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ABSTRACT
Online Social Networks (OSNs) have become an integral
part of today’s Web. Politicians, celebrities, revolutionists,
and others use OSNs as a podium to deliver their message
to millions of active web users. Unfortunately, in the wrong
hands, OSNs can be used to run astroturf campaigns to
spread misinformation and propaganda. Such campaigns
usually start off by infiltrating a targeted OSN on a large
scale. In this paper, we evaluate how vulnerable OSNs are
to a large-scale infiltration by socialbots: computer programs
that control OSN accounts and mimic real users. We adopt
a traditional web-based botnet design and built a Socialbot
Network (SbN): a group of adaptive socialbots that are or-
chestrated in a command-and-control fashion. We operated
such an SbN on Facebook—a 750 million user OSN—for
about 8 weeks. We collected data related to users’ behav-
ior in response to a large-scale infiltration where socialbots
were used to connect to a large number of Facebook users.
Our results show that (1) OSNs, such as Facebook, can be
infiltrated with a success rate of up to 80%, (2) depending
on users’ privacy settings, a successful infiltration can result
in privacy breaches where even more users’ data are exposed
when compared to a purely public access, and (3) in prac-
tice, OSN security defenses, such as the Facebook Immune
System, are not effective enough in detecting or stopping a
large-scale infiltration as it occurs.

1. INTRODUCTION
Online Social Networks (OSNs) such as Facebook1 and

Twitter2 have far exceeded the traditional networking ser-
vice of connecting people together. With millions of users
actively using their platforms, OSNs have attracted third
parties who exploit them as an effective media to reach and
potentially influence a large and diverse population of web
users [21, 23]. For example, during the 2008 U.S. presiden-
tial election, social media was heavily employed by Obama’s

1http://www.facebook.com
2http://www.twitter.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC 11 Dec. 5-9, 2011, Orlando, Florida USA
Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

campaign team who raised about half a billion dollars online,
introducing a new digital era in presidential fundraising [40].
Moreover, it has been argued that OSNs, as democracy-
enforcing communication platforms, were one of the key en-
ablers of the recent Arab Spring in the Middle East [35, 38].
Such a global integration of social media into everyday life is
rapidly becoming the norm, and arguably is here to stay [8].
But what if some of the content in social media—OSNs in
particular—is not written by human beings?

A new breed of computer programs called socialbots are
now online, and they can be used to influence OSN users [24].
A socialbot is an automation software that controls an ac-
count on a particular OSN, and has the ability to perform
basic activities such as posting a message and sending a
connection request. What makes a socialbot different from
self-declared bots (e.g., Twitter bots that post up-to-date
weather forecasts) and spambots is that it is designed to be
stealthy, that is, it is able to pass itself off as a human being.
This allows the socialbot to compromise the social graph of a
targeted OSN by infiltrating (i.e., connecting to) its users so
as to reach an influential position. This position can be then
exploited to spread misinformation and propaganda in order
to bias the public opinion [26]. For example, Ratkiewicz et
al. [33] describe the use of Twitter bots to run astroturf and
smear campaigns during the 2010 U.S. midterm elections.

As socialbots infiltrate a targeted OSN, they can further
harvest private users’ data such as email addresses, phone
numbers, and other personal data that have monetary value.
To an adversary, such data are valuable and can be used
for online profiling and large-scale email spam and phishing
campaigns [30]. It is thus not surprising that different kinds
of socialbots are being offered for sale in the Internet black-
market for as much as $29 per bot [4].

Recently, many techniques have been proposed that aim
to automatically identify spambots in OSNs based on their
abnormal behavior [31, 16, 37]. For example, Stein et al. [36]
present the Facebook Immune System (FIS): an adversarial
learning system that performs real-time checks and classifi-
cation on every read and write action on Facebook’s database,
all for the purpose of protecting its users and the social graph
from malicious activities. It is, however, not well-understood
how such defenses stand against socialbots that mimic real
users, and what the expected users’ behavior might be in
response to a large-scale infiltration by such bots.

In this paper, we aim to fill this knowledge gap. We treat
large-scale infiltration in OSNs as an organized campaign
that is run by an army of socialbots to connect to either
random or targeted OSN users on a large scale. Therefore,



we decided to adopt a traditional web-based botnet design
and define what we call a Socialbot Network (SbN): a group
of re-programmable socialbots that are orchestrated by an
adversary (called a botherder) using a software controller
(called a botmaster). The botmaster is designed to exploit
the known properties of social networks, such as the triadic
closure principle [32], and use them as heuristics to define
commands, which increase the magnitude of the potential
infiltration in the targeted OSN.

We built a simple, yet effective, SbN consisting of 102 so-
cialbots and a single botmaster. We then operated this SbN
on Facebook for 8 weeks. During that time, the socialbots
were able to send a total of 8,570 connection requests. We
recorded all data related to the anticipated infiltration and
the corresponding users’ behavior, along with all accessible
users’ profile information. Overall, we summarize our main
findings as follows:

(1) OSNs, such as Facebook, are highly vulnerable
to a large-scale infiltration. From the OSN side, we show
that it is not difficult to fully automate the overall operation
of an SbN, including accounts creation. From the users’ side,
we show that most OSN users are not careful enough when
accepting connection requests sent by strangers, especially
when they have mutual connections. This behavior can be
exploited to achieve a large-scale infiltration with a success
rate of up to 80%.

(2) Depending on users’ privacy settings, operating
an SbN can result in many privacy breaches. We show
that greater number of users’ data can be harvested after a
large-scale infiltration. This data include email addresses,
phone numbers, and other profile information, all of which
have monetary value. Unfortunately, this also includes the
private data of users who have not been infiltrated, but are
connected to infiltrated users. Moreover, we show that a
botherder can operate an SbN conservatively, at a slow pace,
and still collect an average of 175 new chunks of publicly-
unaccessible users’ data per socialbot per day.

(3) In practice, OSN security defenses such as the
FIS are not effective enough in detecting a large-
scale infiltration. Our results show that a successful in-
filtration of an OSN user is expected to be observed within
the first 3 days after the request has been sent by a social-
bot. This means that the social graph will rapidly change
in a relatively short time, and the socialbots will get grad-
ually integrated into the targeted online community. We
found that the FIS was able to block only 20% of the ac-
counts used by the socialbots. This, however, was a result
of feedback from users who flagged these accounts as spam.
In fact, we did not observe any evidence that the FIS de-
tected what was really going on: an organized large-scale
infiltration campaign.

The rest of the paper is organized as follows: We first
provide background information and define our notations in
Section 2. After that, we present the concept of a Social-
bot Network, along with its design goals and construction
details, in Section 3. Next, we demonstrate our experiments
with an SbN on Facebook in Section 4, and then we discuss
our results in Section 5. This is followed by an outline of
related works in Section 6. Finally, we conclude the paper
in Section 7.

2. PRELIMINARIES
In what follows, we present background information and

define the notations we use in the upcoming discussion.

2.1 Online Social Networks
Online Social Networks (OSNs) provide centralized web

platforms that facilitate users’ social activities. A user in
such a platform owns an account and is represented by a pro-
file that describes her social attributes such as name, gen-
der, interests and contact information. We use the terms
“account”, “profile”, and “user” interchangeably. A social
connection between two users can be either undirected like
friendships in Facebook, or directed like follower-followee re-
lationships in Twitter.

An OSN can be modeled as a graph G = (V,E), where V
represents a set of users and E represents a set of social con-
nections among these users. For every user u ∈ V , the set
Γ(u) is called the neighborhood of u, and it contains all users
in V with whom u has social connections. We denote the av-
erage neighborhood size in G by Navg = |V |−1 ∑

u∈V |Γ(u)|.
Finally, we call the set ∆(u) =

⋃
v∈Γ(u) Γ(v) the extended

neighborhood of u.

2.2 Social Engineering and Socialbots
Traditionally, social engineering is defined as the art of

gaining access to secure objects by exploiting human psy-
chology, rather than using hacking techniques. Social en-
gineering, however, has become more technical and com-
plex; social engineering attacks are being computerized and
fully automated, and are becoming adaptive and context-
aware [9, 5]. In fact, some of these attacks are sophisticated
and use learned or hard-coded heuristics and observations
about users’ behaviour in the targeted system so as to in-
crease the magnitude of their potential damage [5, 6, 20].

The next generation of social engineering attacks is even
more deceptive; they employ an automation software called
a socialbot that controls a profile in an OSN, and has the
ability to execute basic online social activities. For example,
Realboy [10] is an experimental project that aims to design
believable Twitter bots that imitate real Twitter users.

2.3 OSN Vulnerabilities
We discuss four vulnerabilities found in today’s OSN which

allow an adversary to carry out a large-scale infiltration cam-
paign. We treat each vulnerability separately and provide
evidence to support it.

2.3.1 Ineffective CAPTCHAs
OSNs employ CAPTCHAs [42] to prevent automated bots

from abusing their platforms. An adversary, however, can
often circumvent this countermeasure by using different tech-
niques such as automated analysis using optical character
recognition [6], exploiting botnets to trick infected victims
into manually solving CAPTCHAs [5, 12], reusing session
IDs of known CAPTCHAs [18], cracking MD5 hashes of
CAPTCHAs that are validated at the client side [44], and
hiring cheap human labor [27].

Let us consider the use of cheap human labor to break
CAPTCHAs; a phenomenon that is known as CAPTCHA-
breaking business. Motoyama et al. [27] show that compa-
nies involved in such a business are surprisingly efficient;
they have high service quality with a success rate of up to
98%, charge $1 per 1,000 successfully-broken CAPTCHAs,



and provide software APIs to automate the whole process.
Thus, even the most sophisticated CAPTCHA technology
that only humans could solve can be effectively circumvented
with a small investment from an adversary. In such a situ-
ation, the adversary acts as an economist; he would invest
in such businesses if the return on investment is consider-
ably high. This allows researchers to look at online attacks
from an economic context, and define cost metrics that mea-
sure when it is economically feasible for an adversary to
mount a large-scale attack that involves, for instance, break-
ing CAPTCHAs through employing cheap human labor [17].

2.3.2 Fake User Accounts and Profiles
Creating a user account on an OSN involves three tasks:

providing an active email address, creating a user profile,
and sometimes solving a CAPTCHA. Each user account
maps to one profile, but many user accounts can be owned
by the same person or organization using different email ad-
dresses. In what follows, we argue that an adversary can
fully automate the account creation process. This, however,
is not new, as similar tools are used for online marketing [2].

Fake user accounts: When creating a new user account
in an OSN, an email address is required to first validate
and then activate the account. The OSN validates the ac-
count by associating it to the owner of the email address.
After account validation, its owner activates the account by
following an activation link that is emailed by the OSN. Ac-
cordingly, an adversary has to overcome two hurdles when
creating a new account: providing an active email address
that he owns, and account activation. To tackle the first hur-
dle, the adversary can maintain many emails by either us-
ing “temp” email addresses that are obtained from providers
that do not require registration such as 10minutemail.com,
or by creating email addresses using email providers that do
not limit the number of created emails per browsing session
or IP address such as mail.ru. As for the second hurdle,
an adversary can write a simple script that downloads the
activation email, and then sends an HTTP request to the
activation URL that is included in the downloaded email.

Fake user profiles: Creating a user profile is a straight-
forward task for real users; they just have to provide the
information that represents their social attributes. For an
adversary, however, the situation is a bit different. The ob-
jective of the adversary is to create profiles that are “so-
cially attractive”. We consider a purely adversarial stand-
point concerning social attractiveness; the adversary aims
to exploit certain social attributes that have shown to be
effective in getting users’ attention. Such attributes can be
inferred from recent social engineering attacks. Specifically,
using a profile picture of a good looking woman or man has
had the greatest impact [6, 14]. Thus, an adversary can use
publicly available personal pictures for the newly created
profiles, with the corresponding gender and age-range. In
fact, the adversary can use already-rated personal pictures
from websites like hotornot.com, where users publicly post
their personal pictures for others to rate their “hotness”.3

It is thus possible for an adversary to automate the collec-
tion of the required profile information through crawling (or
scavenging in this case) the Web.

3Such sites also provide categorization of the rated personal
pictures based on gender and age-range.

2.3.3 Crawlable Social Graphs
The social graph of an OSN is usually hidden from public

access in order to protect its users’ privacy. An adversary,
however, can reconstruct parts of the social graph by first
logging in to the OSN platform using an account, and then
traversing through linked user profiles starting from a “seed”
profile. In the second task, web crawling techniques can be
used to download profile pages and then scrape their content.
This allows the adversary to parse the connections lists of
user profiles, such as the “friends list” in Facebook, along
with their profile information. After that, the adversary can
gradually construct the corresponding social graph with all
accessible social attributes using a breadth-first search [25].
The adversary can build either a customized web crawler
for this task or resort to cheap commercial crawling services
that support social-content crawling such as 80legs.com.

2.3.4 Exploitable Platforms and APIs
Most OSNs provide software APIs that enable the inte-

gration of their platforms into third-party software systems.
For example, Facebook Graph API [1] enables third parties
to read from and write data into Facebook, and provides
a simple and consistent view of Facebook’s social graph by
uniformly representing objects (e.g., profiles, photos) and
the connections between them (e.g., friendships, likes, tags).
An adversary, however, can use such APIs to automate the
execution of online social activities. If an activity is not
supported by the API, then the adversary can scrape the
content of the platform’s web pages, and record the exact
HTTP requests which are used to carry out such an activ-
ity (i.e., HTTP-request templates). In particular, sending
connection requests is often not supported, and is protected
against automated usage by CAPTCHAs. This is also the
case if a user sends too many requests in a short time period.
An adversary, however, can always choose to reduce the fre-
quency at which he sends the requests to avoid CAPTCHAs.
Another technique is to inject artificial connection requests
into normal OSN traffic at the HTTP level, so that it would
appear as if the users added the adversary as a friend [19].

3. THE SOCIALBOT NETWORK
We first start with a conceptual overview of a Socialbot

Network (SbN), and briefly outline the adversarial objectives
behind maintaining such a network. This is followed by a
discussion on the SbN design goals, after which we outline
its construction details.

3.1 Overview
We define a Socialbot Network (SbN) as a set of socialbots

that are owned and maintained by a human controller called
the botherder (i.e., the adversary). An SbN consists of three
components: socialbots, a botmaster, and a Command &
Control (C&C) channel. Each socialbot controls a profile
in a targeted OSN, and is capable of executing commands
that result in operations related to social interactions (e.g.,
posting a message) or the social structure (e.g., sending a
connection request). These commands are either sent by the
botmaster or predefined locally on each socialbot. All data
collected by the socialbots are called the botcargo and are
always sent back to the botmaster. A botmaster is an OSN-
independent software controller that the botherder interacts
with in order to define and then send commands through
the C&C channel. The C&C channel is a communication



Table 1: The generic operations supported by a socialbot in any given OSN.
Operation Type Description
read(o, p) Social-interaction Reads an object o from profile p and returns its value v as botcargo
write(v, o, p) Social-interaction Writes value v to object o on profile p
connect(b, p) Social-structure Sends or accepts a connection request sent from profile b to profile p
disconnect(b, p) Social-structure Breaks the social connection between profiles b and p

Botmaster 

C&C Channel 

Socialbots 

Online Social Network Botherder 

Figure 1: A Socialbot Network. Each node in the
OSN represents a profile. The socialbots are marked
in black. Infiltrated profiles are marked in gray.
Edges between nodes represent social connections.
The dashed arrow represent a connection request.
The small arrows represent social interactions.

channel that facilitates the transfer of both the botcargo and
the commands between the socialbots and the botmaster,
including any heartbeat signals. Figure 1 shows a conceptual
model of an SbN.

3.2 Objectives
The botherder is a person or an organization that builds

and operates an SbN for two main objectives: (1) to carry
out a large-scale infiltration campaign in the targeted OSN,
and (2) to harvest private users’ data. The first objective
involves connecting to a large number of either random or
targeted OSN users for the purpose of establishing an influ-
ential position or fame. The second objective, on the other
hand, aims to generate profit by collecting personal users’
data that have monetary value. Notice that this data can
be then used to craft personalized messages for subsequent
spam, phishing, or astroturf campaigns.

3.3 Design Goals
Ideally, an SbN has to be fully automated and scalable

enough to control hundreds of socialbots. This is achieved by
adopting a traditional web-based botnet design. In order to
be effective, however, an SbN has to meet three challenging
goals: (1) each socialbot has to be designed in such a way
that hides its true face; a robot, (2) the botmaster has to
implement heuristics that enable large-scale infiltration in
the targeted OSN, and (3) the traffic in the C&C channel
has to look benign in order to avoid detecting the botmaster.

In this paper, we decided to use a simplistic design in order
to meet each one of these goals. We used techniques that
have shown to be both feasible and effective. We discuss the
details of these techniques in the following section.

3.4 Construction
We now discuss how a botherder can construct an SbN

that performs well in practice while meeting the design goals
outlined in the previous section.

3.4.1 The Socialbots
A socialbot consists of two main components: a profile on

a targeted OSN (the face), and the socialbot software (the
brain). We enumerate the socialbots with the profiles they
control, that is, for a set B = {b1, . . . , bn} of n socialbots,
we use bi ∈ B to refer to both the i-th socialbot and the
profile it controls. But how should the socialbot software be
programmed in order to mimic real users?

First, we require the socialbot to support two types of
generic operations in any given OSN: social-interaction op-
erations that are used to read and write social content, and
social-structure operations that are used to alter the social
graph. A description of these operations is shown in Table 1.

Second, we define a set of commands that each includes
a sequence of generic operations. Each command is used
to mimic a real user action that relates to social content
generation (e.g., a status update) or social networking (e.g.,
joining a community of users). Commands can be either
defined locally on each socialbots (called native commands),
or sent by the botmaster through the C&C channel (called
master commands). For example, we define a native com-
mand called status_update as follows: at arbitrary times,
a socialbot bi ∈ B generates a message m (e.g., a random
blurb crawled from the Web), and executes the operation
write(m, o, bi) where o is the object that maintains mes-
sages on profile bi (e.g., the profile’s “wall” in Facebook).

Finally, each socialbot employs a native controller: a sim-
ple two-state Finite-State Machine (FSM) that enables the
socialbot to either socialize by executing commands, or stay
dormant.

3.4.2 The Botmaster
A botmaster is a botherder-controlled automation soft-

ware that orchestrates the overall operation of an SbN. The
botmaster consists of three main components: a botworker,
a botupdater, and a C&C engine. The botworker builds and
maintains socialbots. Building a new socialbot involves first
creating a new socially attractive profile in the targeted OSN
as discussed in Section 2.3.2. After that, the profile’s creden-
tials (i.e., the user name and password) are delegated to the
socialbot software so as to get a full control over this profile.
The botupdater pushes new software updates, such as a new
list of native commands, to the socialbots through the C&C
channel. Finally, the C&C engine maintains a repository of
master commands and runs a master controller: a many-
state FSM that is the core control component of the SbN.
The botherder interacts with the C&C engine to define a set
of master commands, which are dispatched when needed by
the master controller and then sent to the socialbots. An
interesting question now follows: what kinds of master com-
mands are required to achieve a large-scale infiltration in the
targeted OSN?

First, notice that at the beginning each socialbot is iso-
lated from the rest of the OSN, that is, |Γ(bi)| = 0 for each



Table 2: Master commands. The socialbot bi ∈ B is the socialbot executing the command, |B| = n.
Command Description
cluster Connects bi to at most Navg other socialbots in B
rand_connect(k) Connects bi to k non-boherder-owned profiles that are picked at random from the OSN
decluster Disconnects bi from every socialbot bj ∈ S where S = {bj | bj ∈ Γ(bi) ∩ B and |Γ(bj)| > n}
crawl_extneighborhood Returns ∆(bi), the extended neighborhood of bi, as botcargo
mutual_connect Connects bi to every profile pj ∈ ∆(bi)− B.
harvest_data Reads all accessible information of every profile pj ∈ Γ(bi), and returns it as botcargo

bi ∈ B, which is not a favorable structure to start a large-
scale infiltration. Tong et al. [39] show that the social at-
tractiveness of a profile in an OSN is highly correlated to its
neighborhood size, where the highest attractiveness is ob-
served when the neighborhood size is close to the network’s
average. Usually, Navg is known or can be estimated (e.g.,
Navg = 130 on Facebook [3]). Thus, in order to increase the
social attractiveness of a socialbot, the adversary defines a
master command cluster, which orders each socialbot to
connect to at most Navg other socialbots.

Second, it has been widely observed that if two users have
a mutual connection in common, then there is an increased
likelihood that they become connected themselves in the fu-
ture [22]. This property is known as the triadic closure prin-
ciple, which originates from real-life social networks [32].
Nagle et al. [29] show that the likelihood of accepting a
connection request in an OSN is about three times higher
given the existence of some number of mutual connections.
Therefore, in order to improve the potential infiltration in
the targeted OSN, the adversary defines a master command
mutual_connect, which orders each socialbot to connect to
user profiles with whom it has mutual connections.

Finally, we design the master controller to switch between
three master states or phases: setup, bootstrapping, and
propagation. In the setup phase, the botmaster builds n so-
cialbots, updates their software, and then issues the cluster
command. After that, in the bootstrapping phase, the bot-
master issues the command rand_connect(k), which orders
each socialbot to connect to k profiles that are picked at
random from the targeted OSN. When every socialbot is
connected to k non-botherder-owned profiles, the botmaster
issues the command decluster, which orders the socialbots
to break the social connections between them, and hence,
destroying any n-clique structure that could have been cre-
ated in the earlier step. In the propagation phase, the bot-
master issues the command crawl_extneighborhood, which
orders the socialbots to crawl their extended neighborhoods,
after which the botmaster uses this information and issues
the command mutual_connect. Whenever a socialbot in-
filtrates a user profile, the botmaster issues the command
harvest_data, which orders the socialbot to collect all ac-
cessible users’ profile information in its neighborhood. A
description of all master commands is shown in Table 2.

3.4.3 The C&C Channel
The communication model of an SbN consists of two chan-

nels: the C&C channel and the socialbot-OSN channel. The
socialbot-OSN channel carries only OSN-specific API calls
and normal HTTP traffic, which are the end product of ex-
ecuting a command by a socialbot. From the OSN side, this
traffic originates from either an HTTP proxy in case of high
activity, or from a normal user. It is therefore quite diffi-
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Figure 2: The Facebook Socialbot Network.

cult to identify a socialbot solely based on the traffic in the
socialbot-OSN channel.

As for the C&C channel, how should it be built so that it
is particularly hard to identify the botmaster? To start with,
we argue that detecting the botmaster from the C&C traffic
is as hard as it is in a traditional botnet; the botherder
can rely on the existing botnet infrastructure and deploy
the SbN as part of the botnet. Alternatively, the botherder
can employ advanced techniques that, for example, establish
a probabilistically unobservable communication channel by
building a covert OSN botnet [28].

4. EVALUATION
In order to evaluate how vulnerable OSNs are to a large-

scale infiltration by an SbN, we decided to build one accord-
ing to the discussion in Section 3.4. We chose Facebook as
a targeted OSN because we believe it is particularly difficult
to operate an SbN in Facebook for the following reasons:
(1) unlike other OSNs, Facebook is mostly used to connect
to offline friends and family but not to strangers [13], and
(2) Facebook employs the Facebook Immune System (FIS):
an adversarial learning system which represents a potential
nemesis of any SbN [36].

4.1 Ethics Consideration
Given the nature of an SbN, a legitimate question follows:

is it ethically acceptable and justifiable to conduct such a
research experiment? We believe that minimal-risk realistic
experiments are the only way to reliably estimate the fea-
sibility of an attack in real-world. These experiments allow
us, and the wider research community, to get a genuine in-
sight into the ecosystem of online attacks, which are useful
in understanding how similar attacks may behave and how
to defend against them. This seems to be the opinion of
other researchers who share our belief [6, 20].
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We carefully designed our experiment in order to reduce
any potential risk at the user side by following known prac-
tices [7], and got the approval of our university’s behavioral
research ethics board. We strongly encrypted and properly
anonymized all collected data, which we have completely
deleted after we finished our planned data analysis.

4.2 The Facebook SbN
Figure 2 shows the architecture of the SbN we developed.

Each socialbot ran the same software and was equipped with
only one native command; status_update. We implemented
the generic operations described in Table 1 using two tech-
niques: API calls and HTTP-request templates, which we
now briefly describe. First, we exploited Facebook’s Graph
API [1] to carry out the social-interaction operations. The
API, however, requires the user (i.e., the socialbot in this
case) to be logged in to Facebook at the time of any API
call. To avoid this, we developed a Facebook application
that fetches permanent OAuth 2.0 access tokens that al-
low each socialbot to send API calls without the need to
login. Second, for the social-structure operations, we used
pre-recorded HTTP-request templates that allow each so-
cialbot to send friendship requests as if they were sent from
a browser. We used an API provided by iheartquotes.com

to pull random quotes and blurbs which we used as mes-
sages for the status updates. As for the botmaster software,
we implemented the botworker to interface with three useful
websites: decaptcher.com; a CAPTCHA-breaking business,
hotornot.com; a photo-sharing website, and mail.ru; an
email provider. We also implemented the botupdater with
an enhanced functionality to update the HTTP-request tem-
plates, along with any new native commands. Finally, we
implemented all master commands described in Table 2.

The master command rand_connect requires some extra
attention. On Facebook, each profile has a unique ID that
is represented by a 64-bit integer and is assigned at the time
the profile is created. In order to get a uniform sample
of Facebook profiles, we decided to use a simple random
sampling technique called rejection sampling [34], which we
now descirbe. First, we generated 64-bit integers at random,
but with a range that is reduced to the known ID ranges used
by Facebook [15]. Next, we tested whether each generated
ID mapped to a real profile by probing the profile page using
this ID. Finally, if the profile existed, we included the profile
ID in the random sample only if this profile was not isolated.
We define an isolated user profile as a profile that does not
display its “friends list” or has no friends of Facebook.

We deployed the simple two-state native controller and the

three-phase, many-state master controller. We acknowledge,
however, that more sophisticated controllers could be used
that, for instance, employ some machine learning algorithms
in order to improve the potential infiltration.

4.3 Operating the Facebook SbN
We operated the Facebook SbN for 8 weeks. The social-

bots were able to send a total of 8,570 friendship requests,
out of which 3,055 requests were accepted by the infiltrated
users. We divide the following discussion according to the
three phases of the master controller.

4.3.1 Setup
We created 102 socialbots and a single botmaster, all of

which are physically hosted on one machine for simplicity.
A botherder, however, could resort to a more sophisticated
deployment such as a P2P overlay network. Even though
we could have built the socialbots automatically using the
botworker, we decided to create them manually as we had no
intention to support any CAPTCHA-breaking business. In
total, we created 49 socialbots that had male user profiles
(referred to as m-socialbots), and 53 socialbots that had
female user profiles (referred to as f -socialbots).

4.3.2 Bootstrapping
The socialbots generated a random sample of 5, 053 valid

profile IDs. These IDs passed the inclusion criteria we dis-
cussed in Section 4.2. Figure 3 shows the degree distribution
of this sample.4

Based on a pilot study, we decided to send 25 friendship
requests per socialbot per day in order to avoid CAPTCHAs.
The socialbots took 2 days to send friendship requests to all
of the 5, 053 profiles. In total, exactly 2, 391 requests were
sent from m-socialbots and 2, 662 from f -socialbots. We
kept monitoring the status of the requests for 6 days. Over-
all, 976 requests were accepted with an average acceptance
rate of 19.3%. In particular, 381 of the accepted requests
were sent from m-socialbots (15.9% acceptance rate), and
595 were sent from f -socialbots (22.3% acceptance rate).
About 86% of the infiltrated profiles accepted the requests
within the first three days of the requests being sent, as
shown in Figure 4. Overall, the SbN spent two weeks in the
bootstrapping phase. For most of that time, however, the
SbN was setting idle.

4The degree of a node is the size of its neighborhood, and
the degree distribution is the probability distribution of these
degrees over the whole network (or a sample of it).



Figure 6: Data revelation of se-
lected profile info before and af-
ter a large-scale infiltration.
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4.3.3 Propagation
We kept the SbN running for another 6 weeks. During this

time, the socialbots added 3, 517 more user profiles from
their extended neighborhoods, out of which 2, 079 profiles
were successfully infiltrated. This resulted in an average ac-
ceptance rate of 59.1%, which, interestingly, depends on how
many mutual friends the socialbots had with the infiltrated
users, and can increase up to 80% as shown in Figure 5.

By the end of the eighth week, we decided to take the
SbN down as it resulted in a heavy traffic with Facebook.
In total, the SbN generated approximately 250GB inbound
and 3GB outbound traffic. We consider the operation time a
conservative estimate of the real performance of the SbN as
we paused it several times for debugging and data analysis,
especially during the bootstrapping phase. We believe that
operating the SbN for a longer time is expected to increase
the average acceptance rate as the propagation phase will
have a higher contribution.

4.4 Harvested Data
As the socialbots infiltrated Facebook, they harvested a

large set of users’ data. We were able to collect news feeds,
users’ profile information, and “wall” messages. We decided,
however, to only focus on users’ data that have monetary
value such as Personally Identifiable Information (PII).

After excluding all remaining friendships between the so-
cialbot, the total size of all direct neighborhoods of the so-
cialbots was 3,055 profiles. The total size of all extended
neighborhoods, on the other hand, was as large as 1,085,785
profiles. In Table 3, we compare users’ data revelation of
some PII before and after operating the SbN, as a percent-
age of the neighborhoods size.

To emphasize its significance, we visualize the data reve-
lation difference of selected profile information in Figure 6.
We include all user profiles from both the direct and the ex-
tended neighborhoods of the socialbots, which added up to
1,088,840 profiles. Each bar in the figure is annotated with
two numbers in x/y format, where x and y represent the
number of profiles with accessible profile information before
and after a large-scale infiltration, respectively.

5. DISCUSSION
In what follows, we discuss the results presented in the

previous section and focus on four main points: the observed
users’ behavior, the effectiveness of the Facebook Immune
System, the infiltration performance of the socialbots, and
the expected implications on other software systems.

Table 3: Data revelation as % of neighborhoods size.
Neighborhoods Direct(%) Extended(%)
Profile Info Before After Before After
Gender 69.1 69.2 84.2 84.2
Birth Date 03.5 72.4 04.5 53.8
Married To 02.9 06.4 03.9 04.9
Worked At 02.8 04.0 02.8 03.2
School Name 10.8 19.7 12.0 20.4
Current City 25.4 42.9 27.8 41.6
Home City 26.5 46.2 29.2 45.2
Mail Address 00.9 19.0 00.7 01.3
Email Address 02.4 71.8 02.6 04.1
Phone Number 00.9 21.1 01.0 01.5
IM Account ID 00.6 10.9 00.5 00.8
Average 13.3 34.9 15.4 23.7

5.1 Users’ Behavior
Given the results presented in Section 4, someone might

ask: are the infiltrated profiles real after all, or are they
just other socailbots? To begin with, notice that during the
bootstrapping phase, the socialbots targeted profiles that
were picked at random out of millions of user profiles, and
thus, it is highly unlikely to have picked mostly socialbots.

We also support this argument by the following analysis of
the observed users’ behavior. First of all, consider Figure 5.
The big jump in the acceptance rate from users who were
picked at random to those with whom the socialbots had
some mutual friends is expected. It directly exhibits the
effect of the triadic closure principle, which predicts that
having mutual friends will improve the liklihood of accepting
a friendship request as discussed in Section 3.4.2. The triadic
closure, interestingly, also operated from the users side; the
socialbots received a total of 331 friendship requests from
their extended neighborhoods.

Second, the behavior depicted in Figure 4 matches the
official statistics about real users on Facebook: 50% of the
750 million active Facebook users log on in any given day [3],
and thus, it is expected that approximately half of the ac-
cepted friendship requests are observed within one day of
the requests being sent.

Third and last, the users who were infiltrated during the
bootstrapping phase, that is, those who were selected at
random, showed another expected behavior [39]: the more
friends they had, the higher the chance was that they ac-
cepted a friendship request from a socialbot (i.e., a stranger),
as shown in Figure 7.



Table 4: SbN new data collection performance.
# Profiles Per Request Bot Bot, Day
Gender 0.00 0.05 0.00
Birth Date 62.06 5,214.11 93.11
Married To 1.33 111.58 1.99
Worked At 0.42 35.54 0.63
School Name 10.66 896.05 16.00
Current City 17.61 1,479.87 26.43
Home City 20.29 1,704.99 30.45
Mail Address 0.78 65.33 1.17
Email Address 2.10 176.74 3.16
Phone Number 0.68 56.76 1.01
IM Account ID 0.44 36.55 0.65
Total 116.37 9,777.57 174.60

5.2 SbN vs. Facebook Immune System
The Facebook Immune System (FIS) is a coherent, scal-

able, and extensible real-time adversarial learning system
that is deployed by Facebook to protect its users and the
social graph from malicious activities [36]. It performs real-
time checks and classification on every read and write action
on Facebook database. An interesting question now follows:
how did the FIS perform against the SbN we have operated?

After operating the SbN for 8 weeks, only 20 profiles used
by the socialbots were blocked by the FIS, and interestingly,
all of them were controlled by f -socialbots. After further
investigation, we found that these profiles were blocked be-
cause some Facebook users flagged them as spam.5 In fact,
we did not observe any evidence that the FIS detected what
was really going on other than relying on users’ feedback,
which seems to be an essential but potentially dangerous
component of the FIS.

In reaction, we asked ourselves: what assumptions are
made by the FIS that might be problematic? The answer
came directly from the authors of the FIS: they state that
“fake accounts have limited virality because they are not cen-
tral nodes in the graph and lack trusted connections. They
also have no unique data or history” [36]. Hence, we con-
jecture that the FIS does not consider fake accounts as a
real threat. Fake accounts, however, are one of the main
OSN vulnerabilities that allow a botherder to run a large-
scale infiltration campaign. Detecting and blocking such
accounts—as early as possible—is the main challenge that
OSN security defenses like the FIS have to overcome in oder
to win the battle against an SbN.

Finally, we noticed that employing the commands cluster
and status_update, which we describe in Table 2, had a
desirable effect. It appears that the socialbots seemed more
human-like as only 20% of the 102 profiles they controlled
got blocked, as apposed to 93% of the 15 profiles we used in
our pilot study where we decided not to use these commands.
This, in a sense, reflects one of the drawbacks of relying on
users’ feedback.

5.3 Infiltration Performance
One way to judge whether the resulting infiltration was

the making of a small number of “outstanding” socialbots is
to compare them in terms of the number of profiles they have

5Based on the content of a pop-up message that Facebook
showed when we manually logged in.

infiltrated, as shown in Figure 8. Accordingly, we group the
socialbots into two leagues representing the two humps in
the figure. The first one constitutes 86% of the socialbots
and 70% of the overall infiltration, where each socialbot has
infiltrated 0–50 user profiles. The second league, on the
other hand, constitutes 10% of the socialbots and 23% of
the overall infiltration, where each socailbot has infiltrated
60–80 user profiles. The rest of the socialbots, which we
consider as outliers, constitute only 4% of the socialbots
with 7% of the overall infiltration.

As most of the resulted infiltration was the outcome of the
socialbots’ group work, we decided to calculate how much
new data a botherder can collect per socialbot, as opposed
to a completely public access. This is particularly useful
when trying to estimate how many socialbots (or connection
requests) are needed in order to collect a targeted amount
of specific users’ data, such as email addresses and birth
dates. Using a conservative SbN operation of 25 friendship
requests per socialbot per day, and a relaxed operation time
of 8 weeks, we found that a botherder is expected to collect
an average of 175 new chunks of users’ data in Facebook per
socialbot per day, as shown in Table 4.

5.4 Implications on other Systems
Operating the SbN for an extended period of time is ex-

pected to result in a significantly larger infiltration, as the
socialbots will spend most of that time in the propagation
phase. Accordingly, the neighborhood size of each socialbot
is expected to keep increasing. This, however, has alarming
implications on software systems that use the social graph
of an OSN to provide services such as limiting Sybil nodes
in distributed systems [45] and modeling trust in socially-
informed recommender systems [43].

To explain why this is particularly important, let us con-
sider OSN-based Sybil defenses used in P2P overlay net-
works.6 In general, such a defense mechanism uses two types
of networks that share the same nodes: the P2P network
which we try to protect, and an external social network rep-
resenting a trust network such as Facebook [45]. Now, in
order to detect Sybil nodes in the P2P network, the fol-
lowing assumption is often made [41]: a Sybil node cannot
have many connections with non-Sybil nodes in the social
network. Thus, finding a well-connected node in the P2P
network, which is loosely connected in the social network, is
a good indication that this node is a Sybil. This assump-
tion, however, is not safe. We showed that the socialbots
can have arbitrarily many social connections with arbitrary
OSN users. Therefore, we believe that using a social network
such as Facebook to detect Sybil nodes in P2P networks is,
in fact, ineffective. This conclusion extends to all systems
that make this assumption about OSNs.

6. RELATED WORK
The closest threat to large-scale infiltration in OSNs is a

botnet called Koobface [5]. At first, Koobface compromises
user accounts on OSNs, and then uses these accounts to
promote a provocative message with a hyperlink. The link
points to a phishing website that asks the user to install

6A Sybil node (or a Sybil for short) is an adversary-owned
online identity, account, profile, or endpoint in a particular
network. Sybil nodes represent a serious threat and can be
used to subvert services such routing in P2P networks [11].



a Flash plugin which is, in fact, the Koobface executable.
Unlike Koobface, an SbN does not rely on hijacked profiles as
doing so requires infecting a large number of initial “zombie”
machines through OSN-independent distribution channels.

Bilge et al. [6] show that most users in OSNs are not
cautious when accepting connection requests that are sent
to them. The authors did an experiment to test how will-
ing users are to accept connection requests from forged user
profiles of people who were already in their friendship list
as confirmed contacts. They also compared that with users’
response to connection requests from people that they do
not know (i.e., fake profiles representing strangers). In their
experiment, they show that the acceptance rate for forged
profiles was always over 60%, and about 20% for the fake
profiles. Unlike their targeted attack, we do not expect the
adversary to forge profiles as this limits the scalability of the
attack and makes it more susceptible to detection.

Other than the wide botnet literature, the majority of the
work we found relates to Twitter bots and different tech-
niques to detect them. Ratkiewicz et al. [33] describe the
use of Twitter bots to spread misinformation in the run-up
to the U.S. political elections. Stringhini et al. [37] analyze
to what extent spam has entered OSNs, and how spam-
mers who target these OSNs operate. The authors develop
techniques to detect spammers, and show that it is possi-
ble to automatically identify the accounts they use. Grier
et al. [16] show that 8% of the unique URLs that are sent
in Twitter are later blacklisted. The authors also described
a test on Tweets’ timestamps to identify automated Twit-
ter accounts, or spambots, by regularities in the times when
they tweet, which they have found to have a high accuracy
in identifying Twitter spammers.

7. CONCLUSION
We have evaluated how vulnerable OSNs are to a large-

scale infiltration by a Socialbot Network (SbN). We used
Facebook as a representative OSN, and found that using
bots that mimic real OSN users is effective in infiltrating
Facebook on a large scale, especially when the users and
the bots share mutual connections. Moreover, such social-
bots make it difficult for OSN security defenses, such as the
Facebook Immune System, to detect or stop an SbN as it op-
erates. Unfortunately, this has resulted in alarming privacy
breaches and serious implications on other socially-informed
software systems. We believe that large-scale infiltration in
OSNs is only one of many future cyber threats, and defend-
ing against such threats is the first step towards maintaining
a safer social Web for millions of active web users.
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S. Patil, A. Flammini, and F. Menczer. Truthy:
mapping the spread of astroturf in microblog streams.
In Proceedings of the 20th international conference
companion on World wide web, WWW ’11, pages
249–252, New York, NY, USA, 2011. ACM.

[34] C. P. Robert and G. Casella. Monte Carlo Statistical
Methods (Springer Texts in Statistics). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[35] F. Salem and R. Mourtada. Civil movements: The
impact of Facebook and Twitter. The Arab Social
Media Report, 1(2), 2011.

[36] T. Stein, E. Chen, and K. Mangla. Facebook immune
system. In Proceedings of the 4th Workshop on Social
Network Systems, SNS ’11, pages 8:1–8:8, New York,
NY, USA, 2011. ACM.

[37] G. Stringhini, C. Kruegel, and G. Vigna. Detecting
spammers on social networks. In Proceedings of the
26th Annual Computer Security Applications
Conference, ACSAC ’10, pages 1–9, New York, NY,
USA, 2010. ACM.

[38] C. Taylor. Why not call it a Facebook revolution?
http://edition.cnn.com/2011/TECH/social.media/

02/24/facebook.revolution/, February 2011.

[39] S. T. Tong, B. Van Der Heide, L. Langwell, and J. B.
Walther. Too much of a good thing? the relationship
between number of friends and interpersonal
impressions on Facebook. Journal of
Computer-Mediated Communication, 13(3):531–549,
2008.

[40] J. A. Vargas. Obama raised half a billion online.
http://voices.washingtonpost.com/44/2008/11/

obama-raised-half-a-billion-on.html, November
2008.

[41] B. Viswanath, A. Post, K. P. Gummadi, and
A. Mislove. An analysis of social network-based sybil
defenses. In Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM, SIGCOMM ’10, pages
363–374, New York, NY, USA, 2010. ACM.

[42] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
Captcha: Using hard AI problems for security. In
E. Biham, editor, EUROCRYPT, volume 2656 of
Lecture Notes in Computer Science, pages 294–311.
Springer, 2003.

[43] F. Walter, S. Battiston, and F. Schweitzer. A model of
a trust-based recommendation system on a social
network. Autonomous Agents and Multi-Agent
Systems, 16:57–74, 2008.

[44] H. Yeend. Breaking CAPTCHA without OCR.
http://www.puremango.co.uk/2005/11/breaking_

captcha_115/, November 2005.

[45] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao.
Sybillimit: A near-optimal social network defense
against sybil attacks. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy, pages 3–17,
Washington, DC, USA, 2008. IEEE Computer Society.


