ and ‘fi ndhere.org’ bulk subdomain
services. We found this odd as we expected an MDN with a
low malware repository lifetime to use a cheaper source of
malware repositories (e.g. through bulk subdomain services).
MDN

3
 opted for the cheapest route by simply using an IP

address to host both the social engineering scam and Fake AV
binaries, while MDN

4
 also used a much less frequently

updated list of ‘.info’ TLD domains.

4.2.2 Binary update behaviours

We found that all MDNs periodically updated their binaries.
MDN

3
 appears to be using server-side polymorphism, as

every request to their active repository results in a new binary
executable. We manually verifi ed this in case the lifetime was
simply shorter than our re-fetch interval but greater than zero,
and found that the binaries were in fact dynamically
generated. With 333 binaries downloaded, this MDN

Figure 3: The graphs above show the lifetime of the malware repositories in the left column and the lifetime of the executable
sample in the right column. The Y axis in all cases is discrete; each Y value represents a single repository/sample. The Y-axis for

graphs in the top row are ordered by the fi rst seen time of the repo/sample. The Y-axis for graphs in the bottom row are fi rst
ordered by MDN, and then ordered by fi rst seen value, which reveals distinct patterns in the data set. It appears that each family

has different repository and sample update patterns. This is confi rmed when looking at this data in tabular form (see Table 2).

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

5VIRUS BULLETIN CONFERENCE OCTOBER 2011

produced the largest number of samples despite using the
fewest malware repositories. The other three MDNs took a
slightly different approach, with an average binary lifetime
of between two and six hours and far fewer samples seen
overall.

4.2.3 Blacklisting behaviours

MDN
1
 and MDN

3
 both showed signs of blacklisting, although

only MDN
1
 showed conclusive evidence of it. MDN

3
 was an

interesting case as it showed some indications of potential for
blacklisting, though we never actually observed it in action.
The following is a snippet of the redirection output from
several infected landing pages in MDN

3
:

document.write(“<img src=’//counter.yadro.ru/hit;Joh
nDeer?t52.6;r”+escape(document.referrer)+((typeof(sc
reen)==”undefi ned”)?””:”;s”+screen.width+”*”+screen.
height+”*”+(screen.colorDepth?screen.color-
Depth:screen.pixelDepth))+”;u”+escape(document.
URL)+”;”+Math.random()+”’”+”border=’0’ width=’88’
height=’31’>”);

When this image is requested, it will send a fi ngerprint of the
client back to yadro.ru which contains the referrer used, the
screen resolution and pixel depth. It seems odd to profi le the
screen resolution. On further investigation we realized that a
virtualized fetcher running in headless mode will produce a
pixel depth of 0. This is a clear indication to anyone
monitoring server logs that an automated crawler is
harvesting the landing page. Another thing of note is that the
path loading the image contained the string ‘JohnDeer’,
which could be a reference to John Deere, a manufacturer of
agricultural harvesting machinery (‘harvest’ being is a
common industry term for collecting malware samples. Note
that our experiments did not run in headless mode and
therefore were not susceptible to this form of crawler
fi ngerprinting.

MDN
1
 exhibited blacklisting behaviour and was worth

investigating further. We decided to run a separate
experiment, using a new IP, that would fetch a landing page

from MDN
1
 as often as possible for two purposes: fi rst, it

provided more accurate measures of the repository and
binary lifetimes, and, second, this aggressive re-evaluation
interval is more likely to trigger a blacklisting response. We
started the experiment on the afternoon of 30 June. The
lifetime of malware repositories throughout the experiment
remained fairly consistent; a consistent update pattern was
visible until 2 July. At around 14:00 PDT the MDN began
appending the query parameter ‘?q=av-sucks’, to the normal
server side 302 redirects. We speculate that, in addition to
encouraging us, this query parameter was meant to
fi ngerprint requests from our clients. Twelve hours later they
had fully prevented us from accessing the malware
repository; that is, the landing page would no longer redirect
into the MDN. We tried changing a number of variables
such as the referrer string, user agent, browser plug-ins
installed, HTTP request headers, but none resulted in a
successful fetch. At the same time, requests from different
IP pools were successful, so we conclude that blacklisting
was IP based.

In addition to the blacklisting incident described above,
MDN

1
 blacklisted our IP pools on several other occasions.

Figure 4 illustrates the time line of these incidents; each
incident can be seen as a gap.

The other two MDNs did not appear to do any sort of
blacklisting, though there were times when they redirected us
to non-Fake AV content including sites trying to push generic
pills and pay-per-click link sites. At no point did they stop
serving us content altogether, and often the content served to
us would randomly rotate through Fake AV, pills and other
pay-per-click sites.

4.3 Evaluation and proposed optimizations

The malware repository and malicious executable are clearly
being updated frequently, and the distribution network is
sophisticated in terms of the countermeasures in place to
thwart the actions of security researchers. This is a worst

MDN # Malware repo details Binary update behaviour Blacklisting? Still active?

1 Randomly generated strings of .info TLD Periodic updates Confi rmed, IP blacklisting,
redirection to non-
malicious sites

Yes

2 Initially hosted on fi ndhere.org, then rr.nu Periodic updates None observed No

3 Snowshoeing [18] through multiple ranges
of IPs

Fully polymorphic Possible No

4 Static base string with incremented number
appended, .info TLD

Periodic updates None observed No

Table 1: Summary of identifi ed malware distribution networks (‘still active’ column is as of 24 July 2011).

MDN Landing
page count

Malware
repository count

Repository lifetime
average (s)

Repository
lifetime σ (s)

Binary
count

Binary
lifetime

average (s)

Binary
lifetime σ (s)

1 347 193 4,875 2,794 64 19,937 24,886

2 39 118 3,783 6,235 59 10,064 12,152

3 19 12 156,493 113,675 333 0 0

4 8 21 69,766 49,816 17 10,879 21,649

Table 2: Malware distribution network statistics (σ = standard deviation).

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

6 VIRUS BULLETIN CONFERENCE OCTOBER 2011

case scenario where information needs to be frequently
collected from the MDN in order to actively protect users,
yet there is also a need to limit the exposure of our
infrastructure. Based on the network behaviour presented
above, we propose several techniques to reduce our client
exposure to the network, which, we assume, will reduce
blacklisting while maintaining a relatively high re-evaluation
frequency.

The fi rst technique leverages the high degree of fan-in from
landing pages to malware repositories. Our data indicates that
all landing pages in an MDN redirect to a single repository at
a given time. For any MDN that satisfi es this condition (i.e.
one active repository at a time), a visit to a single landing
page in the MDN will yield the active malware repository at
a given time, and evaluations of the other landing pages are
not required.

The second technique reduces the number of exposures to the
repository, at the cost of higher uncertainty about the
malicious executable being served by it. We propose the

addition of a decision point during the evaluation of an MDN
landing page. If the landing page redirects (directly or
indirectly) to a known malware repository, and the repository
has recently been visited, then the HTTP client should not
make an HTTP request to the repository. This saves one
exposure to the malware repository. The determination of
recent is based on a threshold, which we refer to as the
repository re-evaluation threshold (RRT). This second
technique will be effective if at least one of two conditions
is met:

1. The lifetime of an active repository in the MDN is long
compared to the lifetime of a specifi c malware binary.
Based on Table 3, this technique would be effective for
MDN

1
 and MDN

2
, but not MDN

3
 or MDN

4
.

2. The ability of a researcher to proactively detect the
malicious binaries (i.e. already detected without
signature updates) is ‘good enough’; revisiting the
repository on every evaluation of the MDN is
unnecessary. In this scenario, the MDN is being
monitored to ensure the repositories are blocked and the
samples do not begin breaking detection.

To evaluate these techniques, we simulate the re-evaluations
that would be made with several combinations of the
proposed techniques. The simulation is performed using the
data we collected. To perform the simulation we assume that
all landing pages in an MDN redirect to the same repository
at a given time. As an example, assume an MDN has two
landing pages, LP

1
 and LP

2
, and two repositories, R

1
 and R

2
,

and that we have data points showing that at time
10: LP

1
 → R

1
 and at time 20: LP

2
 → R

2
. It is possible during

simulation that an algorithm makes a fetch to LP
2
 at time 10

and to LP
1
 at time 16. The simulation will return LP

2
→ R

1

at time 10 (based on evidence from the LP
1
 data point), and

LP
1
 → R

2
 at time 16 (based on the nearest data point: LP

2
 at

time 20).

For each simulation we calculate the number of fetches that
would be performed, the number of exposures to landing
pages and to repositories, the number of repositories
discovered, and the number of executables discovered.
Table 3 shows the simulation results of a fi xed interval
scheduler that does not implement the proposed techniques.
For each simulation the re-evaluation interval is increased. We

Interval Fetches Landing page
exposures

Repository
exposures

Repositories
discovered

Binaries
discovered

Actual data 22,393 22,393 22,393 344 473

1 hour 276,161 276,161 276,161 317 384

2 hours 138,254 138,254 138,254 295 304

4 hours 69,310 69,310 69,310 194 226

8 hours 34,842 34,842 34,842 129 159

12 hours 23,119 23,119 23,119 99 126

1 day 11,762 11,762 11,762 64 79

2 days 6,074 6,074 6,074 41 45

7 days 1,999 1,999 1,999 16 16

Table 3: Impact of re-evaluation interval on MDN coverage. This set of simulation results illustrates the impact of increasing the
re-evaluation interval on the repository and executable discovery rates. This shows that for Fake AV MDNs the network coverage
drops signifi cantly as the re-evaluation interval is increased. This is due to the highly dynamic nature of the MDN used to spread

Fake AV.

Figure 4: The malware repository lifetime of MDN
1
. All gaps

throughout the experiment occurred as a result of blacklisting.
It wasn’t until we rotated our proxy IP pool that we were able

to continue fetching results.

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

7VIRUS BULLETIN CONFERENCE OCTOBER 2011

see that the coverage (i.e. the number of repositories and
binaries discovered) drops off quickly as the re-evaluation
interval increases. This fi rmly establishes the need for
frequent re-evaluation of the MDN in order to maintain
coverage of the repositories and executables.

Table 4 shows the impact of the two optimization
techniques. A naïve algorithm with a re-evaluation interval
of one hour makes 276,161 requests during the simulation,
versus only 2,905 requests made by a re-evaluation
algorithm that uses knowledge of the MDN when
re-evaluating landing pages. The cost of this optimization is
a loss of fi ve samples.

The application of the fi rst optimization to our simulated
re-fetching algorithm resulted in a fetch volume reduction of
99% with a 10%2 loss in the sample discovery rate (excluding
samples from the polymorphic MDN). When both
optimizations are applied the number of exposures to the
repositories drops by as much as 50% versus using just the
fi rst optimization; however, it is clear that the second
optimization comes with a cost in terms of sample discovery.
The impact of the reduced discovery rate on the vendor
depends on the specifi cs of their products.

5. DISCUSSION

Based on the average lifetime of the executable binaries, we
conclude that using checksum-based blocking as a stop gap
for generic detection will only be effective for a subset of the
MDNs we investigated. Tracking the average binary lifetime
for each MDN in conjunction with the zero-day detection

2 To calculate this sample cost we fi rst exclude the samples from the
purely polymorphic MDN. 10% = (379 – 333) / (384 – 333).

rates of the samples collected allows us to improve our
detection triage process. When detection drops on samples
from a purely polymorphic MDN, this requires immediate
analyst attention. When detection dips on an MDN whose
samples are longer lived, then an automated checksum
approach is suffi cient to reduce the urgency of the incident
while analysts address the drop in detection rate.

Grouping samples by MDN helps analysts identify patterns to
improve generic detections. For MDN

1
, we detected 100% of

the binaries through a single Sophos detection. However, the
samples from the other MDNs were detected by no less than
six distinct Sophos detections. After providing the grouped
samples to analysts, they were able to quickly produce single
generic detections per MDN.

Throughout our experiments, for each MDN all landing pages
pointed to a single malware repository at any given time.
From this we conclude that re-evaluating multiple landing
pages belonging to the same MDN is a waste of resources,
and worse, this activity exposes your fetching infrastructure
to the MDN unnecessarily. Analysing the lifetime of the
malware repositories and assigning a re-evaluation interval
for each MDN will help minimize the resources required to
monitor each threat, and reduce the chance of being
blacklisted.

We observed that the technique of blacklisting is a real threat
and is actively applied by the administrators of MDNs. This is
an important phenomenon to consider when designing a
system to monitor Fake AV. In the same way that security
vendors monitor threats and blacklist large IP ranges, so too
can malware distributors. Repeated visits to MDNs from IP
addresses in the same range are easy to spot in server logs.
We have seen the blacklisting response happen in under a

Interval RRT Fetches Landing
page
exposures

Repository
exposures

Repositories
discovered

Binaries
discovered

Actual data -- 22,393 22,393 22,393 344 473

No
optimizations,
1 hour
interval

-- 276,161 276,161 276,161 317 384

1 hour 0 2,905 2,905 2,905 322 379

1 hour 1 hour 2,905 2,905 2,905 322 379

1 hour 2 hour 2,905 2,905 2,905 322 377

1 hour 2 hours† 2,905 2,905 1,724 322 309

1 hour 3 hours 2,905 2,905 1,795 322 372

1 hour 4 hours 2,905 2,905 1,676 322 374

1 hour 8 hours 2,905 2,905 1,512 322 369

1 hour 12 hours 2,905 2,905 1,455 322 368

1 hour 24 hours 2,905 2,905 1,409 322 366

†In all other simulations the RRT for MDN
3
 was set to 0. For this simulation is was set to two hours. The reader will note the signifi cant drop in

sample discovery rate that results when optimization two is applied to an MDN that has polymorphic malware repositories. This is discussed further
in the Discussion section.

Table 4: Impact of optimizations on MDN coverage. The application of the fi rst proposed optimization (row 3) results in a drastic
(99%) reduction in the fetch volume required to profi le the MDN (compared to row 2). The second optimization (rows 4–11)

produces greater savings, this time in the number of exposures to the malware repositories; however, the second optimization does
have a small cost in terms of missed samples. (RRT: repository re-evaluation threshold.)

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

8 VIRUS BULLETIN CONFERENCE OCTOBER 2011

week. We feel it is important for security vendors to use large
pools of IP addresses spread across a variety of networks.

There are several avenues to solve the blacklisting problem.
One idea is to use web appliances running on customer
machines as a proxy (e.g. through an opt-in feature). This
would provide security vendors access to the large pool of
customers’ IP address space for the purpose of malware
sample collection. This way the blacklisting scenario is turned
on its head: when an IP of a customer is blacklisted, it
essentially is protected – in effect, the ideal outcome. Of
course there are legal ramifi cations to be considered, as well
as the risk of customers being targeted by MDNs in a
retaliatory manner.

Another approach to the problem of blacklisting is increased
collaboration among security vendors to share resources and
eliminate duplicated data collection effort. URL and sample
sharing among security vendors is already common practice;
however, these arrangements do nothing to actually pool
resources and reduce the overall number of exposures to the
MDNs. It is unclear whether such collaboration will naturally
emerge, especially since some vendors might view their
ability to crawl from a large pool of IPs as their competitive
advantage.

A fi nal avenue worth pursuing is increased cooperation with
organizations that have Internet-level views, such as ISPs or
large research organizations. It has been shown that some
MDNs pre-compute their repositories in advance. However, in
other cases landing pages are periodically updated, via a pull or
push mechanism, with the new repository. If these fl ows could
be identifi ed through passive network analysis, this would
provide yet another means to reduce exposure to the MDN.

6. RELATED WORK
There have been many recent studies of malware on the web,
of malware distribution networks, and specifi cally of the
problem of fake anti-virus software. We briefl y detail works
that are most relevant to this study.

The seminal work by Provos et al. [6] has provided a
foundation, both in terms of the methodology and the
presentation of studies of malware on the web. Recent work
by this group [19] specifi cally addressed Fake AV distribution
networks. The results in this work were consistent with the
observations we made in this paper. While their analysis
typically presents results at the macro scale – something only
possible with the visibility of an organization like Google –
our work provides a very focused study of several MDNs and
provides specifi c strategies for identifying and re-evaluating
these MDNs. Recent work by Stone-Gross et al. [2] also
focused on Fake AV networks, however their work focused
primarily on the payment systems in place to monetize the
infections, whereas we focus on the delivery networks.

Recent work by Zhang, Seifert et al. [20] studied a corpus of
several billion fetch logs and showed ways to identify the
MDNs. In this way their research is very similar to ours.
Their approach incorporates more network information to
identify MDNs and also provides a degree of automation to
the process through the use of AutoRE [19]. Our work differs
from theirs in that we use the identifi cation of MDNs to
adjust and optimize re-evaluation logic, whereas they used the
identifi cation of MDNs to retroactively identify malicious
fetch logs to improve URL blocklists.

7. CONCLUSION
This paper presented a study of several malware distribution
networks responsible for distributing Fake AV software by
using social engineering tactics. We have pinpointed several
solutions to identify distinct malware distribution networks
(MDNs) and highlight the specifi c behaviours of the MDNs
we have identifi ed. Additionally we have shown that these
behaviours can be leveraged to drastically reduce the amount
of generated crawling traffi c needed to track each MDN
over time.

ACKNOWLEDGEMENTS
We would like to thank Adriana Iamnitchi for providing us
PlanetLab access. We also want to thank all the analysts in
SophosLabs for sharing their vast expertise.

REFERENCES
[1] Rajab, M.; Ballard, L.; Mavrommatis, P.; Provos, N.;

Zhao, X.w. The Nocebo Effect on the Web: An
Analysis of Fake Anti-Virus Distribution, Large-
Scale Exploits and Emergent Threats. LEET 2010.

[2] Stone-Gross, B.; Abman, R.; Kemmerer, R.; Kruegel,
C.; Steigerwald, D.; Vigna, G. The Underground
Economy of Fake Antivirus Software. 10th
Workshop on Economics of Information Security
(WEIS), June 2011.

[3] Cluley, G. Phishing in a World of Warcraft.
http://nakedsecurity.sophos.com/2011/01/20/
phishing-in-a-world-of-warcraft/.

[4] Google Trends. http://www.google.com/trends/.

[5] Howard, F.; Komili, O. Poisoned search results: how
hackers have automated search engine poisoning
attacks to distribute malware. http://www.sophos.com/
en-us/why-sophos/our-people/technical-papers/
sophos-seo-insights.aspx.

[6] Provos, N.; Mavrommatis, P.; Rajab, M.; Monrose, F.
All Your iFRAMEs Point To Us. USENIX Security
Symposium 2008, pp.1–16.

[7] Komili, O. Fake AV, now for Windows 7!
http://nakedsecurity.sophos.com/2010/03/04/fakeav-
windows-7/.

[8] Wisniewski, C. Fake Firefox Warnings Lead to
Scareware. http://nakedsecurity.sophos.com/
2011/05/30/fake-fi refox-warnings-lead-to-scareware/.

[9] Wisniewski, C. Mother’s Day Search Terms Lead to
Mac Rogue Security Software.
http://nakedsecurity.sophos.com/2011/05/07/
mothers-day-search-terms-lead-to-mac-rogue-
security-software/.

[10] Google Code. http://code.google.com/more/.

[11] Star Trek Wiki – Memory Alpha.
http://memory-alpha.org/wiki/Tachyon_detection_
grid.

[12] Zeeuwen, K.; Ripeanu, M.; Beznosov, K. Improving
Malicious URL Re-Evaluation Scheduling Through
an Empirical Study of Malware Download Centers.
Joint WICOW/AIRWeb Workshop on Web Quality
(WebQuality 2011), 2011.

STRATEGIES FOR MONITORING FAKE AV DISTRIBUTION NETWORKS KOMILI ET AL.

9VIRUS BULLETIN CONFERENCE OCTOBER 2011

[13] Zeeuwen, K. 2011. Optimizing Re-Evaluation of
Malware Distribution Networks. Masters Thesis,
University of British Columbia, Vancouver, Canada.

[14] RefControl. http://www.stardrifter.org/refcontrol/.

[15] Project Sikul. http://www.sikuli.org/.

[16] PlanetLab. http://www.planet-lab.org/.

[17] jsunpack. http://jsunpack.jeek.org/dec/go/.

[18] Snowshoe spamming. Spamhaus.
http://www.spamhaus.org/faq/answers.lasso?section=
Glossary#233.

[19] Xie, Y.; Yu, F.; Achan, K.; Panigraphy, R.; Hulten, G.;
Osipkov, I. Spamming botnets: Signatures and
characteristics. SIGCOMM 2008.

[20] Zhang, J.; Seifert, C.; Stokes, J.; Lee, W. ARROW:
Generating Signatures to Detect Drive-By
Downloads. WWW, 2011.

[21] Howard, F. Malware with your Mocha? Obfuscation
and anti-emulation tricks in malicious JavaScript.
http://www.sophos.com/en-us/why-sophos/our-
people/technical-papers/malware-with-your-mocha.
aspx.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

