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Abstract

As enterprises aim towards achieving zero latency for their systems, latency introduced by
authorization process can act as an obstacle towards achieving their goal. We present Speculative
Authorization (SPAN), a prediction technique to address the problem of latency in enterprise
authorization systems. SPAN predicts the possible future requests that could be made by a
client, based on the present and past behavior of the client. Authorization decisions to the
predicted requests are fetched even before the requests are made by the client, thus reducing the
authorization latency virtually to zero. Our implementation indicates that systems deploying
SPAN can obtain zero authorization latency for almost 60% of the requests made by the client.
We discuss the additional load incurred by the systems to compute responses to the predicted
requests, and provide measures to reduce the unnecessary load. We also compare the benefits of
deploying caching and SPAN in the same system, and find that SPAN can effectively improve
the performance of systems with smaller sizes of cache.
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Figure 1: Architecture of enterprise access control systems

1 Introduction

With the emergence of tighter corporate policies and government regulations, access control
has become an integral part of the business requirements. Modern access control architec-
tures [Kar03, Ora08] follow the request-response architecture as shown in Figure 1. In this
architecture, a subject makes an application request to the policy enforcement point (PEP)
for accessing a protected resource. The PEP converts this request to an authorization request
and forwards it to the policy decision point (PDP). The PDP queries the policy database to
verify the ability of the subject to access the requested resource. It computes an authorization
response and sends it back to the PEP, which enforces it. The policy database is assumed to
contain the security policy information for all the protected resources in the system.

The authorization process adds to the already existing latency for accessing resources. The
process of computing the authorization response can take a few milliseconds to several seconds
depending on the policy associated with the request and subsequent process involved in com-
puting the response [BSF02, BEJ09]. Neilsen suggests that a response time of greater than 0.1
second makes end users feel that the system is not responding instantaneously [Nie93]. A study
by Amazon reported roughly 1% sales loss as the cost of a 100 ms extra delay. Another study
by Google found a 500 ms extra delay in displaying the search results may reduce revenues by
up to 20% [KHS07]. Thus, on one hand, authorization is imperative for securing the protected
resources in an enterprise, but on the other hand, it increases the latency in the system, thus
hampering responsiveness and revenue. In the rest of the paper, the term latency refers to the
delay introduced in the system by the authorization process. The total latency of computing
an authorization response is the sum of the delays introduced by (1) communication channels
between the PEP and the PDP (communication delays), (2) authorization calls made to the
policy database (communication delays), (3) subsequent time for computing the response by the
PDP (processing delays), and (4) the queuing of requests at the PDP awaiting responses when
the system is heavily loaded (queuing delays).

To address the need for reducing the overall latency, we propose Speculative Authorization
(SPAN), a technique that predicts future requests likely to be made by a subject in a session. A
‘session’ is defined as the time period between a subject logging in and out of the system. We
apply the principles of machine learning [Hec95] for analyzing the series of requests made by
the subject in every session. As shown in Figure 2, the PEP sends the authorization requests to
the PDP. The PDP not only computes the responses to the requests but also forwards a copy
of these requests to SPAN. Based on the series of received requests, SPAN predicts the requests
that could possibly be made by the subjects in their sessions, and sends the predicted requests
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Figure 2: Architecture of SPAN

to the PDP. The PDP computes the responses to these predicted requests and sends it to the
cache that is collocated with the PEP. If the subjects make the same requests as predicted by
SPAN, responses are obtained from the cache. As responses are available in the cache even
before a request is made, overall latency is reduced. This is a “push” model where SPAN is
collocated with the PDP. SPAN could also be located at the PEP side as a “pull” model.

SPAN is designed to be comparable to several algorithms developed for web page prefetch-
ing [AKT08, DK04, EVK05, CHM+03, SH05, SYLZ00, BBB09, MDLN01, YHN03, YZ01,
YLW04, PP99]. In web page prefetching algorithms, the likelihood of web pages being requested
in the same session is found using techniques such as Markov models [AKT08, DK04, EVK05,
CHM+03, SH05], association rule mining [YHN03, YZ01, YLW04], n-grams [SYLZ00, PP99],
SVM [AKT08], or clustering [SH05, CHM+03]. However, none of these algorithms consider
the identity of the subjects making those requests. In enterprises, subjects’ identity and au-
thorization policies restrict the access of the subjects to a subset of resources. This restriction
influences the requests made by the subjects. The likelihood of two resources being requested
in the same session would not only depend on the resources themselves but also on the autho-
rization policies governing the resources. Thus, authorization policies introduce an additional
constraint for prefetching. In section 3.1.3, we find the possible shortcomings of using web page
prefetching algorithms in access control systems. We designed SPAN to take the authorization
policies into account without having access to the authorization policies of the system. It finds
the likelihood of two resources being requested by subjects by observing the past sessions of the
subjects.

To make predictions, we form Markov chains of all possible sequences of requests. To accom-
modate authorization policies, a naive technique would find if every subject has ever requested
the formed sequences. This technique has two drawbacks (1) large memory consumption: The
memory required is directly proportional to the number of subjects and the number of sequences
formed. (2) to make predictions with certain degree of confidence, the number of times (fre-
quency count) subjects request for certain sequences has to be comparatively higher than the
requests for other sequences. Counting the number of times each sequence was requested by
every subject might not result in comparable frequency counts as required. To overcome these
problems, web clustering techniques [SH05, CHM+03] are adopted, where sequences are clus-
tered based on their likelihood to be requested in the same session. SPAN also uses a clustering
approach for grouping the sequences, and probabilistically associates subjects to the clusters.
In clustering techniques used for web page prefetching [SH05, CHM+03], users are randomly
assigned to the clusters. This is contrary to the approach in SPAN where the clustering also
finds the probability of associating subjects to clusters. The probabilistic association indirectly
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takes the authorization policies into account. To achieve this goal, SPAN extends Latent Dirich-
let Allocation (LDA) model proposed by Blei et al. [BNJ03]. LDA was developed for unigram
models whereas SPAN extends it to accommodate the sequences of requests.

Research by Sen and Hansen [SH05], and Deshpande and Karypis [DK04] suggests that
higher order Markov models improve the predictive capabilities of the prefetching algorithms.
However, increasing the order of Markov models increases the number of parameters in the
system, which results in higher memory usage and state-space complexity [DK04]. The number
of parameters of Markov models are mn, where m is the number of resources and n is the order
of the Markov model. The parameters increase exponentially as the order of the Markov model
increases. To overcome this exponential increase, we build ‘Multiple first order Markov models’
within SPAN. Our design reduces the number of parameters to n ∗m2. The parameters of our
model increase linearly as the order of the Markov model increases.

We evaluated SPAN using two datasets that represented log traces from access control sys-
tems. Our first dataset contained accesses made by students, teaching assistants and course
instructors in WebCT [Web] for a course at our university. Different subjects had different
rights on the resources of the course. We obtained the second dataset from requests made by
users in the ‘Fighters Club’ (FC) application of Facebook [NRC08]. In this application, users
could start a virtual fight with their friends and request for help from other friends. This rep-
resents an access control system where subjects (users) can only request for resources (friends)
that they are authorized.

In addition to implementing SPAN, we also implemented algorithms proposed by Cadez et
al. [CHM+03], and Deshpande and Karypis [DK04], and the first and second order Markov
models. For the second dataset, SPAN achieved an improvement of 11%, 31%, 21% and 23%
in hit rate as compared to other algorithms. Corresponding improvement for the first dataset
was 2%, 21%, 2%, and 11% . We believe that the increase in the hit rate is due to the adopted
clustering technique that takes authorization policies into account.

Caching is a simple and inexpensive solution of improving the performance of systems. It has
been widely adopted in commercial products like Tivoli Access Manager [IBM08]. On the other
hand, prefetching requires a learning process that is time consuming and memory intensive. We
simulated caching and prefetching in the same system. For the WebCT dataset, we found that
prefetching helps in improving the performance by atleast 26% in addition to the performance
improvement achieved by caching. For the FC application, the improvement is over 40%. In fact,
we observe that increasing the size of the cache doesn’t improve performance for FC. Prefetching
algorithms are beneficial to improve the performance of such systems.

Predictions increase the number of computations that have to performed by the PDP. Not
all predicted requests are eventually requested by the subjects. Computing responses to such
requests can be expensive where the cost of computing responses is high. To minimize the
unnecessary load, we propose a ‘confidence level’ metric for computing responses to predicted
requests. We propose to compute responses to only those requests whose confidence level is
above the threshold. For all the algorithms that we implemented, we found that the load on
the PDP reduces considerably using this approach.

To summarize, our contributions are:

1. We proposed SPAN for prefetching resources in access control systems that takes autho-
rization policies into account without actually having direct access to the policies.

2. We built a ‘Multiple first order Markov models’ within SPAN to reduce the exponential
growth in parameters to a linear growth.

3. We implemented algorithms that have been proposed in the literature and found that
SPAN performs better than those algorithms.

4. We proposed a ‘confidence level’ metric for prefetching the responses that can reduce the
unnecessary load on the PDP.

5. We compared prefetching algorithms against caching and evaluated the effectiveness of
prefetching over caching in access control systems.
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The rest of the paper is organized as follows: The related work is presented in Section 2. In
Section 3, we present the shortcomings of the algorithms in web page prefetching and present our
technique to overcome these. We present the evaluation of our algorithm in Section 4. Finally,
in Section 6, we present the conclusion drawn from the results and discuss future work.

2 Related Work

One of the approaches to combat the problem of latency is to replicate the authorization service
components such as the PEP, PDP and policy database. This increases availability [IBM08],
but such systems scale poorly, and become technically and economically infeasible when the
number of entities in the system reaches thousands [KLW05, Vog04].

Another state-of-the-practice approach to improving the overall latency is to cache autho-
rization decisions at the PEP-side [BZP05, SSL+99]. If a subject makes the same request as
before, the response is fetched from the PEP-cache serving the subject instantaneously. Caching
helps reduce the overall latency in authorization systems, but it can be effective only in those
cases where subjects repeatedly make the same requests. To overcome this problem, Crampton
et al. [CLB06] propose Secondary and Approximate Authorization Model (SAAM), where the
cached responses are stored at the secondary decision point (SDP) that is collocated with the
PEP. The SDP infers responses to requests that do not have their responses stored in the cache.
The idea is further explored by SDP’s co-operating with each other to make decisions [WRB07].
SAAM algorithms for role based access control are proposed by Wei et al. [WCBR08]. The
models proposed for SAAM compute the responses after receiving the request from the sub-
jects. If the time required for computing response is relatively high, as in the case of distributed
authorization systems [BSF02], the responsiveness of the system is affected. Also, SAAM is pro-
posed for the computing the secondary authorizations for policies based on the Bell-Lapadula
model [BL73, BL75, CLB06] that restricts its usage.

Kohler and Schaad [KS08] proposed an architecture for predicting the actions required to
complete the business processes in enterprises. Their approach is based on the assumption that
the execution of every business process is made of certain predefined sub-processes. When a user
starts a business process, their architecture extracts the permissions required to complete all
the sub-processes of the process. This reduces the latency involved in computing the response
for every sub-process. However their approach depends on predefining sub-processes for every
business process. The success of this implementation depends on defining all the possible sub-
processes for every business processes in an enterprise. Our approach finds probabilistically the
dependencies between requests without any prior knowledge of business processes.

Several predictive models have been proposed for prefetching web pages [AKT08, DK04,
EVK05, CHM+03, SH05, SYLZ00, BBB09, MDLN01, YHN03, YZ01, YLW04]. In these models,
the algorithms learn the surfing patterns of the users on a website during the training phase. In
the testing phase, when users surf web pages, the models compare the surfing patterns with the
learnt patterns to predict the most likely web page(s) that would be visited by the user. For
the training and testing phases of the algorithms, sequences of requests made by the users are
captured by the algorithms.

Techniques using Markov models [DK04] and its variants [AKT08, DK04, EVK05, CHM+03]
are used to find the popularity of web surfing patterns. Deshpande and Karypis [DK04] devel-
oped regular first, second, and third order Markov models for predicting web pages. They found
that higher order Markov models give better predictions but face the problems of higher mem-
ory usage (state-space complexity) and reduced coverage. Sen and Hansen [SH05] also justify
these claims through their results. To overcome these problems, Deshpande and Karypis [DK04]
propose techniques to intelligently combine the Markov models that have low state-space com-
plexity while maintaining the coverage and accuracy of the model. They have presented three
schemes for pruning, called (1)frequency pruning, (2)confidence pruning, and (3) error pruning.
Results obtained in their paper does not show significant improvement in implementing their
techniques over regular Markov models. The maximum gain of predictive accuracy is found to
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be less than 1%. However, the pruning techniques presented in this paper provide directions in
reducing the search space in the testing phase. In effect, such techniques reduce the number of
unnecessary requests that would be prefetched by the prediction algorithms. Deshpande and
Karypis [DK04] have proposed their pruning techniques that remove the states that have little
or no chance of being requested in the testing sets, eventually reducing the search space during
the testing phase. If their proposed algorithms are implemented in access control systems, ad-
ditional load on the PDP will be reduced as responses to requests having little or no chances of
being requested by the subjects will not be computed.

Awad et al. [AKT08] combine two techniques, namely Markov models and Support Vector
Machines [BC00], to predict the surfing patterns of the users. Although the techniques are
quite powerful in prediction, longer training times can hamper the performance of the systems.
The paper reports a training time of 26 hours training 23, 028 requests. We implemented our
algorithms on training sets of 50, 000 requests and above. The training time of our algorithm
is proportional to the number of requests and the subjects in the system. Our algorithm is
iterative in nature with each iteration taking 12-47 minutes.

Cadez et al. [CHM+03] and Sen and Hansen [SH05], propose clustering the web pages using
statistics obtained from first order Markov models. Our approach extends their clustering
technique. They cluster the sequences of requests from the statistics obtained from first order
Markov models in the training phase. Users are randomly assigned to one of these clusters in the
testing phase. However, we probabilistically find the association of every subject to the clusters
formed in the training phase. In addition, Cadez et al. [CHM+03] form 17 categories of web
pages and assign 10 to 5, 000 pages to every category. They have implemented their approach
to predict the categories of web pages, while the implementation at the level of web pages is
proposed as future work. Implementing an algorithm to predict 5, 000 pages as compared to
17 categories, increases the number of parameters that is directly proportional to the difference
between the number of pages and categories. We started by implementing their algorithm to
accommodate web pages (in our case, permissions), and not restrict to the category of pages.
Our implementation accommodated the increase in the parameters, which is a contribution
within itself. Next, we extended their approach to suite the requirements of access control
systems.

Pitkow and Pirolli [PP99] and Su et al. [SYLZ00] propose n-gram techniques to find the pop-
ular surfing patterns on a website. Su et al. [SYLZ00] propose WhatNext prediction algorithm
that uses n-grams modeling techniques. They build a model with n-grams where the gram size
is greater than or equal to 4. The surfing patterns of users are predicted based on the n-grams
that are found in the trainng phase. Pitkow and Pirolli [PP99] find the sequences of different
sizes in the training sets. In the testing set, when users start surfing the website, their surfing
patterns are matched to the sequences in the training sets and predictions are made for the
users. Deshpande and Karypis [DK04] have proposed that the datasets have to be large enough
for attaining a better predictive capability when the order of Markov models increase. A 2-gram
reduces to first-order Markov model when transitional probabilities are considered. It should be
noted that n-gram techniques are Markov models of order that is one less than the gram size
and the analysis remains the same as for Markov models. Thus, approaches proposed by Pitkow
and Pirolli [PP99] and Su et al. [SYLZ00] face the problems of state-space complexity and low
coverage, similar to those proposed in Deshpande and Karypis [DK04].

Bonnin et al. [BBB09] propose a technique to skip several places in longer n-grams to generate
lower-order Markov models to reduce the state-space complexity. However, they fail to address
the state-space complexity that the skipping process results in. Association rule mining [AS94]
has been used to find popular surfing patterns in web pages [MDLN01, YZ01, YHN03, YLW04].
To gather confidence in the popular surfing patterns, these however need large amount of training
sets.

The main difference between surfing patterns in web pages as compared to the access pat-
terns in access control systems, is that the latter is dominated by access control policies of the
organization. Access control policies are based on subject attributes, e.g. group memberships,
roles, etc. Thus resources that are accessible to a certain group of subjects might not be acces-
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sible to others. Also access rights available for subjects vary over resources. Models used for
training web pages consider only resources and don’t consider the access control policies that
govern the resources. In practice, the access control policies dominate the access patterns of the
subjects in the enterprise. The predictive model in access control systems should consider the
access rights possessed by subjects while predicting the requests for subjects. We take this fact
into consideration while developing our model, which differentiates our approach from web page
prediction approaches.

So far, we discussed batch approach that is the traditional approach to machine learn-
ing [Dav04]. In this approach, the datasets are divided in distinct training and testing sets. In
the training phase, algorithms attempt to find a model based on the requests present in the
training set. This model is evaluated against the testing set. In actual systems, there is a possi-
bility that the online behavior might change over a period of time. Traditional batch approach
cannot capture this changing behavior for making predictions. If training is performed on the
old behavior of the subjects while predictions are made on the new behavior, it might result in
several incorrect predictions. To capture the changing behavior of the subjects, online approach
should be adopted in which system sends feedback to the algorithms for correcting the trained
model according to changing behavior of the subjects. We have not come across any online
algorithms for web page predictions. We adopted a combination of batch and online algorithms,
where we first train the model using requests from the training set. Later, we use requests from
testing set to run the training phase again and adjust the model to the changing behavior of
the subjects.

3 Problem Formalization and Approach

In this section, we discuss the training phase 3.1 and testing phase 3.2 of SPAN.
Similar to other algorithms designed to make predictions, SPAN’s design is divided in two

phases: training and testing. In the training phase, SPAN needs to capture the sequences of
requests made by the subjects from the history of accesses, and cluster them. These clusters are
used to make predictions in the testing phase. In an enterprise system, a subject authenticates
itself to the system. The time period between a subject logging in and out of the system is
referred to as a session(Se). During a session, a subject requests for a series of actions on the
protected resources termed as permissions. Based on the access control policies that govern these
resources, the subject obtains an allow or a deny response. In every session, subjects request for
permissions that can be represented as Se = {P1,P2,P3,...,Pl}. In this sequence, P1 represents
the first requested permission, followed by P2, and Pl is the last permission requested by a
subject before logging out of the system1. The popularity of the permissions for the subjects,
can be captured by counting the number of times, subjects request these permissions. Higher
frequency counts indicate that the permissions are likely to be requested in the future. In the
training phase, frequency counts decide what sequences lie in which cluster. While training
phase is an offline process, testing phase is an online process.

The concept of predicting permissions in access control systems is similar to predicting web
pages surfed by users in web pages. However, algorithms proposed for web page prefetching
have certain shortcomings, and cannot be directly applied to access control systems. To explain
the need for specific algorithms to make predictions in access control systems and differentiate
them from the algorithms proposed for web page prefetching, we consider a hypothetical website
with 5 web pages that is controlled by the authorization policies. The link structure for the
website is as shown in Figure 3. An arrow between pi and pj (e.g., from p1 to p2) indicates
that there exists a hyperlink on pi that points towards pj . Table 1 represents the access control
matrix that characterizes the rights of the subjects to view different web pages on the website.
Websites deployed by enterprises like banks, are classic examples of our hypothetical website,
where different employees, and customers have different views, based on their identity and role

1Note that the capitalized tokens (e.g. P1, P2) represent the random variable denoting permissions. The actual
assignment to the random variables are represented by lower case tokens (e.g. p1, p2).
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Figure 3: Link structure for hypothetical website

Pages Alice Bob Mike
p1 allow allow allow
p2 allow allow allow
p3 allow allow allow
p4 allow allow deny
p5 allow deny allow

Table 1: Access control matrix in the enterprise

in the bank. We assume that our website is designed in such a way that the view presented to
a subject contains only those hyperlinks that the subject is authorized to access. This avoids
unauthorized requests made by the subjects. For example, the view of page p3 presented to
Bob would contain hyperlinks for pages p2 and p4, but a hyperlink for p5 would not exist. To
summarize, the view presented to every subject would not only depend on the structure of the
website, but also on the corresponding access rights. We now describe the training phase of
SPAN.

3.1 Training phase

Since sequences of requests are to be predicted, we choose Markov chains for building SPAN.
Based on the past behavior exhibited by the subjects, Markov chains of all the possible sequences
are formed, and the number of times these sequences are repeated across the trace are recorded.
Sequences having higher counts indicate that they are likely to be repeated more often, as
compared to the sequences with lower frequency counts. In a real world setting, the sequences
of requests could be very long because subjects have a large number of resources that they can
request. Also, subjects might not repeat their requests for resources in the same sequence every
time. This would result in lower frequency counts for the sequences. To overcome the problem
of lower frequency counts, we propose to split the sequences into smaller subsequences. This
technique provides higher frequency counts for individual subsequences.

Session Alice Bob Mike
Se1 p1, p2, p3 p1, p2, p3 p1, p3, p2

Se2 p2, p3, p4 p2, p3, p4 p2, p3, p5

Se3 p2, p3, p5 p2, p3, p4 p2, p3, p5

Se4 p1, p2, p3 p1, p3, p2 p1, p2, p3

Se5 p1, p2, p3 p1, p3, p2 p1, p2, p3

Table 2: Sequence of requests made by the subjects
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Transition Alice Bob Mike Total
p1, p2 3 1 2 6
p1, p3 0 2 1 3
p2, p3 5 3 4 12
p3, p2 0 2 1 3
p3, p4 1 2 0 3
p3, p5 1 0 2 3

Table 3: Sample of transitions made by the subjects using first order Markov models

3.1.1 Smaller subsequences

Table 2 represents the different sequences of web pages that were visited by the 3 subjects across
5 sessions. Referring to Table 2, we find that Alice has requested for the sequence p2, p3, p4 only
once, but the subsequence p2, p3 has been requested in all her sessions. Such shorter subsequences
provide higher frequency counts, compared to the entire sequence of requests made by subjects.
We split the longer sequences into smaller subsequences of fixed length. For this example, we
form first order Markov chains [SH05, DK04] as shown in Table 3. Every cell in the table,
represents the frequency counts of transitions made by the subjects. The last column represents
the total number of times the subsequences were requested by all the subjects.

While the last column gives an overall picture about the sequences of requests, it is different
when compared to requests made by individual subjects. Algorithms designed for web page
predictions using Markov models [AKT08, DK04, EVK05, CHM+03, SH05], association rule
mining [YHN03, YZ01, YLW04], n-grams [SYLZ00, PP99], SVM [AKT08], or clustering [SH05,
CHM+03], use the frequency counts from the last column to develop their algorithms. Next, we
discuss a possible shortcoming of using this approach for access control systems.

3.1.2 Shortcoming of web prefetching algorithms

In this section, we find a possible shortcoming of using web page prediction algorithm for access
control systems. Referring to Table 3, we find that the total frequency count of viewing p5 after
p3 is 3. Similarly, the frequency counts of viewing p2 and p4 after p3 are also 3, each. Let us
suppose that Bob has logged into the system, and predictions have to be made for Bob. When
Bob accesses p3, the algorithms designed using frequency counts from the last column of Table 3,
would predict p5 as one of the probable pages, as Bob’s future request. However, Bob is not
authorized to view p5. In fact, the view of p3 presented to Bob wouldn’t contain any hyperlink
for p5. The algorithms designed for access control systems should assign a zero probability to
such transitions. The only pages that Bob can request after visiting p3 are p4 and p2. From this
example, we observe that the web page prediction algorithms can’t accommodate authorization
policies for making predictions, but these policies influence the requests made by the subjects.

To avoid making predictions for requests that a subject is not authorized, prediction algo-
rithms developed for access control systems should analyze the sequence of requests in a way
that captures the underlying access control policies of the system. To achieve this goal, one
of the possible solutions is to look at the frequency counts of transitions made by individual
subjects, but this results in lower frequency counts of transitions. As algorithms depend on
higher frequency counts to make decisions, using this approach might result into lower predic-
tive accuracy. To overcome this problem, we combine the frequency counts of transitions made
by individual subjects and the total frequency counts, in the clustering approach presented in
Section 3.1.4.

Research by Sen and Hansen [SH05], and Deshpande and Karypis [DK04], suggests that
higher order Markov models improve the predictive capabilities. However, increasing the order
of Markov models increases the number of parameters in the system, resulting in higher mem-
ory usage and state-space complexity [DK04]. We build Multiple first order Markov models
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(MfoMm) within SPAN to address these problems. Before presenting our clustering technique,
we describe MfoMm to understand the way in which we form our sequences of requests.

3.1.3 Multiple first order Markov models (MfoMm)

From Table 3, we find that the overall frequency counts of transition from p3 to pages p2, p4 and
p5 are 3, each. Such equal frequency counts create ambiguity in prediction as all three pages are
equally likely to be visited. This ambiguity could arise even when frequency counts of individual
subjects are considered. A solution for overcoming this problem is to build higher order Markov
models. They provide better prediction capabilities [DK04, SH05]. However, as the order of
the Markov model increases, the memory requirements and the state-space complexity increase,
and larger training sets are required for obtaining higher frequency counts [DK04, SH05]. The
number of parameters of Markov models are mn, where m is the number of resources and n is the
order of the Markov model. The parameters grow exponentially as the order of Markov models
increase. MfoMm captures the features of higher order Markov models while maintaining the
low memory requirements and state-space complexity of the first order Markov models. The
parameters of this model are n∗m2. They increase linearly to the number of steps in the model.

To explain the combination process, we consider a sequence with 3 requests. We assume
that the first two requests have already been made by the subject and our model attempts
to predict the third request. Following the example from Section 3.1.1, we assume that the
first two requests were made for p2 and p3. The first step of MfoMm is similar to the one
described earlier, where the model finds the probability of p2, p4, and p5 being requested after
p3, i.e., it finds p(p2|p3), p(p4|p3), p(p5|p3). We don’t consider any access control policies at this
stage. They are incorporated in our clustering algorithms. The next step considers a first order
Markov model that checks the request made by the subject just before p3 was requested. In
our example, the subject requested for p2. As the first step indicates that p2, p4, and p5 are the
likely requests after p3, we determine the likelihood of p2, p4 and p5 being requested in the same
session, where p2 is the first request, and p2, p4, or p5 are the third requests in a sequence. In
this step, we skip the second request. The tuples of requests formed would appear in the form
(p2, ?, p2), (p2, ?, p4) and (p2, ?, p5), and we find p(p2|p2, ?), p(p4|p2, ?), p(p5|p2, ?). The ‘?’ sign
represents any request made by the subject that was preceded by p2 and followed by either p2,
p4, or p5, and not necessarily p3. Now, if p4, is the third request made by the subject, it could
be attributed to 3 possibilities: (1) because p2 was the first request, or (2) because p3 was the
second request, or (3) because p2 was the first request and p3 was the second request. Thus the
probability of p4, given that p2, and p3 have been the first and second requests is given by,

p(p4|p2, p3) = 1− [(1− p4|p2) ∗ (1− p4|p3)]

Our model considers the dependencies between only two requests at any point of time. Thus,
this model can be thought of as an extended version of first order Markov model. Since only
two requests are considered at a time, the parameters of the model grow linearly, and it is
proportional to the number of steps of the MfoMm. For a sequence, where l requests have been
made, the (l + 1)th request can be predicted using the following formula,

p(Pl+1 = pi|P1, P2, ..., Pl) = 1−
l∏

j=1

[1− p(Pl+1 = pi|Pj = pj)] (1)

Equation 1 gives the probability of every request being made in a session. If we suppose that
the number of steps considered to calculate the probability of each likely request is G − 1, the
probability of the entire sequence (Se) having N permissions is given by,

p(Se) = p(P1) ∗
N∏
i=2

1−
G−1∏
j=1

(1− p(Pi = pi|Pi−j = pi−j))

 (2)
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Since this equation represents a single session of a subject, it does not provide sufficient
statistics for interpreting the behavior of the subjects in the enterprise. In our clustering tech-
nique, we clusters the sequences of requests by combining the individual subject’s frequency
counts and total frequency counts to gain the statistics.

3.1.4 Clustering

In this section, we propose the clustering technique. To achieve our goal, we cluster the available
sequences formed using frequency counts from Table 3.

1. A sequence is the series of all the requests made by a subject in a session denoted by x =
(P1,P2, P3,..., PNs). Our model assumes that L unique sequences are formed by all the
subjects. Every sequence is represented as xj where 1 ≤ j ≤ L

2. The system is assumed to have M subjects denoted by ui (1 ≤ i ≤M) and every subject
is assumed to log in and out of the system several times creating a number of sessions
for itself. We represent subjects and their corresponding sessions as ui = (xi1,xi2, xi3,...,
xiQ), where Q denotes the number of sessions made by a subject.

3. We assume that there are N permissions in the system that could be requested and we
denote them as p1,p2, p3,..., pN .

4. We split the sequence of requests made across various sessions into subsequences each
denoted as y and assume that there are T unique subsequences formed. Every subsequence
is represented as yt (1 ≤ i ≤ T ).

Our goal is to find the probability of a subject requesting for permissions in a sequence. We
represent this probability as p(xj |ui). As our model depends on obtaining comparable frequency
counts of the requests made, we split the sequence xj into several smaller subsequences yt, each
having S permissions. We believe that smaller subsequences would be repeated more often than
longer ones. This helps in improving the frequency counts from the available data. We group
the subsequences into clusters that would help us build a complete sequence for predictions.
Using Equation 2, the probability of a subject requesting for a subsequence is given by,

p(yt|ui) = p(p1t
|ui) ∗

S∏
i=2

1−
G−1∏
j=1

(1− p(pi|pi−j , ui))

 (3)

We make the same assumption as LDA and cluster the subsequences. We assume that there
are K clusters formed. We adopt a soft-clustering approach, where every subject is assumed
to be associated with multiple clusters with different degrees of affiliation. The association of
every subject belonging to the clusters can be represented by a vector πi, where πi,c denotes
the probability of subject i belonging to cluster c. The sum of the probabilities in vector πi is
equal to one. For all the M subjects in the system, matrix θ would represent the probabilities
of all the subjects belonging to the clusters. This matrix has a dimension of M ∗ K. The
sum of the elements in any row equals one. The concept of soft-clustering is contrary to hard
clustering where every subject is assumed to request permissions from only one cluster. The
graphical model representation of the concept is shown in Figure 4. In this figure, ‘S’ and ‘C’
denote all the subjects and clusters in the system, and θ denotes the M ∗K dimensional matrix.
Subsequences too belong to one or more clusters with different degrees of affiliation. Considering
the same analogy used for subjects, matrix φ represents the probability of subsequences being
affiliated to the clusters. The size of the matrix is T ∗K. Note that the clusters are actually
latent (unobserved) in the model.

With the latent clusters in the model the probability of a subsequence being requested by a
subject would be

p(yt|ui) =
K∑
c=1

p(yt|zc)p(zc|ui) (4)

10



Figure 4: Graphical model representation of SPAN. The boxes are plates representing replicates.
The outer plate represents subjects, while the inner plate represents the clusters and sequences.

By substituting the value for yt from equation 3, we obtain

p(yt|ui) =
K∑
c=1

p(p1t |zc) ∗
S∏
i=2

1−
G−1∏
j=1

(1− p(pi|pi−j , zc))

 ∗ p(zc|ui) (5)

The first term p(p1|zc) represents a matrix of size N ∗K that we represent by φI and the
second term would result in a matrix size of N ∗N ∗K ∗G represented by φT . Many entries in
the second term would be zero, creating a sparse matrix2. We designed our algorithms by taking
the sparse nature of this matrix into account for reducing the memory required to store this
matrix and efficiently retrieving the information out of these matrix. For the sake of simplicity,
we present our analysis by considering the second term as a first order Markov model, instead of
considering MfoMm. The analysis for MfoMm remains the same as regular first order Markov
model. With this assumption, Equation 5 can be written as,

p(yt|ui) =
K∑
c=1

p(p1t
|zc) ∗

S∏
i=2

p(pi|pi−1, zc) ∗ p(zc|ui) (6)

The likelihood of all the subsequences and the clusters is given by,

p(D,Z|θ,Φ) =
K∏
c=1

T∏
t=1

M∏
i=1

[p(p1t |zc)N1,c ∗
S∏
i=2

p(pi|pi−1, zc)Ni,i−1,c ∗ p(zc|ui)] (7)

Here D and Z represent all the subsequences and clusters, respectively. In this equation Φ
encompasses the 3 parameters, φ, φI , φT . Given a part of subsequence accessed by a subject, our
aim is to find the probability of the subject requesting other permissions in the subsequence.
We adopt a Bayesian approach and attach priors to all the parameters required for making
predictions. A subject can be associated with one of K clusters in k possible ways, representing
a multinomial distribution with a parameter θ. From the theory of Bayesian analysis [Hec95],
we choose a dirichlet prior with hyperparameter α for the parameter θ of the multinomial
distribution. Similarly, subsequences can be associated with the clusters in k different ways,
representing a multinomial distribution with a parameter φ. We choose a dirichlet prior with

2A sparse matrix is a matrix populated primarily with zeros
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hyper parameter β for the parameter φ. Corresponding priors for φI and φT are denoted by βI
and βT respectively. The prior distribution for the parameter θ given the hyperparameter α is,

p(θ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
c=1

θαc−1
c (8)

where Γ(·) denotes the Gamma function and α0 =
∑
c αc. Similar distributions can be

obtained for parameters φ, φI and φT with dirichlet prior having the hyperparameters as β,
βI and βT respectively. The posterior distribution of our model is obtained by multiplying the
priors with the likelihood (equation 7). The posterior distribution is given by,

p(D,Z|N,U, α, β, βI , βT ) ∝
K∏
c=1

T∏
t=1

M∏
i=1

[p(p1t|zc)N(p1yt ,c) ∗
S∏
j=2

p(pj |pj−1, zc)
N(pj,pj−1,zc) ∗ p(zc|ui)N(zc,ui)

×
K∏
c=1

θαc−1
c

K∏
c=1

φ
βIc−1
c

K∏
c=1

S∏
i=2

φ
βT(i|i−1,c)−1

c (9)

Therefore,

p(D,Z|N,U, α, β, βI , βT ) ∝
M∏
i=1

K∏
c=1

θ
N(zc,ui)+αc−1
c

N∏
j=1

K∏
c=1

φ
N(pj,zc)+βIc−1

Ic

K∏
c=1

S∏
i=2

N∏
j=1

φ
N(i,j,zc)+βT(i,j,c)−1

Tc

(10)
In the above equations, φ and β are not directly taken into account, but they would be

required for computing the initial and transition probabilities. The parameters of this model
are obtained by using the Expectation Maximization (EM) algorithm [PMB77]. This algorithm
optimizes the non-concave function through gradient accent using two steps: the expectation
step (E-step) calculates the joint likelihood of observing the data, given the current estimates of
the model parameters, and the maximization step (M-step) optimizes the model parameters from
the likelihood of data that is calculated in the E-step. The EM algorithm is an iterative algorithm
that iterates between the E and the M steps until convergence. The criteria for convergence is the
step that maximizes the likelihood of the data. Since logarithms are monotonic transformations,
maximizing the log-likelihood gives the same result as maximizing the likelihood.

• In the E-step, we find the probability of the clusters given the subjects and their requested
sequences. The probability of the clusters is given by,

p(zc|yt, ui) =
p(yt|zc)p(zc|ui)∑
c[p(yt|zc)p(zc|ui)]

(11)

Substituting Equation 4 in Equation 11, we get,

p(zc|yt, ui) =
p(p1t |zc) ∗

∏S
i=2 p(pi|pi−1, zc) ∗ p(zc|ui)∑K

c=1 p(p1t
|zc) ∗

∏S
i=2 p(pi|pi−1, zc) ∗ p(zc|ui)

(12)

This equation calculates the probability of a cluster for a subject given one sequence.
Overall, M subjects would access T sequences through K clusters. Thus, this equation
would have to calculate K ∗M ∗ T values.

• In the M step, the parameters that are required to estimate the E step are optimized. We
optimize the parameters θ and φ in this step.

θi,c =
αc +

∑S
t=1 p(yti,c

)∑K
c=1[αc +

∑S
t=1 p(yti,c)]

(13)
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φt,c =
βc +

∑M
i=1 p(yti,c)∑K

c=1[βc +
∑M
i=1 p(yti,c

)]
(14)

φIj,t,c =
βIc

+
∑S
t=1 Ij,t,cφt,c∑K

c=1[βIc
+

∑S
t=1 Ij,t,cφt,c]

(15)

φTi,j,t,c
=

βTc +
∑S
t=1N(i,j,c)φt,c∑K

c=1[βTc
+

∑S
t=1

∑S
t=1N(i,j,c)φt,c]

(16)

We summarize the design of the training phase using the following steps:

1. Given a dataset containing sequences of requests, form unique sequences of fixed sizes.

2. Count the number of times each sequence was requested by every subject. Also calculate
the total number of times these sequences were requested by all the subjects.

3. Fix the step size for MfoMm and count the frequency count of transitions between any
two requests of the datasets.

4. Once all the frequency counts are obtained, start the EM algorithm that can be summarized
as follows:

(a) Randomly initialize the values in the Equation 12 for the E-step. Choose the values
of the hyperparameters and set iteration i = 0.

(b) Calculate the parameters of the M-step from the values obtained in E-step.
(c) Using the new parameters of the M-step, calculate the values for every element of the

cluster using Equation 12 of the E-step.
(d) Using the new E-step calculate the log-likelihood.
(e) If difference between the log-likelihood of current iteration and previous iteration does

not change considerably, terminate the algorithm, else i ←− i+ 1, and go to step b.

The EM algorithm is run iteratively until it converges. The memory requirements of imple-
menting SPAN are O(MTK+MK+KT +NK+KN2). Thus, the memory required would be
directly proportional to the number of subjects, unique sequences, and transitions formed in the
systems. It also depends on the number of clusters that are formed. The time complexity of the
algorithm can be given by O(IKMTN(N + 1)), where I is the number of iterations required for
the EM algorithm to converge. As the number of subjects and permissions grow in the system,
the time required for the algorithm to converge also grows linearly. However, not all subjects
request for all the sequences in the system. This gives rise to matrices that are sparse in nature.
While implementing the algorithm, we have taken the sparse nature of the matrices to find the
association of subjects and sequences to the clusters. Next, we present details about the testing
phase of the algorithm.

3.2 Testing phase

From the clusters obtained during the training phase, if a subject ui requests for sequence yt of
length t, the membership of yt requested by ui can be found by,

p(zc|yt, ui) ∝ p(yt|zc) ∗ p(zc|ui)

p(zc|yt, ui) ∝
K∑
c=1

p(p1|zc) ∗
S∏
i=2

p(pi|pi−1, zc) ∗ p(zc|ui) (17)

The proportionality is used because the equation needs to be normalized over all clusters.
Once the membership is obtained, the (t + 1)th request can be predicted using the following
equation,
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p(yt+1|yt, ui) =
K∑
c=1

p(yt+1|zc) ∗ p(zc|yt, ui) (18)

In this section, we described the design of SPAN. We discussed the shortcomings of using
web prediction techniques for access control system. SPAN overcomes the shortcomings by
considering the identity of subjects to form clusters. Forming clusters is an offline process that
involves analyzing the past behavior of subjects. The testing phase of the algorithm is an online
phase, where SPAN predicts the requests for subjects logged into a system. In the next section,
we report the experiments conducted and results obtained to evaluate the design of SPAN.

4 Evaluation

While the previous section described the model for building SPAN, we now present the experi-
mental evaluation. We used a simulation based approach for evaluating SPAN. In Section 4.1,
we first describe the datasets obtained for evaluation and our methodology of processing them.
In Section 4.2, we describe our experimental setup. Next, we describe the measurement criteria
in Section 4.3, and finally, in Section 4.5, we present our results.

4.1 Evaluation datasets and processing

The first step towards conducting the experiments is to record the requests made by the subjects
in the system. There are two options to collect this information. The first option is an online
process where SPAN records the sequences of requests. It then runs the modeling algorithms on
the recorded requests. In this online process, the number of requests recorded before running
the algorithms would depend on the settings specified by the administrator. Future requests
are then predicted by SPAN. The second option is to obtain log traces, where the sequences of
requests have already been recorded. We adopted the second option to conduct our experiments.
We divided the log traces into two parts: the training set and the testing set. The data present
in the training set was used to build the model. This step was termed the training phase. The
testing set was used to evaluate the effectiveness of the prediction model. This step was termed
the testing phase.

First, we explain the structure of tuples to be extracted from the sequences of requests
available in the log files. We propose to extract tuples of the following structure (su,se,r,a,p,i),
where su is the subject making the request, se is the session in which the request is made,
r is the requested resource, a is the action requested on the resource, p is the PEP making
the request, and i is a unique identifier for every tuple. In some situations, the log files don’t
contain explicit information about the attributes required for SPAN. If a subject cannot be
directly extracted from the trace, we suggest considering the IP address of the requestor as the
subject. In the case where information about the session is not explicit in the log trace, time
difference between requests can be used to extract session information. Following the approach
adopted in [SH05], a session can be defined as all the requests made by the subject within a
span of 2 hours from the first request. In cases where actions are not specified in the log traces,
we recommend omitting the actions, and just focussing on predicting the resources that would
be requested. This is common for web pages, where all requests are generally read only. For
accommodating an architecture with multiple PEP’s, the tuple maintains the identifier of the
PEP making the requests. This has two benefits: (1) The PDP gains knowledge about the
PEP making the requests and sends back the predicted responses to the correct PEP. (2) The
information can be used for auditing purposes. Finally, i is the unique identifier of the request
made. The response from the PDP has the following structure (re,p,i,c), where re is the response
to the request with identifier i. In this tuple, c uniquely identifies the response tuple; and p is
a variable to accommodate an architecture with multiple PDP’s.

Our first dataset was obtained from WebCT, provided by the University of British Columbia
(UBC). WebCT [Web] (Course Tools) or Blackboard Learning System, now owned by Black-
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board, is an online proprietary virtual learning environment system that is sold to colleges and
other institutions and used by over 10 million students in 80 countries for e-learning [Web]. In-
structors can add lecture notes for the courses they offer and add tools such as discussion boards,
mail systems, assignment systems, and live chat. Instructors can also provide grading system
through WebCT. Students registered for the course can read lecture notes and participate in
the discussions, view and submit their assignments, and chat to other registered members of the
course. They can view their grades and maintain an email account. There are other roles like
teaching assistants, administrators, etc., that can be added to the course. The latest version
of this software is now called “Webcourses”. We believe that WebCT is a good example of a
typical web application, where people with different identities have different levels of access to
the resources in the system. Thus, we decided on evaluating SPAN algorithms on the traces
obtained from WebCT.

We obtained an anonymized trace of 210, 000 requests from UBC. The trace contained in-
formation about requests made in an online course offered at the university. It contained in-
formation about the subjects, their actions in various sessions, the time when they made those
requests, and the role in which they logged in the system. The course had 11 instructors, 3
teaching assistants, and 42 students, for a total of 56 subjects. Every resource had different lev-
els of access. We considered every resource with different actions as a separate resource. Thus,
a resource, say A, having actions read and write would represent two resources. The first one
would be A-read, and the second one would be A-write. In this way, there were 4696 resources.

From the WebCT trace, we obtained 3 different sets of sub-traces: (1) the entire trace (2)
requests from 1 to 100, 000 (3) requests between 75, 000 to 175, 000. The first sub-trace followed
the standard procedure of running the experiments on all the available requests in the datasets,
and is described by most of the approaches mentioned in our related work. After manually
observing the complete trace, we found that several requests at the start of the trace were made
by the instructors of the course. Most of their actions pertained to adding resources in the
system, and these actions were often not repeated in the later part of the trace. Also, students
couldn’t perform most of these actions. Thus, in our second sub-trace we captured the first
100, 000 requests as the entire trace. In this sub-trace, the training phase mostly got trained
on the behavior exhibited by the instructors. The testing phase had requests made by all the
subjects in the system. Our second observation was made for requests in the range 75, 000
- 175, 000. We observed that it mostly contained requests for reading course contents, and
discussing topics on the discussion boards. The reason for obtaining these sub-traces was to
understand the effect of different access patterns on the performance achieved.

We obtained our second dataset from requests made by the users in the ‘Fighters Club’ (FC)
application of Facebook [NRC08]. It is one of the first games to be launched on Facebook, and
it evolved over a period of 9 months to have been played by over 3.44 million users. FC allows
users to pick virtual fights with their Facebook friends that lasts from 15 to 48 hours. For the
duration of the fight, each player may request support from their Facebook friends, who then
help the individuals team defeat the opposing users team through a series of virtual hits. Users
on FC can have one of the three possible roles. (1) Offender: The user instigating the fight is
the offender. (2) Defender: The Facebook friend picked on by the offender is the defender. (3)
Supporter: The offender and the defender may receive support from their Facebook friends who
are called the supporters. Every fight has a unique fight id.

The trace obtained for the FC application can be associated to requests made by subjects
in access control systems. When a facebook user starts a fight, he or she gets a unique fight id.
Users can be considered as subjects, and fight ids as their sessions. In every fight, users receive
help from their friends. The order in which they receive help, can be considered as a sequence
of requests made by subjects in their sessions. To summarize, the offender or defender act as
the subjects, fight ids as their sessions, and supporters are the permissions to be predicted. A
second aspect of this trace is that users can receive help only from their friends. This is similar
to those access control systems where subjects can request for only those permissions that they
are authorized to access. From the vast number of facebook users, offenders and defenders can
receive help from a small subset of users, who are their friends. This is similar to subjects
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Trace

Training time Time for
Number Number of Number of per iteration predicting

of subjects unique requests unique of clustering each
sequences (minutes) request (ms)

WebCT1 56 4, 696 22, 418 28 2.34
WebCT2 56 2, 642 12, 984 16 2.52
WebCT3 56 1, 482 9, 318 15 2.04

FC1 50 1, 780 5, 671 12 9.6
FC2 100 2, 424 10, 092 24 9.6
FC3 200 3, 211 19, 116 47 8.28

Table 4: Summary of the datasets used for experiments.

requesting for a subset of permissions from the entire subspace of permissions.
The FC dataset contained over 23 million requests made by 43, 669 users. The memory and

time required to form clusters in our algorithm directly depends on the number of subjects and
the unique sequences of requests formed. The present implementation of our algorithm does not
support the memory required for such huge datasets. To meet the memory requirements of our
algorithm, we formed 3 sub-traces of requests made by 50, 100, and 200 users. We randomly
picked all the users for our sub-traces. We started with 50 users to compare the time required
to form clusters using this dataset, as compared to WebCT that contained 56 users. We then
doubled the number of subjects in every subtrace, which increased the number of requests and
unique sequences of requests formed. Time required to form clusters in each subtrace, gives an
idea about the scalability of the algorithm.

We simulated our third dataset using Zipf distribution to model the uneven popularity of
permissions to the subjects. Zipf distributions have been widely used to model heterogeneous
popularity distributions (e.g., web page popularity [BCF+99], web site popularity [AH02], and
query term popularity [KLVW04].) A set of data obeys Zipf’s law if the frequency of an item
is inversely proportional to (some non-negative) power of its rank (determined by frequency
of occurrence). More formally, suppose we have a frequency distribution (x1, f1), . . . , (xn, fn),
where data item xi occurs fi times and f1 > f2 > · · · > fn. Then the distribution obeys Zipf’s
law if

fi ∝
1
iα

for some α > 0. The simulated dataset had a total of 100, 000 requests made by 100 subjects
over 3000 permissions. For every session, we simulated 100 requests being made by the subjects.
We varied the value of α from 0 and 1.5 in steps of 0.5. As the value of α becomes smaller, the
popularity distribution becomes less skewed, collapsing to a uniform distribution when α = 0.
Using this distribution, we were interested in predicting the behavior of subjects in web page
prediction environment.

4.2 Experimental setup

In this section, we present the setting of our experiments. We conducted all our experiments on
a machine with Intel Pentium 1.73GHz dual-core processor having cache memory of 1 MB and
RAM memory of 2 GB. Our training and testing phases were implemented in Matlab version
2009a that contains a statistical tool box.

We divided every sub-trace into training and the testing set for the training and testing
phases of SPAN. Our simulation testbed is as shown in Figures 5. In the training phase, we fed
the requests from the training set into SPAN. SPAN found the number of unique requests in the
trace. It formed all the possible short sequences of requests from the long sequences. It recorded
the number of times the short sequences were repeated in the entire trace. It also recorded the

16



data input files

evaluation engineSPAN

input
parameters

testing settraining set

cache

results

Figure 5: Experimental setup for evaluating SPAN

number of times every subject requested for these short sequences. It calculated the transition
between any two requests in the trace. After recording all these numbers, SPAN clustered the
short sequences of requests.

We had to choose priors and the number of clusters for implementing the training phase.
We conducted our experiments for prior values of 0.1, 0.3, 0.6, and 1. For the log traces we
considered, the log-likelihood of clustering was not greatly affected by the different values of the
priors. Thus, we decided to run all the experiments for a prior of 0.3. To select the number
of clusters, we varied the number of clusters between 1 − 10 in steps of 1 and recorded the
log-likelihood for every run. The number of clusters in the training phase that provided the
maximum log-likelihood during convergence was chosen as the number of clusters for the testing
phase. We determined that 4 and 7 clusters gave the optimum value of log-likelihood for the
WebCT and FC datasets, respectively. Thus, we decided to use 4 and 7 clusters for the two
datasets. We followed the same convergence criteria as proposed by Cadez et al. [CHM+03]. If
the log-likelihood between two steps of EM algorithm differed by less than 0.1%, we assumed
that the algorithm converged. As the algorithm initially starts with random assignments of
probability values, we restarted the algorithm if it failed to converge in 25 steps.

In the testing phase, the evaluation engine read the requests from the testing set one after
the other. The evaluation engine forwarded a copy of the requests to SPAN. SPAN predicted
the probable requests for sequences of requests sent by the evaluation engine. Based on the
setting specified by the input parameters and requests available in the cache, the evaluation
engine computed the achieved performance. We discuss the detailed implementation of the
input parameters and cache in Sections 4.2.1 and 4.2.2, respectively.

For each of our sub-traces, Table 4 provides details about the number of subjects, unique
permissions, and unique sequences formed. Every sequence in the table is of size 3. The table
also provides the average time required for every iteration of training phase, and the average time
required to make a prediction. For every sub-trace, we carried the training and testing phase of
the algorithm two times. As we started the clustering algorithm with random assignments, the
two runs of experiments in the training phase were used to confirm that unique clusters were
formed each time. For both the runs, we ensured that the difference between the log-likelihood
at the time of convergence was less than 0.1%. Table 4 indicates that the training time increases
as the number of subjects and sequences of requests increase in the system. However, the time
required to predict every request is relatively small. The two runs in the testing phase confirmed
the results obtained in that phase.

We observed that the approaches for web page predictions cited in Section ??, fix a number of
requests from the trace as training set, and the remaining requests become the testing set. The

17



training and the testing phase of the algorithms are conducted on these fixed sets of requests.
We wanted to analyze the effect of different sizes of training and testing sets on performance.
We wanted to observe if larger training sets gave better performance on smaller testing sets. To
evaluate this, we decided to vary the number of requests in training and testing sets. We divided
each of our traces into different sized training and testing sets. The training sets contained 50%
to 90% requests from the total number of requests in a trace. Requests in the testing sets varied
from 50% to 10%, respectively. We measured the performance for all sub-traces varying the size
of training and testing sets.

We implemented our next set of experiments to evaluate MfoMm, built within SPAN. We
varied the number of steps of the algorithm from 1 to 4. As the number of steps increased, the
time required to form clusters increased incrementally. A different training phase was required
for each step of MfoMm. We maintained the number of steps common between the training and
the testing phase. This means that if the training phase was trained for a step size of 3, we
tested the algorithm using the same step size.

Next, we describe the settings of input parameters and cache that were collocated with the
evaluation engine.

4.2.1 Input parameters

For every sequence, SPAN predicts the likely requests that would be made by the subjects with
certain probability. We set two input parameters for the evaluation engine as described below:

1. SPAN predicts requests with certain probability. In the first setting, the evaluation engine
considers the most probable request for every sequence and verifies it against the requests
read from the testing set. In the second set of experiments, three most probable requests
for every sequence are considered and checked against the requests read from the testing
set. Considering more requests per sequence improves the performance, but increases the
load on the PDP because in a real world setting, the PDP has to compute responses to
the predicted requests. The input parameters set in this experiment gives an idea about
the tradeoff between performance gain v/s additional load encountered by the PDP.

2. Requests predicted with higher probability values are more likely to be requested than those
predicted with lower values. The probability with which SPAN predicts the requests can be
converted to confidence levels. Confidence levels are nothing but probability values ranging
between 0−1 scaled to percentage values ranging between 0−100. Thus, a confidence level
of 0.01% corresponds to probability value of 0.0001 and 10% corresponds to 0.1. We varied
the confidence level from 0.01% to 10%. The evaluation engine considered predictions from
SPAN as valid, only if they were predicted with a confidence level greater than the preset
confidence level. In a real world setting, to reduce the number of unnecessary computations
made by the PDP, we propose that responses should be precomputed only if requests are
predicted with a certain confidence level. Note that our confidence levels are quite low.
This is due to the fact that SPAN has to predict permissions in a sequence from thousands
of available permissions in the system, which results in very low probability for each
predicted permission.

We now describe our design for combining SPAN and cache in a system.

4.2.2 Cache implementation

To evaluate the performance obtained by SPAN as compared to caching techniques, we im-
plemented two types of cache: FIFO and LRU. For each implementation, we recorded the
performance obtained by stand alone cache. We combined each implementation of cache with
SPAN and recorded the performance obtained by the combination. In our experiments, the
evaluation engine cached the requests that it read from the testing set. The size of the cache
was a percentage of total size of permissions in the system. We varied the size from 0% to 100%.
Initially the caches were filled from the requests available in the training set. At the start of the
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Figure 6: Simulation setup for latency calculation

experiment, the FIFO and LRU caches read requests from the training set equal to its size using
the FIFO and LRU techniques, respectively. Reading the requests from the training phase was
termed as the warming phase [WCBR08]. In the testing phase of stand alone caching system, if
requests read from the testing set were found in the cache, it was considered as an improvement
in performance. In the implementation where SPAN was combined with one of the caches,
if requests read from the testing set were either found in the cache or predicted correctly by
SPAN, it was considered as an improvement in performance. Using this experiment, we were
interested to find the performance obtained by combining SPAN and cache, over stand alone
caching technique.

4.2.3 Batch and Online Algorithms

Table 4 summarizes training time required for every dataset. To make predictions with cer-
tain degree of confidence, the number of times (frequency count) subjects request for certain
sequences has to be comparatively higher than the requests for other sequences. To adopt to
the changing behavior of the subjects in the system and gather sufficient frequency counts, we
adopted a combination of batch and online algorithms. Initially clusters were formed using
the methodology described in Section 4.2. We performed online training process for WebCT2
and WebCT3 datasets. WebCT2 had a changing access pattern in the training and testing set,
whereas WebCT3 had a fairly similar pattern in both sets. Training time required for the online
phase would suggest SPAN’s ability to accommodate changing behavior of the subjects in the
system. To implement the online training, we added first 10,000 requests from the testing sets
of the datasets to the training sets. At the same time we removed the first 10,000 requests from
the training sets. This maintained the number of requests in the training sets. We also repeated
online training for 20,000 requests. Adding 10,000 and 20,000 requests for online training also
sufficed the condition on frequency counts for judging the changing behavior of subjects.

Next, we present our evaluation metrics before we present our results.

4.3 Measurement criteria

In this section, we define the metrics used to evaluate SPAN for different settings in which we
conducted the experiments.

First, we study the hit rate, which we define as the ratio between the number of precomputed
responses used to serve the requests made by subjects, to the total number of requests made
by the subjects. A high hit rate indicates that the model can predict future requests efficiently
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Figure 7: Hit rate obtained for WebCT dataset when 3 most probable responses are fetched for
every sequence.
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Figure 8: Precision obtained for WebCT dataset when 3 most probable responses are fetched for
every sequence.

and compute the responses even before the request is made by the subjects. As the PDP
precomputes the responses to these predicted requests and pushes them to the PEP cache, a
higher hit rate indirectly indicates that latency is virtually zero. In our experimental setup, hit
rate was the ratio of the number of requests considered by the evaluation engine after taking
the input parameters and cache into consideration to the total number of requests read from
the testing set.

As computing authorization responses can be expensive in certain applications, responses
to predicted requests that are not requested by the subjects can be considered an unnecessary
overload on the system. To gain knowledge about the unused predictions, we study the precision
of the algorithm. We define precision as the ratio of the total number of precomputed responses
used to serve the requests made by subjects, to the total number of responses precomputed by
the PDP. Precision is an indirect measure to calculate the additional load on the PDP. A higher
precision indicates that the PDP precomputes minimum number of responses that are unused,
thus reducing the unnecessary overhead on the system. For our experiments, precision was the
ratio of the number of requests in the evaluation engine that matched the requests read from
the testing set to the total number of requests in the evaluation engine after taking the input
parameters and cache into consideration.

Confidence level affects the number of computations to be performed by the PDP. Thus,
we study the drop in the number of computations for increasing confidence levels. In our
experiments, we calculate the drop in the valid requests present in the evaluation engine for
increasing confidence levels.

Now, we consider a simulation setup to understand the mapping of our evaluation metrics
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Figure 9: Hit rate obtained for WebCT dataset when only one most probable response is fetched
for every sequence.

into latency reduction

4.4 Simulation setup for latency reduction

To gain knowledge about the reduction in latency using SPAN, we built an experimental testbed
as shown in Figure 6. We split the evaluation engine in two modules: the PEP and the PDP.
The PEP read every request from the testing set between an interval of 0 − 100 ms from
the previous request. We used uniform distribution to generate this interval. The analogy of
generating requests in this interval was to simulate a real world scenario, where requests arrived
at the PEP within an interval of 100 ms from the previous requests. The PEP forwarded these
requests to the PDP and SPAN. SPAN predicted the possible requests that could be read from
the testing set by the PEP. The PEP sent the predicted requests to the PDP. We introduced
fixed communication delays of 40 ms between the PEP and the PDP, and a computation delay
of 10 ms for every request as proposed in [Wei09] and [BGR07], respectively. We assumed that
the communication delay between the PDP and policy database is negligible as compared to
the delay between the PEP and the PDP. Queuing delays get added at the PDP depending on
two factors: first, the rate at which requests arrive from the PEP to the PDP and second, the
delay introduced by the computation process at the PDP. Queuing delays are zero if the PDP is
idle when requests arrive from the PEP. The PDP prioritized requests read from the testing set
over requests predicted by SPAN. In this setup, we calculated the latency experienced by the
system for all the requests read from the testing set. Latency was the time difference between
a request being read by the PEP from the testing set to the time it received a response from
either its cache or the PDP.

We now present the results obtained from all our experiments.

4.5 Results

4.5.1 Hit rate and precision for different sizes of training and testing sets

Figures 7 and 8 show the hit rate and precision for different sub-traces of WebCT dataset, when
3 most probable requests are considered by the evaluation engine. The figures show that hit rate
and precision are not much affected by different sizes of training and testing sets. SPAN achieves
an average hit rate of 63%, 41%, and 64% for the three sub-traces of WebCT. Corresponding
precision is 21%, 13%, and 23%, respectively. We observe that the hit rate and precision for
the WebCT3 is much higher than WebCT2. We selected WebCT3 trace to contain common
access patterns between training and testing sets as compared to WebCT2. This implies that
the hit rate and precision are higher when the patterns found in the training and testing sets
are similar to each other. The average improvement in hit rate achieved by SPAN as compared
to the first order, second order, and the algorithm proposed by Deshpande, is 6%, 15%, and
25%, respectively. Corresponding improvement in precision is 2%, 5%, and 7%. Overall, SPAN
achieves better hit rate and precision as compared to the other algorithms we implemented.
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Figure 10: Hit rate obtained for FC dataset when 3 most probable responses are fetched for every
sequence.
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Figure 11: Precision obtained for FC dataset when 3 most probable responses are fetched for every
sequence.

However, we observed that our results closely matched the results obtained for Cadez. The
improvement in hit rate and precision for SPAN ranged between 2% and 4%, when compared
against Cadez. The possible reason for low improvement can be explained as follows: the
WebCT dataset contained requests mostly by students and instructors of a course, and most of
the requests were made for accessing the course material. The access control policies were the
same for all subjects on these resources. This dataset closely matched a dataset that would be
obtained for web pages without access control policies. Since SPAN and Cadez are implemented
using clustering approach, SPAN could not achieve a significant improvement over Cadez for
this dataset.

Figures 10 and 11, show the hit rate and precision obtained for the FC dataset. The average
hit rate obtained by SPAN is 70%, 60%, and 50% for the 3 sub-traces of the FC dataset.
Corresponding precision is 25%, 22%, and 18%, respectively. SPAN outperforms all the other
algorithms in terms of hit rate and precision. The average improvement in hit rate achieved
by SPAN is 10%, 21%, 20%, and 31% as compared to Cadez, first order, second order and
Deshpande algorithms. The average improvement in precision obtained by SPAN is 3%, 6%,
8%, and 11%, respectively. In the FC application, Facebook users could receive requests only
from their friends. From a total of 43, 669 users, who played the game, each user could receive
help from a small set of users. This is similar to the accesses found in access control systems,
where subjects can request action on a small set of permissions from the available pool of
permissions. Our clustering technique that considers the identity of subjects boosts the hit rate
in such systems, as compared to the technique proposed in Cadez.

Figure 13 indicates the hit rate obtained for the simulated dataset. The hit rate increased
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Figure 12: Hit rate obtained for FC dataset when only the most probable response is fetched for
every sequence.
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Figure 13: Hit rates obtained by varying coefficient α in Zipf distribution.

for increasing values of α. The hit rate for 3 most probable requests being predicted improved
from 70% to 75% when the value of α increased from 0 to 1.5. Similarly, the hit rate improved
from 43% to 53%, when the value of α changed from 0 to 1.5 in the most probable case.

In all our datasets, hit rate drops when only the most probable request is considered by eval-
uation engine, but the precision increases considerably. For systems where computing autho-
rization responses are expensive, higher precision would be preferred to decrease the additional
load on PDP. For the WebCT dataset, the hit rate drops to 45%, 23%, and 50% from 63%,
41%, and 64% when the most probable requests considered by the evaluation engine changes
from 3 to 1. By definitions of hit rate and precision, we note that precision is equal to hit rate
when only 1 predicted request per sequence is considered by the evaluation engine. Thus the
precision increases to 45%, 23%, and 50% as compared to 25%, 22%, and 18%. The precision
increases by approximately 50% − 100%. For the FC dataset, the hit rate drops to 48%, 40%,
and 36% from 70%, 60%, 50%. In other words, the precision increases to 48%, 40%, and 36%
from 25%, 22% and 18%. The improvement in precision is around 60 − 100% for this dataset.
From Figures 10, and 12, we observe that the second order Markov models perform better than
the first order Markov models when only the most probable request per sequence is considered.
From Figures 10 and 12, we also observe that the performance of Cadez drops considerably
when only one request per sequence is predicted.

4.5.2 Latency calculation

Figure 14 shows the cumulative distribution functions (CDFs) of the simulations conducted to
demonstrate that SPAN reduces the latency introduced by the authorization process in access
control systems. In Figure 14(c), we note that the probability of zero latency for the FC1 trace
is 0.28. This implies that in 28% cases, a response would be present in the PEP cache when a
request arrives at the PEP, thus reducing the authorization latency to zero. Next, we observe
that in 62% cases, the probability of receiving a response is less than 50 ms, which is the delay
in obtaining a response without SPAN in the system. Note that the hit rate obtained by this
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Figure 14: CDF’s showing the response times for different traces of WebCT and FC
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Figure 15: Hit rate and precision obtained for different step sizes of Multiple first order Markov
models (MfoMm) in WebCT

trace is 68%. Thus, a hit rate of 68% indicates that in approximately 68% cases, a subject
would receive a response less than the time required for actual authorization process.

Comparing Figures 14(c) and 14(d), we find that the performance is improved when 3 most
probable predicted requests are considered as compared to only one most probable request.
However, the increase in the performance can negatively effect some of the requests, which
would experience a queuing delay in the system. The queuing delay is depicted in the tail of the
CDF in Figure 14(c). This tail cannot be seen in Figure 14(d) indicating lesser queuing delays.
Finally, the hit rate obtained in FC1 is better than FC2. This is indicated by the curves in
Figures 14(c) and 14(d) showing the reduction in latency obtained for FC1 and FC2.

4.5.3 Hit rate, precision, and PDP computations for different step sizes of
Multiple first order Markov models (MfoMm)

Figure 15 shows the hit rate and precision obtained for WebCT, using different step sizes in
MfoMm. We observe that varying MfoMm does not provide much benefit in terms of hit rate
and precision for this dataset. We obtained an improvement in hit rate of less than 1% for
WebCT.

Figure 16 shows the hit rate and precision obtained for FC dataset. Changing the step
size of MfoMm from 1 to 2, improves the hit rate by 4% − 5% for all the sub-traces of FC.
Corresponding increase in the precision is between 1%− 3%. In FC application, Facebook users
receive help from their friends during the duration of any fight. Generally, the order in which
the help is received cannot be restricted to particular sequences. Requests in access control
systems, like accessing files in repositories, or requesting permissions on different directories in
a domain, are examples where subjects might not make the requests in same sequence again
and again. Looking into the past states using MfoMm would help in improving the hit rate and
precision of such systems.
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Figure 16: Hit rate and precision obtained for different step sizes of Multiple first order Markov
models (MfoMm) in FC
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Figure 17: Change in hit rate and precision as the confidence level is varied for WebCT dataset

4.5.4 Hit rate, precision, and PDP computations for different confidence
levels

As confidence level increases, the hit rate reduces, whereas precision increases. This expected
behavior is observed for all the sub-traces of both datasets.

Figures 17(a) and 17(b) give details about the hit rate and precision achieved by the WebCT
dataset as the confidence level is varied in the system. Hit rate and precision are not much
affected for confidence level of 0.01%. However, as the level of confidence increases further,
the hit rate drops and precision increases considerably. The hit rate achieved by SPAN for a
confidence level of 10% is 23%, 11%, and 24% for the 3 sub-traces. The corresponding precision
is 87%, 62% and 84%. To understand the effect of change in the confidence level on the number
of requests to be computed by PDP, we studied the relative drop in the PDP computations for
varying confidence levels. The relative drop in the number of computations is 91%, 93%, and
89%, respectively, when the confidence level reaches 10%. For the FC dataset, hit rate drops
and precision increases linearly for SPAN beyond a confidence level of 1%, as seen in Figure 18.

Our experiments show that setting a higher confidence level decreases the hit rate, but
the number of computations that the PDP has to perform drop considerably, reducing the
additional load on the PDP. Our results demonstrate that confidence level could be a good
metric for precomputing responses to the predicted requests. The confidence level could be set
to higher values for systems where computing authorization responses are expensive.
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Figure 18: Change in hit rate and precision as the confidence level is varied for FC dataset
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Figure 19: Change in hit rate for implementations of FIFO cache, LRU cache, and their combina-
tions with SPAN for WebCT dataset

4.5.5 Hit rate for cache implementation

Figures 19 and 20 show the results obtained by combining caching techniques with SPAN as
compared to stand alone caching for WebCT and FC datasets. From the results obtained, we
find that the combination improves the overall hit rate of the system. For smaller sizes of cache,
predictions made by SPAN can improve the hit rate of the system, whereas for larger sizes of
cache, the permissions obtained from the cache improve the hit rate. Overall, we found that
combining SPAN and LRU cache performs better than combining SPAN and FIFO cache.

Figure 19 shows the results obtained for WebCT. In this dataset, subjects repeatedly request
for the same resources in their sessions. Thus, as the size of the cache grows, the evaluation
engine finds more requests in the cache, resulting in improved cache performance.

For the FC dataset (Figure 20), we observe that FIFO and LRU caches obtain a maximum
hit rate of less than 30% and 40% for cache sizes of up to 30%. In this dataset, subjects request
for permissions mostly once per session, but repeat their behavior across different sessions. In
such cases, SPAN provides better hit rate as it depends on the behavior of the subjects in the
past sessions. However, as the size of the cache grows, the storage capacity of cache increases
and information from the past sessions can be stored in the cache, improving the performance
obtained by the caching techniques.
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Figure 20: Change in hit rate for implementations of FIFO cache, LRU cache, and their combina-
tions with SPAN for FC dataset

5 Discussion

The results of our experiments indicate that SPAN leads to a high hit rate and precision in
predicting requests for access control systems. As our approach is comparable to the prediction
techniques proposed for web predictions, we followed the same procedure of building algorithms
and measuring the hit rate. In addition, we also calculated the precision and additional load
that could be encountered by PDP. In this section, we discuss our understanding on the imple-
mentation of SPAN in access control systems, based on the results obtained.

While predicting requests improves the performance of systems, it also causes the PDP
to compute additional responses. If subjects do not make the same requests as predicted,
responses computed for the predicted requests are a waste of PDP’s computational power. A
good prediction algorithm should achieve high hit rate and impose minimum additional load on
the PDP. While a high hit rate indicates that the system is capable of reducing the latency of
access control systems, a high precision indicates that fewer responses computed by the PDP
are unused in the system. SPAN achieved high hit rate and precision, as compared to the other
algorithms we implemented. We found that the algorithms discussed in our related work do
not consider precision for evaluating their approaches, but precision is an important metric for
determining the additional load on the PDP.

For all the algorithms we implemented, SPAN achieved better improvement in hit rate and
precision for the FC dataset as compared to WebCT. WebCT mostly contained accesses made by
instructors, teaching assistants, and students in a course, and the popular sequences of requests
were made for accessing course materials, to which everyone had access. The popular behavior of
individual subjects was not significantly different from the overall behavior exhibited by all the
subjects. Our results for this dataset shows that SPAN does not achieve significant improvement
in performance over Cadez. SPAN and Cadez, both follow clustering approach in the training
phase. The only difference is that SPAN considers the behavior of individual subjects while
forming clusters, whereas Cadez does not. On the other hand, in our FC dataset, Facebook users
could receive help only from their friends. This dataset represented a system where subjects
could request for only those permissions that they were authorized. In this case, the behavior of
individual subjects is different from overall behavior of subjects. Clusters formed by considering
individual subjects access patterns, result in better predictions. To summarize, SPAN performs
better for enterprises, where the access patterns of individual subjects are different from the
overall access patterns of all the subjects in the system.

The access patterns found in the training and testing sets influence the hit rate and precision.
For the WebCT dataset, WebCT3 gave better hit rate and precision, as compared to WebCT2.
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WebCT2 was trained on the sequences of requests made mostly by instructors, and tested on
requests made by the instructors, teaching assistants, and students. The actions of instructors
in the training set added course materials and students could not perform these actions. The
testing set contained requests made by everyone for accessing course materials. The access
pattern in the training set was different from the pattern found in the testing set. On the
contrary, the training and testing sets of WebCT3 contained requests by students for accessing
course materials. This resulted in similar access patterns in the training and testing set. We
conclude that having similar access patterns in the training and testing set results in higher hit
rate and precision.

For every sequence, SPAN and other prediction algorithms predict possible future requests
with certain probability. Computing responses to all the predicted requests can increase the
load on the PDP. To reduce these computations, we implemented an evaluation engine and set
input parameters to the engine. We found that the hit rate dropped by 50% when only the
most probable request was considered, as compared to 3 most probable requests. However, the
precision increased by 50%− 100%. From our results, we also observe an interesting fact. The
number of most probable requests affected the performance of the algorithms. We found that
first order Markov models performed better than second order Markov models, when 3 most
probable requests were considered. However, the performance reversed when only the most
probable request was considered. For the FC dataset, we observe that the hit rate and precision
obtained by Cadez dropped considerably, when only 1 response per sequence was considered, as
compared to 3 initially. To summarize, the number of probable requests considered for satisfying
the subjects had a direct impact on the hit rate and precision achieved by all the algorithms.

SPAN predicts requests with certain probability. A higher probability for a request indicates
that it is likely to be requested in the future, as compared to the request predicted with lower
probability. Responses can be fetched only to those requests that are predicted with certain
probability. This would be a good criteria for reducing the additional load encountered by the
PDP. As observed from our experiments, neglecting requests predicted with lower probability
(confidence levels) reduced the additional load on the PDP considerably. Enterprises, where
computing authorization responses are not expensive, more responses could be fetched. This
would result in high hit rate, but the precision would be low. On the other hand, if computations
are expensive, fewer responses could be fetched based on our proposed confidence level approach,
resulting in reduced additional load on the PDP.

Caching has been a popular technique for improving the performance of systems. Policies
are cached even in commercial access control products like Tivoli Access Manager [IBM08]. We
have not seen speculative authorizations being used to improve the performance of systems.
Results obtained from implementing SPAN and caching in the same system demonstrated that
this configuration can boost the hit rate. For WebCT, increasing the size of the cache reduced
the difference in hit rate between stand alone caching, and combined SPAN and caching imple-
mentation. WebCT represented a dataset, where subjects requested access on same resources
repeatedly in a session. In systems like these, speculation authorizations obtains higher hit rate
when the size of the cache is small. As the size of the cache grows, more responses are stored
in the cache. If subjects make the same requests repeatedly, responses to these requests are
found in the cache. Hence, the difference in hit rate is reduced. On the contrary, in our FC
dataset, Facebook users generally received help from their friends, only once per session. In
these systems, caching cannot improve the performance to a large extent. SPAN can improve
performance of such systems, where caching is of little use and predictions are made on the
behavior exhibited by the subjects in their past sessions.

Results obtained for Multiple first order Markov models demonstrated an improvement in
hit rate, when applied to FC dataset as compared to WebCT. In the FC dataset, Facebook users
received help from their friends in certain order, but this order was not fixed each time. MfoMm
finds the probability of two requests being requested in a session, not necessarily one after the
other. Thus, it improves the performance in systems like FC or file systems, where subjects are
not restricted to ordering of their requests on permissions.

Our experiments indicate that the training time required for forming clusters is proportional
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Figure 21: Architecture of SPAN’s implementation on PDP side

to the number of subjects and unique sequences of requests formed in the system. However, the
time required to make a prediction is quite low for all the datasets. In fact, it is independent
of the number of subjects and unique sequences formed. It depends on the number of clusters
formed in the system. The time required to make a prediction for WebCT is lesser than FC,
where the number of clusters are 4 and 7 respectively.

So far, we interpreted the results of our experiments that demonstrates the effectiveness of
SPAN in access control systems. Another aspect to prediction is to accommodate the change in
behavior of subjects or access control policies that affect the access patterns exhibited by the
subjects of the system. We discuss this aspect in the next section.

5.1 Batch and online algorithms

As noted in Table 4, we found that the time required to form clusters is directly proportional to
the number of subjects, sequences of permissions, and the iterations required to form the clusters.
To accommodate changes in behavior of subjects in systems, training phase has to be repeated.
However, time required to form clusters is an expensive step for SPAN. Limiting the number
of iterations would limit time required to run the training phase repeatedly for accommodating
the changes. For this purpose, whenever a training phase was repeated, we started the clusters
assignments from the one obtained in the previous training phase of the dataset. Using this
process, WebCT2 dataset converged in 3 iterations, whereas the WebCT3 dataset converged
in just a single iteration for both sets of requests. This experiment demonstrates that SPAN
can accommodate changes in the behavior of the subjects by simply running the training phase
of the algorithms again. This step is less time consuming compared to the batch training
phase performed at the start of every experiment that required between 15 and 25 iterations to
converge.

In the next section, we provide the possible configurations of implementing SPAN in access
control systems.

5.2 Implementing SPAN in access control systems

SPAN could be completely collocated with the PDP side as shown in Figure 21, or split between
the PEP and PDP, as shown in Figure 22.

5.2.1 SPAN collocated with the PDP

SPAN can be collocated with the PDP as shown in Figure 21. In this configuration, both the
training and prediction phases of SPAN are implemented at the PDP-side. In the training
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Figure 22: Architecture of SPAN’s implementation split between PEP and PDP

phase, the PDP not only computes the responses to the incoming requests from the PEP, but
also sends a copy of the requests to SPAN. After a certain number of requests are recorded,
SPAN runs the training phase of the algorithm.

In the testing phase, when the PEP sends requests to the PDP, a copy of requests are sent
to SPAN. Based on the sequences of requests received, SPAN predicts the requests that could
be made by the subjects. The PDP computes the responses to these predicted requests and
sends it to the cache, collocated with the PEP. This mechanism reduces the latency to virtually
zero. However, there is a disadvantage. When PEP finds responses in its cache, it would
not make authorization requests to the PDP. This would break the sequence of authorization
requests flowing from PEP to the PDP. As SPAN depends on the sequences of requests to make
predictions, its predictive capability would be affected. To avoid this, the PEP has to inform
the PDP about the requests made by the subjects even if responses are found in the cache. In a
single PEP-PDP configuration, SPAN could be collocated with the PEP to avoid this drawback.

However, the PEP-PDP configuration is generally designed for a single PDP to support
multiple PEP’s. We provide the implementation of SPAN in this scenario next.

5.2.2 SPAN split between PEP and PDP

In this configuration (Figure 22), the training and testing phases of SPAN are split between the
PDP and the PEP, respectively. The training phase is implemented at the PDP, whereas the
testing phase is implemented at the PEP. Implementing the training phase at the PDP has two
advantages:

1. The training phase of SPAN depends on higher frequency counts to form clusters. Aggre-
gating the authorization requests from all the PEP’s would boost the frequency counts.

2. The training phase is intensive in terms of time. Clusters could be formed once at the
PDP and transmitted to the PEP’s.

For the testing phase, SPAN could be collocated with the PEP’s. When SPAN predicts
future requests, the PEP could check if the cache contains the response before sending the
authorization request to the PDP. This configuration also avoids the problem of breaking the
sequence of requests for SPAN.

5.3 Shortcomings in SPAN

Although SPAN achieves good hit rate and precision, there are certain shortcomings that we
address in this section.
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First, SPAN requires time to adjust to any policy changes made in enterprise authorization
systems. SPAN is built on the frequency counts obtained from transitions made by subjects
for accessing resources. If a subject gets access to a new resource, or is denied access to a
resource, previously allowed, it would take some time for SPAN to detect the changes. Policy
changes would change the behavior exhibited by subjects in an enterprise. This change will not
be captured immediately by SPAN, as it relies on comparable frequency counts of transitions
to make predictions. SPAN would predict incorrect requests for the subjects. However, this
does not cause any security threat to the enterprise systems. SPAN only predicts the requests,
but decisions are still made by the PDP. Policies changes will affect the hit rate and precision
obtained by SPAN. This is the fundamental problem for all approaches [AKT08, DK04, EVK05,
CHM+03, SH05, SYLZ00, BBB09, MDLN01, YHN03, YZ01, YLW04] built on frequency counts
of transitions. Accommodating policy changes to make predictions is an open problem for
speculative authorizations.

The second shortcoming of SPAN is the time required to train SPAN is directly proportional
to the number of subjects and unique sequences of requests formed in the system. For our second
dataset, we found that increasing the number of subjects increased the number of permissions
and requests made by the subjects. It had a direct impact on the training time that increased
from 12 minutes for 50 subjects, to 47 minutes for 200 subjects. In the current implementation,
this shortcoming affects the scalability of SPAN.

5.4 Summary

We now summarize the section to list our assumptions in SPAN, its applicability and the tuning
of input parameters to obtain better performance.

1. SPAN is designed for access control systems where information about subject’s identity
and sequence of requests made by the subjects can be obtained.

2. From the results obtained for our two datasets, we conclude that SPAN achieves better
performance where access pattern of individual subject is different from overall access
patterns of all the subjects in the system.

3. The number of most probable responses to be computed depends on the time required
for the PDP to compute every response. If the time required to compute a response is
comparatively higher than the average time of incoming requests from the PEP, only the
most probable response should be computed. If not, the requests made by the PEP would
experience a queuing delay at the PDP. The PDP should be configured in such a way
that computing responses to requests made by the subjects are prioritized as compared to
requests predicted by SPAN.

4. From the results obtained for our WebCT2 and WebCT3 traces, we found that the access
patterns found in the training phase and actual prediction phase determines when the
training phase should be rerun. If the number of permissions in the system does not un-
dergo frequent changes and the behavior of subjects on those permissions is fairly constant
over a period of time, the training phase of the algorithm need not be run over and over
again.

5. Finally, we conclude that SPAN can be used to improve the performance of enterprise
authorization systems consisting of a few hundred subjects. Scaling SPAN to accommodate
larger enterprises is a direction of future work.

6 Conclusion

In this paper, we presented Speculative Authorization (SPAN) that predicts authorization re-
quests, likely to be made by subjects in access control systems. Unlike web page prediction
algorithms, our model considers the authorization policies for making predictions. We imple-
mented two web prediction techniques, and evaluated the hit rate and precision obtained by
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those against SPAN. For the two datasets used for our experiments, SPAN achieved a hit rate
between 30 − 70%, a gain of 2 − 55% as compared to the other algorithms. Precision varied
from 15− 45%. We proposed confidence level metric for computing responses to the predicted
requests. For systems where computing policies decisions are expensive, our strategy would help
in reducing the additional load on the PDP, while improving performance. We also implemented
caching and SPAN in the same systems. Our results demonstrate that combining SPAN and
caching can further improve the performance of access control systems as compared to stand
alone caching technique.

6.1 Future work

Although our approach improves the performance of enterprise authorization systems, in terms
of reducing in latency, there is an area for future research.

Recall that the time required for the training phase is proportional to the number of subjects
in the system. Time required for training can affect the scalability of the systems. A role-based
access control policy (RBAC) controls access based on the roles a subject is assigned and the
permissions that are allowed for those roles. Having been introduced more than a decade ago,
RBAC [FK92, SCFY96] has been deployed in many organizations for access control enforcement,
and eventually matured into the ANSI RBAC standard [ANS04]. In RBAC, instead of directly
assigning permissions to subjects, the subjects are assigned to roles and the roles are mapped
to permissions. Subjects are assigned appropriate roles according to their job functions in an
enterprise. Generally, the number of roles in an enterprise are much lesser than the number
of subjects in an enterprise. Considering the roles instead of identity of subjects, can improve
the time required in the training phase. However, a subject can possess multiple roles. The
clustering algorithms built for prediction using role based access control should consider this
criteria.
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