
Improving Malicious URL Re-Evaluation Scheduling
Through an Empirical Study of Malware Download Centers

Kyle Zeeuwen
SophosLabs Canada, Sophos Inc.

University of British Columbia
kyle.zeeuwen@sophos.com

Matei Ripeanu
University of British Columbia

Vancouver, Canada
matei@ece.ubc.ca

Konstantin Beznosov
University of British Columbia

Vancouver, Canada
beznosov@ece.ubc.ca

ABSTRACT
The retrieval and analysis of malicious content is an essential
task for security researchers. At the same time, the distrib-
utors of malicious files deploy countermeasures to evade the
scrutiny of security researchers. This paper investigates two
techniques used by malware download centers: frequently
updating the malicious payload, and blacklisting (i.e., re-
fusing HTTP requests from researchers based on their IP).
To this end, we sent HTTP requests to malware download
centers over a period of four months. The requests are dis-
tributed across two pools of IPs, one exhibiting high volume
research behaviour and another exhibiting semi-random, low
volume behaviour. We identify several distinct update pat-
terns, including sites that do not update the binary at all,
sites that update the binary for each new client but then
repeatedly serve a specific binary to the same client, sites
that periodically update the binary with periods ranging
from one hour to 84 days, and server-side polymorphic sites,
that deliver new binaries for each HTTP request. From
this classification we identify several guidelines for crawlers
that re-query malware download centers looking for binary
updates. We propose a scheduling algorithm that incorpo-
rates these guidelines, and perform a limited evaluation of
the algorithm using the data we collected. We analyze our
data for evidence of blacklisting and find strong evidence
that a small minority of URLs blacklisted our high volume
IPs, but for the majority of malicious URLs studied, there
was no observable blacklisting response, despite issuing over
over 1.5 million requests to 5001 different malware download
centers.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Comput-
ing and Information Systems Security and Protection; C.2.0
[Computer Systems Organization]: Computer Commu-
nication Networks General

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebQuality ’11, April 28, 2011 Hyderabad, India.
Copyright 2011 ACM 978-1-4503-0706-2 ...$10.00.

General Terms
Security, Measurement

Keywords
Malware Download Centers, Server Side Polymorphism, Low
Interaction Honeyclient, Sample Collection, IP Blacklisting

1. INTRODUCTION
Information security researchers constantly download web

content and system executables from the Internet looking
for new threats. The typical goal in this scenario is to get
the same treatment as the average Internet user: that is, to
receive a malicious executable, often via a path of redirec-
tions, culminating in a browser exploit or social engineering
trick that initiates the download of the executable onto the
victim computer [9]. The data collected from this process
is used to update URL blocklists and anti-virus detections.
An ancillary goal for researchers working on algorithms to
detect polymorphic malware is to download multiple sam-
ples from the same source. Thus, distributors of malware
have a clear incentive to identify and thwart these acts of
Internet reconnaissance.

In order to gain assurance on the accuracy and complete-
ness of the data gathered in such an adversarial information
retrieval (AIR) scenario, it is necessary to study the coun-
termeasures employed by malware distributors. These coun-
termeasures also impact cost factors for security researchers
such as network bandwidth, computing resources, and IP
allocation. Frequent updates to malicious payloads require
security researchers to revisit malware download centers to
retrieve the updated binaries. Significant resources can be
spent repeatedly downloading the same sample from a URL,
or downloading unique samples from server-side polymor-
phic sites [12] that deliver unique samples on each request.
In addition to the crawler resources, every new sample enter-
ing a security lab requires effort in terms of system resources
for automated analysis or, even more costly, attention from
a human analyst.

Persistent use of finite, identifiable IP ranges, made worse
by the need to reevaluate URLs after initial processing, mak-
es the identification of researcher IPs easier for malicious
adversaries. Once an IP range of a research lab is identified,
the malware network can engage in various cloaking tech-
niques, including but not limited to refusing to respond to
HTTP connections, rendering a static sample as opposed to
a new sample, rendering or redirecting to benign content,
serving out larger than normal samples, or holding connec-

1

tions open for longer than normal.
Several studies have investigated HTTP servers that vary,

or “cloak”, their content based on the characteristics of the
requesting client. Past research has identified the HTTP
useragent [16, 17], HTTP referrer header [8], and other client
characteristics [5] as triggers for cloaking. There is much
anecdotal evidence of IP blacklists1 being compiled and dis-
tributed [14, 1], even commercially available databases of
crawler IPs [3], but few studies of their mechanics and preva-
lence. Similarly, several studies [13, 6, 10, 9] focus on ma-
licious web servers and provide a quantitative measurement
of their distribution, yet they do not focus specifically on the
defensive countermeasures these servers deploy. Lacking a
qualitative and quantitative evaluation of these behaviours,
researchers must speculate when developing AIR systems.

The purpose of this study is to identify different types of
malware update patterns and their relative prevalence. Us-
ing this data we propose and perform a limited evaluation of
a recrawling strategy that accounts for these different pat-
terns. A secondary objective of this study is to trigger and
document cloaking behaviour based on IP blacklisting by
malicious servers. To conduct this study we have developed
a distributed crawler that revisits sites at various intensities.
The crawler consumes lists of URLs, makes multiple HTTP
requests to the URLs from different clients deployed across
a range of IP addresses, and analyzes the responses looking
for patterns in the sample update behaviour as well as for
evidence of IP blacklisting.

The analysis of the results reveals several distinct update
behaviours. We note that these distinct behaviours must be
handled differently by AIR systems, and propose a config-
urable algorithm that dynamically updates the fetch interval
for URLs being monitored by the system. We evaluate sev-
eral variations of our proposed algorithm using the HTTP
responses collected. Using a simple success metric that can
be tuned to adjust the tradeoff between malware collection
and resource conservation, we find a combination of param-
eters resulting in a 34% reduction in the volume of fetches
with only a 10% drop in new sample discovery. By adjusting
the bias to favour resource conservation, we can achieve a
94% reduction in fetch volume at a cost of 55% drop in new
sample discovery. We conclude that our proposed algorithm
provides an effective means to balance the conflicting ob-
jectives of sample collection and resource conservation, and
provides a foundation for further research in this area.

We also find indications of blacklisting: four URLs stop-
ped serving payloads to our researcher IPs (that is, IPs we
use for high volume crawling) while continuing to server pay-
loads to our low volume IPs. These URLs had many simi-
larities, sharing the same top level domain, URL path, ini-
tial registration date, and anti-virus detection of their pay-
loads. This evidence suggests that at least one organization
is blacklisting our high volume IPs. However, for the major-
ity of malicious URLs that we studied, there is no observ-
able blacklisting response, despite issuing over 1.5 million
requests to 5001 different URLs from our highest volume
IP.

To the best of our knowledge, this is the first empirical
study of malware download centers over time that specifi-

1We could equally call this an IP whitelist of security re-
searchers, used for blocking purposes, but we found that
slightly more confusing than discussing an IP blacklist of
whitehat IPs used by malicious servers

cally focuses on their update patterns and blacklisting be-
haviour. The data gathered, the classification scheme we
propose, and the re-fetch scheduling algorithm we introduce
can be directly applied to existing systems to increase their
efficiency in terms of resource use and data quality.

2. RELATED WORK
The study of malicious webservers is an active area of

research. Studies of malware download infrastructure by
Provos et al. [10, 9], and spyware by Moshchuk et al. [6],
provide quantitative measurements of the prevalence of the
online threat and insights into the techniques used by these
networks. The Provos work includes statistics on the dis-
tribution of binaries across URLs, but does not provide de-
tailed analysis on the update behaviours. Our work is sim-
ilar to these studies but focuses on different behaviours of
the malicious site and how the sites update over time. We
also perform our research and draw conclusions from the
perspective of a security research lab, as opposed to the end
user experience. Online crawlers [13, 11], actively download
and analyze web content in order to detect malicious URLs.
Again, this approach differs from ours in that they are classi-
fying unknown URLs based on their maliciousness, whereas
we are starting with known malicious servers and studying
their behaviour.

The web spam technique of “cloaking”, that is to return
altered content to search engine crawlers, for the purposes
of search engine optimization (SEO) became a popular re-
search topic around 2005. Wu and Davison [16, 17] per-
formed several studies of sites that performed semantic cloa-
king. Similar to our research, they impersonated regular In-
ternet users as a baseline as well as automated crawlers. The
objective of their research differs from ours in that they are
trying to detect cloaking behaviour and apply this to URL
classification, whereas we study the cloaking behaviour in
terms of how it is triggered. Additionally, their experiments
used a single IP and did not focus specifically on malware
download centers. A team from Microsoft and UC Davis [8]
performed a similar study focusing on the problem of forum-
based spamming as a black SEO technique. They identified
a new type of cloaking known as click through cloaking that
differentiates user from crawler based on the value of the
HTTP referrer. Like our research, their crawler attempts to
trigger this cloaking by varying characteristics of the HTTP
client. They vary the referrer behaviour and use the pres-
ence of cloaking as a spam sign to aid in URL classification,
whereas we study the temporal characteristics of the HTTP
client that cause an IP to be blacklisted. Additionally, unlike
our study, they do not focus on malware download centers.

3. BACKGROUND AND MOTIVATION
The ubiquity of the web and the increasing complexity

of web browsers has made the Internet the attack vector of
choice for distributors of malware. A malicious executable
is typically delivered over the web by a multi-staged process
involving several malicious agents, which we refer to col-
lectively as a malware distribution network (MDN). Users
first arrive at landing sites, which are usually recently regis-
tered domains or compromised sites. Users find the landing
sites in search engine results via blackhat SEO techniques,
in their email inbox via spam, or mixed in with user con-
tent on blogs and social networking sites. The landing site

2

redirects, via server side logic, client side JavaScript , or a
combination thereof, to a malware download center [9].

As malicious content is studied and new protections are
released, the malware authors typically respond by updating
the malware such that it is no longer detected. However, in
many cases the URL for the malware download center does
not change. This means that there is an incentive for secu-
rity researchers to repeatedly visit known malware download
centers, looking for updated malware samples. Repeated
visits to malware download centers by honeyclients provide
an opportunity for adversaries to find identifiable traits and
block subsequent requests made by the honeyclient, and thus
the stage is set for yet another arms race in the security in-
dustry.

A malware download center can conditionally alter re-
sponses to requests from security researchers in order to pre-
vent researchers from analyzing the malicious samples. How-
ever, the strategy of denying researchers access to malicious
binaries has several limitations. The security researcher can
change their IPs once IP blacklisting has been detected, thus
temporarily defeating the technique. The security researcher
could use an anonymizing network such as TOR, and some
do, which has resulted in malicious delivery networks ac-
tively blocking all TOR exit nodes [15]. A more fundamen-
tal limitation of cloaking arises from multiple well estab-
lished sample exchanges and many private data exchanges
within the security community. Even if a malware down-
load site successfully identifies and evades several security
researchers, it is likely that at least one researcher will even-
tually be able to retrieve the malicious content, and share it
with the community.

Given the high probability that security researchers will
eventually get copies of malicious content distributed via
the Internet, malware distributors have also begun to peri-
odically alter malicious binaries. This technique, combined
with forms of cloaking, provide an effective evasion solution.
The cloaking techniques are no longer required to keep sam-
ples out of the hands of researchers indefinitely; as long as
the collection of the new binary is delayed, there will exist a
period where anti-virus detections for the new sample will be
unavailable to customers. Once detections are updated and
protection is provided, the sample can be updated again.

Both cloaking and sample updating affect honeyclients.
An obvious impact of IP blacklisting is that crawlers us-
ing blacklisted IPs will not be treated in the same manner
as the average Internet User, thus impeding the ability to
learn from the HTTP response and protect Internet users.
Malware sites that update their payload frequently affect
AIR systems more subtly. The number of suspicious URLs
reported daily has been consistently increasing from year to
year. Sources [Ken Dunham, Private Communication] esti-
mate between 600,000 - 1,000,000 unique potentially mali-
cious URLs are reported daily within the industry. An AIR
system must be able to quickly evaluate all new URLs, as
well as periodically revisit URLs from previous days. Fetch-
ing too frequently results in wasted bandwidth and storage,
and increases the risk over time that an AIR system will
be identified for blacklisting purposes. Fetching too infre-
quently leads to delays and gaps in anti-virus protection
caused by missed detections on new, unseen samples.

It is important for developers of AIR systems to under-
stand the details of these countermeasures and the extent of
their use. This research focuses on two types of countermea-

Figure 1: Architecture of the Tachyon Detection Grid.

URL data from SophosLabs (SL DB) enters the TDG,

where the “experiment maker” conditionally adds URLs

to experiments. URL included in experiments are sent

to clients to be fetched repeatedly. The HTTP responses

and fetch logs are collected by the master and processed.

sures: frequent sample updating, and IP blacklisting. We
focus specifically on how widely deployed these techniques
are, and on gathering specifics about how the techniques are
used “in the wild” with the aim of improving AIR system de-
sign in the future.

4. SYSTEM DESIGN
In order to study the behaviour of malware download cen-

ters over time, we built a low interaction distributed honey-
client and named it the “Tachyon Detection Grid”2 (TDG).
Figure 1 shows the TDG architecture. To limit the scope
and complexity of this research, we limited our study to
URLs of known malware download centers; sites that are
directly serving malicious executables. This eliminates the
need to fully emulate browser behaviours, particularly func-
tions such as DOM manipulation and Javascript execution,
allowing the use of a more primitive crawler.

The TDG consumes three feeds of known and suspected
URLs from SophosLabs3. Two of these streams are batched
and delivered on an hourly basis, and the third delivers
URLs in real time as they become available. As we add
URLs to the system, we also tag these URLs with attribute

2This is a geeky Star Trek reference. The Tachyon Detection
Grid was used by the Federation to detect cloaked Romulan
vessels.
3These feeds are private industry exchanges that are avail-
able to researchers on request

3

count month
424 September 2010
450 October 2010
1305 November 2010
1751 December 2010
873 January 2011
198 February 2011

Table 1: Number of URLs added to the experiment

key value pairs to record information like the original source
of the URL and the reported malware spread using the URL.
The system monitors new attributes and selects URLs for
further analysis based on configurable experiment defini-
tions. The definitions specify criteria for URL inclusion,
the remote clients used to execute the fetch, the behaviour
that the remote clients should exhibit while executing the
fetch, the specific times when fetches should occur, and the
duration of fetching.

The crawlers are distributed across multiple sites, the ma-
jority deployed on PlanetLab [2] servers. The crawler is writ-
ten in Perl and uses the CPAN
LWP::UserAgent module, with modifications to the TCP
and HTTP behaviour. It follows HTTP and HTML redi-
rects and generates a log of all DNS and HTTP responses.
The logs are periodically collected by the master, and added
to a summary object maintained for the original URL. The
system analyzes the URL summary object after each update
and applies a classification if certain patterns are present.
These classifications are discussed further in the Section 5.
The classifications are used as triggers to take an action on
the URL, such as including the URL into subsequent exper-
iments or updating the current fetch pattern.

5. RESULTS
We conducted multiple experiments on the TDG between

September 2010 and February 2011 using URL feeds from
SophosLabs. In this section we present our results. We
present the different update patterns that emerged and then
propose and evaluate algorithms to control re-evaluation
logic of AIR systems based on the observed update pattern
of the URL. We also discuss the details of the blacklisting
behaviour we observed.

5.1 Data Sets
We selected 5001 URLs from the SophosLabs feeds for ex-

perimentation between September 2010 and February 2011.
This was done on a random basis, the only criteria for inclu-
sion was that the URL was confirmed to be directly serving
malicious executables, as confirmed by Sophos before send-
ing the link. The rate of inclusion is shown in Table 1.
URLs that were added between September and November
were harvested from a single client once every hour with a
random jitter of 0-15 minutes. URLs added after November
2010 were harvested from multiple clients, with the busiest
client polling URLs once every 15 minutes. The difference
in polling behaviours is an artifact of resource availability as
the system was brought online.

Of the 5001 sites included, 1007 did not serve any exe-
cutable samples, 2514 served a single executable sample for
the entire duration of the experiment, and 1480 served mul-
tiple executable samples. Of the 1480 that served multiple

samples, we discarded data from 589 because our experi-
ments did not poll frequently enough for the data to be us-
able in subsequent analysis, leaving 891 URLs that updated
their binaries. Of these 891, 162 were determined to be
server side polymorphic (SSP) sites, based on this heuristic:
if a site has responded with at least 30 distinct samples and
at the conclusion of the experiment less than 1% of these
samples were seen on more than one fetch attempt, then the
site was exhibiting server side polymorphic behaviour. This
left us with 729 URLs that updated their malicious binary
but were not strictly server side polymorphic according to
our heuristic. We used results from these 729 to generate
the results presented in this section.

Fourty five percent of the 729 were .com domains, the re-
mainder split among 40 other TLDs. There were 400 unique
domains in the set, and anti virus scans of the samples re-
veal over 70 distinct families of malware being served from
these 729 malware download centers.

5.2 Refetching Periodic Updaters
Over the four month period we performed 368,000 HTTP

requests to the 729 URLs, resulting in 243,000 downloads of
over 10,000 unique binaries. The distribution of the binary
update behaviours for these URLs is shown in Figure 2. The
graphs show that a majority of the sites update on a daily
basis; however, more than 250 URLs have a standard devia-
tion of over 1 day, suggesting that the actual delta between
updates varies widely between different URLs and for the
same URL over time. This makes it impractical to balance
between new sample collection and resource conservation us-
ing a single, static fetch interval. Instead, the fetch interval
for each URL should be dynamically adjusted based on new
fetch results. We propose a multi-step algorithm to balance
the objectives mentioned above.

The concept behind the algorithm is to increase the fetch
interval when a duplicate result is found, and decrease the
time between fetches when a new sample is found. The func-
tion that adjusts the fetch interval, referred to as the cor-
rection function, is critical to the success of the algorithm,
therefore we evaluate multiple functions with a range of pa-
rameters, as described below. It is also crucial for this algo-
rithm to quickly differentiate between periodically updating
sites and sites using server-side polymorphism (SSP). An
SSP site will produce a new sample on every fetch request,
regardless of the fetch interval; therefore an algorithm de-
signed to optimize for periodically updating sites will quickly
reduce the fetch interval to 0 when operating on an SSP site.
Thus, we include a heuristic to identify SSP URLs that ana-
lyzes the fetch results after each new fetch. If we see unique
samples for a specified number of consecutive fetches, we
classify the URL as an SSP and handle it separately, as dis-
cussed in the Section 5.3.

To evaluate the effectiveness of this algorithm, and find
suitable correction functions, we simulated the fetches that
this algorithm would have made on the 729 URLs from our
collection that served more than one sample. We track the
number of samples that the algorithm would have down-
loaded, and the number of fetches it would have made. The
simulation ends when all the samples from the empirical set
are successfully downloaded, or when we reach the chrono-
logical end of our empirical data set. We evaluate success
based on the ability of the algorithm to collect all samples
using a minimum number of fetches. To quantify this success

4

283 (1 day)

401 (2 days)

527 (5 days)

601 (10 day)

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80

N
u

m
b

e
r

o
f

U
R

Ls

Average Update Frequency (Days)

(a) Average CDF

480 (1 day)
530 (2 days)

607 (5 days)
672 10 days)

0

100

200

300

400

500

600

700

800

0 10 20 30 40

N
u

m
b

e
r

o
f

U
R

LS

Update Frequency Standard Deviation (days)

(b) Standard Deviation CDF

Figure 2: CDF graphs showing the average and standard deviation update frequency of all non-SSP URLs.
We calculated the average and standard deviation of the interval between sample updates for each URL
independently and then plot the collection of averages and standard deviations as CDFs.

(a) Linear correction (b) Percentage correction (c) Exponent correction

Figure 3: Evaluation of the dynamic refetch algorithm using α = 25 and an initial fetch interval of 10 minutes (I(0)

= 600). Each data point was generated by simulating the fetches made by our proposed algorithm using the data we

collected for the 729 URLs showing update behaviour. Note that we exclude Server Side Polymorphic sites as they do

not have a finite update interval.

value we use the following equation:

success = reduction in fetches− α×missed samples

where α is a tunable parameter controlling the bias between
sample collection and fetch resources. Increasing α will se-
lect correction functions that result in fewer missed samples
at the expense of system resources. Determining representa-
tive α values based on current system load and the expected
impact of missed samples is an area of future research we
discuss in Section 7; to evaluate our simulation results we
fixed α at 25. We evaluate using a linear correction function,
a percentage based correction function, and an exponential
correction function. These correction functions are provided
below for clarity. We use I(n) to denote the interval to wait
before issuing the nth request, and X to represent the coef-

ficient value:

linear correction function : I(n) = I(n− 1) +X

percentage correction function : I(n) = I(n− 1) ×X

exponent correction function : I(n) = I(n− 1)X

The results are presented in Figure 3 and Table 2. The
evaluation shows that we can significantly reduce fetch vol-
ume over our baseline, depending on how much sample loss
is tolerable. Using a linear correction function with a low
positive coefficient and a high negative coefficient (300 and
3300 seconds respectively) results in a 34% reduction in fetch
volume with a 11.8% missed sample rate.

5.3 Refetching Server Side Polymorphic Sites
Analysis of our fetch results uncovered some unexpected

behaviours by SSP URLs. In 6 cases, a site exhibiting SSP
behaviour began serving the same content for a short period
of time, and then reverted back to serving a unique sample
on each fetch. Algorithms to detect an SSP by analyzing

5

α Success Range Fetch Delta Missed Samples Function +X -X
0-2 221608 - 201952 94.0811% 55.8822% power 0.12 0.03
3 192352 92.6585% 49.0988% power 0.09 0.03

4-6 184089 - 170035 90.0858% 39.9556% power 0.06 0.03
7-8 163528 - 157882 86.2025% 32.1033% percentage 0.3 0.15
9-10 152618 - 147385 84.7867% 29.7549% percentage 0.3 0.2
11-12 142239 - 137323 83.3432% 27.9525% percentage 0.3 0.25
13-19 132712 - 105172 81.6735% 26.0988% percentage 0.3 0.3
20-21 100739 - 96580 78.0807% 23.6481% percentage 0.2 0.25
22-33 92553 - 4944 75.8951% 22.2835% percentage 0.15 0.2
34-57 45682 - (-31368) 67.7487% 19.0482% percentage 0.1 0.2
58-62 -34384 - (-46406) 59.3955% 17.0865% percentage 0.05 0.1

63-9000 -49401 - (-1861150) 34.5786% 11.8099% linear 300 3300

Table 2: Results of the Periodic Updater Algorithm Evaluation. The most effective correction func-
tion/parameter combinations are shown while varying the α value. It is clear that power functions quickly
reduce fetch volume, but at the expense of sample collection, whereas linear correction functions biased
toward reducing the fetch interval (3300 vs 300) can be used to strongly favour sample collection.

observed fetch history should account for this by using tol-
erance values in their heuristics. For example, instead of
identifying only sites that serve out 100% unique content
per fetch, include any site above 95% that has served at
least 30 unique samples.

Every HTTP request to an SSP site results in a new sam-
ple. It seems useful to collect as many samples as possi-
ble from a research and protection standpoint, however the
probability that the exact samples downloaded will be used
to infect a victim PC is negligible, therefore each sample
is only valuable in its contribution to a corpus of similar
malware, and by extension valuable in its contributions to
improvements in understanding the malware and protecting
against infection. There are several costs associated with
downloading the sample, in addition to the AIR system re-
source cost. On entry to a security lab the sample is stored,
processed by automated systems, potentially shared to other
labs and repeatedly scanned in the future to test for detec-
tion regression. If the sample is not detected on entry or af-
ter automated analysis, it adds to the queues of undetected
samples that must be triaged for manual analysis.

We propose the following approach to deal with SSP sites
once they have been identified4. Once an SSP site has been
identified, the fetcher will gather a batch of specified size
from the site and then suspend further fetching. Anti-virus
scans will be run across the set of samples to determine
the current detection level in terms of a percentage of the
samples that would be identified as malware. If the coverage
is below a specified threshold, anti-virus detections will be
updated to bring detection for this batch of samples above
the threshold. Once this is complete, harvest another batch
of samples and repeat the process. Once a batch of samples
receives a coverage value over the desired threshold upon
entry to the labs, suspend or discontinue fetching the SSP
site and move on to another SSP site.

5.4 Blacklisting
To detect IP blacklisting we look for changes in the HTTP

code responses received by different clients harvesting the
same URL. We expect that a high volume fetcher will be-

4To date, we have not evaluated the effectiveness of this
approach, as it requires a substantial resource commitment
from a security lab

gin to receive negative responses from malicious web servers
while low volume fetchers will continue to retrieve malicious
payloads. For these experiments we limited our definition of
negative responses to: HTTP 500 responses, HTTP 404 re-
sponses, HTTP 200 responses with no content, and HTTP
200 responses with text content where we had previously
received executable content. On each update to the URL
summary we check for evidence of blacklisting. We deter-
mine that a site is showing evidence of blacklisting behaviour
if all of the following criteria are met:

1. A low volume fetcher client has received at least one
positive response (i.e., 200)

2. A high volume fetcher client has received at least one
negative response (i.e., 500)

3. The most recent positive response to the a low volume
client is more recent than the first negative response
to the high volume client

Our blacklisting heuristic triggered on 14 malicious URLs,
but in 9 cases the malicious server resumed serving the high
volume client malicious payloads after the detected black-
listing event. Detailed analysis of the logs for these servers
shows what looks to be intermittent server availability caus-
ing false positives in our blacklisting heuristics.

In the five other instances, we have seen a low volume
client receive content for several hours after the high vol-
ume fetcher stops receiving positive responses, but the low
volume fetcher also stops receiving positive responses after
a period of time (4 - 30 hours later). Four of these URLs
share many common attributes. They all have the same top
level domain: .ru. Three of the URLs share the same path:
au.exe. Three of the domains were registered on January 24,
2011, all of them were first seen by the TDG during the last
week of January, and all of the detected samples harvested
from these domains were detected as ’Mal/Zbot-AV’ by the
Sophos AV product. The most convincing evidence that
this is blacklisting is the timing of the blacklisting response
across the URLs. Requests from our high volume client to
all four URLs stopped retuning results within a 10 minute
period. This response was triggered after completing over
1500 downloads of executable content from these four URLs
over a period of 7 days. Low volume fetchers running on

6

three separate IPs were able to download malicious content
from these URLs after the blacklisting event.

We feel this is indisputable evidence of blacklisting from
this set of malware download centers. However, aside from
this single event, we have not observed systematic or statis-
tically significant occurrences of blacklisting, despite issuing
over over 1.5 million requests from our busiest high volume
fetcher.

6. DISCUSSION
Our evaluation of update frequency reveals a wide vari-

ance of update behaviours. Based on this observation, we
conclude that that crawlers targeting malware download cen-
ters should classify URLs based on their update behaviour
and handle each behaviour type separately. It is particularly
important to quickly differentiate server side polymorphic
sites from periodic updaters, as algorithms tuned to opti-
mize crawling of periodic updaters will fail when applied
to server side polymorphic sites. We go on to show that
the fetch interval for periodically updating sites should be
updated dynamically for each URL based on observed up-
date behaviour. The evaluation of our proposed algorithm to
handle periodically updating sites showed that small changes
to the refetch scheduler correction function can have a sig-
nificant impact on the number of new samples retrieved, as
well as the system resources being used. The tuning of these
algorithms provides a simple formula to allow system main-
tainers to balance the objectives of sample collection and
minimized resource utilization.

The trend of increasing URL volumes is likely to continue,
making it important for AIR systems to be able to tune their
behaviour based on current system load, and to employ in-
telligent fetching strategies to operate more efficiently. The
evaluation of the proposed correction functions suggests that
the most effective correction function and coefficient (i.e., X,
-X) combination depends on the α value. Power functions
are not appropriate unless sample collection is a low prior-
ity. A percentage based correction function provides the best
results of the three functions when α is between 3 and 62, af-
ter which point a linear correction function provides the best
results. Irrespective of the correction function, choosing a
larger positive coefficient will reduce the number of fetches,
whereas increasing the negative coefficient will favour sam-
ple collection. This suggests that the negative coefficient
should be increased in proportion to α. We have not yet
evaluated techniques for choosing the α value; we discuss
our plans for such research in Section 7.

Another factor to consider when determining the refetch
interval of an AIR system is the potential for blacklisting.
While our study did not find strong evidence of systemic IP
blacklisting among malware download centers, this does not
mean IP blacklisting is not an issue facing AIR systems. Our
experiments were short and limited in the number of sites
visited, whereas AIR systems in security labs must process
all new suspected URLs, reprocess a subset of those URLs
for weeks and months into the future, and typically run con-
tinuously for years. It is entirely possible that IP blacklist-
ing by adversaries does occur, is a manual process, and the
network traffic generated by the TDG was not enough to
get noticed (Google crawlers process orders of magnitude
more data on a daily basis than the TDG processed in four
months). If an AIR system is designed with a bias toward
sample collection at the expense of network resource con-

sumption, there should be mechanisms in place to detect
blacklisting, so that the maintainers of the system can re-
spond by allocating new network resources or by changing
some identifiable aspect of the crawler.

7. FUTURE WORK
Empirical evaluation and improvement of

proposed algorithms. The algorithms to optimize refetch
patterns for periodic updaters and server side polymorphic
sites can likely be improved after studying performance of
these algorithms on live systems. Time constraints pre-
vented us from exploring further fetching optimizations
based on sample similarities across sites. We speculate that
malware download sites that serve the same samples from
the same malware families will also exhibit similar update
behaviours.

Tuning the α for the rescheduling algorithm. We
introduce an α value in Section 5.2 to control the tradeoff
between sample collection and resource conservation objec-
tives. However, we quickly assigned an arbitrary value to
α and moved on. We posit that the α can be determined
for specific environments based on an economic assessment
of the expected cost of missed samples vs the actual cost of
fetching resources, similar to recent approaches to quantify
the value of stolen personal data [4] and CAPTCHAs solvers
[7]. In addition to calculating α for a specific environment,
we plan to evaluate techniques to compute α for each URL.
To do so we will estimate the relative cost of missing samples
based on the current detection rate of the malware family
downloaded from the URL.

Continued investigation of blacklisting behaviour.
The Tachyon Detection Grid continues to operate and we
plan to add checks for more types of reported blacklisting
techniques. Our current approach only detects blacklisting if
the the malware download center refuses HTTP connections;
there are many other blacklisting techniques that would cur-
rently go undetected.

8. ACKNOWLEDGEMENTS
The authors would like to thank SophosLabs for the data

feeds and expertise, PlanetLabs for the use of their infras-
tructure, and the anonymous reviewers of the paper.

9. REFERENCES
[1] AV Tracker. http://avtracker.info/, February 2011.

[2] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An
Overlay Testbed for Broad-Coverage Services. ACM
SIGCOMM Computer Communication Review,
33(3):3–12, July 2003.

[3] Fantomas spiderspy. http://searchbotbase.com/,
February 2011.

[4] J. Franklin, A. Perrig, V. Paxson, and S. Savage. An
inquiry into the nature and causes of the wealth of
internet miscreants. In Proceedings of the 2007 ACM
Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, pages 375–388. ACM, 2007.

[5] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. M. Voelker, V. Paxson, and S. Savage. Spamalytics:
An empirical analysis of spam marketing conversion.

7

In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS), pages
3–14, Alexandria, Virginia, USA, October 2008.

[6] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M.
Levy. A crawler-based study of spyware in the web. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), San Diego, California,
USA, 2006.

[7] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,
G. M. Voelker, and S. Savage. Re: CAPTCHAs:
understanding CAPTCHA-solving services in an
economic context. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, pages
28–28, Berkeley, CA, USA, 2010. USENIX
Association.

[8] Y. Niu, Y.-M. Wang, H. Chen, M. Ma, and F. Hsu. A
quantitative study of forum spamming using
context-based analysis. In Proceedings of the 14th
Annual Network and Distributed System Security
Symposium (NDSS), pages 79–92, San Diego, CA,
February 28 - March 2, 2007.

[9] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All your iframes point to us. In USENIX
Security Symposium, pages 1–16. USENIX
Association, 2008.

[10] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser analysis
of web-based malware. In Proceedings of the First
Workshop on Hot Topics in Understanding Botnets,
pages 4–4, Berkeley, CA, USA, 2007. USENIX
Association.

[11] Google safebrowsing API.
http://code.google.com/apis/safebrowsing/, February
2011.

[12] R. Sherstobitoff. Server-side polymorphism:
Crime-ware as a service model (CaaS). Information
Systems Security Association Journal, 6(5), 2008.

[13] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev,
C. Verbowski, S. Chen, and S. T. King. Automated
web patrol with strider honeymonkeys: Finding web
sites that exploit browser vulnerabilities. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), San Diego, California,
USA, 2006.

[14] Webmasters cloaking forum.
http://www.webmasterworld.com/forum24/, February
2011.

[15] M. Wood. Turning scareware devious distribution
tactics into practical protection mechanisms.
http://nakedsecurity.sophos.com/2011/02/14/scareware-
distribution-tactics-practical-protection-mechanisms/,
February 2011.

[16] B. Wu and B. D. Davison. Cloaking and redirection:
A preliminary study. In In Proceesdings of the First
International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), Chiba, Japan, May
10 2005.

[17] B. Wu and B. D. Davison. Detecting semantic
cloaking on the web. In Proceedings of the 15th
Annual World Wide Web Conference (WWW), pages
819–828, Edinburough, Scotland, May 23 - 26 2006.

8

