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Abstract

With the emergence of tighter corporate policies and government regulations, access control has

become an integral part of business requirements in enterprises. The authorization process in

enterprise systems follow the request-response model, where a policy enforcement point inter-

cepts application requests, obtains authorization decisions from a remote policy decision point,

and enforces those decisions. The two advantages of this model are (1) the separation between

the application and authorization logic (2) reduction of authorization policy administration.

However, the authorization process adds to the already existing latency for accessing resources,

affecting enterprises negatively in terms of responsiveness of their systems. This dissertation

presents an approach to reduce latency introduced by the authorization process.

We present Speculative Authorization (SPAN), a prediction technique to address the prob-

lem of latency in enterprise authorization systems. SPAN predicts the possible future requests

that could be made by a client, based on the present and past behavior of the client. Au-

thorization decisions to the predicted requests are fetched even before the requests are made

by the client, thus reducing the latency. SPAN is designed using a clustering technique that

combines information about requests made by different clients in order to make predictions for

a particular client. We present our results in terms of hit rate and precision, and demonstrate

that SPAN improves the performance of authorization infrastructures. We also calculate the

additional load incurred by the system to compute responses to the predicted requests, and

provide measures to reduce the unnecessary load.

Caching is a simple and inexpensive technique, popularly used to improve the latency of

enterprise authorization systems. On the other hand, we have not seen any implementation of

techniques like SPAN to reduce latency. To demonstrate the effectiveness of such techniques, we

implement caching and SPAN in the same system, and show that combining the two techniques

can further improve the performance of access control systems.
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Chapter 1

Introduction

Companies and government organizations are increasingly opening their IT infrastructure to

give external customers and partners access to their resources. At the same time, internal

users have access to various internal corporate resources [Kar03]. Resources should be acces-

sible to only those people, who have sufficient rights to access them. The process of securing

resources from ineligible people is termed authorization, and authorization policies determine

who has the right to perform what operations on those resources. Operations refer to the

permissions that individuals can request on resources, examples being read or write requests

on files. Authorization is completely different compared to authentication in security systems.

While authentication ensures that the individual is who he or she claims to be, authorization

determines whether an authenticated entity (individual or process), referred to as a subject,

has the right to perform the requested operation on a specific resource in a domain. The goal of

defining policies is to adequately protect business assets and resources with a minimal amount

of administrative effort.

Authorization or access control1 ensures that a subject gets only those access rights to

the resources or objects it is entitled to. Resources can be files, directories, network servers,

messages, databases, or web pages. The structure of traditional access control mechanisms

is based on the conceptual model of reference monitor [And72]. As shown in Figure 1.1,

a reference monitor is responsible for mediating access by subjects to system resources. The

reference monitor is aware of the permissions that a subject has, and decides whether the subject

is allowed to carry out a specific operation on specific resources. To provide full protection, the

reference monitor is invoked each time a request is issued.

Access control in enterprise application systems is the focus of this thesis. In particular,
1Formally, access control is about verifying access rights, whereas authorization is about granting access

rights [TS01]. In this thesis, we use these terms interchangeably.

1



1.1. Architecture of authorization solutions

subject reference 
monitor resource

request for 
permission

authorized
request

Figure 1.1: General access control model based on the reference monitor [TS01].

we propose a technique to improve the performance of the access control infrastructure for

enterprise application systems.

In the rest of this chapter, Section 1.1 provides an overview of typical authorization archi-

tectures used by the existing enterprise application systems, followed by a description of the

problem (Section 1.2) that motivates this thesis. Section 1.3 summarizes our approach of solving

the problem, and describes our evaluation strategy. Section 1.4 summarizes the contributions

of this thesis. Finally, Section 1.5 outlines the thesis’s structure.

1.1 Architecture of authorization solutions

To protect application resources, an obvious solution is for applications to define their own

policies and authorization logic to enforce these policies [YB97], e.g., using Java Authentication

and Authorization Service (JAAS) [LGK+99]. In this design, the reference monitor is a single

component within the application. While this architecture gives developers complete control

over authorization during application development, it has a number of disadvantages. First,

once an application is in production, it is hard to make changes to authorization functions

(such as adding new requirements and modifying the authorization logic), as any change would

require the developer to modify the application code [GB99, HGPS99, Ora08a]. Second, in an

enterprise with a large number of applications, administrating authorization policies becomes

challenging, as it has to be done on application-by-application basis [Bez98]. Besides, it is

difficult to maintain policy consistency across multiple applications [HGPS99]. Third, the

architecture leads to challenges in the area of audit and compliance [Ora08a]. For example,

2



1.1. Architecture of authorization solutions

to comply with government regulations such as the Sarbanes-Oxley Act [Sar02], enterprises

are required to report and review users’ privileges. This implies that, in this architecture, an

auditor needs to check all the applications across the enterprise, which will be a difficult task.

For these reasons, the reference monitor is commonly split into two components, a policy en-

forcement point (PEP) and a policy decision point (PDP), as shown in Figure 1.2. Coming from

the Internet Engineering Task Force (IETF) and Distributed Management Task Force (DMTF)

specifications [YPG99, DBC+00] and used by eXtensible Access Control Markup Language

(XACML) [Com05], this design represents a common way of separating different functional

components involved in authorization.

The PEP is the module responsible for enforcing policy decisions. A PEP logically consists of

two parts: a front-end that intercepts the client requests and communicates with the PDP, and a

back-end that forwards the requests to the resources. As soon as the PEP receives an application

request for a resource access, it formulates an authorization request for an authorization decision

and sends it to the PDP. The PDP returns the decision and the PEP then enforces the decision

by either accepting and forwarding the request to the resources or denying the request.

The PDP is the module responsible for making decisions regarding access permissions to

the requested resources. As soon as the PDP receives a request for an access decision from the

PEP, it retrieves the policy associated with the protected resource from the policy database.

Based on the information in the request and the access control policy (and possibly other

environmental or contextual data), the PDP decides whether to allow or deny access for the

requested operation at the remote resource. Finally, an allow or deny message is sent back to

the PEP.

The use of PEP and PDP enables the separation of authorization logic from application

logic, which reduces the application complexity. Besides, this separation frees developers from

dealing with the actual decision-making process, so that developers are able to concentrate on

the business logic [Ora08a]. In addition, this architecture is more capable and flexible in dealing

with the evolution of authorization requirements. Particularly, the authorization policy can be

changed without requiring any modification to the application code.

Furthermore, most modern authorization solutions [CZO+08, Kar03, Ent99, Net00, Sec99,

OMG02, DK06, BZP05, SSL+99, Ora08b] advocate the externalization of the PDP to a central-

3
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application 
request

authorization 
request 

application 
response

authorization 
response

policy 
query  

policy
response

policy 
enforcement 

point  
(PEP)

policy 
decision

point  
(PDP)

subject

client application 
server

authorization 
server

protected
resources

policy 
database

Figure 1.2: Authorization systems based on the request-response model.

ized authorization server. This externalization architecture enables the reuse of authorization

logic at a centralized authorization server and consistent policy enforcement across multiple

applications. Besides, it provides a central point for administrators to manage policies and for

auditors to review users’ privileges. Therefore, it helps achieve more efficient policy manage-

ment, audit and compliance.

Therefore, this thesis focuses on the architecture that uses the centralized PDP due to

its popularity in enterprise application systems. For simplicity, we denote it as the request-

response model, as the PEP sends each request to the central PDP and enforces the decision in

the returned response.

1.2 Problem motivation

Although authorization is imperative for securing resources from unauthorized subjects, it adds

latency to the system. Latency can be defined as the time gap between a subject making a

request and receiving a response. The total latency introduced by the authorization process

4



1.3. Solution and methodology

is the sum of the delays introduced by, (1) communication channels between the PEP and the

PDP (communication delays), (2) authorization calls made by the PDP to the policy database

(communication delays), (3) time required for the PDP to compute authorization responses

(processing delays), and (4) queuing of requests at the PDP awaiting responses, when the

system is heavily loaded (queuing delays). In the rest of the thesis, the term latency refers to

the delay introduced in the system by the authorization process.

On the contrary, enterprises rely on the responsiveness of their systems to maximize profits

and remain competitive in the market [Hol03]. The process of computing an authorization

response can take a few milliseconds to several seconds, depending on the policy associated with

the request, and the subsequent process involved in computing the response [BSF02, BEJ09].

Neilsen suggests that a response time greater than 0.1 second makes end users feel that the

system is not responding instantaneously [Nie93]. Also, a study by Amazon reported roughly

1% sales loss due to a delay of 100 ms in showing results, and a study by Google found a 500

ms extra delay in displaying the search results may reduce revenues by up to 20% [KHS07].

In summary, authorization is imperative for securing the protected resources in an enterprise,

but it increases the latency in the system, hampering responsiveness.

1.3 Solution and methodology

To address the need for reducing latency, we propose Speculative Authorization (SPAN), a

technique that predicts the requests likely to be made by subjects in their sessions. A ‘session’

is defined as the time period between a subject logging in and out of the system. SPAN is

designed using the Bayesian techniques of machine learning [Hec95].

1.3.1 Approach

Making predictions using SPAN is a two step process. In the first step, SPAN analyzes the past

behavior of the subjects referred to as the training phase. The first step is offline, whereas the

second step is online. In the second step, SPAN compares the online behavior of the subjects to

the analysis performed in the training phase, and predicts the future requests for the subjects.

For our convenience, we would refer the second step as the testing phase in the rest of the thesis.

5
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application 
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authorization 
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application 
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authorization 
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policy 
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(PEP)

policy 
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(PDP)

subject

client application 
server

authorization 
server

cache SPAN

protected
resources

policy 
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Figure 1.3: Architecture of SPAN

In the training phase, SPAN clusters the sequences of requests made by the subjects. The

features of the clustering technique adopted in SPAN can be summarized as follows:

1. As sequences of requests are clustered, Markov-chain structure is appropriate as a starting

point to clustering. Research by Sen and Hansen [SH05], and Deshpande and Karypis [DK04],

suggests that higher order Markov models improve the predictive capabilities. However,

increasing the order of Markov models increases the number of parameters in the system,

resulting in higher memory usage and state-space complexity [DK04]. We build ‘Multiple

first order Markov models’ within SPAN to address these problems.

2. In enterprise systems, the identity of the subjects restricts their actions on limited re-

sources. This restriction influences the requests made by the subjects. The behavior of

individual subjects is comparatively different from other subjects in the system. Storing

the behavior exhibited by every subject results in large memory usage and does not pro-

vide high predictive accuracy. To overcome this problem, SPAN clusters the sequences of

6



1.3. Solution and methodology

requests considering the combined behavior of all the subjects on the sequences, and then

associates every subject to the clusters, based on the sequences of requests present in the

clusters and the past behavior of the subjects on those resources.

The second step is online, where SPAN predicts the sequences of requests for subjects,

as shown in Figure 1.3. When PEP sends authorization requests to PDP, the PDP not only

computes responses to the requests, but also forwards a copy of these requests to SPAN. SPAN

predicts the requests that could possibly be made by the subjects in their sessions, and sends

the predicted requests to the PDP. The PDP computes responses to these predicted requests,

and sends it to the cache that is collocated with the PEP. If the subjects make the same requests

as predicted by SPAN, responses are obtained from the cache. As responses are available in the

cache even before a request is made, overall latency is virtually reduced to zero.

1.3.2 Evaluation

We evaluated SPAN using two datasets that represented log traces from access control systems.

Our first dataset contained accesses made by students, teaching assistants, and course instruc-

tors in WebCT [Web] for a course at our university. Different subjects had different rights on

the resources of the course. We obtained the second dataset from requests made by users in the

‘Fighters Club’ (FC) application of Facebook [NRC08]. In this application, users could start

a virtual fight with their friends, and request for help from other friends. This dataset repre-

sents an access control system where subjects (users) can only request for resources (friends)

for which they are authorized.

The concept of predicting the sequences of requests in access control systems is similar

to predicting surfing patterns of users in web sites. To evaluate the benefits of using SPAN

for access control systems as opposed to using algorithms proposed for surfing web paths, we

implemented Cadez et al. [CHM+03], a clustering technique built for web page prediction. In

addition, we also implemented algorithms proposed by Deshpande and Karypis [DK04], and

the first and second order Markov models. Our results demonstrate that SPAN obtains better

performance as compared to other implemented algorithms.

Caching has been long recognized as a powerful performance technique for improving the

7
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performance of access control systems. On the other hand, we have not seen any practical

implementation of techniques like SPAN. To compare the benefits of SPAN against caching,

we implemented caching and SPAN in the same system. Our evaluation results show that

caching and SPAN implemented together improve the performance of the system considerably,

as compared to performance achieved by stand alone caching systems.

1.4 Contributions

The central contribution of this thesis is the design and evaluation of Speculative Authorization

(SPAN), a prediction technique that improves the performance of enterprise authorization sys-

tems, by reducing the latency involved in computing authorization responses. In detail, the

contribution of this work can be summarized as follows:

1. We proposed SPAN to reduce the latency involved in computing authorization responses,

by predicting the likely requests that could be made by the subjects in their sessions.

2. We built Multiple first order Markov models (MfoMm) within SPAN that incorporates

the advantages of higher order Markov models, while restricting itself to smaller memory

space and fewer parameters as compared to higher order Markov models.

3. To understand the performance gain achieved by SPAN, as compared to web prediction

techniques applied to access control systems, we implemented algorithms proposed web

page predictions, and evaluated the performance gain.

4. We implemented caching and SPAN in the same system, and evaluated the performance

achieved by this combination against caching technique.

1.5 Outline

The rest of the paper is organized as follows: the related work is presented in Chapter 2. Chap-

ter 3 provides the Bayesian concepts of machine learning and the Latent Dirichlet Allocation

model required to understand the modeling concepts in SPAN. In Chapter 4, we present the

shortcomings of using web prediction techniques in access control systems, and present SPAN’s

8



1.5. Outline

design. We explain our methodology of evaluating SPAN, and present the results of our ex-

periments in Chapter 5. In Chapter 6, we discuss the implications of our results, and the

shortcomings of using SPAN in access control systems. Finally, in Chapter 7, we present our

conclusion drawn from the thesis, and outline future work.
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Chapter 2

Related Work

The model presented in this paper is developed from the idea proposed by Beznosov [Bez05] to

predict authorization requests. He suggests exploring the idea of predicting the requests made

by subjects to improve the responsiveness of the system.

Given the increase in both the number of servers and the scale of geographical areas, the ex-

isting enterprise access control systems that employ remote authorization servers are essentially

distributed systems themselves. Section 2.1 and Section 2.2 review the solutions proposed to

improve the latency in access control systems. The idea of predicting requests in access control

systems is similar to the prediction concepts proposed for improving the latency in fetching web

pages. In section 2.3, we review the literature on techniques proposed to make predictions in

web pages. We study a proposed implementation of speculative authorization in Section 2.4,

and summarize the chapter in Section 2.5.

2.1 Group replication in access control systems

One of the approaches to combat the problem of latency is to replicate the authorization service

components such as the PEP, PDP, and the policy database. Group replication can help improve

the queuing delays of a system, when the distributed system needs to scale in the number of

requests it can handle. By replicating the data in multiple servers and later dividing the

workload among replicas, the queuing delays are reduced, thus improving system performance.

Replicas can be created either permanently or dynamically. A permanent replica is created

at the start of the service and will not change thereafter. For example, a company usually

sets up multiple web servers to answer the incoming requests. Whenever a request comes,

a load-balancing server forwards it to one of the web servers, for instance, using a round-

robin strategy. In comparison, with dynamical replication, replicas are created dynamically to
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2.2. Caching in access control systems

adapt to the environmental changes. For instance, in Content Distribution Networks (CDNs),

the replica of web content is usually created dynamically to adapt to the change in clients’

distribution and access patterns [CKK02].

Next, we discuss a commercial product that deploys permanent replica scheme for improving

performance.

Tivoli Access Manager IBM Tivoli Access Manager [Kar03] provides an access control in-

frastructure for a corporate web environment. Using the application programming interface

(API) provided by the Tivoli Access Manager, one can program Tivoli Access Manager appli-

cations and third-party applications to query the Tivoli Access Manager authorization service

for authorization decisions. The authorization API supports two implementation modes. In

remote cache mode, one uses the authorization API to call the centralized Tivoli Access Man-

ager authorization server, which performs authorization decisions for the application. In local

cache mode, one uses the authorization API to download a local replica of the authorization

policy database. In this mode, the application can perform all authorization decisions locally.

“Overhead of policy replication” is mentioned in the technical documentation of the Access

Manager [BAR+03], but no evaluation is reported.

Although group replication helps improve system availability and performance, it has a few

limitations. First, although the system throughput is increased by replication, network latency

is still inherent with each request. Second, group replication usually involves the deployment

of extra hardware that may result in high cost. Finally, group replication usually scales poorly,

and becomes technically and economically infeasible when the number of entities in the sys-

tem reaches thousands [KLW05, Vog04]. We next describe caching solutions in access control

systems that partially address these problems.

2.2 Caching in access control systems

Caching has been an important technique for improving the performance and availability of

access control systems. Based on the content that is cached, there are three general caching

mechanisms: caching decisions, caching policies, and caching attributes. In this section, we
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2.2. Caching in access control systems

briefly discuss each of these caching mechanisms. For each mechanism, we review the represen-

tative systems or protocols that have employed that mechanism.

2.2.1 Caching decisions

The state-of-the-practice and state-of-the-art approach is to cache authorization decisions. This

technique has been employed in a number of commercial systems, such as Oracle Entitlement

Server [Ora08b] and Entrust GetAccess [Ent99], as well as several academic authorization sys-

tems, such as CPOL [BZP05] and Flask [SSL+99]. In these systems, there usually exists a cache

manager component that caches and manages the authorizations for previous authorization re-

quests and uses them for future decisions.

Oracle entitlement server (OES) OES [Ora08b] is a component of Oracle Fusion Mid-

dleware that provides a fine-grained authorization engine for enterprise applications. The OES

authorization server is able to cache the result of an authorization call, and use that result if

future calls are made by the same subject. The authorization cache can automatically invalidate

itself if there is a change in policy or user profile. It is important to note that the decisions

are cached at the PDP in OES. This is specifically useful when the authorization logic is so

complex that the time for making a decision is much longer than the network latency. Besides,

the same cache can be shared by multiple PEPs.

CPOL Borders et al. [BZP05] propose CPOL, a flexible C++ framework for real-time high-

throughput policy evaluation in sensor networks or location-aware computing environments.

The goal of CPOL’s design is to evaluate policies as efficiently as possible and caching has

been used to achieve this goal. In particular, CPOL uses cache to store previous access tokens

returned from the authorization engine. Access tokens represent the rights that are given to an

entity in the system. The evaluation results show that CPOL was able to process 99.8% of all

requests from the cache, reducing the average handling time from 6µs to 0.6µs.

Distributed proof Bauer et al. [BGR05] present a distributed algorithm for assembling a

proof that a request satisfies an access-control policy expressed in a formal logic. As a different

form of decision, a proof assures that an access request to an object by a subject is allowed.
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2.2. Caching in access control systems

They introduce a “lazy” cooperating strategy, in which a party gets the help of others to

prove particular subgoals in the larger proof, versus merely retrieving certificates from them—

yielding a proof that is assembled in a more distributed fashion. They introduce caching as

an optimization technique. Since the lazy scheme distributes work among multiple nodes,

each node can cache the subproofs it computes. As future access to the same or a similar

resource (even by a different principal) will likely involve nodes that have cached the results of

previous accesses, caching leads to significant performance improvement. The evaluation results

demonstrate that the number of requests made by the second access is reduced by a factor of

two.

2.2.2 Caching polices

Another caching mechanism is to cache/replicate policies by the PEP so that each PEP can

make authorizations locally. Based on who initiates the caching process, there are two possible

ways to distribute policies from PDPs to PEPs.

First, the PDP initiates the policy replication by pushing the policies directly to the PEP.

While this approach is simple, it requires the PEP to store all policy information locally, which

however may not be feasible when the policy size is large. In addition, under this scheme, any

update to the policy (e.g., deleting a user) requires all affected PEPs to update their local copies

of the policy. If such updates are frequent or the number of affected PEPs is large, the cost is

prohibitively expensive. Finally, the PEP will incur additional processing cost for examining

potentially useless policy entries when trying to resolve the request from a specific user.

Second, the PEP initiates the policy replication by pulling the policies from a policy repos-

itory as needed and then stores them locally as proposed by [TC09], for example. This scheme

exhibits better behavior in terms of storage requirements. However, this scheme also leads to

additional delays in evaluating requests and adds additional burden to the PEP. For example,

now the PEP needs to perform some additional processing when evaluating an access control

request, which may also incur extra communication overhead.

Similar to the approach where PDPs are co-located with the corresponding PEPs and their

policies are delivered from a centralized policy store, this approach posts new challenges to the

policy design and is inefficient when the authorization logic is comprehensive.
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COPS The Common Open Policy Service (COPS) Protocol, defined by the IETF’s RFC

2748 [DBC+00], is a simple query and response protocol that is used to exchange policy infor-

mation between a policy server (PDP) and its clients (PEPs). The COPS protocol defines two

modes of operation: outsourcing and provisioning. In the outsourcing mode, the PDP receives

policy requests from the PEP, and determines whether or not to grant these requests. Therefore,

in the outsourcing mode, the policy rules are evaluated by the PDP. In the provisioning mode,

the PDP prepares and “pushes” configuration information to the PEP. In this mode, a PEP

can make its own decisions based on the locally stored policy information. The provisioning

mode has been used to transfer policy between network devices in the network environment

where the scale of the policy is usually quite small [SPMF03].

2.2.3 Caching attributes

The third approach is to cache attributes. Attributes provide a generic way for referring to users

and resources in access control systems. For example, the XACML [Com05] uses attributes

in order to specify applicable subjects, resources and actions in access control policies. User

identity, group memberships, security clearances, and roles can all be expressed using attributes.

The evaluation engine denies or allows access to resources based on matching the attributes held

by the user with those required by the policy.

Attribute certificates, defined by RFC 3281[FH02] and based on the popular X.509 stan-

dard, are digitally signed documents that bind a user identity with a set of attributes. In a

highly distributed access control system that involves different domains, such as Grid com-

puting [Cha05], in order to enforce local policies for external users, the access control system

needs to be capable of fetching users’ attribute certificates from external sources. As attribute

certificates are usually distributed across multiple hosts, e.g., Internet-based web and remote

LDAP servers, a challenge is the length of time it takes to gather all the certificates from

remote servers. As a result, caching has been introduced in a number of access control sys-

tems [TEM03, Jim01, BDS00, CEE+01] to reduce certificate-gathering time.
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2.2.4 Secondary and approximate authorization model

All existing approaches that use decision caching however only employ a simple form of caching:

a cached authorization is reused only if the authorization request in question exactly matches

the original request for which the authorization was made. It can be effective only in those

cases where subjects repeatedly make the same requests. To overcome this problem, Crampton

et al. [CLB06] propose Secondary and Approximate Authorization Model (SAAM), where the

cached responses are stored at the secondary decision point (SDP) collocated with the PEP. The

SDP infers responses to requests that do not have their responses stored in the cache. The idea

is further explored by SDP’s co-operating with each other to make decisions [WRB07]. SAAM

algorithms for role based access control are proposed by Wei et al. [WCBR08]. Results obtained

in SAAM and its variants demonstrate that they are effective in improving the availability and

performance of access control systems. However, the models proposed for SAAM compute the

responses after receiving the request from the subjects. If the authorization logic is complex such

that the time for making a decision is long, computing responses after receiving the request

would hamper the responsiveness of the system. Besides, SAAM is proposed for computing

secondary authorizations for policies based on the Bell-Lapadula model [BL73, BL75, CLB06]

that restricts its usage. We propose SPAN that computes the responses even before the requests

are made. Computing responses using predictions would be helpful when the authorization logic

is so complex that the processing delays affect the responsiveness of the system.

Predicting sequences of requests in access control systems is similar to the concept of pre-

dicting the surfing patterns of users on a web site. In the next section, we review the literature

proposed for predicting web pages for users surfing web sites.

2.3 Prediction in web systems

Several predictive models have been proposed for prefetching web pages [AKT08, DK04, EVK05,

CHM+03, SH05, SYLZ00, BBB09, MDLN01, YHN03, YZ01, YLW04]. In these models, the

algorithms learn the surfing patterns of the users on a website during the training phase. In

the testing phase, when users surf web pages, the models compare the surfing patterns with the

learnt patterns to predict the most likely web page(s) that would be visited by the user. For
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the training and testing phases of the algorithms, sequences of requests made by the users are

captured by the algorithms.

Techniques using Markov models [DK04] and its variants [AKT08, DK04, EVK05, CHM+03]

are used to find the popularity of web surfing patterns. Deshpande and Karypis [DK04] devel-

oped regular first, second, and third order Markov models for predicting web pages. They found

that higher order Markov models give better predictions but face the problems of higher mem-

ory usage (state-space complexity) and reduced coverage. Sen and Hansen [SH05] also justify

these claims through their results. To overcome these problems, Deshpande and Karypis [DK04]

propose techniques to intelligently combine the Markov models that have low state-space com-

plexity while maintaining the coverage and accuracy of the model. They have presented three

schemes for pruning, called (1)frequency pruning, (2)confidence pruning, and (3) error pruning.

Results obtained in their paper does not show significant improvement in implementing their

techniques over regular Markov models. The maximum gain of predictive accuracy is found to

be less than 1%. However, the pruning techniques presented in this paper provide directions in

reducing the search space in the testing phase. In effect, such techniques reduce the number of

unnecessary requests that would be prefetched by the prediction algorithms. Deshpande and

Karypis [DK04] have proposed their pruning techniques that remove the states that have little

or no chance of being requested in the testing sets, eventually reducing the search space during

the testing phase. If their proposed algorithms are implemented in access control systems, ad-

ditional load on the PDP will be reduced as responses to requests having little or no chances

of being requested by the subjects will not be computed.

Awad et al. [AKT08] combine two techniques, namely Markov models and Support Vector

Machines [BC00], to predict the surfing patterns of the users. Although the techniques are

quite powerful in prediction, longer training times can hamper the performance of the systems.

The paper reports a training time of 26 hours training 23, 028 requests. We implemented our

algorithms on training sets of 50, 000 requests and above. The training time of our algorithm

is proportional to the number of requests and the subjects in the system. Our algorithm is

iterative in nature with each iteration taking 12-47 minutes.

Cadez et al. [CHM+03] and Sen and Hansen [SH05], propose clustering the web pages using

statistics obtained from first order Markov models. Our approach extends their clustering
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technique. They cluster the sequences of requests from the statistics obtained from first order

Markov models in the training phase. Users are randomly assigned to one of these clusters in the

testing phase. However, we probabilistically find the association of every subject to the clusters

formed in the training phase. In addition, Cadez et al. [CHM+03] form 17 categories of web

pages and assign 10 to 5, 000 pages to every category. They have implemented their approach

to predict the categories of web pages, while the implementation at the level of web pages is

proposed as future work. Implementing an algorithm to predict 5, 000 pages as compared to

17 categories, increases the number of parameters that is directly proportional to the difference

between the number of pages and categories. We started by implementing their algorithm to

accommodate web pages (in our case, permissions), and not restrict to the category of pages.

Our implementation accommodated the increase in the parameters, which is a contribution

within itself. Next, we extended their approach to suite the requirements of access control

systems.

Pitkow and Pirolli [PP99] and Su et al. [SYLZ00] propose n-gram techniques to find the

popular surfing patterns on a website. Su et al. [SYLZ00] propose WhatNext prediction algo-

rithm that uses n-grams modeling techniques. They build a model with n-grams where the

gram size is greater than or equal to 4. The surfing patterns of users are predicted based on the

n-grams that are found in the trainng phase. Pitkow and Pirolli [PP99] find the sequences of

different sizes in the training sets. In the testing set, when users start surfing the website, their

surfing patterns are matched to the sequences in the training sets and predictions are made for

the users. Deshpande and Karypis [DK04] have proposed that the datasets have to be large

enough for attaining a better predictive capability when the order of Markov models increase.

A 2-gram reduces to first-order Markov model when transitional probabilities are considered.

It should be noted that n-gram techniques are Markov models of order that is one less than the

gram size and the analysis remains the same as for Markov models. Thus, approaches proposed

by Pitkow and Pirolli [PP99] and Su et al. [SYLZ00] face the problems of state-space complexity

and low coverage, similar to those proposed in Deshpande and Karypis [DK04].

Bonnin et al. [BBB09] propose a technique to skip several places in longer n-grams to

generate lower-order markov models to reduce the state-space complexity. However, they fail

to address the state-space complexity that the skipping process results in. Association rule
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mining [AS94] has been used to find popular surfing patterns in web pages [MDLN01, YZ01,

YHN03, YLW04]. To gather confidence in the popular surfing patterns, these however need

large amount of training sets.

The main difference between surfing patterns in web pages as compared to the access pat-

terns in access control systems, is that the latter is dominated by access control policies of the

organization. Access control policies are based on subject attributes,e.g. group memberships,

roles, etc. Thus resources that are accessible to a certain group of subjects might not be acces-

sible to others. Also access rights available for subjects vary over resources. Models used for

training web pages consider only resources and don’t consider the access control policies that

govern the resources. In practice, the access control policies dominate the access patterns of

the subjects in the enterprise. The predictive model in access control systems should consider

the access rights possessed by subjects while predicting the requests for subjects. We take this

fact into consideration while developing our model, which differentiates our approach from web

page prediction approaches.

In the next section, we describe a technique proposed to predict actions in access control

systems.

2.4 Speculative authorization

Kohler and Schaad [KS08] proposed an architecture for predicting the actions required to com-

plete the business processes in enterprises. Their approach is based on the assumption that the

execution of every business process is made of certain predefined sub-processes. When a user

starts a business process, their architecture extracts the permissions required to complete all

the sub-processes of the process. This reduces the latency involved in computing the response

for every sub-process. However their approach depends on predefining sub-processes for every

business process. The success of this implementation depends on defining all the possible sub-

processes for every business processes in an enterprise. Our approach finds probabilistically the

dependencies between requests without any prior knowledge of business processes.
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2.5 Summary

This chapter presented the literature review of the approaches that have been proposed for

reducing the latency in access control systems. Our review shows that caching has been a

popular mechanism of improving the latency in access control systems. We also reviewed

an implementation of speculative authorization for access control systems that depended on

complete prior knowledge about the business processes in an enterprise. In the next chapter,

we present the Bayesian techniques of machine learning and Latent Dirichlet Allocation (LDA)

model, which is required to understand the design of SPAN.
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Chapter 3

Background

In this chapter, we first discuss the concepts of Bayesian techniques of machine learning required

to understand our modeling (Section 3.1). Next, in Section 3.2, we present the Latent Dirichlet

Allocation (LDA) [BNJ03] model that we have extended to build SPAN.

3.1 Bayesian approach to probability and statistics

In this section, we present the fundamental techniques in Bayesian statistics used in our model.

Most of the material here, has been adopted from Heckerman [Hec95].

To explain the theory behind Bayesian networks, we consider data generated by a system

denoted as D = (x1,x2, x3,..., xN ). We assume that every variable xi can be repeated several

times in the data. Since each of the terms xi can be generated in N possible ways, the data can

be represented using a multinomial distribution. The probability of every variable xi occurring

in the dataset is given by a parameter θi

For simplicity, we assume that there are only two possible values of x, say x1 and x2.

Flipping a coin can be considered as a binomial distribution, with 2 outcomes that are heads

and tails. When a coin is flipped, the probability of a head and tail can be given by θh, and θt,

respectively, such that θh + θt = 1. The two parameters can also be represented as θ and 1− θ.

If Nh and Nt are the number of times the outcomes are heads and tails, respectively in a total

of N flips, the likelihood of the data is given as,

p(D|θ) = θNh(1− θ)Nt (3.1)

Before the start of ay experiment, a coin is not flipped. At this stage, Bayesian theory

starts with a belief about θ. Initially, the probability of a head for an unbiased coin is 0.5. This
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belief is termed as a prior. For a binomial distribution, it is advisable to use a prior with beta

distribution, referred to as beta prior. Let us assume that the parameters of the beta prior

are (αh, αt). Since the parameters (αh, αt) are the parameters of the parameters (θh, θt) of the

model, they are refereed to as hyperparameters. The probability distribution for θ given the

hyperparameters is,

p(θ|αh, αt) =
Γ(α)

Γ(αh)Γ(αt)
θαh−1(1− θ)αt−1 (3.2)

Here α = αh + αt.

when the experiment starts, the coin is flipped again and again, and the total number

of times heads and tails occur are recorded. This recorded data is referred to as observed

data. Observing the data provides the details about the likelihood of the data, and is given

by Equation 3.1. In probability theory, the parameters (θ’s) are to be estimated for predicting

future data. With the knowledge about prior and likelihood, the parameters are computed,

known as the posterior and given by,

p(posterior) = p(likeihood)× p(prior) (3.3)

p(θ|αh, αt, D) ∝ θNh(1− θ)Nt × θαh−1(1− θ)αt−1 (3.4)

We reduce the equation to proportionality, as the constant term in Equation 3.3 is independent

of θ. Equation 3.4 reduces to,

p(θ|αh, αt, D) ∝ θNh+αh−1(1− θ)Nt+αt−1 (3.5)

which is also a beta distribution and the parameters of this distribution are (Nh +αh, Nt +αt).

With the hypothesis (prior) and the observed data (D), further events about obtaining heads

and tails, when the coin is tossed can be predicted as follows,

p(x = heads|αh, αt, D) =
∫
θ
p(x = head|θ) · p(θ|αh, αt, D)dθ (3.6)
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p(x = heads|αh, αt, D) =
∫
θ
θ · p(θ|αh, αt, D)dθ. (3.7)

By definition of mean, the above equation reduces to,

p(x = heads|αh, αt, D) =
Nh + αh
N + α

(3.8)

where N = Nh +Nt and α = αh + αt.

Multinomial distribution is analogous to Binomial distribution. The prior for a multino-

mial distribution is dirichlet distribution, referred to as dirichlet prior. The posterior of the

multinomial-dirichlet pair is a dirichlet distribution, and the equation for prediction is an ex-

tension of Equation 3.8. In case of multinomial distribution, the data can be represented as D

= (x1, x2, x3,..., xN ) and let xi be the event of observing one of the possible data. The multino-

mial distribution parameters would be given by θ = (θ1, θ2, θ3,..., θN ) and their corresponding

hyperparameters would be A = (α1, α2, α3,..., αN ). Thus the probability of obtaining an event

xi = x1 given the data, parameters and hyperparameters is given by,

p(xi = x1|A,D) =
N1 + αh
N + α

(3.9)

where N1 is the number of times event x1 occurs, N is the total number of times all the

events occur and α is the sum of all the hyperparameters. The multinomial distribution and

its dirichlet prior are used to develop the LDA model, which we discuss in the next section.

3.2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation [BNJ03] (LDA) is a probabilistic model proposed for processing

large collection of data for tasks such as classification, novelty detection, similarity and relevance

judgements. The paper describes the model in the context of text dataset. The basic idea of

the model is that every document is represented by a set of latent (unobserved) topics where

every topic is characterized by a distribution of words. The observed quantities of the dataset

are the documents and the words. The authors develop a generative probabilistic algorithm to

find the latent topics in the dataset by observing the documents and the corresponding words
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Figure 3.1: Latent Dirichlet Allocation (LDA)

in the document. The model is as shown in Figure 3.1.

A document is a sequence of N words denoted by d = (w1,w2, w3,..., wN ) and a dataset

is made up of M documents denoted by D = (d1,d2, d3,..., dM ). For every corpus, there can

be K topics denoted as z = (z1,z2, z3,..., zK). Every document is assumed to be made up of

one or several topics and these topics are assumed to generate the words in the document. The

probability of a word i in a topic k is given as p(wt = i|zt = k) = φi|k. This forms a matrix

Φ of size K ∗ N where each cell represents the probability of a word given a topic. Similarly,

the probability of topic k in document j is given as p(zt = k|dt = j) = θk|j . This forms a

matrix Θ of size M ∗ K where every cell represents the probability of a particular topic in a

document. The goal of the model is to find the value of assignments to the cells in the above

two matrices from the observations made about the documents and their corresponding words.

For this purpose, the joint probability of the corpus D and the corresponding set of topics Z is

given by,

p(D,Z|Θ,Φ) =
∏
i

∏
k

∏
j

φ
Ni|k
i|k θ

Nk|j
k|j (3.10)

where Ni|k is the number of times word i was requested from topic k and Nk|j is the number of

times topic k was used for document j. The authors place dirichlet priors with hyperparameters

α and β over Θ and Φ respectively. Combining priors with Equation 3.10, the probability of

the observed data given the hyperparameters is,
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p(D|α, β) =
∑
z

(
∏
k

∏
i Γ(Ni|k + β)
Γ(Nk + β)

Γ(β)∏
i Γ(β)

∏
j

∏
k Γ(Nk|j + β)
Γ(Nj + β)

Γ(β)∏
k Γ(β)

) (3.11)

where Nk is the total number of times topic k appears in document d.

The predictive distribution for every word given the topic and every topic given the docu-

ment are given by the following pair of equations:

p(i|k, d, z, β) =
Ni|k + β

Nk + β
(3.12)

p(k|j, d, z, α) =
Nk|j + α

Nj + α
(3.13)

3.3 Summary

In this chapter, we reviewed the Bayesian techniques of machine learning, and the LDA model.

In the next chapter, we build SPAN that extends LDA to incorporate the sequence of requests

made by the subjects
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Chapter 4

Problem Formalization and

Approach

In this chapter, we discuss the training phase 4.1 and testing phase 4.2 of SPAN.

Similar to other algorithms designed to make predictions, SPAN’s design is divided in two

phases: training and testing. In the training phase, SPAN needs to capture the sequences of

requests made by the subjects from the history of accesses, and cluster them. These clusters are

used to make predictions in the testing phase. In an enterprise system, a subject authenticates

itself to the system. The time period between a subject logging in and out of the system is

referred to as a session(Se). During a session, a subject requests for a series of actions on the

protected resources termed as permissions. Based on the access control policies that govern

these resources, the subject obtains an allow or a deny response. In every session, subjects

request for permissions that can be represented as Se = {P1,P2,P3,...,Pl}. In this sequence,

P1 represents the first requested permission, followed by P2, and Pl is the last permission

requested by a subject before logging out of the system2. The popularity of the permissions

for the subjects, can be captured by counting the number of times, subjects request these

permissions. Higher frequency counts indicate that the permissions are likely to be requested in

the future. In the training phase, frequency counts decide what sequences lie in which cluster.

While training phase is an offline process, testing phase is an online process.

The concept of predicting permissions in access control systems is similar to predicting web

pages surfed by users in web pages. However, algorithms proposed for web page prefetching

have certain shortcomings, and cannot be directly applied to access control systems. To explain

the need for specific algorithms to make predictions in access control systems and differentiate
2Note that the capitalized tokens (e.g. P1, P2) represent the random variable denoting permissions. The

actual assignment to the random variables are represented by lower case tokens (e.g. p1, p2).
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p1

p4

p2 p3

p5

Figure 4.1: Link structure for hypothetical website

them from the algorithms proposed for web page prefetching, we consider a hypothetical website

with 5 web pages that is controlled by the authorization policies. The link structure for the

website is as shown in Figure 4.1. An arrow between pi and pj (e.g., from p1 to p2) indicates that

there exists a hyperlink on pi that points towards pj . Table 4.1 represents the access control

matrix that characterizes the rights of the subjects to view different web pages on the website.

Websites deployed by enterprises like banks, are classic examples of our hypothetical website,

where different employees, and customers have different views, based on their identity and role

in the bank. We assume that our website is designed in such a way that the view presented to

a subject contains only those hyperlinks that the subject is authorized to access. This avoids

unauthorized requests made by the subjects. For example, the view of page p3 presented to

Bob would contain hyperlinks for pages p2 and p4, but a hyperlink for p5 would not exist. To

summarize, the view presented to every subject would not only depend on the structure of the

website, but also on the corresponding access rights. We now describe the training phase of

SPAN.

4.1 Training phase

Since sequences of requests are to be predicted, we choose Markov chains for building SPAN.

Based on the past behavior exhibited by the subjects, Markov chains of all the possible sequences

are formed, and the number of times these sequences are repeated across the trace are recorded.

Sequences having higher counts indicate that they are likely to be repeated more often, as

compared to the sequences with lower frequency counts. In a real world setting, the sequences

of requests could be very long because subjects have a large number of resources that they can

request. Also, subjects might not repeat their requests for resources in the same sequence every
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Pages Alice Bob Mike
p1 allow allow allow
p2 allow allow allow
p3 allow allow allow
p4 allow allow deny
p5 allow deny allow

Table 4.1: Access control matrix in the enterprise

Session Alice Bob Mike
Se1 p1, p2, p3 p1, p2, p3 p1, p3, p2

Se2 p2, p3, p4 p2, p3, p4 p2, p3, p5

Se3 p2, p3, p5 p2, p3, p4 p2, p3, p5

Se4 p1, p2, p3 p1, p3, p2 p1, p2, p3

Se5 p1, p2, p3 p1, p3, p2 p1, p2, p3

Table 4.2: Sequence of requests made by the subjects

time. This would result in lower frequency counts for the sequences. To overcome the problem

of lower frequency counts, we propose to split the sequences into smaller subsequences. This

technique provides higher frequency counts for individual subsequences.

4.1.1 Smaller subsequences

Table 4.2 represents the different sequences of web pages that were visited by the 3 subjects

across 5 sessions. Referring to Table 4.2, we find that Alice has requested for the sequence

p2, p3, p4 only once, but the subsequence p2, p3 has been requested in all her sessions. Such

shorter subsequences provide higher frequency counts, compared to the entire sequence of re-

quests made by subjects. We split the longer sequences into smaller subsequences of fixed length.

For this example, we form first order Markov chains [SH05, DK04] as shown in Table 4.3. Ev-

ery cell in the table, represents the frequency counts of transitions made by the subjects. The

Transition Alice Bob Mike Total
p1, p2 3 1 2 6
p1, p3 0 2 1 3
p2, p3 5 3 4 12
p3, p2 0 2 1 3
p3, p4 1 2 0 3
p3, p5 1 0 2 3

Table 4.3: Sample of transitions made by the subjects using first order Markov models
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last column represents the total number of times the subsequences were requested by all the

subjects.

While the last column gives an overall picture about the sequences of requests, it is different

when compared to requests made by individual subjects. Algorithms designed for web page

predictions using Markov models [AKT08, DK04, EVK05, CHM+03, SH05], association rule

mining [YHN03, YZ01, YLW04], n-grams [SYLZ00, PP99], SVM [AKT08], or clustering [SH05,

CHM+03], use the frequency counts from the last column to develop their algorithms. Next,

we discuss a possible shortcoming of using this approach for access control systems.

4.1.2 Shortcoming of web prefetching algorithms

In this section, we find a possible shortcoming of using web page prediction algorithm for access

control systems. Referring to Table 4.3, we find that the total frequency count of viewing p5

after p3 is 3. Similarly, the frequency counts of viewing p2 and p4 after p3 are also 3, each.

Let us suppose that Bob has logged into the system, and predictions have to be made for Bob.

When Bob accesses p3, the algorithms designed using frequency counts from the last column

of Table 4.3, would predict p5 as one of the probable pages, as Bob’s future request. However,

Bob is not authorized to view p5. In fact, the view of p3 presented to Bob wouldn’t contain

any hyperlink for p5. The algorithms designed for access control systems should assign a zero

probability to such transitions. The only pages that Bob can request after visiting p3 are p4 and

p2. From this example, we observe that the web page prediction algorithms can’t accommodate

authorization policies for making predictions, but these policies influence the requests made by

the subjects.

To avoid making predictions for requests that a subject is not authorized, prediction algo-

rithms developed for access control systems should analyze the sequence of requests in a way

that captures the underlying access control policies of the system. For this, algorithms should

have access to the policy database. However, this increases the risk of attacks on these algo-

rithms, by adversaries. If the prediction algorithms are compromised, adversaries could access

the policy definitions of underlying systems through these algorithms. To avoid this, prediction

algorithms should capture the underlying access control policies of the system without actually

having access to the authorization policies. To achieve this goal, one of the possible solutions
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is to look at the frequency counts of transitions made by individual subjects, but this results

in lower frequency counts of transitions. As algorithms depend on higher frequency counts to

make decisions, using this approach might result into lower predictive accuracy. To overcome

this problem, we combine the frequency counts of transitions made by individual subjects and

the total frequency counts, in the clustering approach presented in Section 4.1.4.

Research by Sen and Hansen [SH05], and Deshpande and Karypis [DK04], suggests that

higher order Markov models improve the predictive capabilities. However, increasing the order

of Markov models increases the number of parameters in the system, resulting in higher mem-

ory usage and state-space complexity [DK04]. We build Multiple first order Markov models

(MfoMm) within SPAN to address these problems. Before presenting our clustering technique,

we describe MfoMm to understand the way in which we form our sequences of requests.

4.1.3 Multiple first order Markov models (MfoMm)

From Table 4.3, we find that the overall frequency counts of transition from p3 to pages p2, p4 and

p5 are 3, each. Such equal frequency counts create ambiguity in prediction as all three pages are

equally likely to be visited. This ambiguity could arise even when frequency counts of individual

subjects are considered. A solution for overcoming this problem is to build higher order Markov

models. They provide better prediction capabilities [DK04, SH05]. However, as the order of

the Markov model increases, the memory requirements and the state-space complexity increase,

and larger training sets are required for obtaining higher frequency counts [DK04, SH05]. The

number of parameters of Markov models are mn, where m is the number of resources and n is the

order of the Markov model. The parameters grow exponentially as the order of Markov models

increase. MfoMm captures the features of higher order Markov models while maintaining the

low memory requirements and state-space complexity of the first order Markov models. The

parameters of this model are n∗m2. They increase linearly to the number of steps in the model.

To explain the combination process, we consider a sequence with 3 requests. We assume

that the first two requests have already been made by the subject and our model attempts

to predict the third request. Following the example from Section 4.1.1, we assume that the

first two requests were made for p2 and p3. The first step of MfoMm is similar to the one

described earlier, where the model finds the probability of p2, p4, and p5 being requested after
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p3, i.e., it finds p(p2|p3), p(p4|p3), p(p5|p3). We don’t consider any access control policies at this

stage. They are incorporated in our clustering algorithms. The next step considers a first order

Markov model that checks the request made by the subject just before p3 was requested. In

our example, the subject requested for p2. As the first step indicates that p2, p4, and p5 are the

likely requests after p3, we determine the likelihood of p2, p4 and p5 being requested in the same

session, where p2 is the first request, and p2, p4, or p5 are the third requests in a sequence. In

this step, we skip the second request. The tuples of requests formed would appear in the form

(p2, ?, p2), (p2, ?, p4) and (p2, ?, p5), and we find p(p2|p2, ?), p(p4|p2, ?), p(p5|p2, ?). The ‘?’ sign

represents any request made by the subject that was preceded by p2 and followed by either p2,

p4, or p5, and not necessarily p3. Now, if p4, is the third request made by the subject, it could

be attributed to 3 possibilities: (1) because p2 was the first request, or (2) because p3 was the

second request, or (3) because p2 was the first request and p3 was the second request. Thus the

probability of p4, given that p2, and p3 have been the first and second requests is given by,

p(p4|p2, p3) = 1− [(1− p4|p2) ∗ (1− p4|p3)]

Our model considers the dependencies between only two requests at any point of time.

Thus, this model can be thought of as an extended version of first order Markov model. Since

only two requests are considered at a time, the parameters of the model grow linearly, and it

is proportional to the number of steps of the MfoMm. For a sequence, where l requests have

been made, the (l + 1)th request can be predicted using the following formula,

p(Pl+1 = pi|P1, P2, ..., Pl) = 1−
l∏

j=1

[1− p(Pl+1 = pi|Pj = pj)] (4.1)

Equation 4.1 gives the probability of every request being made in a session. If we suppose

that the number of steps considered to calculate the probability of each likely request is G− 1,

the probability of the entire sequence (Se) having N permissions is given by,

p(Se) = p(P1) ∗
N∏
i=2

1−
G−1∏
j=1

(1− p(Pi = pi|Pi−j = pi−j))

 (4.2)

Since this equation represents a single session of a subject, it does not provide sufficient
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statistics for interpreting the behavior of the subjects in the enterprise. In our clustering

technique, we clusters the sequences of requests by combining the individual subject’s frequency

counts and total frequency counts to gain the statistics.

4.1.4 Clustering

In this section, we propose the clustering technique. To achieve our goal, we cluster the available

sequences formed using frequency counts from Table 4.3.

1. A sequence is the series of all the requests made by a subject in a session denoted by x =

(P1,P2, P3,..., PNs). Our model assumes that L unique sequences are formed by all the

subjects. Every sequence is represented as xj where 1 ≤ j ≤ L

2. The system is assumed to have M subjects denoted by ui (1 ≤ i ≤M) and every subject

is assumed to log in and out of the system several times creating a number of sessions

for itself. We represent subjects and their corresponding sessions as ui = (xi1,xi2, xi3,...,

xiQ), where Q denotes the number of sessions made by a subject.

3. We assume that there are N permissions in the system that could be requested and we

denote them as p1,p2, p3,..., pN .

4. We split the sequence of requests made across various sessions into subsequences each

denoted as y and assume that there are T unique subsequences formed. Every subsequence

is represented as yt (1 ≤ i ≤ T ).

Our goal is to find the probability of a subject requesting for permissions in a sequence. We

represent this probability as p(xj |ui). As our model depends on obtaining comparable frequency

counts of the requests made, we split the sequence xj into several smaller subsequences yt, each

having S permissions. We believe that smaller subsequences would be repeated more often than

longer ones. This helps in improving the frequency counts from the available data. We group

the subsequences into clusters that would help us build a complete sequence for predictions.

Using Equation 4.2, the probability of a subject requesting for a subsequence is given by,

p(yt|ui) = p(p1t |ui) ∗
S∏
i=2

1−
G−1∏
j=1

(1− p(pi|pi−j , ui))

 (4.3)
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Figure 4.2: Graphical model representation of SPAN. The boxes are plates representing repli-
cates. The outer plate represents subjects, while the inner plate represents the clusters and
sequences.

We make the same assumption as LDA and cluster the subsequences. We assume that there

are K clusters formed. We adopt a soft-clustering approach, where every subject is assumed

to be associated with multiple clusters with different degrees of affiliation. The association of

every subject belonging to the clusters can be represented by a vector πi, where πi,c denotes

the probability of subject i belonging to cluster c. The sum of the probabilities in vector πi is

equal to one. For all the M subjects in the system, matrix θ would represent the probabilities

of all the subjects belonging to the clusters. This matrix has a dimension of M ∗ K. The

sum of the elements in any row equals one. The concept of soft-clustering is contrary to hard

clustering where every subject is assumed to request permissions from only one cluster. The

graphical model representation of the concept is shown in Figure 4.2. In this figure, ‘S’ and ‘C’

denote all the subjects and clusters in the system, and θ denotes the M ∗K dimensional matrix.

Subsequences too belong to one or more clusters with different degrees of affiliation. Considering

the same analogy used for subjects, matrix φ represents the probability of subsequences being

affiliated to the clusters. The size of the matrix is T ∗K. Note that the clusters are actually

latent (unobserved) in the model.

With the latent clusters in the model the probability of a subsequence being requested by

a subject would be

p(yt|ui) =
K∑
c=1

p(yt|zc)p(zc|ui) (4.4)

32



4.1. Training phase

By substituting the value for yt from equation 4.3, we obtain

p(yt|ui) =
K∑
c=1

p(p1t |zc) ∗
S∏
i=2

1−
G−1∏
j=1

(1− p(pi|pi−j , zc))

 ∗ p(zc|ui) (4.5)

The first term p(p1|zc) represents a matrix of size N ∗K that we represent by φI and the

second term would result in a matrix size of N ∗N ∗K ∗G represented by φT . Many entries in

the second term would be zero, creating a sparse matrix3. We designed our algorithms by taking

the sparse nature of this matrix into account for reducing the memory required to store this

matrix and efficiently retrieving the information out of these matrix. For the sake of simplicity,

we present our analysis by considering the second term as a first order Markov model, instead of

considering MfoMm. The analysis for MfoMm remains the same as regular first order Markov

model. With this assumption, Equation 4.5 can be written as,

p(yt|ui) =
K∑
c=1

p(p1t |zc) ∗
S∏
i=2

p(pi|pi−1, zc) ∗ p(zc|ui) (4.6)

The likelihood of all the subsequences and the clusters is given by,

p(D,Z|θ,Φ) =
K∏
c=1

T∏
t=1

M∏
i=1

[p(p1t |zc)N1,c ∗
S∏
i=2

p(pi|pi−1, zc)Ni,i−1,c ∗ p(zc|ui)] (4.7)

Here D and Z represent all the subsequences and clusters, respectively. In this equation Φ

encompasses the 3 parameters, φ, φI , φT . Given a part of subsequence accessed by a subject, our

aim is to find the probability of the subject requesting other permissions in the subsequence.

We adopt a Bayesian approach and attach priors to all the parameters required for making

predictions. A subject can be associated with one of K clusters in k possible ways, representing

a multinomial distribution with a parameter θ. From the theory of Bayesian analysis [Hec95],

we choose a dirichlet prior with hyperparameter α for the parameter θ of the multinomial

distribution. Similarly, subsequences can be associated with the clusters in k different ways,

representing a multinomial distribution with a parameter φ. We choose a dirichlet prior with

hyper parameter β for the parameter φ. Corresponding priors for φI and φT are denoted by βI

and βT respectively. The prior distribution for the parameter θ given the hyperparameter α is,
3A sparse matrix is a matrix populated primarily with zeros
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p(θ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
c=1

θαc−1
c (4.8)

where Γ(·) denotes the Gamma function and α0 =
∑

c αc. Similar distributions can be

obtained for parameters φ, φI and φT with dirichlet prior having the hyperparameters as β,

βI and βT respectively. The posterior distribution of our model is obtained by multiplying the

priors with the likelihood (equation 4.7). The posterior distribution is given by,

p(D,Z|N,U, α, β, βI , βT ) ∝
K∏
c=1

T∏
t=1

M∏
i=1

[p(p1t|zc)N(p1yt ,c) ∗
S∏
j=2

p(pj |pj−1, zc)
N(pj,pj−1,zc)

∗p(zc|ui)N(zc,ui) ×
K∏
c=1

θαc−1
c

K∏
c=1

φ
βIc−1
c

K∏
c=1

S∏
i=2

φ
βT(i|i−1,c)

−1

c (4.9)

Therefore,

p(D,Z|N,U, α, β, βI , βT ) ∝
M∏
i=1

K∏
c=1

θ
N(zc,ui)

+αc−1
c

N∏
j=1

K∏
c=1

φ
N(pj,zc)+βIc−1

Ic

K∏
c=1

S∏
i=2

N∏
j=1

φ
N(i,j,zc)+βT(i,j,c)

−1

Tc

(4.10)

In the above equations, φ and β are not directly taken into account, but they would be

required for computing the initial and transition probabilities. The parameters of this model

are obtained by using the Expectation Maximization (EM) algorithm [PMB77]. This algorithm

optimizes the non-concave function through gradient accent using two steps: the expectation

step (E-step) calculates the joint likelihood of observing the data, given the current estimates

of the model parameters, and the maximization step (M-step) optimizes the model parameters

from the likelihood of data that is calculated in the E-step. The EM algorithm is an itera-

tive algorithm that iterates between the E and the M steps until convergence. The criteria

for convergence is the step that maximizes the likelihood of the data. Since logarithms are

monotonic transformations, maximizing the log-likelihood gives the same result as maximizing

the likelihood.
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• In the E-step, we find the probability of the clusters given the subjects and their requested

sequences. The probability of the clusters is given by,

p(zc|yt, ui) =
p(yt|zc)p(zc|ui)∑
c[p(yt|zc)p(zc|ui)]

(4.11)

Substituting Equation 4.4 in Equation 4.11, we get,

p(zc|yt, ui) =
p(p1t |zc) ∗

∏S
i=2 p(pi|pi−1, zc) ∗ p(zc|ui)∑K

c=1 p(p1t |zc) ∗
∏S
i=2 p(pi|pi−1, zc) ∗ p(zc|ui)

(4.12)

This equation calculates the probability of a cluster for a subject given one sequence.

Overall, M subjects would access T sequences through K clusters. Thus, this equation

would have to calculate K ∗M ∗ T values.

• In the M step, the parameters that are required to estimate the E step are optimized. We

optimize the parameters θ and φ in this step.

θi,c =
αc +

∑S
t=1 p(yti,c)∑K

c=1[αc +
∑S

t=1 p(yti,c)]
(4.13)

φt,c =
βc +

∑M
i=1 p(yti,c)∑K

c=1[βc +
∑M

i=1 p(yti,c)]
(4.14)

φIj,t,c =
βIc +

∑S
t=1 Ij,t,cφt,c∑K

c=1[βIc +
∑S

t=1 Ij,t,cφt,c]
(4.15)

φTi,j,t,c =
βTc +

∑S
t=1N(i,j,c)φt,c∑K

c=1[βTc +
∑S

t=1

∑S
t=1N(i,j,c)φt,c]

(4.16)

We summarize the design of the training phase using the following steps:

1. Given a dataset containing sequences of requests, form unique sequences of fixed sizes.

2. Count the number of times each sequence was requested by every subject. Also calculate

the total number of times these sequences were requested by all the subjects.
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3. Fix the step size for MfoMm and count the frequency count of transitions between any

two requests of the datasets.

4. Once all the frequency counts are obtained, start the EM algorithm that can be summa-

rized as follows:

(a) Randomly initialize the values in the Equation 4.12 for the E-step. Choose the values

of the hyperparameters and set iteration i = 0.

(b) Calculate the parameters of the M-step from the values obtained in E-step.

(c) Using the new parameters of the M-step, calculate the values for every element of

the cluster using Equation 4.12 of the E-step.

(d) Using the new E-step calculate the log-likelihood.

(e) If difference between the log-likelihood of current iteration and previous iteration

does not change considerably, terminate the algorithm, else i ←− i+ 1, and go to

step b.

The EM algorithm is run iteratively until it converges. In the next section, we provide details

about the testing phase of the algorithm.

4.2 Testing phase

From the clusters obtained during the training phase, if a subject ui requests for sequence yt of

length t, the membership of yt requested by ui can be found by,

p(zc|yt, ui) ∝ p(yt|zc) ∗ p(zc|ui)

p(zc|yt, ui) ∝
K∑
c=1

p(p1|zc) ∗
S∏
i=2

p(pi|pi−1, zc) ∗ p(zc|ui) (4.17)

The proportionality is used because the equation needs to be normalized over all clusters.

Once the membership is obtained, the (t + 1)th request can be predicted using the following

equation,
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p(yt+1|yt, ui) =
K∑
c=1

p(yt+1|zc) ∗ p(zc|yt, ui) (4.18)

4.3 Summary

In this chapter, we described the design of SPAN. We discussed the shortcomings of using

web prediction techniques for access control system. SPAN overcomes the shortcomings by

considering the identity of subjects to form clusters. Forming clusters is an offline process that

involves analyzing the past behavior of subjects. The testing phase of the algorithm is an online

phase, where SPAN predicts the requests for subjects logged into a system. In the next chapter,

we report the experiments conducted and results obtained to evaluate the design of SPAN.
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Chapter 5

Evaluation

While the previous chapter described the model for building SPAN, we now present the exper-

imental evaluation. We used a simulation based approach for evaluating SPAN. In Section 5.1,

we first describe the datasets obtained for evaluation and our methodology of processing them.

In Section 5.2, we describe our experimental setup. Next, we describe the measurement criteria

in Section 5.3, and finally, in Section 5.5, we present our results.

5.1 Evaluation datasets and processing

The first step towards conducting the experiments is to record the requests made by the subjects

in the system. There are two options to collect this information. The first option is an online

process where SPAN records the sequences of requests. It then runs the modeling algorithms on

the recorded requests. In this online process, the number of requests recorded before running

the algorithms would depend on the settings specified by the administrator. Future requests

are then predicted by SPAN. The second option is to obtain log traces, where the sequences of

requests have already been recorded. We adopted the second option to conduct our experiments.

We divided the log traces into two parts: the training set and the testing set. The data present

in the training set was used to build the model. This step was termed the training phase. The

testing set was used to evaluate the effectiveness of the prediction model. This step was termed

the testing phase.

First, we explain the structure of tuples to be extracted from the sequences of requests

available in the log files. We propose to extract tuples of the following structure (su,se,r,a,p,i),

where su is the subject making the request, se is the session in which the request is made,

r is the requested resource, a is the action requested on the resource, p is the PEP making

the request, and i is a unique identifier for every tuple. In some situations, the log files don’t
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contain explicit information about the attributes required for SPAN. If a subject cannot be

directly extracted from the trace, we suggest considering the IP address of the requestor as the

subject. In the case where information about the session is not explicit in the log trace, time

difference between requests can be used to extract session information. Following the approach

adopted in [SH05], a session can be defined as all the requests made by the subject within

a span of 2 hours from the first request. In cases where actions are not specified in the log

traces, we recommend omitting the actions, and just focussing on predicting the resources that

would be requested. This is common for web pages, where all requests are generally read only.

For accommodating an architecture with multiple PEP’s, the tuple maintains the identifier of

the PEP making the requests. This has two benefits: (1) The PDP gains knowledge about

the PEP making the requests and sends back the predicted responses to the correct PEP. (2)

The information can be used for auditing purposes. Finally, i is the unique identifier of the

request made. The response from the PDP has the following structure (re,p,i,c), where re is

the response to the request with identifier i. In this tuple, c uniquely identifies the response

tuple; and p is a variable to accommodate an architecture with multiple PDP’s.

Our first dataset was obtained from WebCT, provided by the University of British Columbia

(UBC). WebCT [Web] (Course Tools) or Blackboard Learning System, now owned by Black-

board, is an online proprietary virtual learning environment system that is sold to colleges and

other institutions and used by over 10 million students in 80 countries for e-learning [Web].

Instructors can add lecture notes for the courses they offer and add tools such as discussion

boards, mail systems, assignment systems, and live chat. Instructors can also provide grading

system through WebCT. Students registered for the course can read lecture notes and par-

ticipate in the discussions, view and submit their assignments, and chat to other registered

members of the course. They can view their grades and maintain an email account. There are

other roles like teaching assistants, administrators, etc., that can be added to the course. The

latest version of this software is now called “Webcourses”. We believe that WebCT is a good

example of a typical web application, where people with different identities have different levels

of access to the resources in the system. Thus, we decided on evaluating SPAN algorithms on

the traces obtained from WebCT.

We obtained an anonymized trace of 210, 000 requests from UBC. The trace contained
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information about requests made in an online course offered at the university. It contained

information about the subjects, their actions in various sessions, the time when they made

those requests, and the role in which they logged in the system. The course had 11 instructors,

3 teaching assistants, and 42 students, for a total of 56 subjects. Every resource had different

levels of access. We considered every resource with different actions as a separate resource.

Thus, a resource, say A, having actions read and write would represent two resources. The

first one would be A-read, and the second one would be A-write. In this way, there were 4696

resources.

From the WebCT trace, we obtained 3 different sets of sub-traces: (1) the entire trace (2)

requests from 1 to 100, 000 (3) requests between 75, 000 to 175, 000. The first sub-trace followed

the standard procedure of running the experiments on all the available requests in the datasets,

and is described by most of the approaches mentioned in our related work. After manually

observing the complete trace, we found that several requests at the start of the trace were

made by the instructors of the course. Most of their actions pertained to adding resources in

the system, and these actions were often not repeated in the later part of the trace. Also,

students couldn’t perform most of these actions. Thus, in our second sub-trace we captured

the first 100, 000 requests as the entire trace. In this sub-trace, the training phase mostly got

trained on the behavior exhibited by the instructors. The testing phase had requests made

by all the subjects in the system. Our second observation was made for requests in the range

75, 000 - 175, 000. We observed that it mostly contained requests for reading course contents,

and discussing topics on the discussion boards. The reason for obtaining these sub-traces was

to understand the effect of different access patterns on the performance achieved.

We obtained our second dataset from requests made by the users in the ‘Fighters Club’ (FC)

application of Facebook [NRC08]. It is one of the first games to be launched on Facebook, and

it evolved over a period of 9 months to have been played by over 3.44 million users. FC allows

users to pick virtual fights with their Facebook friends that lasts from 15 to 48 hours. For the

duration of the fight, each player may request support from their Facebook friends, who then

help the individuals team defeat the opposing users team through a series of virtual hits. Users

on FC can have one of the three possible roles. (1) Offender: The user instigating the fight

is the offender. (2) Defender: The Facebook friend picked on by the offender is the defender.
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(3) Supporter: The offender and the defender may receive support from their Facebook friends

who are called the supporters. Every fight has a unique fight id.

The trace obtained for the FC application can be associated to requests made by subjects

in access control systems. When a facebook user starts a fight, he or she gets a unique fight id.

Users can be considered as subjects, and fight ids as their sessions. In every fight, users receive

help from their friends. The order in which they receive help, can be considered as a sequence

of requests made by subjects in their sessions. To summarize, the offender or defender act as

the subjects, fight ids as their sessions, and supporters are the permissions to be predicted. A

second aspect of this trace is that users can receive help only from their friends. This is similar

to those access control systems where subjects can request for only those permissions that they

are authorized to access. From the vast number of facebook users, offenders and defenders can

receive help from a small subset of users, who are their friends. This is similar to subjects

requesting for a subset of permissions from the entire subspace of permissions.

The FC dataset contained over 23 million requests made by 43, 669 users. The memory and

time required to form clusters in our algorithm directly depends on the number of subjects and

the unique sequences of requests formed. The present implementation of our algorithm does not

support the memory required for such huge datasets. To meet the memory requirements of our

algorithm, we formed 3 sub-traces of requests made by 50, 100, and 200 users. We randomly

picked all the users for our sub-traces. We started with 50 users to compare the time required

to form clusters using this dataset, as compared to WebCT that contained 56 users. We then

doubled the number of subjects in every subtrace, which increased the number of requests and

unique sequences of requests formed. Time required to form clusters in each subtrace, gives an

idea about the scalability of the algorithm.

5.2 Experimental setup

In this section, we present the setting of our experiments. We conducted all our experiments on

a machine with Intel Pentium 1.73GHz dual-core processor having cache memory of 1 MB and

RAM memory of 2 GB. Our training and testing phases were implemented in Matlab version

2009a that contains a statistical tool box.
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Trace

Training time Time for
Number Number of Number of per iteration predicting

of subjects unique requests unique of clustering each
sequences (minutes) request (ms)

WebCT1 56 4, 696 22, 418 28 2.34
WebCT2 56 2, 642 12, 984 16 2.52
WebCT3 56 1, 482 9, 318 15 2.04

FC1 50 1, 780 5, 671 12 9.6
FC2 100 2, 424 10, 092 24 9.6
FC3 200 3, 211 19, 116 47 8.28

Table 5.1: Summary of the datasets used for experiments.

We divided every sub-trace into training and the testing set for the training and testing

phases of SPAN. Our simulation testbed is as shown in Figures 5.1. In the training phase, we

fed the requests from the training set into SPAN. SPAN found the number of unique requests

in the trace. It formed all the possible short sequences of requests from the long sequences.

It recorded the number of times the short sequences were repeated in the entire trace. It also

recorded the number of times every subject requested for these short sequences. It calculated

the transition between any two requests in the trace. After recording all these numbers, SPAN

clustered the short sequences of requests.

We had to choose priors and the number of clusters for implementing the training phase.

We conducted our experiments for prior values of 0.1, 0.3, 0.6, and 1. For the log traces we

considered, the log-likelihood of clustering was not greatly affected by the different values of

the priors. Thus, we decided to run all the experiments for a prior of 0.3. To select the number

of clusters, we varied the number of clusters between 1 − 10 in steps of 1 and recorded the

log-likelihood for every run. The number of clusters in the training phase that provided the

maximum log-likelihood during convergence was chosen as the number of clusters for the testing

phase. We determined that 4 and 7 clusters gave the optimum value of log-likelihood for the

WebCT and FC datasets, respectively. Thus, we decided to use 4 and 7 clusters for the two

datasets. We followed the same convergence criteria as proposed by Cadez et al. [CHM+03]. If

the log-likelihood between two steps of EM algorithm differed by less than 0.1%, we assumed

that the algorithm converged. As the algorithm initially starts with random assignments of

probability values, we restarted the algorithm if it failed to converge in 25 steps.
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Figure 5.1: Experimental setup for evaluating SPAN

In the testing phase, the evaluation engine read the requests from the testing set one after

the other. The evaluation engine forwarded a copy of the requests to SPAN. SPAN predicted

the probable requests for sequences of requests sent by the evaluation engine. Based on the

setting specified by the input parameters and requests available in the cache, the evaluation

engine computed the achieved performance. We discuss the detailed implementation of the

input parameters and cache in Sections 5.2.1 and 5.2.2, respectively.

For each of our sub-traces, Table 5.1 provides details about the number of subjects, unique

permissions, and unique sequences formed. Every sequence in the table is of size 3. The table

also provides the average time required for every iteration of training phase, and the average time

required to make a prediction. For every sub-trace, we carried the training and testing phase of

the algorithm two times. As we started the clustering algorithm with random assignments, the

two runs of experiments in the training phase were used to confirm that unique clusters were

formed each time. For both the runs, we ensured that the difference between the log-likelihood

at the time of convergence was less than 0.1%. Table 5.1 indicates that the training time

increases as the number of subjects and sequences of requests increase in the system. However,

the time required to predict every request is relatively small. The two runs in the testing phase
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confirmed the results obtained in that phase.

We observed that the approaches for web page predictions cited in Section 2.3, fix a number

of requests from the trace as training set, and the remaining requests become the testing set.

The training and the testing phase of the algorithms are conducted on these fixed sets of

requests. We wanted to analyze the effect of different sizes of training and testing sets on

performance. We wanted to observe if larger training sets gave better performance on smaller

testing sets. To evaluate this, we decided to vary the number of requests in training and testing

sets. We divided each of our traces into different sized training and testing sets. The training

sets contained 50% to 90% requests from the total number of requests in a trace. Requests in

the testing sets varied from 50% to 10%, respectively. We measured the performance for all

sub-traces varying the size of training and testing sets.

We implemented our next set of experiments to evaluate MfoMm, built within SPAN. We

varied the number of steps of the algorithm from 1 to 4. As the number of steps increased, the

time required to form clusters increased incrementally. A different training phase was required

for each step of MfoMm. We maintained the number of steps common between the training

and the testing phase. This means that if the training phase was trained for a step size of 3,

we tested the algorithm using the same step size.

Next, we describe the settings of input parameters and cache that were collocated with the

evaluation engine.

5.2.1 Input parameters

For every sequence, SPAN predicts the likely requests that would be made by the subjects with

certain probability. We set two input parameters for the evaluation engine as described below:

1. SPAN predicts requests with certain probability. In the first setting, the evaluation engine

considers the most probable request for every sequence and verifies it against the requests

read from the testing set. In the second set of experiments, three most probable requests

for every sequence are considered and checked against the requests read from the testing

set. Considering more requests per sequence improves the performance, but increases the

load on the PDP because in a real world setting, the PDP has to compute responses to
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the predicted requests. The input parameters set in this experiment gives an idea about

the tradeoff between performance gain v/s additional load encountered by the PDP.

2. Requests predicted with higher probability values are more likely to be requested than

those predicted with lower values. The probability with which SPAN predicts the requests

can be converted to confidence levels. Confidence levels are nothing but probability values

ranging between 0− 1 scaled to percentage values ranging between 0− 100. Thus, a con-

fidence level of 0.01% corresponds to probability value of 0.0001 and 10% corresponds to

0.1. We varied the confidence level from 0.01% to 10%. The evaluation engine considered

predictions from SPAN as valid, only if they were predicted with a confidence level greater

than the preset confidence level. In a real world setting, to reduce the number of unneces-

sary computations made by the PDP, we propose that responses should be precomputed

only if requests are predicted with a certain confidence level. Note that our confidence

levels are quite low. This is due to the fact that SPAN has to predict permissions in a

sequence from thousands of available permissions in the system, which results in very low

probability for each predicted permission.

We now describe our design for combining SPAN and cache in a system.

5.2.2 Cache implementation

To evaluate the performance obtained by SPAN as compared to caching techniques, we im-

plemented two types of cache: FIFO and LRU. For each implementation, we recorded the

performance obtained by stand alone cache. We combined each implementation of cache with

SPAN and recorded the performance obtained by the combination. In our experiments, the

evaluation engine cached the requests that it read from the testing set. The size of the cache

was a percentage of total size of permissions in the system. We varied the size from 0% to 100%.

Initially the caches were filled from the requests available in the training set. At the start of the

experiment, the FIFO and LRU caches read requests from the training set equal to its size using

the FIFO and LRU techniques, respectively. Reading the requests from the training phase was

termed as the warming phase [WCBR08]. In the testing phase of stand alone caching system, if

requests read from the testing set were found in the cache, it was considered as an improvement
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Figure 5.2: Simulation setup for latency calculation

in performance. In the implementation where SPAN was combined with one of the caches,

if requests read from the testing set were either found in the cache or predicted correctly by

SPAN, it was considered as an improvement in performance. Using this experiment, we were

interested to find the performance obtained by combining SPAN and cache, over stand alone

caching technique.

Next, we present our evaluation metrics before we present our results.

5.3 Measurement criteria

In this section, we define the metrics used to evaluate SPAN for different settings in which we

conducted the experiments.

First, we study the hit rate, which we define as the ratio between the number of precomputed

responses used to serve the requests made by subjects, to the total number of requests made

by the subjects. A high hit rate indicates that the model can predict future requests efficiently

and compute the responses even before the request is made by the subjects. As the PDP
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(a) Hit rate obtained for WebCT1 (b) Hit rate obtained for WebCT2

(c) Hit rate obtained for WebCT3 (d) Relative increase in hit rate of SPAN as
compared to other algorithms

Figure 5.3: 5.3(a) - 5.3(c) Hit rate obtained for WebCT dataset when 3 most probable responses
are fetched for every sequence. 5.3(d) Relative gain in performance achieved by SPAN, as
compared to the other algorithms we implemented.

precomputes the responses to these predicted requests and pushes them to the PEP cache, a

higher hit rate indirectly indicates that latency is virtually zero. In our experimental setup, hit

rate was the ratio of the number of requests considered by the evaluation engine after taking

the input parameters and cache into consideration to the total number of requests read from

the testing set.

As computing authorization responses can be expensive in certain applications, responses

to predicted requests that are not requested by the subjects can be considered an unnecessary

overload on the system. To gain knowledge about the unused predictions, we study the precision

of the algorithm. We define precision as the ratio of the total number of precomputed responses

used to serve the requests made by subjects, to the total number of responses precomputed by

the PDP. Precision is an indirect measure to calculate the additional load on the PDP. A higher

precision indicates that the PDP precomputes minimum number of responses that are unused,
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(a) Precision obtained for WebCT1 (b) Precision obtained for WebCT2

(c) Precision obtained for WebCT3

Figure 5.4: Precision obtained for WebCT dataset when 3 most probable responses are fetched
for every sequence.

thus reducing the unnecessary overhead on the system. For our experiments, precision was the

ratio of the number of requests in the evaluation engine that matched the requests read from

the testing set to the total number of requests in the evaluation engine after taking the input

parameters and cache into consideration.

Confidence level affects the number of computations to be performed by the PDP. Thus,

we study the drop in the number of computations for increasing confidence levels. In our

experiments, we calculate the drop in the valid requests present in the evaluation engine for

increasing confidence levels.

Now, we consider a simulation setup to understand the mapping of our evaluation metrics

into latency reduction
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5.4 Simulation setup for latency reduction

To gain knowledge about the reduction in latency using SPAN, we built an experimental testbed

as shown in Figure 5.2. We split the evaluation engine in two modules: the PEP and the PDP.

The PEP read every request from the testing set between an interval of 0 − 100 ms from

the previous request. We used uniform distribution to generate this interval. The analogy of

generating requests in this interval was to simulate a real world scenario, where requests arrived

at the PEP within an interval of 100 ms from the previous requests. The PEP forwarded these

requests to the PDP and SPAN. SPAN predicted the possible requests that could be read from

the testing set by the PEP. The PEP sent the predicted requests to the PDP. We introduced

fixed communication delays of 40 ms between the PEP and the PDP, and a computation delay

of 10 ms for every request as proposed in [Wei09] and [BGR07], respectively. We assumed that

the communication delay between the PDP and policy database is negligible as compared to

the delay between the PEP and the PDP. Queuing delays get added at the PDP depending on

two factors: first, the rate at which requests arrive from the PEP to the PDP and second, the

delay introduced by the computation process at the PDP. Queuing delays are zero if the PDP is

idle when requests arrive from the PEP. The PDP prioritized requests read from the testing set

over requests predicted by SPAN. In this setup, we calculated the latency experienced by the

system for all the requests read from the testing set. Latency was the time difference between

a request being read by the PEP from the testing set to the time it received a response from

either its cache or the PDP.

We now present the results obtained from all our experiments.

5.5 Results

5.5.1 Hit rate and precision for different sizes of training and testing sets

Figures 5.3 and 5.4 show the hit rate and precision for different sub-traces of WebCT dataset,

when 3 most probable requests are considered by the evaluation engine. The figures show

that hit rate and precision are not much affected by different sizes of training and testing sets.

SPAN achieves an average hit rate of 63%, 41%, and 64% for the three sub-traces of WebCT.
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(a) Hit rate obtained for WebCT1 (b) Hit rate obtained for WebCT2

(c) Hit rate obtained for WebCT3 (d) Relative increase in hit rate of SPAN as
compared to other algorithms

Figure 5.5: 5.5(a) - 5.5(c) Hit rate obtained for WebCT dataset when only one most probable
response is fetched for every sequence. 5.5(d) Relative gain in performance achieved by SPAN,
as compared to the other algorithms we implemented.
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Corresponding precision is 21%, 13%, and 23%, respectively. We observe that the hit rate

and precision for the WebCT3 is much higher than WebCT2. We selected WebCT3 trace to

contain common access patterns between training and testing sets as compared to WebCT2.

This implies that the hit rate and precision are higher when the patterns found in the training

and testing sets are similar to each other. The average improvement in hit rate achieved by

SPAN as compared to the first order, second order, and the algorithm proposed by Deshpande,

is 6%, 15%, and 25%, respectively. Corresponding improvement in precision is 2%, 5%, and 7%.

Overall, SPAN achieves better hit rate and precision as compared to the other algorithms we

implemented. However, we observed that our results closely matched the results obtained for

Cadez. The improvement in hit rate and precision for SPAN ranged between 2% and 4%, when

compared against Cadez. To understand the actual gain in performance in terms of hit rate,

we studied the relative number of correct predictions made by SPAN, compared to the other

algorithms. Figure 5.3(d) demonstrates that SPAN predicts 4%− 5% more requests correctly,

when compared to Cadez. The possible reason for low improvement can be explained as follows:

the WebCT dataset contained requests mostly by students and instructors of a course, and most

of the requests were made for accessing the course material. The access control policies were the

same for all subjects on these resources. This dataset closely matched a dataset that would be

obtained for web pages without access control policies. Since SPAN and Cadez are implemented

using clustering approach, SPAN could not achieve a significant improvement over Cadez for

this dataset.

Figures 5.6 and 5.7, show the hit rate and precision obtained for the FC dataset. The

average hit rate obtained by SPAN is 70%, 60%, and 50% for the 3 sub-traces of the FC

dataset. Corresponding precision is 25%, 22%, and 18%, respectively. SPAN outperforms all

the other algorithms in terms of hit rate and precision. The average improvement in hit rate

achieved by SPAN is 10%, 21%, 20%, and 31% as compared to Cadez, first order, second order

and Deshpande algorithms. The average improvement in precision obtained by SPAN is 3%, 6%,

8%, and 11%, respectively. Figure 5.6(d) shows the relative improvement in hit rate obtained

by SPAN. Unlike our WebCT dataset, the improvement achieved by SPAN for this dataset is

quite high. The least improvement in the number of hits obtained by SPAN as compared to the

other algorithms are 15%, 35%, 31%, and 48%, respectively. In the FC application, Facebook
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(a) Hit rate obtained for FC1 (b) Hit rate obtained for FC2

(c) Hit rate obtained for FC3 (d) Relative increase in hit rate of SPAN as
compared to other algorithms

Figure 5.6: 5.6(a) - 5.6(c) Hit rate obtained for FC dataset when 3 most probable responses are
fetched for every sequence. 5.6(d) Relative gain in performance achieved by SPAN, as compared
to the other algorithms we implemented.
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(a) Precision obtained for FC1 (b) Precision obtained for FC2

(c) Precision obtained for FC3

Figure 5.7: Precision obtained for FC dataset when 3 most probable responses are fetched for
every sequence.

users could receive requests only from their friends. From a total of 43, 669 users, who played

the game, each user could receive help from a small set of users. This is similar to the accesses

found in access control systems, where subjects can request action on a small set of permissions

from the available pool of permissions. Our clustering technique that considers the identity of

subjects boosts the hit rate in such systems, as compared to the technique proposed in Cadez.

In both the datasets, hit rate drops when only the most probable request is considered

by evaluation engine, but the precision increases considerably. For systems where computing

authorization responses are expensive, higher precision would be preferred to decrease the addi-

tional load on PDP. For the WebCT dataset, the hit rate drops to 45%, 23%, and 50% from 63%,

41%, and 64% when the most probable requests considered by the evaluation engine changes

from 3 to 1. By definitions of hit rate and precision, we note that precision is equal to hit rate

when only 1 predicted request per sequence is considered by the evaluation engine. Thus the

precision increases to 45%, 23%, and 50% as compared to 25%, 22%, and 18%. The precision
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(a) Hit rate obtained for FC1 (b) Hit rate obtained for FC2

(c) Hit rate obtained for FC3 (d) Relative increase in hit rate of SPAN as
compared to other algorithms

Figure 5.8: 5.8(a) - 5.8(c) Hit rate obtained for FC dataset when only the most probable
response is fetched for every sequence. 5.8(d) Relative gain in performance achieved by SPAN,
as compared to the other algorithms we implemented.
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(a) Latency introduced when responses to 3
most probable requests are fetched by the
PDP.

(b) Latency introduced when response to
the most probable requests is fetched by the
PDP.

Figure 5.9: CDF’s showing the response times for different traces of WebCT

increases by approximately 50%− 100%. For the FC dataset, the hit rate drops to 48%, 40%,

and 36% from 70%, 60%, 50%. In other words, the precision increases to 48%, 40%, and 36%

from 25%, 22% and 18%. The improvement in precision is around 60− 100% for this dataset.

Figures 5.5(d) and 5.8(d) show the relative improvement in the number of hits obtained by

SPAN as compared to the other algorithms. For WebCT2, we observe that first order Markov

models predict 10% more requests correctly than SPAN. From Figures 5.6, and 5.8, we observe

that the second order Markov models perform better than the first order Markov models when

only the most probable request per sequence is considered. In fact, Figure 5.8(d) shows that

the performances achieved by SPAN and second order Markov models are comparable to each

other for 200 users. From Figures 5.6 and 5.8, we also observe that the performance of Cadez

drops considerably when only one request per sequence is predicted.

5.5.2 Latency calculation

Figures 5.9 and 5.10 show the cumulative distribution functions (CDFs) of the simulations

conducted to demonstrate that SPAN reduces the latency introduced by the authorization

process in access control systems. In Figure 5.10(a), we note that the probability of zero

latency for the FC1 trace is 0.28. This implies that in 28% cases, a response would be present

in the PEP cache when a request arrives at the PEP, thus reducing the authorization latency to

zero. Next, we observe that in 62% cases, the probability of receiving a response is less than 50

ms, which is the delay in obtaining a response without SPAN in the system. Note that the hit
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(a) Latency introduced when responses to 3
most probable requests are fetched by the
PDP.

(b) Latency introduced when response to
the most probable requests is fetched by the
PDP.

Figure 5.10: CDF’s showing the response times for different traces of FC

rate obtained by this trace is 68%. Thus, a hit rate of 68% indicates that in approximately 68%

cases, a subject would receive a response less than the time required for actual authorization

process.

Comparing Figures 5.10(a) and 5.10(b), we find that the performance is improved when

3 most probable predicted requests are considered as compared to only one most probable

request. However, the increase in the performance can negatively effect some of the requests,

which would experience a queuing delay in the system. The queuing delay is depicted in the

tail of the CDF in Figure 5.10(a). This tail cannot be seen in Figure 5.10(b) indicating lesser

queuing delays. Finally, the hit rate obtained in FC1 is better than FC2. This is indicated by

the curves in Figures 5.10(a) and 5.10(b) showing the reduction in latency obtained for FC1

and FC2.

5.5.3 Hit rate, precision, and PDP computations for different step sizes of

Multiple first order Markov models (MfoMm)

Figure 5.11 shows the hit rate and precision obtained for WebCT, using different step sizes in

MfoMm. We observe that varying MfoMm does not provide much benefit in terms of hit rate

and precision for this dataset. We obtained an improvement in hit rate of less than 1% for

WebCT.

Figure 5.12 shows the hit rate and precision obtained for FC dataset. Changing the step

size of MfoMm from 1 to 2, improves the hit rate by 4% − 5% for all the sub-traces of FC.
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(a) Hit rate obtained for different step sizes (b) Precision obtained for different step
sizes

Figure 5.11: Hit rate and precision obtained for different step sizes of Multiple first order
Markov models (MfoMm) in WebCT

(a) Hit rate obtained for different step sizes (b) Precision obtained for different step
sizes

Figure 5.12: Hit rate and precision obtained for different step sizes of Multiple first order
Markov models (MfoMm) in FC

Corresponding increase in the precision is between 1%−3%. In FC application, Facebook users

receive help from their friends during the duration of any fight. Generally, the order in which

the help is received cannot be restricted to particular sequences. Requests in access control

systems, like accessing files in repositories, or requesting permissions on different directories in

a domain, are examples where subjects might not make the requests in same sequence again

and again. Looking into the past states using MfoMm would help in improving the hit rate and

precision of such systems.
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(a) Change in hit rate as confidence level
varies

(b) Change in precision as confidence level
varies

(c) Change in PDP computations as confi-
dence level varies

Figure 5.13: Change in hit rate, precision, and PDP computations as the confidence level is
varied for WebCT dataset

5.5.4 Hit rate, precision, and PDP computations for different confidence

levels

As confidence level increases, the hit rate reduces, whereas precision increases. This expected

behavior is observed for all the sub-traces of both datasets.

Figures 5.13(a) and 5.13(b) give details about the hit rate and precision achieved by the

WebCT dataset as the confidence level is varied in the system. Hit rate and precision are

not much affected for confidence level of 0.01%. However, as the level of confidence increases

further, the hit rate drops and precision increases considerably. The hit rate achieved by SPAN

for a confidence level of 10% is 23%, 11%, and 24% for the 3 sub-traces. The corresponding

precision is 87%, 62% and 84%. To understand the effect of change in the confidence level

on the number of requests to be computed by PDP, we studied the relative drop in the PDP

computations for varying confidence levels. The relative drop in the number of computations is
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(a) Change in hit rate as confidence level
varies

(b) Change in hit rate as confidence level
varies

(c) Change in hit rate as confidence level
varies

Figure 5.14: Change in hit rate, precision, and PDP computations as the confidence level is
varied for FC dataset

91%, 93%, and 89%, respectively, when the confidence level reaches 10%. For the FC dataset,

hit rate drops and precision increases linearly for SPAN beyond a confidence level of 1%, as

seen in Figure 5.14.

Our experiments show that setting a higher confidence level decreases the hit rate, but

the number of computations that the PDP has to perform drop considerably, reducing the

additional load on the PDP. Our results demonstrate that confidence level could be a good

metric for precomputing responses to the predicted requests. The confidence level could be set

to higher values for systems where computing authorization responses are expensive.

5.5.5 Hit rate for cache implementation

Figures 5.15 and 5.16 show the results obtained by combining caching techniques with SPAN

as compared to stand alone caching for WebCT and FC datasets. From the results obtained,

we find that the combination improves the overall hit rate of the system. For smaller sizes of
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(a) Change in hit rate for WebCT1 dataset (b) Change in hit rate for WebCT2 dataset

(c) Change in hit rate for WebCT3 dataset

Figure 5.15: Change in hit rate for implementations of FIFO cache, LRU cache, and their
combinations with SPAN for WebCT dataset
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(a) Change in hit rate for FC1 dataset (b) Change in hit rate for FC2 dataset

(c) Change in hit rate for FC3 dataset

Figure 5.16: Change in hit rate for implementations of FIFO cache, LRU cache, and their
combinations with SPAN for FC dataset

cache, predictions made by SPAN can improve the hit rate of the system, whereas for larger

sizes of cache, the permissions obtained from the cache improve the hit rate. Overall, we found

that combining SPAN and LRU cache performs better than combining SPAN and FIFO cache.

Figure 5.15 shows the results obtained for WebCT. In this dataset, subjects repeatedly

request for the same resources in their sessions. Thus, as the size of the cache grows, the

evaluation engine finds more requests in the cache, resulting in improved cache performance.

For the FC dataset (Figure 5.16), we observe that FIFO and LRU caches obtain a maximum

hit rate of less than 30% and 40% for cache sizes of up to 30%. In this dataset, subjects request

for permissions mostly once per session, but repeat their behavior across different sessions. In

such cases, SPAN provides better hit rate as it depends on the behavior of the subjects in the

past sessions. However, as the size of the cache grows, the storage capacity of cache increases

and information from the past sessions can be stored in the cache, improving the performance

obtained by the caching techniques.

Before we discuss the implications of our results in the next chapter, we summarize this
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chapter in the next section.

5.6 Summary

This chapter reports the experiments performed to evaluate the performance benefits achieved

by SPAN, when implemented in access control systems. In the next chapter, we discuss the

implications of the results obtained in this chapter.
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Discussion

The results of our experiments indicate that SPAN leads to a high hit rate and precision in

predicting requests for access control systems. As our approach is comparable to the prediction

techniques proposed for web predictions, we followed the same procedure of building algorithms

and measuring the hit rate. In addition, we also calculated the precision and additional load

that could be encountered by PDP. In this chapter, we discuss our understanding on the im-

plementation of SPAN in access control systems, based on the results obtained.

While predicting requests improves the performance of systems, it also causes the PDP

to compute additional responses. If subjects do not make the same requests as predicted,

responses computed for the predicted requests are a waste of PDP’s computational power. A

good prediction algorithm should achieve high hit rate and impose minimum additional load on

the PDP. While a high hit rate indicates that the system is capable of reducing the latency of

access control systems, a high precision indicates that fewer responses computed by the PDP

are unused in the system. SPAN achieved high hit rate and precision, as compared to the other

algorithms we implemented. We found that the algorithms discussed in our related work do

not consider precision for evaluating their approaches, but precision is an important metric for

determining the additional load on the PDP.

For all the algorithms we implemented, SPAN achieved better improvement in hit rate and

precision for the FC dataset as compared to WebCT. WebCT mostly contained accesses made

by instructors, teaching assistants, and students in a course, and the popular sequences of

requests were made for accessing course materials, to which everyone had access. The popular

behavior of individual subjects was not significantly different from the overall behavior exhibited

by all the subjects. Our results for this dataset shows that SPAN does not achieve significant

improvement in performance over Cadez. SPAN and Cadez, both follow clustering approach
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in the training phase. The only difference is that SPAN considers the behavior of individual

subjects while forming clusters, whereas Cadez does not. On the other hand, in our FC dataset,

Facebook users could receive help only from their friends. This dataset represented a system

where subjects could request for only those permissions that they were authorized. In this case,

the behavior of individual subjects is different from overall behavior of subjects. Clusters formed

by considering individual subjects access patterns, result in better predictions. To summarize,

SPAN performs better for enterprises, where the access patterns of individual subjects are

different from the overall access patterns of all the subjects in the system.

The access patterns found in the training and testing sets influence the hit rate and precision.

For the WebCT dataset, WebCT3 gave better hit rate and precision, as compared to WebCT2.

WebCT2 was trained on the sequences of requests made mostly by instructors, and tested on

requests made by the instructors, teaching assistants, and students. The actions of instructors

in the training set added course materials and students could not perform these actions. The

testing set contained requests made by everyone for accessing course materials. The access

pattern in the training set was different from the pattern found in the testing set. On the

contrary, the training and testing sets of WebCT3 contained requests by students for accessing

course materials. This resulted in similar access patterns in the training and testing set. We

conclude that having similar access patterns in the training and testing set results in higher hit

rate and precision.

For every sequence, SPAN and other prediction algorithms predict possible future requests

with certain probability. Computing responses to all the predicted requests can increase the

load on the PDP. To reduce these computations, we implemented an evaluation engine and

set input parameters to the engine. We found that the hit rate dropped by 50% when only

the most probable request was considered, as compared to 3 most probable requests. However,

the precision increased by 50% − 100%. From our results, we also observe an interesting fact.

The number of most probable requests affected the performance of the algorithms. We found

that first order Markov models performed better than second order Markov models, when 3

most probable requests were considered. However, the performance reversed when only the most

probable request was considered. For the FC dataset, we observe that the hit rate and precision

obtained by Cadez dropped considerably, when only 1 response per sequence was considered, as
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compared to 3 initially. To summarize, the number of probable requests considered for satisfying

the subjects had a direct impact on the hit rate and precision achieved by all the algorithms.

SPAN predicts requests with certain probability. A higher probability for a request indicates

that it is likely to be requested in the future, as compared to the request predicted with lower

probability. Responses can be fetched only to those requests that are predicted with certain

probability. This would be a good criteria for reducing the additional load encountered by the

PDP. As observed from our experiments, neglecting requests predicted with lower probability

(confidence levels) reduced the additional load on the PDP considerably. Enterprises, where

computing authorization responses are not expensive, more responses could be fetched. This

would result in high hit rate, but the precision would be low. On the other hand, if computations

are expensive, fewer responses could be fetched based on our proposed confidence level approach,

resulting in reduced additional load on the PDP.

Caching has been a popular technique for improving the performance of systems. Policies

are cached even in commercial access control products like Tivoli Access Manager [IBM08]. We

have not seen speculative authorizations being used to improve the performance of systems.

Results obtained from implementing SPAN and caching in the same system demonstrated that

this configuration can boost the hit rate. For WebCT, increasing the size of the cache reduced

the difference in hit rate between stand alone caching, and combined SPAN and caching imple-

mentation. WebCT represented a dataset, where subjects requested access on same resources

repeatedly in a session. In systems like these, speculation authorizations obtains higher hit rate

when the size of the cache is small. As the size of the cache grows, more responses are stored

in the cache. If subjects make the same requests repeatedly, responses to these requests are

found in the cache. Hence, the difference in hit rate is reduced. On the contrary, in our FC

dataset, Facebook users generally received help from their friends, only once per session. In

these systems, caching cannot improve the performance to a large extent. SPAN can improve

performance of such systems, where caching is of little use and predictions are made on the

behavior exhibited by the subjects in their past sessions.

Results obtained for Multiple first order Markov models demonstrated an improvement in

hit rate, when applied to FC dataset as compared to WebCT. In the FC dataset, Facebook

users received help from their friends in certain order, but this order was not fixed each time.
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MfoMm finds the probability of two requests being requested in a session, not necessarily one

after the other. Thus, it improves the performance in systems like FC or file systems, where

subjects are not restricted to ordering of their requests on permissions.

Our experiments indicate that the training time required for forming clusters is proportional

to the number of subjects and unique sequences of requests formed in the system. However, the

time required to make a prediction is quite low for all the datasets. In fact, it is independent

of the number of subjects and unique sequences formed. It depends on the number of clusters

formed in the system. The time required to make a prediction for WebCT is lesser than FC,

where the number of clusters are 4 and 7 respectively.

So far, we interpreted the results of our experiments that demonstrates the effectiveness of

SPAN in access control systems. In the next section, we provide the possible configurations of

implementing SPAN in access control systems.

6.1 Implementing SPAN in access control systems

SPAN could be completely collocated with the PDP side as shown in Figure 6.1, or split between

the PEP and PDP, as shown in Figure 6.2.

6.1.1 SPAN collocated with the PDP

SPAN can be collocated with the PDP as shown in Figure 6.1. In this configuration, both

the training and prediction phases of SPAN are implemented at the PDP-side. In the training

phase, the PDP not only computes the responses to the incoming requests from the PEP, but

also sends a copy of the requests to SPAN. After a certain number of requests are recorded,

SPAN runs the training phase of the algorithm.

In the testing phase, when the PEP sends requests to the PDP, a copy of requests are sent

to SPAN. Based on the sequences of requests received, SPAN predicts the requests that could

be made by the subjects. The PDP computes the responses to these predicted requests and

sends it to the cache, collocated with the PEP. This mechanism reduces the latency to virtually

zero. However, there is a disadvantage. When PEP finds responses in its cache, it would

not make authorization requests to the PDP. This would break the sequence of authorization
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Figure 6.1: Architecture of SPAN’s implementation on PDP side

requests flowing from PEP to the PDP. As SPAN depends on the sequences of requests to make

predictions, its predictive capability would be affected. To avoid this, the PEP has to inform

the PDP about the requests made by the subjects even if responses are found in the cache. In a

single PEP-PDP configuration, SPAN could be collocated with the PEP to avoid this drawback.

However, the PEP-PDP configuration is generally designed for a single PDP to support

multiple PEP’s. We provide the implementation of SPAN in this scenario next.

6.1.2 SPAN split between PEP and PDP

In this configuration (Figure 6.2), the training and testing phases of SPAN are split between

the PDP and the PEP, respectively. The training phase is implemented at the PDP, whereas

the testing phase is implemented at the PEP. Implementing the training phase at the PDP has

two advantages:

1. The training phase of SPAN depends on higher frequency counts to form clusters. Aggre-

gating the authorization requests from all the PEP’s would boost the frequency counts.
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Figure 6.2: Architecture of SPAN’s implementation split between PEP and PDP

2. The training phase is intensive in terms of time. Clusters could be formed once at the

PDP and transmitted to the PEP’s.

For the testing phase, SPAN could be collocated with the PEP’s. When SPAN predicts

future requests, the PEP could check if the cache contains the response before sending the

authorization request to the PDP. This configuration also avoids the problem of breaking the

sequence of requests for SPAN.

6.2 Shortcomings in SPAN

Although SPAN achieves good hit rate and precision, there are certain shortcomings that we

address in this section.

First, SPAN requires time to adjust to any policy changes made in enterprise authorization

systems. SPAN is built on the frequency counts obtained from transitions made by subjects

for accessing resources. If a subject gets access to a new resource, or is denied access to a
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resource, previously allowed, it would take some time for SPAN to detect the changes. Policy

changes would change the behavior exhibited by subjects in an enterprise. This change will not

be captured immediately by SPAN, as it relies on comparable frequency counts of transitions

to make predictions. SPAN would predict incorrect requests for the subjects. However, this

does not cause any security threat to the enterprise systems. SPAN only predicts the requests,

but decisions are still made by the PDP. Policies changes will affect the hit rate and precision

obtained by SPAN. This is the fundamental problem for all approaches [AKT08, DK04, EVK05,

CHM+03, SH05, SYLZ00, BBB09, MDLN01, YHN03, YZ01, YLW04] built on frequency counts

of transitions. Accommodating policy changes to make predictions is an open problem for

speculative authorizations.

The second shortcoming of SPAN is the time required to train SPAN is directly proportional

to the number of subjects and unique sequences of requests formed in the system. For our second

dataset, we found that increasing the number of subjects increased the number of permissions

and requests made by the subjects. It had a direct impact on the training time that increased

from 12 minutes for 50 subjects, to 47 minutes for 200 subjects. In the current implementation,

this shortcoming affects the scalability of SPAN.

6.3 Summary

We now summarize the chapter to list our assumptions in SPAN, its applicability and the tuning

of input parameters to obtain better performance.

1. SPAN is designed for access control systems where information about subject’s identity

and sequence of requests made by the subjects can be obtained.

2. From the results obtained for our two datasets, we conclude that SPAN achieves better

performance where access pattern of individual subject is different from overall access

patterns of all the subjects in the system.

3. The number of most probable responses to be computed depends on the time required

for the PDP to compute every response. If the time required to compute a response

is comparatively higher than the average time of incoming requests from the PEP, only
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the most probable response should be computed. If not, the requests made by the PEP

would experience a queuing delay at the PDP. The PDP should be configured in such a way

that computing responses to requests made by the subjects are prioritized as compared

to requests predicted by SPAN.

4. From the results obtained for our WebCT2 and WebCT3 traces, we found that the access

patterns found in the training phase and actual prediction phase determines when the

training phase should be rerun. If the number of permissions in the system does not

undergo frequent changes and the behavior of subjects on those permissions is fairly

constant over a period of time, the training phase of the algorithm need not be run over

and over again.

5. Finally, we conclude that SPAN can be used to improve the performance of enterprise au-

thorization systems consisting of a few hundred subjects. Scaling SPAN to accommodate

larger enterprises is a direction of future work.

We now conclude the thesis in the next chapter.
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Chapter 7

Conclusion

In this thesis, we presented Speculative Authorization (SPAN) that predicts authorization re-

quests, likely to be made by subjects in access control systems. Unlike web page prediction

algorithms, our model considers the authorization policies for making predictions. We imple-

mented two web prediction techniques, and evaluated the hit rate and precision obtained by

those against SPAN. For the two datasets used for our experiments, SPAN achieved a hit rate

between 30 − 70%, a gain of 2 − 55% as compared to the other algorithms. Precision varied

from 15− 45%. We proposed confidence level metric for computing responses to the predicted

requests. For systems where computing policies decisions are expensive, our strategy would

help in reducing the additional load on the PDP, while improving performance. We also im-

plemented caching and SPAN in the same systems. Our results demonstrate that combining

SPAN and caching can further improve the performance of access control systems as compared

to stand alone caching technique.

7.1 Future work

Although our approach improves the performance of enterprise authorization systems, in terms

of reducing in latency, there is an area for future research.

Recall that the time required for the training phase is proportional to the number of subjects

in the system. Time required for training can affect the scalability of the systems. A role-based

access control policy (RBAC) controls access based on the roles a subject is assigned and the

permissions that are allowed for those roles. Having been introduced more than a decade ago,

RBAC [FK92, SCFY96] has been deployed in many organizations for access control enforcement,

and eventually matured into the ANSI RBAC standard [ANS04]. In RBAC, instead of directly

assigning permissions to subjects, the subjects are assigned to roles and the roles are mapped
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to permissions. Subjects are assigned appropriate roles according to their job functions in an

enterprise. Generally, the number of roles in an enterprise are much lesser than the number

of subjects in an enterprise. Considering the roles instead of identity of subjects, can improve

the time required in the training phase. However, a subject can possess multiple roles. The

clustering algorithms built for prediction using role based access control should consider this

criteria.
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