International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 25

Analysis of ANSI RBAC
Support in EJB

Wesam Darwish, The University of British Columbia, Canada

Konstantin Beznosov, The University of British Columbia, Canada

ABSTRACT

This paper analyzes access control mechanisms of the Enterprise Java Beans (EJB) architecture and defines
a configuration of the EJB protection system in a more precise and less ambiguous language than the EJB 3.0
standard. Using this configuration, the authors suggest an algorithm that formally specifies the semantics of
authorization decisions in EJB. The level of support is analyzed for the American National Standard Institute s
(ANSI) specification of Role-Based Access Control (RBAC) components and functional specification in EJB.
The results indicate that the EJB specification falls short of supporting even Core ANSI RBAC. EJB extensions
dependent on the operational environment are required in order to support ANSI RBAC required components.
Other vendor-specific extensions are necessary to support ANSI RBAC optional components. Fundamental
limitations exist, however, due to the impracticality of some aspects of the ANSI RBAC standard itself. This

paper sets up a framework for assessing implementations of ANSI RBAC for EJB systems.

Keywords: American National Standard Institute, Enterprise Java Beans, Middleware, Role-Based
Access Control, Security
INTRODUCTION or specific duty assignments. The ANSIRBAC

The American National Standard for Informa-
tion Technology Role-Based Access Control
(ANSIRBAC) (ANSI, 2004) is a specification
of an access control system in which permis-
sions are associated with roles, and users are
assigned to appropriate roles. RBAC is an
approach to address the needs of commercial
enterprises better than lattice-based manda-
tory access control (MAC) (Bell & LaPadula,
1975) and owner-based discretionary access
control (DAC) (Lampson, 1971). A role can
represent competency, authority, responsibility,

DOI: 10.4018/jsse.2011040102

standard consists of two main parts: the RBAC
Reference Model, and the RBAC System and
Administrative Functional Specification. Both
parts cover four components: the minimum set
offeatures included inall RBAC systems (Core
RBAC), role hierarchies (Hierarchical RBAC),
static constraint relations (Static Separation
of Duty Relations), and dynamic constraints
(Dynamic Separation of Duty Relations). A
major purpose of RBAC is to facilitate access
control administration and review.

Many papers propose ways to support or
implement RBAC using commercial technolo-
gies, e.g., Oracle (Notargiacomo, 1995), Net-
Ware (Epstein & Sandhu, 1995), Java (Giuri,

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

1998), DG/UX (Meyers, 1997), J2EE (Zhang,
Sheng, Niu, Wang, & Zhang, 2006; Bindiga-
navale & Ouyang, 2006), object-oriented sys-
tems (Barkley, 1995), object-oriented databases
(Wong, 1997), MS Windows NT (Barkley &
Cincotta, 1998), enterprise security manage-
ment systems (Awischus, 1997). Evidence of
RBAC becoming a dominant access control
paradigm is the approval of the American
National Standard Institute (ANSI) RBAC
Standard (ANSI, 2004) in 2004.

Atthe same time, commercial middleware
technologies—such as Common Object Request
Broker Architecture (CORBA) (OMG, 1999),
COM+ (Oberg, 2000), Enterprise Java Beans
(EJB) (DeMichiel, Yalginalp, & Krishnan,
2001)—matured, with distributed enterprise
applications routinely developed with the use
of middleware. Each middleware technology,
however, comes with its own security subsystem
(Eddon, 1999; OMG, 2002; Hartman, Flinn,
& Beznosov, 2001), sometimes dependent on
and specific to the underlying operating system
(OS). For instance, COM+ security (Eddon,
1999) is tied into Microsoft Windows OS and
its services.

The ability of a particular middleware
technology to support specific types of access
control policy is an open and practical question.
It is not a simple question for the following
three reasons.

First, different middleware technologies
and their subsystems are defined in different
forms and formats. For example, CORBA
is specified in the form of open application
programming interfaces (APIs), whereas EJB
is defined through APIs as well as the syntax
and semantics of the accompanying extensible
markup language (XML) files used for configur-
ing the EJB container. COM+is defined through
APIs as well as graphical user interfaces (GUI)
for configuring the behavior ofa COM+server.
The variations in the form, terminology, and
format of the middleware definitions lead to
the difficulty of identifying the correspondence
among the (security and other) capabilities of
any two middleware technologies.

Second, the capabilities of the middleware
access controls are not defined in the terms of
any particular access control model. Instead,
the controls are defined in terms of general
mechanisms which are supposed to be adequate
for the majority of cases, and could be config-
ured to support various access control models.
Designed to support a variety of policy types,
as well as large scale and diverse distributed
applications, the controls seem to be a result
of engineering compromises between, among
others, perceived customer requirements, the
capabilities of the target runtime environment,
and their expected usage. Forexample, CORBA
access controls are defined in the terms of the
principal’s attributes, required, and granted
rights, whereas EJB controls are defined using
role mappings and role-method permissions.
Assessing the capability of middleware controls
to enforce particular types of authorization
policies is harder due to the mismatch in the
terminology between the published access con-
trol models and abstractions directly supported
by the controls.

Third, the security subsystem semantics in
commercial middleware is defined imprecisely,
leaving room for misinterpretation. We clarify
the semantics of the security subsystem and
analyze its ability to support ANSI RBAC for
one particular industrial middleware technol-
ogy—EJB.

In this paper, we define the protection
state of the access control subsystem of EJB.
Our definitions offer precise and unambiguous
interpretation of the middleware access controls.
The language of the middleware protection state
enables the analysis of the access control system
on the subject of its support for specific access
control models. To demonstrate the utility of the
protection state definitions and to aid application
developers and owners, we analyzed the degree
to which EJB supports the family of role-based
access control (RBAC) models as defined by
ANSI RBAC Standard (ANSI, 2004).

We have formalized the authorization-
related parts of EJB v.3.0 (DeMichiel & Keith,
2006) into a protection state configuration

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 27

through studying its description and speci-
fications. Then, we used the protection state
configuration to analyze EJB in regards to its
support for ANSI RBAC. When possible, we
showed how the corresponding ANSI RBAC
construct can be expressed in the language of
the EJB protection state. In cases when support
for a specific ANSI RBAC feature required
implementation-dependent functionality, we
explicitly stated what needed to be implemented
by the middleware developers, or configured by
the security administrators. When we could not
identify the means of supportingan ANSIRBAC
feature, we stated so. We have summarized the
results of our analysis at the end of the paper.
Our analysis suggests that the EJB speci-
fication is not capable of fully supporting even
the required Core RBAC component in order
for it to be ANSI RBAC compliant. This is due
to the fact that the EJB specification relies on
(1) the operational environment to provide the
management of user accounts, and the run-time
environmentto manage (2) user sessions, and (3)
role activation. While these limitations can be
easily worked around through vendor-specific
and implementation dependent extensions, each
EJB implementation would have to be evaluated
for ANSIRBAC separately. In order to provide
standard support for administering and review-
ing user accounts, their roles and their sessions,
the corresponding administrative interfaces
would need to be added to EJB, which would be
contrary to the emerging practice of “outsourc-
ing” such functions to enterprise-wide single
sign-on and identity management solutions.
This paper establishes a framework for
implementing and assessing implementations
of ANSIRBAC using EJB. The results provide
directions for EJB developers supporting ANSI
RBAC in their systems, and criteria for users
and application developers for selecting those
EJB implementations that support both required
and optional components of ANSI RBAC.
Therestofthe paperis organized as follows:
In the next section, we provide an overview of
ANSIRBAC and EJB. We then discuss related
work. The following section formally defines

the protection state of the EJB access control
subsystem. Then we discuss how an ANSI
RBAC based access policy maps to the EJB
protection state, and we provide an example.
Following that, we discuss the results of our
analysis. We present our conclusion in the last
section of the paper.

BACKGROUND

This section provides the background to ANSI
RBAC and EJB Security that is necessary in
order to understand the rest of the paper. Read-
ers familiar with both can skip directly to the
next section.

Overview of ANSI RBAC

Role-Based Access Control (RBAC) was
introduced more than a decade ago (Ferraiolo
& Kuhn, 1992; Sandhu, Coyne, Feinstein, &
Youman, 1996). Over the years, RBAC has
enjoyed significant attention. Many research
papers have been written on topics related to
RBAC, and in recent years, vendors of com-
mercial products have started implementing
various RBAC features in their solutions.

The National Institute of Standards and
Technology (NIST) initiated a process to de-
velop a standard for RBAC to achieve a consis-
tent and uniform definition of RBAC features.
An initial draft of a standard for RBAC was
proposed in the year 2000 (Sandhu, Ferraiolo,
& Kuhn, 2000). A second version was later
publicly released in 2001 (Ferraiolo, Sandhu,
Gavrila, Kuhn, & Chandramouli, 2001). This
second version was then submitted to the Inter-
national Committee for Information Technology
Standards (INCITS), where further changes
were made to the proposed standard. Lastly,
INCITS approved the standard for submission
to the American National Standards Institute
(ANSI). The standard was later approved in
2004 (ANSI, 2004). The ANSIRBAC standard
consists of two main parts, as described in the
following sections.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

Figure 1. ANSI RBAC sets, relations, and main functions

e~ =

vf\ SSD /L___> RH
._._\.,

user_sessions

Reference Model

The RBAC Reference Model defines sets of
basic RBAC elements, relations, and functions
thatthe standard includes. This model is defined
in terms of four major RBAC components as
described in the following sections. Figure 1
depicts these RBAC components.

Core RBAC

Core RBAC defines the minimum set of ele-
ments required to achieve RBAC functionality.
At a minimum, core RBAC must be imple-
mented in RBAC systems. The other compo-
nents described below, which are independent
of each other, can be implemented separately.

Core RBAC elements are defined as fol-
lows (ANSI, 2004, pp.4-5):

Definition 1 [Core RBAC]

o USERS, ROLES, OPS, and OBS (us-
ers, roles, operations, and objects
respectively)

o UACUSERS x ROLES, a many-
to-many mapping user-to-role assign-
ment relation.

o assigned_users(r: ROLES) — 275",
the mapping of role r onto a set of
users. Formally, assigned users

(r) = {u € USERS |(u,r) € UA}.

o

PRMS =219"9%) the set of
permissions.

PA C PERMS x ROLES , a many-
to-many mapping permission-to-role
assignment relation.
assigned_permissions

(r: ROLES) — 2"™% the mapping
of role r onto a set of permissions.
Formally: assigned permissions
(r)={p € PRMS (p,r) € PA}.
Op(p : PRMS) — {op € OPS} , the
permission to operation mapping,
which gives the set of operations as-
sociated with permission p.

Ob(p : PRMS) — {ob € OBS}, the
permission to object mapping, which
gives theset of objects associated with
permission p.

SESSIONS = the set of sessions.
session_users (s : SESSIONS) — USERS,
the mapping of session s onto the cor-
responding user.

session_roles

(s : SESSIONS) — 2" the map-
ping of session s onto a set of roles.
Formally, session_roles
(s)C{re ROLES‘(session7users(s7),r) € UA}
avail _session_perms

(s : SESSIONS) — 2" the per-

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 29

Figure 2. Examples of Hierarchical RBAC

Engineering Manager
authorized_permissions = {pe, P, Ps, Pm}
authorized_users = {upm}

Technical Lead
authorized_permissions = {p., py
authorized_users = {u;, U}

Senior Engineer
authorized_permissions = {ps, ps}
authorized_users = {us, U}

Engineer
authorized_permissions = {pe}
authorized_users = {Ue, Uy, Us, Unm}

missions availabletoauserina session

- U

resession _roles(s)

assigned _ permissions(r).

Hierarchical RBAC

This component adds relations to support role
hierarchies. Role hierarchy is a partial order
relation that defines seniority between roles,
whereby a senior role has at least the permis-
sions of all of its junior roles, and a junior role
is assigned at least all the users of its senior
roles. A senior role is also said to “inherit” the
permissions of its junior roles.

The standard defines two types of role
hierarchies. These types are shown in Figure
2, and are defined as follows:

* General Role Hierarchies: provide support
for arbitrary partial order relations to serve
as the role hierarchy. This type allows for
the multiple inheritances of assigned per-
missions and users; that is, a role can have
any number of ascendants, and any number
of descendants.

e Limited Role Hierarchies: provide more
restricted partial order relations that allow
a role to have any number of ascendants,
but is limited to only one descendant.

In the presence of role hierarchy, the fol-
lowing is defined, where r

r
senior T = junior

indicates that r_inherits all permissions of

Engineering Manager
authorized_permissions = {pe, Ps, Pm}
authorized_users = {uy}

Technical Lead
authorized_permissions = {pe, p}
authorized_users = {u}

Senior Engineer
authorized_permissions = {pe, ps}
authorized_users = {us, Upn}

Engineer
authorized_permissions = {pe}
authorized_users = {U, Uy, Us, Um}

T are also users

junior’

and all users of r_

10T
of r

Junior

* authorized users
(r) = {u € USERS|r' > r,(u,r") € UA}
is the mapping of role » onto a set of
users.

* authorized permissions

(r={pe PRMS|7“ >r'\(p,r') € PA}
is the mapping of role » onto a set of
permissions.

Constrained RBAC

The Static Separation of Duty (SSD) Rela-
tions component defines exclusivity relations
among roles with respect to user assignments.
The Dynamic Separation of Duty (DSD) Rela-
tions component defines exclusivity relations
with respect to roles that are activated as part
of a user’s session.

Functional Specification

For the four components defined in the RBAC
reference model, the RBAC System and Ad-
ministrative Functional Specification define the
three categories of various operations that are
required in an RBAC system. These categories
are defined as follows:

The category of administrative operations
defines the operations required for the creation
and maintenance of RBAC element sets and
relations. Examples of these operations are listed

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

below. A complete list of these operations, as
well as their formal definitions is included in
the standard.

* Core RBAC administrative operations
include AddUser, DeleteUser, AddRole,
DeleteRole, AssignUser, GrantPermission,
and so on.

* Hierarchical RBAC administrative opera-
tions include AddInheritance, DeleteInheri-
tance, AddAscendant, and AddDescendant.

* SSD Relations administrative operations
include CreateSsdSet, AddSsdRoleMem-
ber, SetSsdSetCardinality, and so forth.

* DSD Relations administrative operations
include CreateDsdSet, AddDsdRoleMem-
ber, SetDsdSetCardinality, and so on.

e The administrative reviews category de-
fines the operations required to perform
administrative queries on the system.
Examples of Core RBAC administrative
review functions include RolePermissions,
UserPermissions, SessionRoles, and Role-
OperationsOnObjects. Other operations for
other RBAC components can be found in
the standard.

The system level functionality category
defines operations for creating and manag-
ing user sessions and making access control
decisions. Examples of such operations are
CreateSession, DeleteSession, AddActiveRole,
and CheckAccess.

Overview of EJB Security

In this section we provide an overview of EJB
architecture, the main components of an EJB
system, as well as the declarative and runtime
aspects of EJB systems.

EJB

This section provides a brief and informal
overview of Enterprise Java Beans (EJB). More
information can be found in the corresponding
EJB specification. Readers familiar with EJB

are advised to proceed to the EJB Security
Subsystem section.

The EJB standard (DeMichiel & Keith,
2006) defines an architecture for developing
and deploying server-side components written
inJavaprogramming language. EJB architecture
specifies the contracts that ensure the interop-
erability between various EJB components,
clients, and deployment environments. These
contracts ensure thatan EJB product developed
by one vendor is compatible withan EJB product
provided by another vendor.

EJB architecture, similar to other middle-
ware technologies, allows application develop-
ers to implement their business logic without
having to handle transactions, state manage-
ment, multi-threading, connection pooling, and
other platform-dependent deployment issues.

EJB architecture consists of the following
basic parts. These parts are also shown in Fig-
ure 3 for ProductBean, an example Enterprise
Java Bean.

Enterprise Java Bean A server-side software
componentthatis composed of one ormore
Java objects. The enterprise bean exposes
certain interfaces thatallow clients to com-
municate with the bean in compliance with
the EJB specification. This is shown in
Figure 3 as ProductBean. The EJB speci-
fication (DeMichiel & Keith,2006) defines
three main types of enterprise beans: en-
tity, session (which include stateful and
stateless session beans), and message-
driven beans. Depending on the type of the
enterprise bean, its functionality ranges
from a mere object-oriented abstraction of
an entity that exists in persistent storage
(such as a record in a database), to a web
service implementing certain business
logic.

EJB Container Provides services—such as
persistence, concurrency, bean lifecycle,
resource pooling, and security—to the
enterprise beans it hosts. Multiple enter-
prise beans typically exist inside a single
container. The container vendor provides

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 31

Figure 3. Basic parts of EJB architecture for an example Enterprise Java Bean Product

server

container
Remote
Product Local
Product
ProductBean O:
Invoke Invoke

Remote
Client

necessary tools, which are specific to their
container, to help in the deployment of
enterprise beans, as well as runtime support
for the deployed bean instances.

EJB Server Provides the runtime environment

to one or more containers. Since EJB
specification does not explicitly define the
separation of roles between containers and
servers, they are usually inseparable and
come as one system.

EJB Client A software component thatinvokes

methods on the Enterprise Java Bean. The
EJB architecture allows a variety of client
applications toutilize the business logic that
the beans provide. Servlets or Java Server
Pages (JSP), Java stand-alone applications
orapplets are common types of EJB clients.
EJBs can also be clients of other EJBs.
CORBA-based applications, which are not
necessarily developed in Java, may also
be clients of EJBs. All EJB clients access
enterprise beans’ logic through predefined
protocols and software interfaces. These
interfaces define the methods that can be
invoked on the bean.

Remote Business Interface Java interfaces

that are provided by the Enterprise Java
Bean and marked with the @Remote Java

logic in order to support remote access to
methods defined by this interface.

Local Business Interface A Java interface that

is provided by the Enterprise Java Bean
and that supports local access. Clients that
utilize this type of interface have to be col-
located in the same Java Virtual Machine
(JVM) as the Enterprise Java Bean.

Although Enterprise Java Beans are writ-
ten in Java programming language, fully
compliant EJB deployment environments
support the Internet Inter-ORB Protocol
(ITIOP) (OMG, 2004), leveraging IIOP
and the Common Secure Interoperability
Protocol Version 2 (CSIv2) (OMG, 2004)
capabilities, which allow CORBA clients to
access enterprise bean objects, and which
canbe written in languages other than Java.

Declarative Part Defining remote and local

interfaces as well as implementing the busi-
ness logic in EJB is as easy as in standard
Java. Figure 4 shows an example of an
enterprise bean remote interface defini-
tion, and Figure 5 illustrates an example
of the corresponding implementation for
that interface.

In EJB 3.0, the metadata annotations de-

langua.lge metadataannotation. (DeMichiel fined in Java Development Kit (JDK) 5.0 and
& Keith, 2006) The' EJB container t9015 later are used to create annotated Enterprise
handle the generation of the required java Beans. The tools provided by the EJB

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32

International Journal of Secure Software Engineering, 2(2), 25-52, April-dJune 2011

Figure 4. Defining a remote interface for the Product enterprise bean (Product.java)

import javax.ejb.Remote;

@Remote public interface Product {
public float getPrice();
public void setPrice(float newPrice)
throws InvalidPriceException;

Figure 5. Implementing the remote interface for the Product enterprise bean (ProductBean.java)

import javax.ejb.Stateful;

@Stateful public class ProductBean implements Product {

private float price = 0;

public float getPrice()
return price;

}

{

public void setPrice(float newPrice) {

if (price < 0) {

throw new InvalidPriceException();

}

price newPrice;

Container vendors utilize these annotations to
automatically generate proper Java classes as
well as other required EJB interfaces.

As an alternative to metadata annotations,
abean developer can also specify transactional,
security, and other requirements for the ap-
plication using the deployment descriptor—an
XML file with predefined syntax that holds
all the explicit metadata for the assembly. The
descriptor can be later augmented and altered by
an application assembler and deployer, which
play specific roles in the life cycle of enterprise
beans predefined by the EJB specification.

Runtime Part While the remote object model
for EJB components is based on the Remote
Method Invocation (RMI)API(ORACLE,
2007), all invocations between J2EE com-
ponents are performed using [IOP. The use
of the RMI remote invocation model over
the I1OP protocol is usually referred to as

RMI-IIOP. When EJB components use the
RMI-IIOP (mandatory for EJB 2.0 and
higher), the standard mapping of the EJB
architecture to CORBA enables interop-
erability with multi-vendor ORBs, other
EJB servers, and CORBA clients written
in languages other than Java.

Because of the IIOP, the same object refer-
ence used for CORBA is used in the EJB. The
similarities between CORBA and EJB lie in
their use of a secure channel, as well as their
client and server security layer architectures.
For a more detailed explanation of EJB tech-
nology, please refer to Roman, Sriganesh, and
Brose (2005).

EJB Security Subsystem

The EJB protection architecture is conceptu-
ally simple: When the client program invokes

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 33

amethod on a target EJB object, the identity of
the subject associated with the calling client is
transmitted to the EJB object’s container. The
container checks whether the calling subjecthas
arightto invoke the requested method. If so, the
container permits the invocation of the method.

Client Security Service Because of the use
of IIOP and CSIv2, the responsibilities of
an EJB client security service (CSS) are
similar to those of a CORBA CSS:

1. Creating a secure channel with the target
security service (TSS), and

2. Obtaining the user’s authenticated creden-
tials or passing username and password
over the CSIv2 context to TSS, as well as

3. Protecting request messages and verifying
response messages.

Treated by the EJB specification as an
integral part of the server container, a TSS
establishes and maintains a secure channel
with clients, verifies authenticated creden-
tials or performs client authentication itself,
implements message protection policies, and
performs access checks before an invocation
is dispatched to an enterprise bean. Depending
on the application configuration, which is done
through the deployment descriptor, the container
associates the runtime security context of the
dispatched method either with the identity of the
calling client or with some other subject. Other
security-related responsibilities of a container
include the following:

» Isolating the enterprise bean instances
from each other and from other application
components running on the server,

* Preventing enterprise bean instances
from gaining unauthorized access to the
system information about the server and
its resources,

* Ensuringthe security of the persistent state
of the enterprise beans,

e Managing the mapping of principals on
calls to other enterprise beans, or on ac-

cess to resource managers, according to
the defined security policy,

» Allowing the same enterprise bean to be
deployed independently multiple times,
each time with a different security policy.

Implementation of Security Functions The
security parts of the EJB specification
focus largely on authentication and access
control. The specification relies on CSIv2
for message protection, and it leaves sup-
port for security auditing to the discretion
of container vendors. We describe the EIB
access control architecture later.

Authentication User authentication is either
performed by the client’s infrastructure
(such as Kerberos), or by the EJB server
itself. In the latter case, the EJB server
receives user authentication data (only user-
name and password for CSIv2 level 0) or
credentials from a client and authenticates
the client using a local authentication ser-
vice, which is not predefined by the speci-
fication. Once the container authenticates
the client (or verified their credentials), it
enforces access control policies. The notion
ofaprincipal is used in the EJB specifica-
tion to refer to authenticated clients.

Administration Some of the security adminis-
tration tasks of EJB servers are performed
through changes in deployment descriptors.
This includes the definition of security
roles, method permissions, and the specifi-
cation of security identity, either delegated
or predetermined, for dispatching calls to
bean methods. Other tasks, such as map-
ping users to roles, specifying message
protection, administering an audit, and
authentication mechanisms, are beyond
the scope of the EJB specification, and are
therefore left up to the vendors of container
products and deployment tools.

RELATED WORK

Overthe pastdecade, there has been no shortage
of papers proposing ways to support RBAC.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

Mostof'this work, however, is about support for
RBAC96 (Sandhu et al., 1996), which defines
the reference models for plain, hierarchical, and
constrained RBAC, but does not specify the
functions to be supported by an RBAC imple-
mentation. The paucity of analysis or proposals
for supporting ANSI RBAC is not surprising,
given the fact that the standard was published
in 2004. Because of the lack of research on
support for ANSI RBAC, and because of the
significant similarities between RBAC96 and
ANSI RBAC, we review related work on sup-
porting or implementing RBAC96 in operat-
ing systems, databases, web applications, and
distributed systems, including middleware.
Since the mainstream operating systems, with
the exception of Solaris (Sun Microsystems
Inc., 2000), do not provide direct support for
RBAC, researchers and developers have been
employing either groups (e.g., Sandhu & Ahn,
1998; Ahn & Sandhu, 2001), or user accounts
(e.g., Faden, 1999; Chalfant, 2003) to simulate
roles. This choice determines whether more
than one role can be activated in a session. Role
hierarchies are either not supported (Faden,
1999; Sun Microsystems Inc., 2000), or are
simulated by maintaining additional system
files with the role hierarchy and various book-
keeping data (Sandhu & Ahn, 1998; Ahn &
Sandhu, 2001). None of the implementations
we reviewed support static SoD. Just one case
of dynamic SoD comes as a side-effect with
those implementations that simulate roles with
user accounts (Faden, 1999; Chalfant, 2003):
the role set in this DSoD is equal to the set of
all roles in the system, and the cardinality of
the role set is exactly one. In other words, any
session can have only one role activated at any
given time; the current role is deactivated when
another role is activated.

We analyzed DB2 (Tran & Mohan, 2006)
and MySQL (MySQL AB, 2007), and updated
the analysis of RBAC support in commercial
database management systems (DBMS)—con-
ducted by Ramaswamy and Sandhu (1998)—
with the latest versions of the corresponding
systems. Commercial DBMS continue to
have the most advanced support for RBAC96.

Informix Dynamic Server v7.2 (IBM, 2005),
IBM DB2 (Tran & Mohan, 2006), Sybase
Adaptive Serverv11.5 (Sybase Inc.,2005), and
Oracle Enterprise Server v8.0 (Baylis, Lane, &
Lorentz, 2003) directly support roles and role
hierarchies. Only Oracle and Sybase allow us-
ers to have more than one role activated at any
time, though. On the other hand, Informix also
provides limited support for dynamic SoD, and
Sybase features support for both types of SoD.

InRBAC implementations for client-server
systems, including Web applications, roles are
either “pushed” from the client to the server
in the form of attribute certificates or HTTP
cookies (Gutzmann, 2001; Park, Sandhu, &
Ahn, 2001; Robles, Choi, Yeo, & Kim, 2008),
or “pulled” by the server from a local or remote
database (Bartz, 1997; Ferraiolo, Barkley, &
Kuhn, 1999; Park et al., 2001; Chadwick &
Otenko, 2002; Zhou & Meinel, 2004). The
former enables selective activation of roles by
users, and the latter simplifies the implementa-
tion of client authentication, but activates all of
the assigned roles for the user. However, Web
implementation of NISTRBAC (Ferraioloetal.,
1999) has ahybrid design, which allows the user
to select the roles to be “pulled” by the server.
A number of implementations use a database,
possibly accessible through the Lightweight
Directory Access Protocol (LDAP) (Wabhl,
Howes, & Kille, 1997) front-end to store role
and other information (Bartz, 1997; Gutzmann,
2001; Park etal.,2001; Zhou & Meinel, 2004).
Role hierarchies are only supported by some
implementations, using either manual assign-
ment of permissions of junior roles to senior
ones (Park et al., 2001), additional files (Gturi,
1999), a database (Ferraiolo et al., 1999) or
an LDAP server (Chadwick & Otenko, 2002;
Zhou & Meinel, 2004). JRBAC-WEB (Giuri,
1999) and RBAC/Web (Ferraiolo et al., 1999)
also support both types of SoD.

The work most relevant to ours addresses
support for RBAC in middleware. Ahn (2000)
outlines aproposal for enforcing RBAC policies
for distributed applications that utilize Micro-
soft’s Distributed Component Object Model
(DCOM) (Brown & Kindel, 1998; Microsoft,

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 35

1998). His proposal employs the following
elements of Windows NT’s architecture: (1)
a registry for storing and maintaining the role
hierarchy and permission-to-role assignment
(PA); (2) user groups for simulating roles and
maintaining user-to-role assignment (UA); and
(3) a custom built security provider that fol-
lows the RBAC model to make access control
decisions, which are requested and enforced
by the DCOM run-time. Since the support for
role hierarchy is indicated, but not explained,
by Ahn (2000), we assume that the Windows
NTregistry can be used to encode the hierarchy
so that the RBAC security provider can refer
to it while making authorization decisions.
Similar to the proposals for RBAC support in
operating systems, the use of OS user groups
for simulating roles enables activation of more
than one role. Yet, as with the pull model in
client-server systems, all assigned roles are
activated, leaving no choice for the user. Ahn
(2000) does not indicate support for any kind of
SoD, nor does he explain how RBAC policies
can be enforced consistently and automatically
in a multi-computer deployment of DCOM-
accessible objects.

RBAC-JaCoWeb (Westphall & da Silva
Fraga, 1999; Obelheiro & da Silva Fraga,2002)
utilizes the PoliCap (Westphall, da Silva Fraga,
Wangham, Obelheiro, & Lung, 2002) policy
server to implement CORBASec specification
in a way that supports RBAC. PoliCap holds
all data concerning security policies within a
CORBASec policy domain, including users,
roles, user-to-role and role-to-permission as-
signments, role hierarchy relations, and SoD
constraints. Most of the authorization policy en-
forcementis performed by an RBAC-JaCoWeb
CORBA security interceptor. At the time of the
clientbinding toa CORBA object, the intercep-
tor obtains necessary data from the PoliCap
server and instantiates CORBASec-compliant
DomainAccessPolicy and RequiredRights
objects containing the privilege and control
attributes appropriate for the application object.
When the client makes invocation requests later,
the access decisions are then performed based
on the local instances of these objects. Initially,

the client security credentials object—created as
part of the binding—has no privilege attributes,
only Accessld, which is obtained from the cli-
ent’s X.509 certificate used in the underlying
SSL connection. If the invocation cannot be
authorized with the current set of client privilege
attributes, the interceptor “pulls” additional
role attributes from the PoliCap server. Only
those roles that are (1) assigned to the user,
(2) necessary for the invocation in question to
be authorized, and (3) not in conflict with any
DSoD constraints are activated. These role at-
tributes are added to the client’s credentials and
are later re-used on the server for other requests
from the same principal. The extent to which
RBAC-JaCoWeb conforms to the CORBASec
specification is unclear (Westphall & da Silva
Fraga, 1999; Obelheiro & da Silva Fraga,2002).
Nevertheless, RBAC-JaCoWeb serves as an ex-
ample of implementation-specific extensions to
CORBAsec thatenable better support forRBAC
advanced features, such as role hierarchies and
SoD, which—as will be seen from the results
of our analysis—cannot be supported without
extending a CORBASec implementation with
additional operations.

EJB Protection State

Inthis section, we first introduce the EJB access
control architecture. Then, we formally define
a configuration of the EJB protection state.

EJB Access Controls

An EJB container controls access to its beans
at the level of an individual method on a bean
class, although not a bean instance. That is, if
different instances of the same bean have dif-
ferent access control requirements, they should
be placed in different application assemblies,
which are defined by JAR files. This means
that the scope of the EJB’s policy domain is
the application assembly.

The EJB access control architecture pro-
vides two ways for enforcing access control
decisions. One approach, known in EJB termi-
nology as declarative security, is to configure
the container to enforce an authorization policy.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

The other is achieved by coding authorization
decision and enforcement logic into the bean
methods. Inthe former case, access permissions
of principals are defined either using deploy-
ment descriptors, or through code annotations.
The declarative approach decouples business
logic from security logic. In the latter approach,
known as programmatic security, the applica-
tion developers employ methods called IsCal-
lerInRole and getCallerPrincipal to obtain the
information about the caller in order to enforce
those access control policies, which cannot be
expressed using the declarative approach.

Authorization to invoke the enterprise
bean’s methods is enforced by the container.
It grants or denies clients’ requests to execute
the methods in conformance with access control
policies described in the deployment descriptor
and/or through the bean’s metadata annotations.
Since the bean’s metadata annotations are
equivalent in the expressiveness to the policies
supported by the deployment descriptor, we use
only the latter in the rest of the paper. Access
control decisions are based on the security roles
(or just “roles” for short) of the principal, who
represents the calling client. The security role is
defined in the EJB specification as “a semantic
grouping of permissions that a given type of
users of the application must have in order to
successfully use the application” (DeMichiel &
Keith, 2006, p.456). As defined by the specifica-
tion, there are three types of deployment descrip-
tor sections relevant to the declarative access
control: security-role, method-permission, and
exclude-list. The exclude-list section lists those
methods that cannot be called by any principal,
no matter which roles the principal has. Figure
6 uses Unified Modeling Language (UML)
(OMG, 2007a, 2007b) notation to summarize
the relationships among authorization-related
sections of the deployment descriptor and the
elements of an EJB application. In the rest of
this section, we describe syntax and semantics
of the two other sections.

Each security-role section lists a role with
optional human-readable unstructured descrip-
tion of the role. This role can be referenced in
other sections of the deployment descriptor. In

essence, these sections define a set of roles for
an EJB application.

The assignment of permissions to roles
is done in method-permission sections. Such
sections list roles permitted to invoke one or
more methods. When the special role name
is “unchecked” it can be used to indicate that
all the roles are permitted to invoke the listed
method(s). Each method is defined by the name
of the bean class, method name, and, option-
ally, the formal parameter types to distinguish
methods with overloaded names. The special
method name “*” refers to all methods on a
given bean.

Anexample of anassignment done through
method-permission sections is shown in Table
1. The first row illustrates an assignment of a
permission to invoke method m onbeanb, (b,.
m,)toroler,. The second row shows how several
roles (r, and r,) can be granted permissions to
invoke any of the listed methods (b,.m, and
b,.m,). This means that any principal that has
any of these two roles can invoke any of these
two methods. The lastrow provides an example
of using “unchecked” and “*” keywords. It
states that any principal can invoke method
b,.m, as well as any method on bean b,. The
overall set of methods a principal can invoke on
a given EJB application is the union of all the
methods the principal’s roles are permitted to
invoke. For example, if a deployment descrip-
tor contains only the three method-permission
sections listed in Table 1, then a principal with
roler, is granted permission to invoke methods
b,.m,,b.m,b,.m ,andany method onbeanb..

If a method (1) is not listed in any of the
method-permission and exclude-list sections
of a deployment descriptor, and (2) has no @
DenyAll annotation in the code, then it is ac-
cessible by any principal—according to Section
17.3.2.3 of the EJB specification (DeMichiel
& Keith, 2006), methods with unspecified
permissions must be treated by the container
as “unchecked.” For instance, if' b,.m, is such
a method then any principal would be able to
invoke it.

Even though the syntax of the method-
permission section allows the listing of more

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 37

Figure 6. Relationships among the sections of deployment descriptor used for expressing access
control policy and the elements of an EJB application

container

0.% security-role 1.%

[

0..1
hosts [0..%

application deplby_ment
- descriptor @ grants
0..* 0..*
method-
0.% bean 0..* permission on permission
. o
0..*
*
denies access on 0.. 0..*
o o < exclude-list
defines denies access on ?0..*
oA method
i 0..*
permission on
0..*

Table 1. Examples of method-permission sections of EJB deployment descriptor. For the sake of
clarity, the data representation is converted from XML notation to human-understandable form,
with each row corresponding to an individual section

Roles Methods
r, b,.m,
I, T, b.m, b .m,
“unchecked” b, m,b,.*

than one role and method, we will assume
without the loss of generality that each sec-
tion contains only one role and one method, as
shown in the first row of Table 1. It is easy to
define an algorithm for converting any number
of method-permission sections inadeployment
descriptor to this form. This assumption will
simplify the definition of the protection state
and the algorithm for making access control
decisions in the following section.

In addition to the above deployment
descriptor sections, EJB server vendors (or
container providers) define container-specific
sections of deployment descriptors that map

users and/or groups to roles. Table 2 shows
additional deployment descriptor sections for
major commercial EJB servers. Since the no-
tions of users, groups, and the mapping from
them to roles are lacking from the EJB v3.0
specification, these vendor-specific additions
to the EJB system will not be used for defining
the EJB protection state.

Formalization of the Protection
State

In this section, we formalize the semantics of
the EJB access control architecture.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

Table 2. Additional authorization-related sections used in deployment descriptors of commercial

EJB servers
App. Server Section(s) Comments
Oracle users, groups A security-role-mapping XML tag maps logical roles defined
in the application deployment descriptor to entities defined in
the users and groups sections

Sun ONE principal-name, group- | A security-role-mapping tag defines mapping between princi-

name pal-names and roles, and/or between group-names and roles

BEA WebLogic principal-name A security-role-assignment XML tag declares mapping be-

tween principal-names and roles
IBM WebSphere Users, groups Tools establish user-group memberships and mapping between
groups and roles

Definition 2 [EJB Protection State].4 con-
figuration of an EJB system protection
state is a tuple (R,B,M,MP.X) interpreted
as follows:

° R is a set of roles defined in the
assembly-descriptor part of the de-
ployment descriptor provided with
the EJB application. These roles are
defined using the security-role tags.
This set also includes the special role
“unchecked”.

° B is a set of enterprise beans listed
in the enterprise-beans section of the
deployment descriptor.

o OPSis aset of methods defined by the
enterprise beans of the application.
Members of this set are denoted as m,.
The set also includes special method
“*” for any bean defined by the
application and signifying any
method on that bean; for example,
OPS = {m ,,m,,...} U{*}.

o M C BxOPS isthesetofavailable
uniquely identifiable methods. Mem-
bers of this set are denoted b.. m,

o MPCRxM is a many-to-many
permission assignment of EJB ap-
plication roles to invoke methods, as
specified in method-permission sec-
tions of the application’s deployment
descriptor.

o X C M is a subset of methods—de-
fined by exclude-list sections of the

deployment descriptor—invocation of
which is denied to any role.

Note that the implementations of EJB con-
tainers and servers commonly have extensions
to the deployment descriptors, which enable
defining sets of users and groups, as well as
assigning them to roles. Such vendor-specific
extensions result in additional elements of the
protection state. However, all elements defined
in Definition 2 are present in any EJB imple-
mentation compliant with the specification.
When analyzing EJB support for RBAC in the
following section, we will identify additional
elements of EJB protection state that are neces-
sary for the support.

Given the protection state of an EJB ap-
plication, Algorithm 1 defines the outcome of
an access control decision. First, a check is
performed on the membership of the requested
method in the list of blocked methods. If the
methodis found in the list, then accessis denied.
Ifnot, then the method permissions are checked
for every role of the principal and the special
role “unchecked.” If no appropriate element is
in MP, then access is denied.

ANALYSIS OF SUPPORT
FOR ANSI RBAC

As described in the section titled Overview
of ANSI RBAC, the ANSI RBAC Reference

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 39

Algorithm 1. Authorization decision in EJB. Decide authorization for principal invoking meth-
od m, on bean b, where 1,1 ,..r € R, and bm €M

Authorize(p:QH,QJn]:Al)—»{aﬂougdeny}
ifb1,m] € X then
return deny
end if
for all r e pU{"unchecked"} do
if (r,b.m)e€ MPV(r,b*)€ MP then
return allow
end if
end for

return deny

Model defines four major components. In order
for a system to conform to ANSI RBAC, Core
RBAC must be implemented at a minimum.
An ANSI compliant RBAC system can also
implement Hierarchical RBAC, which defines
hierarchies of roles in addition to everything
Core RBAC does. The other two optional
components of the standard, Static Separa-
tion of Duty (SSD) and Dynamic Separation
of Duty (DSD), define relations among roles
with respect to user assignments as well as role
activation in user sessions.

We first examine the extent to which an
EJB protection state—as formalized in Defi-
nition 2 —can support each of the four ANSI
RBAC model components. We then provide
an example that illustrates the abilities of an
EJB system to support ANSI RBAC. Follow-
ing that, we analyze the degree to which the
structures defined in EJB specification support
the functional specification of ANSI RBAC.
In the Discussion section, we then discuss the
results of our analysis.

Reference Model

Core RBAC

Various Core RBAC data elements are mapped
readily into EJB using the sets defined in the
EJB Protection State section. For example, the
ROLES setin RBAC maps directly to R, which
defines the EJB security roles; RBAC objects

(OBJ) are equivalent to EJB beans (B); RBAC
operations (OPS) are represented by EJB OPS.
The representation of other relations defined
in Core RBAC is outside the scope of the EJB
standard, as we will discuss later in this section.
We first define Core RBAC in the language
of the EJB protection system more formally
as follows:

Definition 3 [Core RBACin EJB|.Core RBAC
in the language of EJB is defined by the
EJB system protection state outlined in
Definition 2, as well as the following ad-
ditional elements:

o USERS is the set of users, where
members of this set are defined in
the operational environment of the
EJB system.

o ROLES = R, is the set of roles as
defined in Definition 2.

o OBS = B is a set of enterprise beans.

o UA=USERS x ROLES isamany-
to-many assignment of users to roles.

o assigned_users
(r: ROLES) = {u € USERS |(u,r) € UA}
is a function that returns the set of
users in USERS that are assigned to
the given role r.

o PRMS C M — X is a set of permis-
sions to invoke EJB methods provided
that these methods do not exist in the
exclusion set X. The existence of bl.. m,

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Secure Software Engineering, 2(2), 25-52, April-dJune 2011

orb.*in PRMS rovides permission to
invoke a specific method m, or all
methods on bean b, respectively.

o PAC PRMSxROLES, a many-
to-many assignment of permissions to
roles.

o assigned permissions
(r: ROLES) = {p € PRMS|(p,) € PA},
is a function that returns the set of
permissionsin PRMS thatare assigned
to the given role r.

o Op(p: PRMS)— {op € OPS}, a
functionthat returns a set of operations
that are associated with the given
permission p.

o Ob(p: PRMS) — {ob€ OBS}, a
function that returns a set of objects
that are associated with the given
permission p.

o SESSIONS is a set of sessions for a
specific application. Members of this
set are mappings between authenti-
cated users and their activated roles
for a specific EJB application.

° session_users
(s : SESSIONS) — USERS , the
mapping of session s onto the corre-
sponding user.

o session_roles

(s : SESSIONS) — 2" themap-

ping of session s onto a set of roles.

Formally: session_roles

(5,)C{re ROLES‘(session_use'r's(s[),'r') € UA}.
° avail session_perms

(s : SESSIONS) — 2" the per-

missions availabletoauserinasession

= U

resession _roles(s)

assigned _ permissions(r).

In order to support Core RBAC in EJB
systems, Definition 3 identifies additional ele-
ments to those identified in Definition 2. These
additional elements are related to users and
sessions. In the rest of this section we discuss
how elements of Definition 3 are or can be
supported in an EJB system.

Although the EJB standard (DeMichiel
& Keith, 2006) does not mandate how users
must be supported in an EJB system, various
implementations of EJB servers and containers
implement extensions to deployment descrip-
tors. These extensions provide support for
adding users to the system, as well as mapping
those users toroles. The USERS setin Definition
3 abstracts this support; however, this support
is implementation-dependent. By the same
token, support for UA and assigned users is
also implementation-dependent.

The SESSIONS set is another element of
Definition 3. In relation to support for users,
the EJB standard does not specify a mapping of
authenticated users to roles, or more precisely,
role activation. Hence, EJB server’s support for
sessions is outside the scope of the EJB standard
and is implementation-dependent. Similarly,
in order to fully support Core RBAC, EJB
implementations’ support for session-related
functions such as session_users, session_roles,
and avail session_perms are outside the scope
of the EJB standard.

On the other hand, the sets ROLES, OPS,
and OBS; the relations PRMS and PA; and the
functions Op and Ob are all supported by the
EJB standard as these can be readily obtained
from the deployment-descriptor.

To summarize, about half the elements
of ANSI Core RBAC can be provided by
any implementation compliant with the EJB
standard; however, support for USERS, UA,
assigned_users, SESSIONS, session_users,
session_roles,and avail_session_perms,which
relate to users and sessions, if provided, can
only be implementation-dependent.

Hierarchical RBAC

The Hierarchical RBAC component speci-
fies two types of role hierarchies: general
and limited. Both types are formally defined
using elements of Core RBAC. In addition to
role hierarchies, Hierarchical RBAC defines
two functions: authorized users and autho-
rized_permissions. Although the EJB standard
does not provide direct support for Hierarchical
RBAC, an EJB implementation can still emulate

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 41

both types of role hierarchies. The rest of this
section discusses ways of emulating Hierarchi-
cal RBAC in EJB.

EJB server administrative tools can be
modified in order to support role hierarchy.
First, the administrative tools must maintain
hierarchy relationships between roles in a
repository. Second, the tools must ensure that
when method permissions are granted to a
certain role in a deployment descriptor, those
method permissions are also appropriately and
consistently granted to all senior roles. Finally,
the administrative tools must also keep track of
whether permission has been directly assigned
to arole, or if the role inherited this permission
through a role hierarchy. No special run-time
support for role hierarchies would then be
needed. This approach is similar to the ones
used inAhn and Sandhu (2001) and Sandhu and
Ahn (1998) in order to support role hierarchy
in various operating systems.

An alternative is an approach in which
inherited permissions are determined at run-
time. This approach would require the EJB
server—or more specifically the Target Security
Service (TSS) described earlier—to examine
the role hierarchy repository during run-time.
A certain role is then granted permission to
invoke a specific method not only based on
direct permission-to-role assignment, but also
based on permissions granted to a junior role.
In addition to a repository that maintains role
hierarchy relationship, a run-time computation
of inherited permissions would be required. A
similar approach is adopted in (Ferraiolo et al.,
1999) for Common Gateway Interface (CGI)
based Web applications, and in (Giuri, 1999) for
Java Authentication and Authorization Service
(JAAS)(ORACLE,2001)based access control.

With either of the above approaches,
support for this role hierarchy—and the au-
thorized _users and authorized_permissions
functions required for Hierarchical RBAC—is
implementation-dependent and is not specified
by the EJB standard.

Constrained RBAC

The Constrained RBAC component introduces
separation of duty relations to the RBAC refer-
ence model. As with Hierarchical RBAC, these
relations are defined in terms of Core RBAC
constructs. In essence, SSD constrains user-to-
role assignment (UA set and assigned users
function) and the role hierarchy (RH set and
authorized_users function). DSD, on the other
hand, constrains the role activation (SESSIONS
set and session_roles function). Since user
accounts, role hierarchies, and role activation
are beyond the scope of EJB, the Constrained
RBAC component, if supported, would have
to be implementation-dependent.

Example

In this section, we present an example that
illustrates the abilities of an EJB system to sup-
port ANSIRBAC. As discussed in the previous
section, the EJB standard does not provide direct
support for role hierarchy; however, emulation
of such support is possible as discussed earlier,
and is straightforward. Hence, role hierarchy is
not illustrated in this example.

The example in this section consists of a
simple system that maintains employee and
engineering project records in an engineering
company. The system allows different users to
perform various operations on the project and
employeerecords, based onthe users’roles in the
company. The system handles the manipulation
of various records through enterprise beans of
two types: EngineeringProject and Employee.
These enterprise beans are depicted in Figure
7. The figure shows the methods that can be
invoked on the beans. The system also defines
seven different user roles. Based on these roles
and according to the policies listed in Figure 8,
users are allowed to invoke various methodsona
specific EJB. Theseroles are defined as follows:

» Employee represents a company
employee.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of Secure Software Engineering, 2(2), 25-52, April-dJune 2011

Figure 7. Example EngineeringProject and Employee session beans

<< Session Bean >>
EngineeringProject
+ makeChanges()

+ reviewChanges()

+ inspectQuality()

+ reportProblem()

+ closeProblem()

+ createMewRelease()
+ getDescription()

+ close()

<< Session Bean>>

Employee

+ getBasicinfo()

+ assignToProject()

+ unassignFromProject()

+ reportProblem()

+ addExperience()

+ getExperience()

+ fire()

Figure 8. Authorization policy for the example EJB system describing what actions are allowed.

All other actions are denied.

projects.

of projects to which they are assigned.

engineers, can also close problems.

1. Anyone in the organization can look up an employee’s basic information, such as their
name, department, phone number, and office location.

2. Everyone in the engineering department can get a description of and report problems
regarding any project and look up experience of any employee.

3. Engineers, assigned to projects, can make changes and review changes related to their

4. Quality engineers, in addition to being granted engineers’ rights, can inspect the quality

5. Product engineers, in addition to possessing engineers’ rights, can create new releases.
6. The project lead, in addition to possessing the rights granted to product and quality

7. The director, in addition to being granted the rights of project leads, can manage
employees (assign them to projects, un-assign them from projects, look up experience,
add new records to their experience, and fire them) and close projects.

* Engineering Department represents an
employee of the engineering department.

* Engineer performs various engineering
tasks in the company.

* Product Engineerisresponsible formanag-
ing a product line.

* Quality Engineer is a quality assurance
engineer.

* Project Lead oversees and leads the devel-
opment of a project.

* Director is an engineering department
director.

Theaccess control policy that defines what
actions eachroleis allowed to perform are sum-
marized in Table 3, where a check mark (“”)
denotes a granted permission for a specific EJB
role to execute the corresponding enterprise
bean method. Table 4 shows an example of

system users, and their group memberships.
Tables in Figure 9 show examples of user-to-role
and group-to-role assignments. The following
is a formalization of this example system’s
protection state as in Definition 2.

* R={Employee, Engineering Department,
Engineer, Product Engineer, Quality En-
gineer, Project Lead, Director}

* B ={ EngineeringProject, Employee }

* OPS = { makeChanges, reviewChanges,
inspectQuality, reportProblem, closeProb-
lem, createNewRelease, getDescription,
close, getBasiclnfo, assignToProject,
unassignFromProject, addExperience,
getExperience, fire}

* M= { EngineeringProject.makeChanges,
EngineeringProject.reviewChanges, Engi-
neeringProject.inspectQuality, Engineer-

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 43

Table 3. Permission-to-role assignment for the example

M M M p M M M sow211q
M IS s peoT 100lorg
100uIBus
M M p Auend
Jo0uIsug
S IS S 1onpoig
M M M M JoouISug
juauntedoq
IS M M M Suroourduyg
M M dokordurg
(Owaf
-01d
()ooua | -worg
()oouarx -1ad -uss (0olo1g ()oy (yuon (Josearoy | (yworqoig (Yuoy (Okrendy ()seSuey) | ()seSuey)
(Jomy | -odxg1e3 | -xgppe -seun | -opudisse -uporseqlad ()asopo | -duosa(ied MONOIBAID 2s0[o | -qoiqiodar -oadsur -MOTAI -oyewr
uvag aadojdusy uvag 10204 3u112211315
SPOYRIA sa[0y

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Secure Software Engineering, 2(2), 25-52, April-dJune 2011

Table 4. Example users, groups, and group membership

User Group
Alice accounting
Bob hardware
Carol software
Dave software
Eve software
Fred management

Figure 9. Example EJB system role mappings

User Role
Alice Employee

Bob Engineer
Carol Quality Engineer

Dave Product Engineer Group Role

Eve Project Lead hardware | Engineering Department
Fred Director software | Engineering Department

(a) User-to-role assignment

ingProject.reportProblem, Engineering-
Project.closeProblem, EngineeringProject.
createNewRelease, EngineeringProject.
getDescription, EngineeringProject.close,
Employee.getBasicInfo, Employee.assign-
ToProject, Employee.unassignFromPro-
ject, Employee.addExperience, Employee.
getExperience, Employee.fire }
MP={(Employee, Employee.getBasicInfo),
(Employee, Employee.getExperience),
(Engineering Department, Engineering-
Project.reportProblem),

(Engineering Department, Engineering-
Project.getDescription),

(Engineering Department, Employee.
getBasiclnfo),

(Engineering Department, Employee.
getExperience),

(Engineer, EngineeringProject.make-
Changes),

(Engineer, EngineeringProject.review-
Changes),

(Engineer, Employee.getBasicInfo),

(b) Group-to-role assignment

(Engineer, Employee.getExperience),
(Product Engineer, EngineeringProject.
createNewRelease),

(Engineering Department, Employee.
getBasicInfo),

(Engineering Department, Employee.
getExperience),

(Quality Engineer, EngineeringProject.
inspectQuality),

(Quality Engineer, Employee.getBasicInfo),
(Quality Engineer, Employee.getExperi-
ence),

(Project Lead, EngineeringProject.closeP-
roblem),

(Project Lead, Employee.getBasicInfo),
(Project Lead, Employee.getExperience),
(Director, EngineeringProject.close),
(Director, Employee.getBasicInfo),
(Director, Employee.assignToProject),
(Director, Employee.unassignFromProject),
(Director, Employee.addExperience),
(Director, Employee.getExperience),
(Director, Employee.fire) }

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 45

e X=90

The R and B sets contain the roles and beans
defined in the system. OPS defines all opera-
tions available to various roles. These methods
are further qualified by the M set, where each
method is qualified with the name of the bean
for which it is defined. The MP set represents
Table 3, and MP is a many-to-many permission
assignment of EJB application roles to invoke
defined methods. These permissions are listed in
the method-permission sections of the applica-
tion’s deployment descriptor. This example does
notrequire any methods to be in the exclude-list
sections of the deployment descriptor for the
application; hence, set X is empty.

We use the above formalization of the
example system’s protection state in order to
supportthe ANSI Core RBAC reference model.
Considering Definition 3, the content of ROLES,
OPS, and OBS is straightforward. The rest of
the sets are defined as follows.

e USERS = { Alice, Bob, Carol, Dave, Eve,
Fred, accounting, hardware, software,
management }

 UA = { (Alice, Employee), (Bob, Engi-
neer), (Carol, Quality Engineer), (Dave,
Product Engineer), (Eve, Project Lead),
(Fred, Director), (hardware, Engineering
Department), (software, Engineering De-
partment), (Bob, Engineering Department),
(Carol, Engineering Department), (Dave,
Engineering Department), (Eve, Engineer-

ing Department)}
e PRMS=M
e PA=MP

The EJB 3.0 standard does not specify how
EJB roles should be mapped to the user groups
and accounts that exist in the bean’s operational
environment. This makes the USERS and UA
sets dependent solely on the EJB container’s
operational environment, and the way users are
managed there. For example, the UA setcontains
assignments that exist only due to user-group
memberships. Inthis example, Carol is assigned

tothe Engineering Departmentrole through her
software group membership.

Functional Specification

This sectionreports on the results of our analysis
ofthe support that the EJB standard (DeMichiel
& Keith, 2006) can provide for ANSI RBAC
system and administrative functional specifi-
cations. For the purpose of this analysis, we
examined every function specified in Section
6 of the ANSI publication (2004) on the subject
of'its support by an EJB container conforming
to the EJB standard.

Results of our examination suggest that
the software interfaces that the EJB standard
mandates are insufficient forimplementing most
of ANSI RBAC functions as is. Furthermore,
the XML data structures needed in the EJB
deployment descriptor are incapable of fully
supporting an ANSI RBAC compliant system.
These data structures can provide support for
implementing a limited number of Core RBAC
functions. Other system and administrative Core
RBAC functions, as well as all additional func-
tions for Hierarchical and Constrained RBAC,
cannot be supported without extending an EJB
system implementation beyond what the EJB
standard defines.

The following is an examination of various
Core RBAC functions and their level of support
in the EJB standard.

AddUser, DeleteUser operations allow users
to be added to the USERS set and to be
removed from it. In an EJB environment,
these are realized in a implementation-
dependent manner. For example, the IBM
WebSphere Application Server (Sadtler et
al.,2004) allows EJB application deployers
touse various user registries to maintain the
USERS set. WebSphere can be configured
to use the local operating system user ac-
counts,an LDAP (Wabhletal., 1997) server,
or a custom user registry.

AddRole, DeleteRole add roles to and delete
roles from the RBAC system. EJB data
structures provide direct support for

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of Secure Software Engineering, 2(2), 25-52, April-dJune 2011

implementing these functions. They can
be implemented by adding or removing a
role definition using the security-role tags
in the assembly-descriptor section of the
deployment descriptor file.

AssignUser, DeassignUser allow assignment
relationships to be established between
roles and users. Similar to AddUser and
DeleteUser, these operations need to
be implemented in an implementation-
dependent manner.

GrantPermission, RevokePermission allow
invocation permissions to be granted to, or
revoked for, acertainrole. These operations
canbe implemented by adding or removing
the corresponding method-permission sec-
tion of the deployment descriptor.

CreateSession, DeleteSession, AddActi-
veRole, DropActiveRole allow for the
creation and deletion of sessions, as well
as activation of user roles. In an EJB en-
vironment, these operations are likely to
be implemented in a proprietary manner
and would differ from one EJB application
server to another.

CheckAccess make an access control decision.
The Authorize method in Algorithm 1 can
be used to implement CheckAccess.

AssignedUsers, AssignedRoles return users
assigned to a given role, and roles as-
signed to a given user, respectively. Since
these functions are not supported in EJB
3.0, they need to be provided by the EJB
application server.

Advanced Review Functions
for Core RBAC

RolePermissions returns the permissions
granted to a given role. This function can
be implemented by examining the method-
permission sections, where method permis-
sions are granted to roles.

UserPermissions returns permissions assigned
tousers. Given the permissions assigned to
roles (using the RolePermissions function),
andknowingtheroles the useris assigned to

(using AssignedUsers), the implementation
of this function is straightforward.

SessionRoles, SessionPermissions return the
roles and permissions associated with a
specificuser session. These can be provided
by the EJB application server assuming that
the server implementation already supports
the notion of sessions.

RoleOperationsOnObject, UserOperation-
sOnObject return a set of operations that
can be invoked on an object given a certain
role or a certain user, respectively. The
operations that a certain role is permitted
to invoke can be obtained directly from the
method-permission sections of the deploy-
ment descriptor. The operations that a user
is permitted to invoke, on the other hand,
can be obtained given the implementation
ofthe RoleOperationsOnObject as well as
the AssignedRoles functions.

Table 5 provides a summary of the above
results. The table classifies support for ANSI
Core RBAC functions in two main categories.
The first category contains functions that are
supported directly by EJB data structures,
whereas the second category identifies the
supplemental components that must be imple-
mented in an EJB system—outside the scope
of the EJB specifications—in order to support
the specified ANSI Core RBAC functions.
These components are identified as related to
user management, session and role activation.
The user management related components are
required to handle the addition/deletion of users
from the system, as well as user-to-role assign-
ments. On the other hand, the session and role
activation related components are required to
handle the management of user sessions and
activation of permissions.

Discussion

The results of our analysis suggest that EJB
functionality — as defined through the data
structures and interfaces — falls short of fully
supporting ANSI RBAC without resorting to
vendor-specific extensions. Even in the case of

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 47

Table 5. Functions defined by ANSI Core RBAC and their support by EJB data structures

Core RBAC Functions

Additional Required Components

EJB Data
Structures
Support

Sessions and Role
Activation

User Management

Administrative Commands

AddUser

DeleteUser

AssignUser

DeassignUser

2| 2| 2| <

AddRole

DeleteRole

GrantPermission

2 | 2| 2| <

RevokePermission

Supporting System Functions

CreateSession

DeleteSession

AddActiveRole

DropActiveRole

2 | 2| 2| =

CheckAccess v

Review Functions

AssignedUsers

AssignedRoles

Advanced Review Functions

RolePermissions RN

SessionPermissions

UserPermissions

SessionRoles

RoleOperationsOnObject \

UserOperationsOnObject

Core RBAC alone — the mandatory part of any
compliant implementation of ANSI RBAC —
there are two major causes of this inadequacy.

The two major limitations of EJB are its
lack of the notion of user accounts and support
fortheirmanagement (i.e., adding, deleting, (un)
assigning to/from roles), as well as the lack of
support for user sessions and role activation.

According to ouranalysis, which is summarized
in Table 5, this limitation results in two thirds
of Core RBAC functions being dependent on
vendor-specific extensions (see column “Ad-
ditional Required Components”). The architects
of EJB might have intentionally left the notion
of user and support for user management as
well as session and role activation beyond the

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48 International Journal of Secure Software Engineering, 2(2), 25-52, April-dJune 2011

scope of the specification. In order to provide
standard support for administering and review-
ing user accounts, their roles and their sessions,
the corresponding administrative interfaces
would need to be added to EJB. However, such
a revision would be contrary to the emerging
state of practice for application systems.

Thenotable trend in IT systems design is to
“outsource” the functionality for administering
user accounts, and in some cases permissions,
to single sign-on (SSO) (Pashalidis & Mitchell,
2003) solutions for new applications (Goth,
2005) and to identity management (IdM) solu-
tions for existing applications (Buell & Sandhu,
2003). Asaresult, useraccounts, and sometimes
permissions, are administered across multiple
application instances and types “outside” of the
applications themselves. Therefore, anapplica-
tion system can only be successfully evaluated
for compliance with ANSI RBAC when the
application is considered together with the cor-
responding SSO or IdM solution. This condition
makes evaluation of support for ANSI RBAC
prohibitively expensive for systems designed
to work in conjunction with multiple SSO or
IdM solutions, as the evaluation would have
to be performed for every combination of the
system and the supporting SSO/IdM. Defining
a separate ANSI RBAC profile for SSO/IdM
solutions is a possible alternative to explore.

The other limitations of the EJB specifi-
cation relate to Hierarchical and Constrained
RBAC components of ANSI RBAC. The EJB
specification does not define support for either
role hierarchies or separation of duty. We sketch
approaches for supporting the two components.
However, additional data must be maintained
outside of the standard deployment descriptor
in order to implement role hierarchies.

CONCLUSION

In this paper, we analyzed support for ANSI
RBAC by EJB 3.0 compliant systems. Spe-
cifically, we defined a configuration of the
EJB protection system in precise and unam-

biguous terms using set theory. Based on this
configuration definition, we formally specified
the semantics of authorization decisions in EJB.
We analyzed support for various ANSI RBAC
components in EJB, and illustrated our discus-
sion with an example.

Our analysis shows amismatch between the
access control architectures of EJB and ANSI
RBAC. Although the specification of access
controls in EJB does employ roles, it does not
fully support even Core ANSI RBAC. The
limitations are mainly due to the lack of support
of (1) user accounts and their management, (2)
user sessions, and (3) role activation. While
these limitations can be easily worked around
through vendor-specific and implementation
dependent extensions, each EJB implementation
would have to be evaluated for ANSI RBAC
separately. In order to provide standard support
for administering and reviewing user accounts,
their roles and their sessions, the correspond-
ing administrative interfaces would need to
be added to EJB, which would be contrary to
the emerging practice of “outsourcing” such
functions to enterprise-wide single sign-on and
identity management solutions.

To support this rising trend, it is possible to
explore extending the ANSIRBAC standard, as
well as the EJB standard to define profiles for
supporting SSO/IdM solutions. This would also
require exploring options for providing proper
support for role activation and deactivation in
ordertoadhereto the principle of least privilege.
Clearly, activating the roles assigned to a user
all at the same time violates this principle. On
the other hand, allowing one role to be active at
atime would not provide proper role activation
support because the user may need the permis-
sions assigned to more than one role in order
to invoke a certain operation, in the absence
of role hierarchy, for example. Other issues to
explore include whether role activation should
occur upon user authentication or upon method
invocation, when roles should be deactivated,
and whether roles should be activated with or
without user intervention.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 49

This paper establishes a framework for
analyzing support for ANSI RBAC in EJB
implementations. The results provide direc-
tions for EJB developers implementing ANSI
RBAC in their systems, and criteria application
owners in selecting such EJB implementations
that support required, and optional components
of ANSI RBAC.

REFERENCES

Ahn, G.-J. (2000). Role-based access control in
DCOM. Journal of Systems Architecture, 46(13),
1175-1184. doi:10.1016/S1383-7621(00)00017-5

Ahn, G.-J., & Sandhu, R. (2001). Decentralized
user group assignment in Windows NT. Journal of
Systems and Software, 56(1), 39-49. doi:10.1016/
S0164-1212(00)00084-4

ANSI. (2004). ANSIINCITS 359-2004 for role based
access control. Retrieved from http:/intelligrid.
ipower.com/IntelliGrid_Architecture/New_Tech-
nologies/Tech_ ANSI_INCITS_359-2004_Role_
Based_Access_Control (RBAC).htm

Awischus, R. (1997). Role based access control
with security administration manager (SAM). In
Proceedings of the Second ACM Workshop on Role-
Based Access Control (pp. 61-68). New York, NY:
ACM Press.

Barkley, J. (1995). Implementing role-based access
control using objecttechnology. In Proceedings of the
First ACM Workshop on Role-Based Access Control
(pp. 93-98). New York, NY: ACM Press.

Barkley, J., & Cincotta, A. (1998). Managing role/
permission relationships using object access types.
In Proceedings of the Third ACM Workshop on
Role-Based Access Control (pp. 73-80). New York,
NY: ACM Press.

Bartz, L.S. (1997). hyperDRIVE: Leveraging LDAP
to implement RBAC on the web. In Proceedings of
the ACM Workshop on Role-Based Access Control
(pp. 69-74). New York, NY: ACM Press.

Baylis, R., Lane, P., & Lorentz, D. (2003). Oracle
database administrator’s guide. Retrieved from
http://otn.oracle.com/pls/db10g/db10g.homepage

Bell, D. E., & LaPadula, L. J. (1975). Secure com-
puter systems: Unified exposition and multics inter-
pretation (Technical Report No. ESD-TR-75-306).
Bedford, MA: MITRE.

Bindiganavale, V., & Ouyang, J. (2006, September).
Role based access control in enterprise application-
security administration and user management. In
Proceedings of the IEEE International Conference
on Information Reuse and Integration, Waikoloa
Village, HI (pp. 111-116). Washington, DC: IEEE
Computer Society.

Brown, N., & Kindel, C. (1998). Distributed com-
ponent object model protocol-DCOM/1.0. Retrieved
from http://www.ietf.org/proceedings/43/1-D/draft-
brown-dcom-v1-spec-03.txt

Buell, D., & Sandhu, R. (2003). Identity management.
IEEE Internet Computing, 7(6),26-28.doi:10.1109/
MIC.2003.1250580

Chadwick, D. W., & Otenko, A. (2002). The PERMIS
X.509 role based privilege management infrastruc-
ture. In Proceedings of the Seventh ACM Symposium
on Access Control Models and Technologies (pp.
135-140). New York, NY: ACM Press.

Chalfant, T. M. (2003). Role based access control
and secure shell - a closer look at two Solaris™
operating environment security features. Redwood
Shores, CA: Sun BluePrints™ OnlLine.

DeMichiel, L. G., & Keith, M. (2006). JSR-220: En-
terprise JavaBeans 24 specification, version 3.0: EJB
core contracts and requirements (Specification No.
v.3.0 Final Release). Retrieved from http://jcp.org/
aboutJava/communityprocess/pfd/jsr220/index.html

DeMichiel, L. G., Yalginalp, L. U., & Krishnan, S.
(2001). Enterprise JavaBeans specification, version
2.0. Retrieved from http://java.sun.com/products/
ejb/docs.html

Eddon, G.(1999). The COM+ security model gets you
out of the security programming business. Microsoft
Systems Journal, 1999(11).

Epstein, J., & Sandhu, R. (1995). Netware 4 as an
example ofrole-based access control. In Proceedings
of the First ACM Workshop on Role-Based Access
Control (pp. 71-82). New York, NY: ACM Press.

Faden, G. (1999). RBAC in UNIX administration.
In Proceedings of the Fourth ACM Workshop on
Role-Based Access Control (pp. 95-101). New York,
NY: ACM Press.

Ferraiolo, D. F., Barkley, J. F., & Kuhn, D. R. (1999).
A role-based access control model and reference
implementation within a corporate intranet. ACM
Transactions on Information and System Security,
2(1), 34-64. doi:10.1145/300830.300834

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

50 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

Ferraiolo, D. F., & Kuhn, R. (1992). Role-based ac-
cess controls. In Proceedings of the 15th NIST-NCSC
National Computer Security Conference, Baltimore,
MD (pp. 554-563).

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn,D.R.,
& Chandramouli, R. (2001). Proposed NIST standard
for role-based access control. ACM Transactions on
Information and System Security, 4(3), 224-274.
doi:10.1145/501978.501980

Giuri, L. (1998). Role-based access control in Java.
In Proceedings of the Third ACM Workshop on Role-
Based Access Control, Fairfax, VA (pp. 91-99). New
York, NY: ACM Press.

Giuri, L. (1999). Role-based access control on the
Web using Java. In Proceedings of the Fourth ACM
Workshop on Role-Based Access Control (pp. 11-18).
New York, NY: ACM Press.

Goth, G. (2005). Identity management, access specs
are rolling along. /IEEE Internet Computing, 9(1),
9-11. doi:10.1109/MIC.2005.16

Gutzmann, K. (2001). Access control and session
managementinthe HTTPenvironment. [EEE Internet
Computing, 5(1),26-35. doi:10.1109/4236.895139

Hartman, B., Flinn, D. J., & Beznosov, K. (2001).
Enterprise security with EJB and CORBA. New
York, NY: John Wiley & Sons.

IBM. (2005). IBM informix dynamic server admin-
istrator s guide. Retrieved from http://www-306.
ibm.com/software/data/informix/pubs/library/
ids100.html

Lampson, B. W. (1971). Protection. In Proceedings
of the Fifth Princeton Conference on Information
Sciences and Systems (p. 437).

Meyers, W. J. (1997). RBAC emulation on trusted
dg/ux. In Proceedings of the Second ACM Workshop
on Role-Based Access Control (pp. 55-60). New
York, NY: ACM Press.

Microsoft. (1998). DCOM architecture. Retrieved
from http://www.microsoft.com/NTServer/

MySQLAB. (2007). MySQL. Retrieved from http://
www.mysql.com

Notargiacomo, L. (1995). Role-based access control
in oracle7 and trusted oracle7. In Proceedings of the
First ACM Workshop on Role-Based Access Control
(pp. 65-69). New York, NY: ACM Press.

Obelheiro, R. R., & Fraga, J. S. (2002). Role-based
access control for CORBA distributed object systems.
In Proceedings of the IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems
(p- 53). Washington, DC: IEEE Computer Society.

Oberg, R.J.(2000). Understanding & programming
COM+: A practical guide to Windows 2000 DNA.
Upper Saddle River, NJ: Prentice Hall.

OMG. (1999). The common object request broker:
Architecture and specification. Needham, MA:
Object Management Group.

OMG. (2002). Common object services specification,
security service specification v1.8. Needham, MA:
Object Management Group.

OMG. (2004). Common object request broker archi-
tecture: Core specification v3.0.3. Needham, MA:
Object Management Group.

OMG. (2007a, February). Unified modeling lan-
guage: Infrastructure, v2.1.1. Needham, MA: Object
Management Group.

OMG. (2007b, February). Unified modeling lan-
guage: Superstructure, v2.1.1. Needham, MA: Object
Management Group.

ORACLE. (2001). Java authentication and autho-
rization service (JAAS). Retrieved from http://java.
sun.com/products/jaas/

ORACLE. (2007). Remote method invocation.
Retrieved from http://java.sun.com/javase/technolo-
gies/core/basic/rmi/index.jsp

Park, J. S., Sandhu, R., & Ahn, G.-J. (2001). Role-
based access control on the web. ACM Transactions
on Information and System Security, 4(1), 37-71.
doi:10.1145/383775.383777

Pashalidis, A., & Mitchell, C. J. (2003, July 9-11).
A taxonomy of single sign-on systems. In R. Safavi-
Naini & J. Seberry (Ed.), Proceedings of the Eighth
Australasian Conference Information Security and
Privacy, Wollongong, Australia (LNCS 2727, pp.
249-264).

Ramaswamy, C., & Sandhu, R. (1998). Role-based
access control features in commercial database
management systems. In Proceedings of the 21st
NIST-NCSC National Information Systems Security
Conference (pp. 503-511).

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011 51

Robles, R., Choi,M.-K., Yeo, S.-S., & Kim, T. Hoon.
(2008, October). Application of role-based access
control for web environment. In Proceedings of the
International Symposium on Ubiquitous Multimedia
Computing (pp. 171-174). Washington, DC: IEEE
Computer Society.

Roman, E., Sriganesh, R. P., & Brose, G. (2005).
Mastering enterprise javabeans (3rd ed.). India-
napolis, IN: Wiley.

Sadtler, C., Clifford, L., Heyward, J., Iwamoto, A.,
Jakusz, N., & Laursen, L. B. (2004). [BM websphere
application servervs. 1 system management and con-
figuration websphere handbook series. Armonk, NY:
IBM International Technical Support Organization.

Sandhu, R., & Ahn, G.-J. (1998). Decentralized
group hierarchies in UNIX: An experiment and les-
sons learned. In Proceedings of the 21st NIST-NCSC
National Information Systems Security Conference
(pp. 486-502).

Sandhu, R., Coyne, E., Feinstein, H., & Youman,
C. (1996). Role-based access control models. /[EEE
Computer, 29(2), 38-47.

Sandhu, R., Ferraiolo, D., & Kuhn, R. (2000). The
NIST model for role-based access control: Towards
aunified standard. In Proceedings of the Fifth ACM
Workshop on Role-Based Access Control (pp. 47-
63). Application of role-based access control for
web environment.

SunMicrosystems Inc. (2000). RBACin the Solaris™
operating environment. Retrieved from http://www.
sun.com/software/whitepapers/wp-rbac/wp-rbac.pdf

Sybase Inc. (2005). System administration guide:
Volume I - Adaptive server enterprise 15.0. Retrieved
from http://infocenter.sybase.com/help/topic/com.
sybase.help.ase 15.0.sagl/sagl.pdf

Tran, S., & Mohan, M. (20006). Security information
management challenges and solutions. Retrieved
from http://www.ibm.com/developerworks/db2/
library/techarticle/dm-0607tran/index.html

Wahl, M., Howes, T., & Kille, S. (1997). RFC 2251 :
Lightweight directory access protocol (v3). Retrieved
from http://www.ietf.org/rfc/rfc2251.txt

Westphall, C. M., & da Silva Fraga, J. (1999, De-
cember). A large-scale system authorization scheme
proposal integrating Java, CORBA and web security
models and a discretionary prototype. In Proceed-
ings of the Latin American Network Operations and
Management Symposium, Rio de Janeiro, Brazil (pp.
14-25). Washington, DC: IEEE Computer Society.

Westphall, C. M., da Silva Fraga, J., Wangham, M.
S., Obelheiro, R. R., & Lung, L. C. (2002). PoliCap
- proposal, development and evaluation of a policy
service and capabilities for CORBA security. In
Proceedings of the IFIP TC11 17th International
Conference on Information Security (pp. 263-274).

Wong, R. K. (1997). RBAC support in object-
oriented role databases. In Proceedings of the Second
ACM Workshop on Role-Based Access Control (pp.
109-120). PoliCap - proposal, development and
evaluation of a policy service and capabilities for
CORBA security.

Zhang, F., Sheng, X., Niu, Y., Wang, F., & Zhang,
H. (2006). The research and scheme of RBAC using
J2EE security mechanisms. In Proceedings of the
SPIE Conference on Broadband Access Communica-
tion Technologies, 6390, 63900L.

Zhou, W., & Meinel, C. (2004, Feb). Implement role
based access control with attribute certificates. In
Proceedings of the 6th International Conference on
Advanced Communication Technology (Vol. 1, pp.
536-541). Washington, DC: IEEE Computer Society.

Wesam Darwish is a software architect with AdvancedlO Systems, Inc. He obtained his Master
of Applied Science degree in Electrical and Computer Engineering from the University of British
Columbia (UBC) in 2009. He was a member of the Laboratory for Education and Research in
Secure Systems Engineering (LERSSE) under the supervision of Professor Konstantin Beznosov.
His research interests include distributed systems security, software architecture, and access

control architectures.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal of Secure Software Engineering, 2(2), 25-52, April-June 2011

Konstantin (Kosta) Beznosov is an Associate Professor at the Department of Electrical and
Computer Engineering, University of British Columbia, where he directs the Laboratory for
Education and Research in Secure Systems Engineering. His research interests are usable
security, distributed systems security, secure software engineering, and access control. Prior
UBC, he was a Security Architect at Hitachi Computer Products (America) and Concept Five.
Besides many academic papers on security engineering in distributed systems, he is also a co-
author of “Enterprise Security with EJB and CORBA” and “Mastering Web Services Security”
books, as well as XACML and several CORBA security specifications. He has served on program
committees and/or helped to organize SOUPS, CCS, NSPW, NDSS, ACSAC, SACMAT, CHIMIT.
Prof. Beznosov is an associate editor of ACM Transactions on Information and System Security
(TISSEC) and International Journal of Secure Software Engineering (ZJSSE).

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

