






Konstantin (Kosta) Beznosov



a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Laboratory for Education and Research in Secure Systems Engineering (LERSSE)

Department of Electrical & Computer Engineering



### LERSSE research

- access control
  - performance and availability
- security of online social networks
- usability of end-user security controls
  - personal firewalls
  - user account control (UAC) in Windows
- usability of IT security management
  - IT security administration
  - identity management
- web security
  - detection & prevention of SQL injection attacks
  - authentication
  - controlled sharing of user content

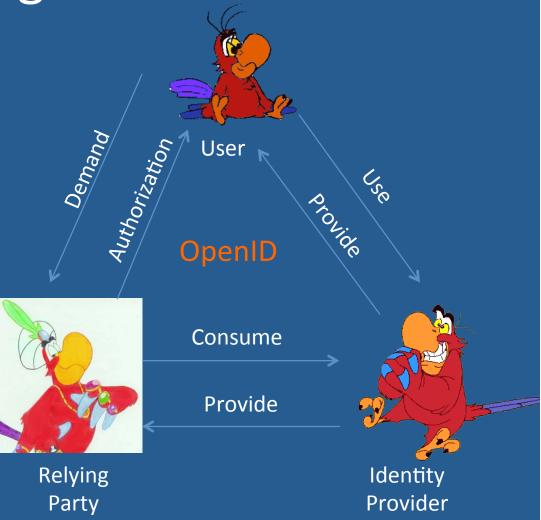
# why web single sign on

# 1. many passwords to manage





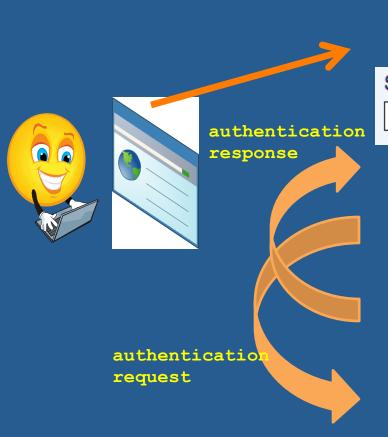
25 accounts 8 passwords per day [1]

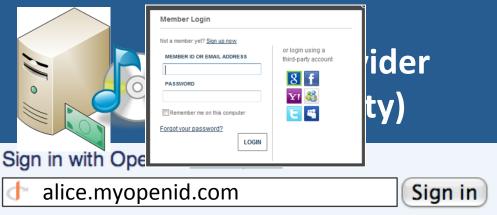

# 2. multiple on-line profiles and information propagation



# existing solutions

### password managers






- open and user-centric Web single sign-on protocol
- OpenID Foundation (2007) [1]
  - Microsoft, Google, IBM, Yahoo, VeriSign, Facebook, PayPal, PingIdentity
- over **one billion** OpenID enabled user accounts provided by Google, Yahoo, AOL...[1]

# how OpenID works

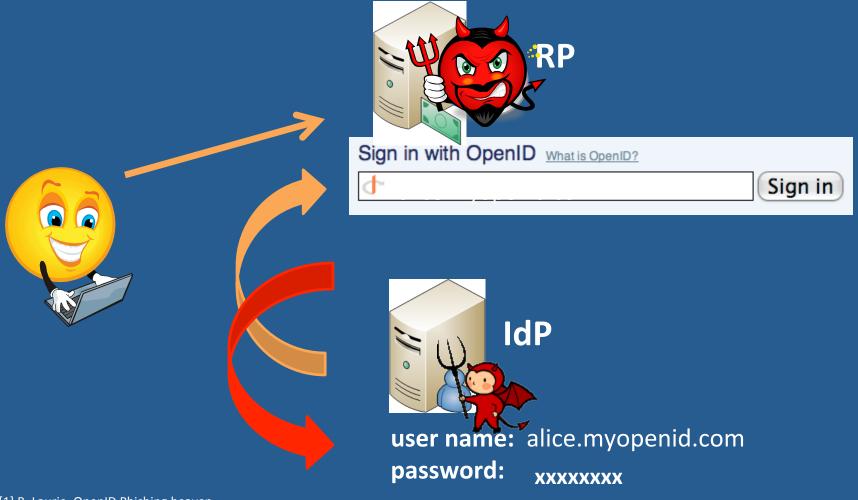




http://alice.myopenid.com

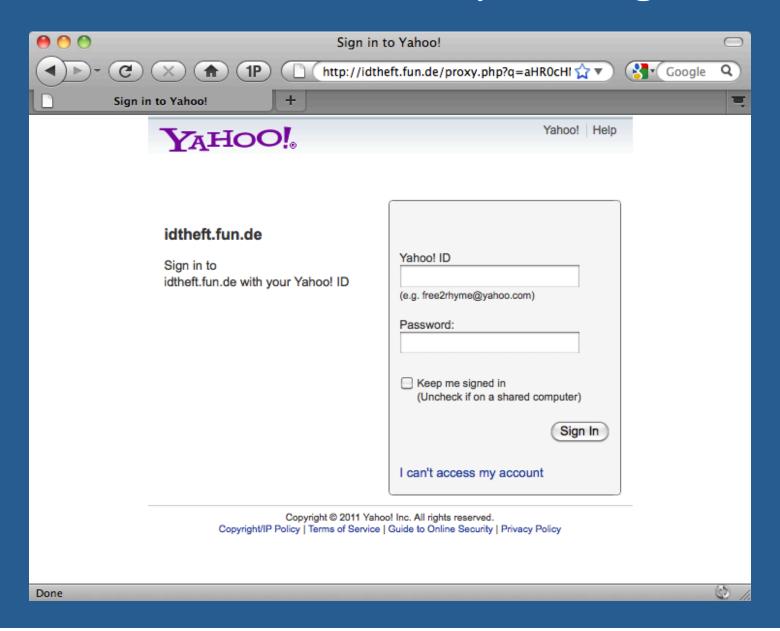
login request




user name: alice.myopenid.com

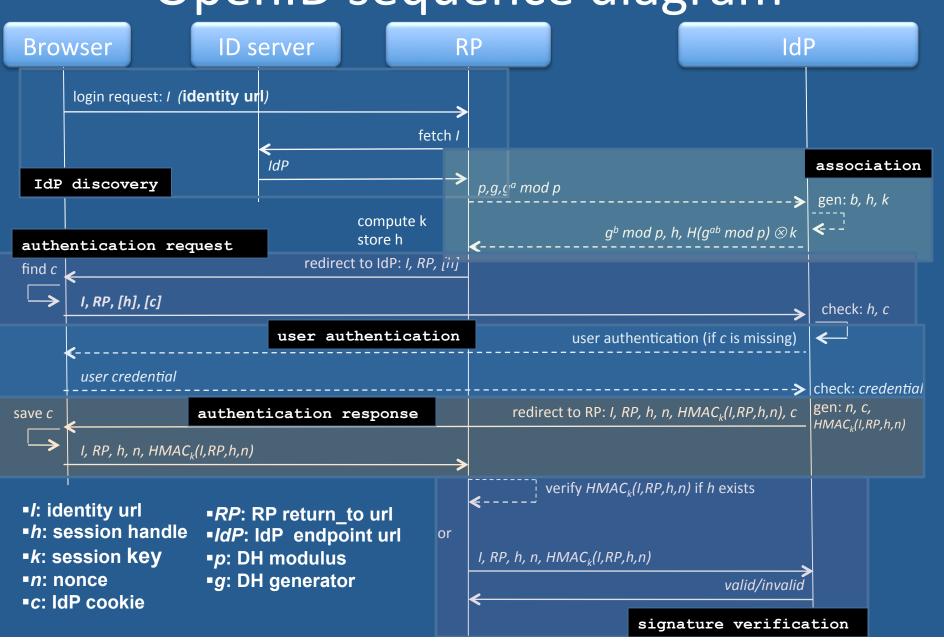
password: xxxxxxxx

# agenda

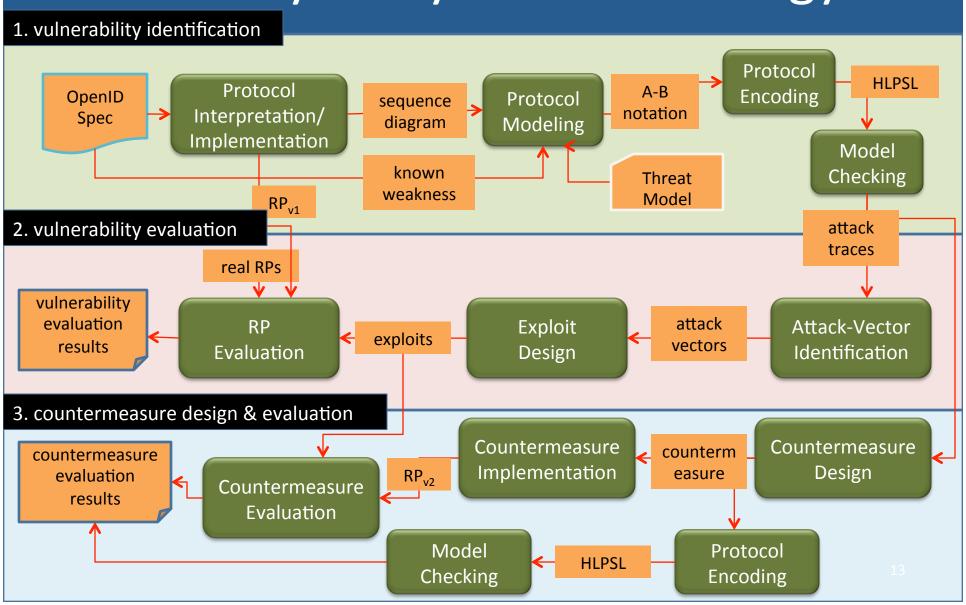

- technical vulnerabilities
- business concerns
- usability issues
- a way to a better web SSO
  - OpenID<sub>email</sub> enabled web browser

# password phishing attacks

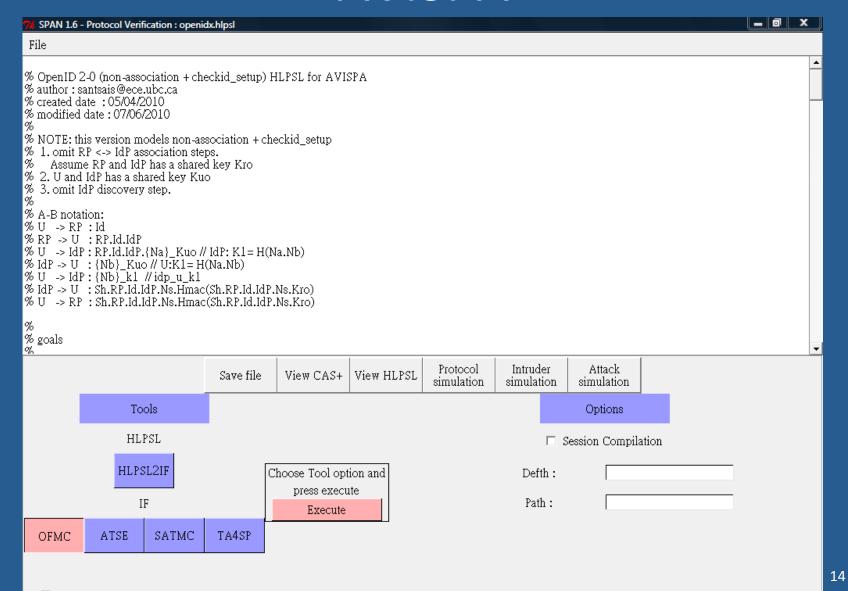



- [1] B. Laurie. OpenID Phishing heaven.
- [2] C. Messina. OpenID Phishing Brainstorm. http://wiki.openid.net/OpenID Phishing Brainstorm, 2009
- [3] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing works. In the Proceedings of CHI '06, New York, NY, USA, 2006.
- [4] B. Adida. EmID: Web authentication by email address. In Proceedings of W2SP 2008, Oakland, California, USA, 2008.

# users are vulnerable to phishing attacks




# **TECHNICAL VULNERABILITIES**


# OpenID sequence diagram



# security analysis methodology



### **AVISPA**

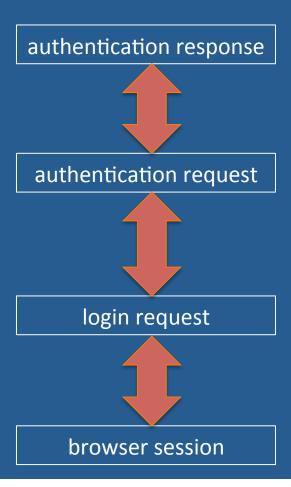


### adversary model

- adversary: non-RP or IdP associated attackers
- goal: unauthorized access/modification of users' data hosted on RP
- adversary types
  - web poster
    - post comments
  - web attacker:
    - setup a malicious website
    - send malicious links via spam
    - deliver malicious content via Ads network
    - exploit web vulnerabilities (i.e., XSS) of benign websites
  - network attacker:
    - setup an wireless access point
    - compromise client DNS resolution

# assumptions

- RP, IdP, user machine, and browser are not compromised
- RP, IdP are not malicious
- user credentials on IdPs are secure
- cookies in the browser are secure (integrity and confidentiality)


### non-considered threats

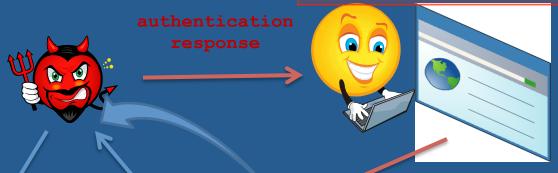
- availability threat
  - DoS by sending massive concurrent auth requests to an IdP
  - DoS by sending massive concurrent auth responses to an RP
- identity spoofing
  - phishing attacks by RP
  - exploits vulnerabilities on IdP
- integrity of IdP discovery process
  - altering discovery information
  - compromise RP DNS resolution

# demonstration of attacks

### found weakness

authentication response acts as a one-time access token to an RP, but there is no binding chain




### attack vectors

### CSRF

- single sign-on (SSO) CSRF (force victim to login)
  - HTTP GET Auth Request CSRF[Web poster, Web attacker]
  - HTTP POST Login CSRF [Web attacker]
  - HTTP GET Login CSRF [Web poster, Web attacker]
- account profile CSRF [Web poster, Web attacker]
- login CSRF (login as attacker) [Web poster, Web attacker]
- authentication response interception
  - impersonation [Network attacker]
  - replay attack [Network attacker]

login CSRF: login as the attacker

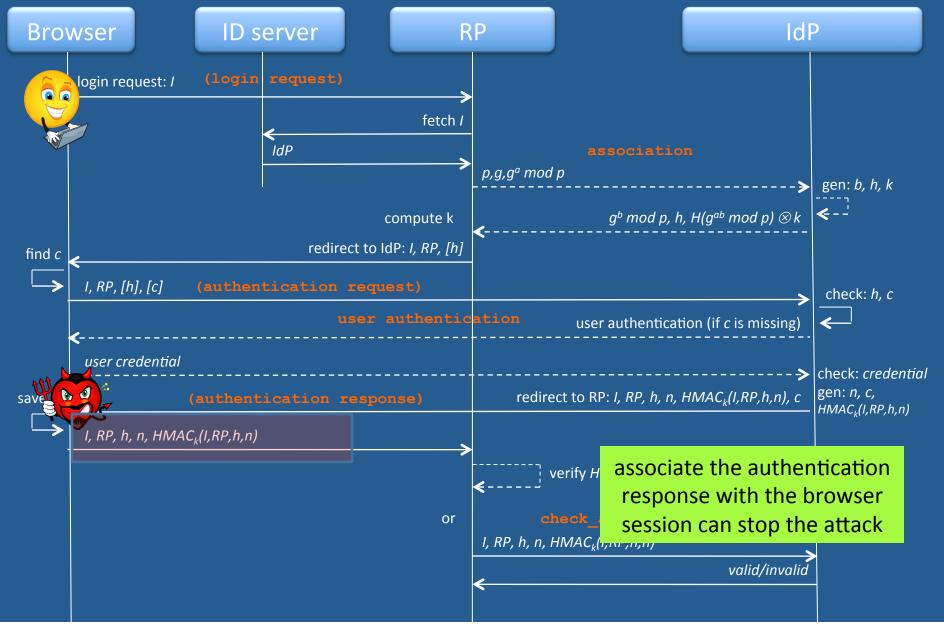
<img src="auth response"
style="display:none">



login request

name and password

authentication
 response


associating the authentication response with the browser session can stop the attack

RP

authentication request

IdP

# impersonation and replay attack



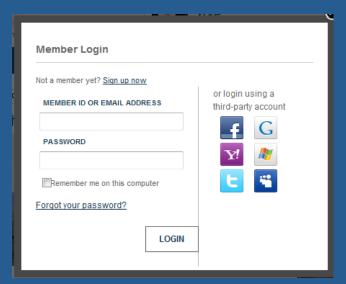
### attack stats

- cross site request forgery (CSRF) attacks
  - single-sign-on CSRF (force victim to login) (70%)
  - account profile CSRF (50%)
  - login CSRF (login as attacker) (73%)
- authentication response interception
  - <u>– impersonation (67%)</u>
  - replay attack (6%)

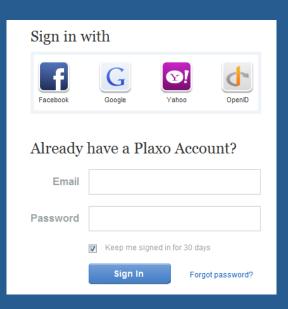
### countermeasure

- when a new browser session initialized RP
  - generates a nonce N = HMAC(browser session id )
  - issues a new cookie  $C_N = N$
  - appends a parameter P<sub>N</sub>=N to the OpenID login form
- on a login request, IdP
  - checks if  $P_N = C_N$  and  $C_N = HMAC$ (browser session id )
  - initiates a new authentication request
  - appends a parameter R<sub>N</sub>=N to the return to URL
- on an authentication response, RP
  - checks if  $R_N = C_N$  and  $C_N = HMAC$ (browser session id)

### characteristics of countermeasure


- compatible with existing OpenID
- does not require any additional storage on RP
- would not reveal browser session id
- protects from cookie overwrite

### future work


- evaluate more RPs
- apply our methodology to other Web single sign-on protocol
  - Facebook Connect
  - Microsoft Live ID

# **USABILITY ISSUES**

# relying party user interfaces confusing

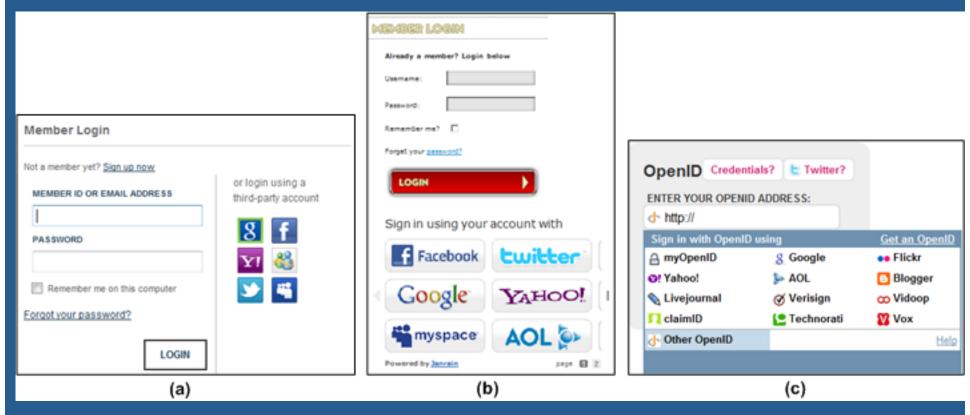


No single way of implementing OpenID enabled login form





| Sign in                                      |                   |       |                                                                     |            |  |
|----------------------------------------------|-------------------|-------|---------------------------------------------------------------------|------------|--|
| Email or Screen Name Password                |                   |       | Or select one of these third party accounts  facebook YAHOO! Google |            |  |
| Keep me logg                                 | ed in for 2 weeks | AOL 🌬 | twitter                                                             | myspaceID. |  |
| Log In Forgot password?                      |                   |       |                                                                     | see more   |  |
| If you are not a member, <u>click here t</u> | to register.      |       |                                                                     |            |  |


# study participants

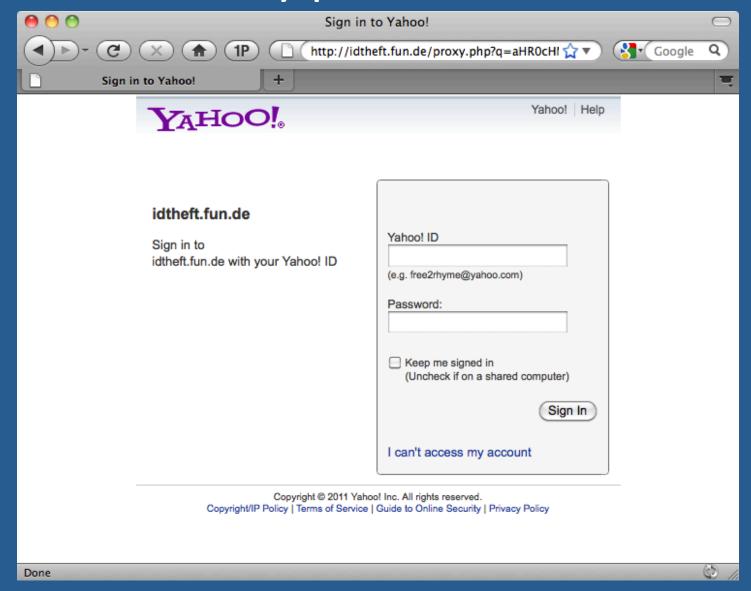
9 participants from UBC and Greater Vancouver

- 6 male & 3 female
- age: four 19-24 & five 25-34
- 8 fluent in English
- 8 with college or graduate degree
- all had more than 4 web accounts
- 2 used password managers
- 5 used UBC's campus-wide login (CWL) web SSO

# study protocol 1/4

- 1. background questionnaire
- sign-up and sign-in to three OpenID-supported web sites using using their existing account with an IdP.




3. log out from all web sites, as on a public computer

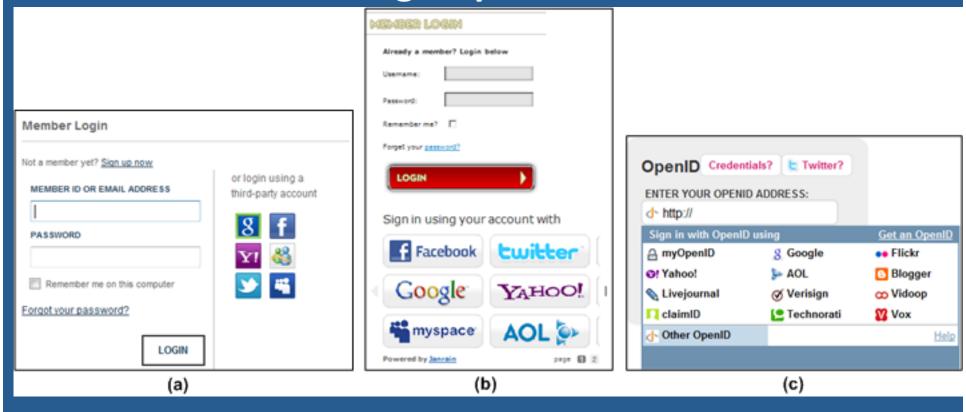
# study protocol 2/4

4.a browse to idtheft.fun.de and select Yahoo! as the account that you will use for login



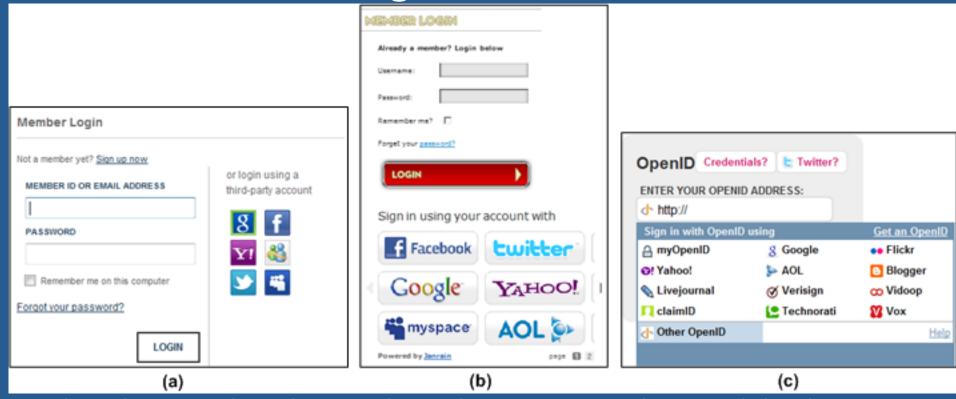
# study protocol 3/4




**4.b** try to find any way to tell that this is NOT the real Yahoo! website

# study protocol 4/4

- 5. exit questionnaire
- 6. contextual interview


### finding 1: incorrect initial mental model

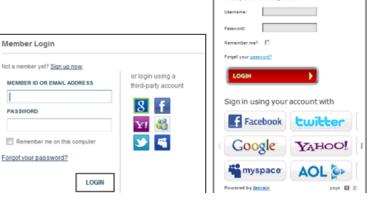
eight entered their IdP credentials directly into the RP's fields on **sign-up** 



# finding 2: wrong mental model derived from the login process

5 re-entered their IdP credentials directly into the RP's fields on **sign-in** 




the website must have their Google or Yahoo user name and password already ...

# finding 3: bad affordance and visibility

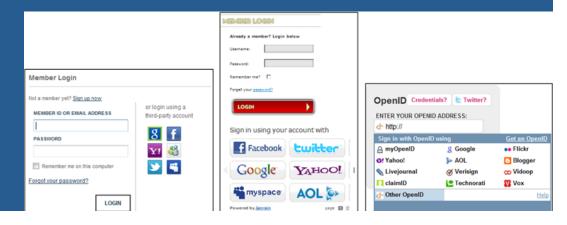
- 1. 8 did not know they needed to click on one of the IdP icons to initiate the login process
- 2. 3 thought the IdP icons were Ads
- 3. 2 thought the website had teamed up with the IdPs for content sharing.

4. 2 thought the highlighted IdP icon was a cue for them to enter their Google or Yahoo email and

password.






## findings 4&5

4. IdP account association is confusing

Most believe that as soon as they were redirected back from the IdP, they were already logged in.

### 5. Implicit IdP login concern

All were concerned that they had to explicitly log out from their IdP, in addition to the websites.



### **BUSINESS CONCERNS**

### summary

**x** no completive advantage

★ last-in win

insufficient demand from users Authorizations

25 accounts User 8 passwords per day [1]

password fatigue

**×** hinder profile management

Identity Provision Service hider content sharing

Web Single Sign-On (SSO)



**Identity Assertion Service** 

**×** identity war

**X** liability and responsibility

•40,000 claimed by JanRain [4] (no detailed result)

•(< 0.018% of 213,000,000 websites [6])

•240 RPs on MyOpenID.com Directory [3]

•InfoCard: almost no RP

Google, Yahoo, AOL ..

one billion keys

- [1] D. Florencio and C. Herley. A large-scale study of web password habits. In Proc. of WWW '07, New York, NY, USA, 2007.
- [2] OpenID Directory, http://openiddirectory.com/

**Relying Party** 

(RP)

•882 RPs on OpenID Directory [2]

- [3] MyOpenID Directory, https://www.myopenid.com/directory
- [4] Replying Party Stats, <a href="http://www.janrain.com/blogs/relying-party-stats-april-1st-2009">http://www.janrain.com/blogs/relying-party-stats-april-1st-2009</a>
- [5] Alexa Top 500 Global Sites, http://www.alexa.com/topsites/global
- [6] August 2010 Web Server Survey, http://news.netcraft.com/archives/category/web-server-survey/

Identity provider (IdP)



### RPs do not want to *rely on* IdPs



- **X** identity war [1]: rely on user data to survive
- need to trust IdPs [2, 3]
- RPs are liable and responsible for the loss when IdPs are compromised or unavailable [4]

<sup>[1]</sup> Phil Becker on Identity's First Big War: a history lesson. http://www.identityblog.com/?p=551

<sup>[2]</sup> A. Josang, M. A. Zomai, and S. Suriadi. Usability and privacy in identity management architectures. In the Proceedings of ACSW '07.

<sup>[3]</sup> R. Dhamija and L. Dusseault. The seven flaws of identity management: Usability and security challenges. IEEE Security and Privacy, 6:24-29, 2008.

<sup>[4]</sup> S. J. Murdoch and R. Anderson. Verified by visa and mastercard securecode: or, how not to design authentication. In Proc of Financial Cryptography and Data Security 2010.

# web SSO does not provide RPs with immediate business returns



- no competitive advantage [1]
- **X** confusing user experience could turn users away [2, 3, 4]
- x rather wait for a critical mass

<sup>[1]</sup> Johannes Ernst. On OpenID's Relying Party Adoption Problem, <a href="http://netmesh.info/jernst/digital-identity/on-openids-relying-party-adoption-problem">http://netmesh.info/jernst/digital-identity/on-openids-relying-party-adoption-problem</a>, 2008.

<sup>[2]</sup> R. Dhamija and L. Dusseault. The seven flaws of identity management: Usability and security challenges. IEEE Security and Privacy, 6:24-29, 2008.

<sup>[3]</sup> Beverly Freeman. Yahoo! OpenID:One Key, Many Doors. <a href="http://developer.yahoo.com/openid/openid-research-jul08.pdf">http://developer.yahoo.com/openid/openid-research-jul08.pdf</a>

<sup>[4]</sup> Eric Sachs. Usability Research on Federated Login. <a href="http://sites.google.com/site/oauthgoog/UXFedLogin">http://sites.google.com/site/oauthgoog/UXFedLogin</a>

### insufficient driving force from users



- no urgent need
  - x password manager [1]
  - no evidences for insecure password practices [2]
- security
  - single-point of failure [3]
  - phishing attacks [3, 4, 5]

| Login CSRF        | 70% |
|-------------------|-----|
| Account CSRF      | 40% |
| Login as Attacker | 75% |
| Impersonate       | 67% |
| Replay Attack     | 10% |

### x privacy [6]

- [1] S. Gaw and E. W. Felten. Password management strategies for online accounts. In Proc. of SOUPS '06
- [2] C. Herley. So long, and no thanks for the externalities: the rational rejection of security advice by users. In Proc. of NSPW '09.
- [3] R. Dhamija and L. Dusseault. The seven flaws of identity management: Usability and security challenges. IEEE Security and Privacy, 6:24-29, 2008.
- [4] B. Laurie. OpenID Phishing heaven. http://www.links.org/?p=187
- [5] C. Messina. OpenID Phishing Brainstorm. http://wiki.openid.net/OpenID Phishing Brainstorm, 2009.
- [6] Learning the OpenID problems, http://mateusz.loskot.net/2008/05/14/learning-the-openid-problems/

# shared-identity sign-on rather than true Web SSO



shared-identity sign-on

- **×visit N+1 login Uls**
- pick an IdP N ways
- **x**consent N times
- **★**logout N+1 times



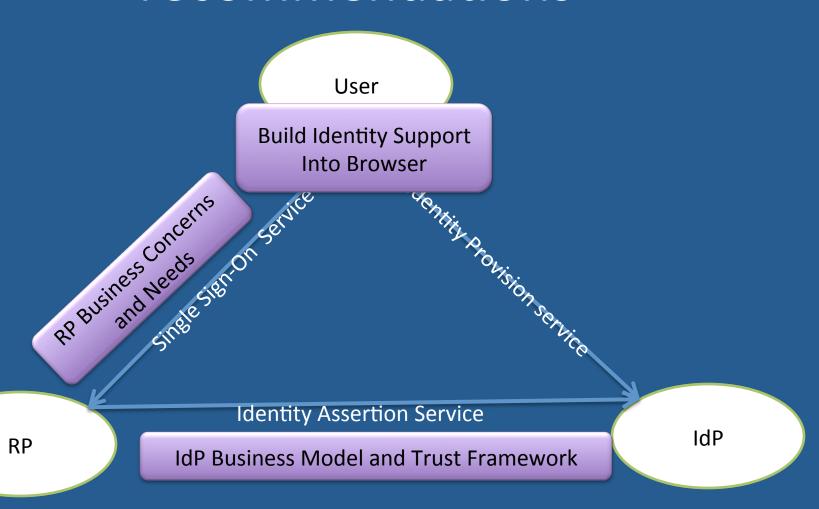


### insufficient driving force from IdPs



- X lack of proven business model [1]
- **×** inherently difficult on the Web [4]
- **x** people's privacy concerns [2,3]




<sup>[1]</sup> B. Blakley. The Information Card Landscape. Technical report, Burton Group, Febrary 2009

<sup>[2]</sup> Spiekermann, S., Cranor, L. F.: Engineering privacy. IEEE Transactions on Software Engineering, pp. 1-42. IEEE 2008.

<sup>[3]</sup> CBS News. Poll: Privacy rights under attack. http://www.cbsnews.com/stories/2005/09/30/opinion/polls/main894733.shtml, October 2005.

<sup>[4]</sup> http://en.wikipedia.org/wiki/On\_the\_Internet,\_nobody\_knows\_you%27re\_a\_dog

### recommendations



# recommendation 1: understand RPs' business concerns

- Identity technology grew within corporation
  - reduces operational cost and streamline users' login experience
  - only needs cost justification but no business concerns
- Web SSO requires RPs to give up control over their users
  - users are important assets
  - raises significant business concerns

# recommendation 1: address RPs' business concerns

- **business needs**: How can Web SSO help RPs increase their revenue and serve their customers better?
- liability and laws: When IdPs fail, who is liable? Who should be called when customer support is needed?
- terms and quality of service requirements for identity services: How should RPs define and validate the accuracy of identity information?
- models for monetizing identity services: How and how much should RPs pay for the identity services provided by IdPs?
- usability and user acceptance: How can users be provided with consistent and usable login experiences?
- privacy: What are users' privacy concerns? How can RPs protect their privacy?

# recommendation 2: identify IdP business models and build trust frameworks

- example: meta-identity service as a business model and a way to reduce privacy risks [1]
  - Bob's age over 18 vs. Bob is 51
  - clean credit history vs. credit history list
- example: Open Identity Exchange (Mar. 2010) [2]
  - trust framework: a certification program that enables a RP to trust the identity, security, and privacy policies of IdP
  - build trust in the exchange of online identity credentials across public and private sectors

## summary of the issues

### technical issues

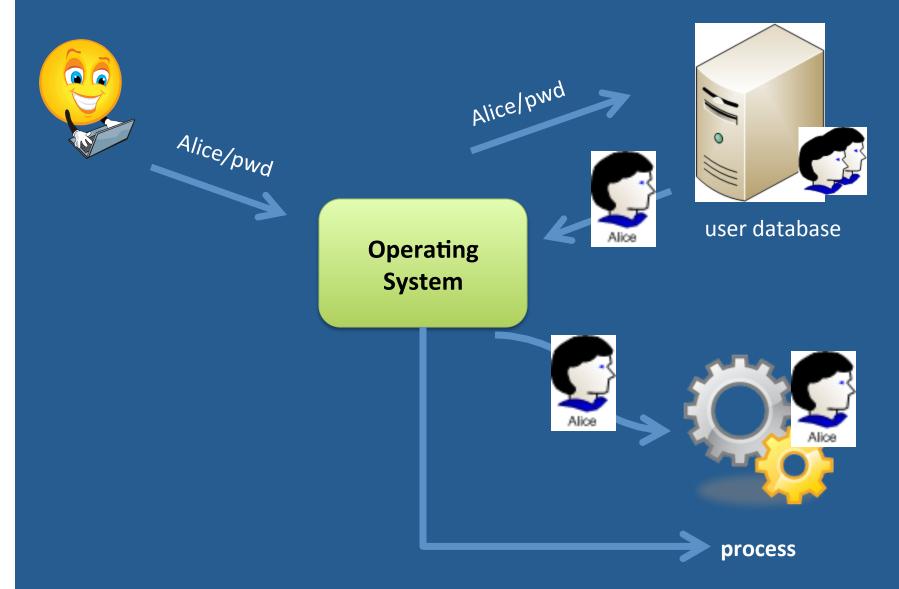
lack of binding between browser session, login form,
 authentication request and response lead to SSO and login
 CSRF, and replay vulnerabilities.

#### human issues:

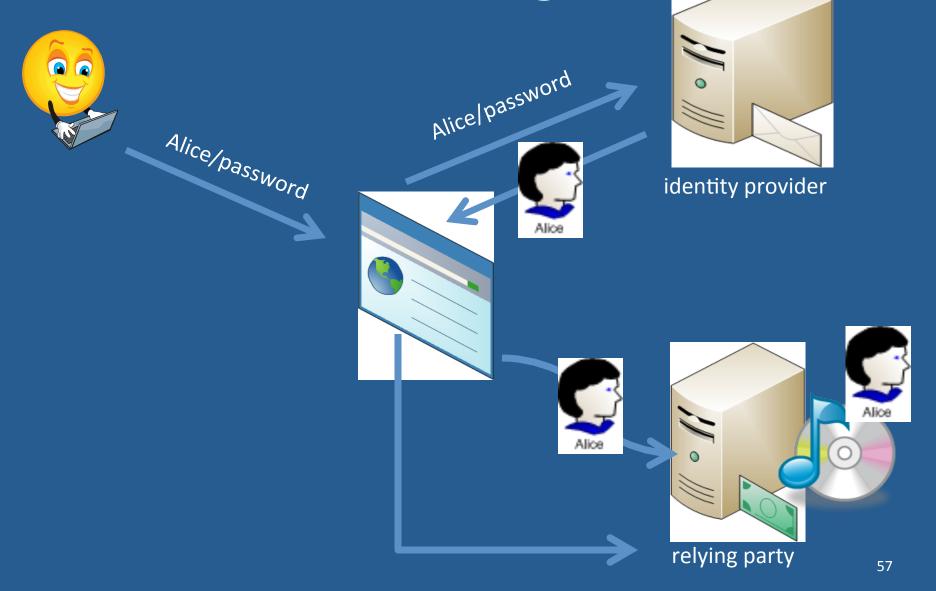
- mental models for OpenID login-in are inadequate,
- confusing association between IdP's and RP's accounts,
- concerns about logout, privacy concerns

### business issues:

- lack of business drivers for adoption
- RPs are liable for IdPs' misbehavior but RPs don't trust IdPs
- last-in wins, no competitive advantage
- shared identity rather than SSO


### identity-enabled browser

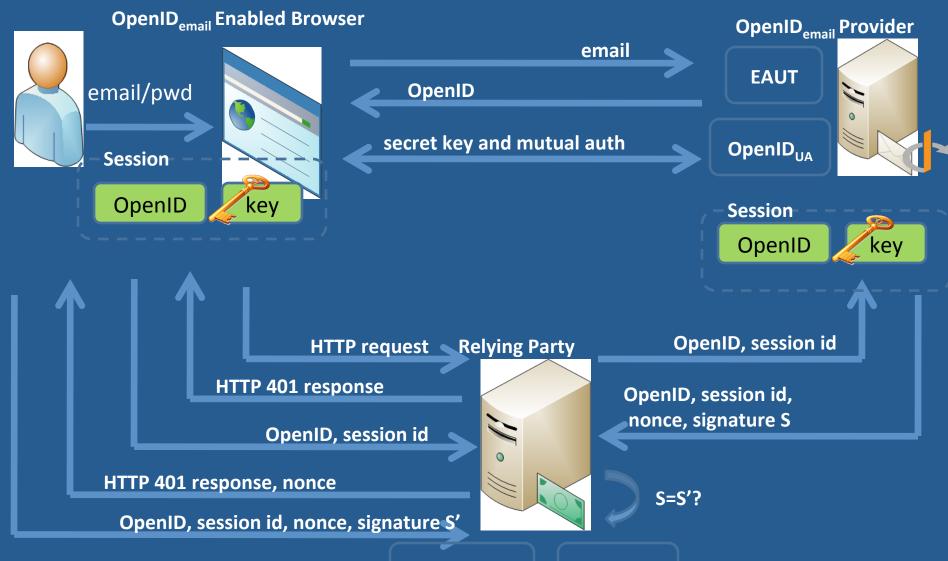
- consistent and intuitive user experience
- raise the awareness of Web SSO
- acts as a platform for leveraging user data from IdPs to RPs
- shift shared-identity sign-on to true Web SSO
  - ✓ visit 1 login UI
  - ✓ gains access to all websites that she has an account
  - √logout 1 time


### design considerations

- usable by average web users
- leverage one-billion existing OpenID-enabled keys
- should not require RPs to modify their login UI
- readily employable for emerging Web 2.0 applications
- should avoid relying on users' cognitive capability to detect phishing sites [1,2,3]
- must be secure in untrusted environments
  - compromised users' computers
  - malicious content and service providers
  - network traffic sniffing and modification

## metaphor identity flow in OS




## idea behind the design



### approach

- builds OpenID support right into web browsers
- hides OpenID identifiers from users through the use of their existing email accounts
- extends the OpenID protocol to perform authentication directly with user-agents such as browsers (OpenID<sub>ua</sub> extension)
- introduces a new HTTP access authentication scheme to convey authenticated identities automatically into websites that support OpenID for authentication (OpenIDAuth)

### architecture and data flows



**OpenID**<sub>Auth</sub>

**OpenID**<sub>UA</sub>

## related project publications

- S. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey, K. Beznosov. OpenID-Enabled Browser: Towards Usable and Secure Web Single Sign-On. CHI Work-in-Progress, May 7-11 2011, Vancouver BC, Canada. http://lersse-dl.ece.ubc.ca/record/251
- S. Sun, K. Hawkey, K. Beznosov. OpenIDemail Enabled Browser: Towards Fixing the Broken Web Single Sign-On Triangle. In Proceedings of the ACM Workshop on Digital Identity Management (DIM), October 8 2010. http://portal.acm.org/citation.cfm?doid=1866855.1866868
- S. Sun, Y. Boshmaf, K. Hawkey, K. Beznosov. A Billion Keys, but Few Locks: The Crisis of Web Single Sign-On. In Proceedings of the New Security Paradigms Workshop (NSPW), September 20-22, 2010. http://portal.acm.org/citation.cfm?doid=1900546.1900556
- S. Sun, K. Hawkey, K. Beznosov. Secure Web 2.0 content sharing beyond walled gardens. In Proceedings of the 25th Annual Computer Security Applications Conference (ACSAC), pages 409-418, December 2009. http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5380698
- S. Sun, K. Hawkey, K. Beznosov, Towards Enabling Web 2.0 Content Sharing beyond Walled Gardens,
   CSE, vol. 4, pp.979-984, International Conference on Computational Science and Engineering, 2009.
   http://www.computer.org/portal/web/csdl/doi/10.1109/CSE.2009.162
- S. Sun and K. Beznosov. Open problems in Web 2.0 user content sharing.
  In Proceedings of the iNetSec Workshop, pages 37-51, Zurich, Switzerland, April 23 2009. http://www.springerlink.com/content/an755ut08l63r965/







**Dr. Kirstie Hawkey** 



Konstantin (Kosta) Beznosov konstantin.beznosov.net