
OpenIDemail Enabled Browser: Towards Fixing the Broken
Web Single Sign-On Triangle

San-Tsai Sun, Kirstie Hawkey, Konstantin Beznosov
Laboratory for Education and Research in Secure Systems Engineering

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada
{santsais,hawkey,beznosov}@ece.ubc.ca

ABSTRACT
Current Web single sign-on (SSO) solutions impose a cogni-
tive burden on web users and do not provide content-hosting
and service providers (CSPs) with sufficient incentives to
become relying parties (RPs). We propose a browser-based
Web SSO solution that requires minimal user interaction
and provide RPs with clear value propositions to motivate
their adoption. Our approach builds OpenID support into
web browsers, hides OpenID identifiers from users by using
their existing email accounts, extends the OpenID protocol
to perform authentication directly by browsers, and intro-
duces an OpenIDAuth HTTP access authentication scheme
to convey authenticated identities automatically into web-
sites that support OpenID for authentication. Our solution
embeds an intuitive and consistent login experience for web
users in the browser; to motivate adoption by RPs, it pro-
vides them with instant marketable leads and the potential
for gradual engagement of site visitors.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication

General Terms
Security

Keywords
OpenID, Web Single Sign-On, Web Identity Management,
Authentication, Identity-Enabled Browser

1. INTRODUCTION
Today’s Web is site-centric; a user has to maintain a sep-

arate copy of their identity and corresponding password for
each content-hosting and service provider (CSP). A large-
scale study of password habits found that a typical web user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIM’10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0090-2/10/10 ...$10.00.

has about twenty-five accounts that require passwords and
types eight passwords per day [11]. Web users face the bur-
den of managing this increasing number of accounts and
passwords, which leads to “password fatigue” [48]. Aside
from the burden on human memory, password fatigue may
cause users to devise password management strategies that
degrade the security of their protected information [14, 11].

Web single sign-on (SSO) systems are meant to address
the root causes of the password fatigue problem [7]. A Web
SSO system separates the role of identity provider (IdP)
from that of relying party (RP) to enable users to leverage
one identity across multiple RPs. An IdP issues identities
or credentials to users, while an RP depends on the IdP(s)
to assert the user credentials before allowing them access to
its services. In addition to reducing users’ memory burden,
a globally adopted Web SSO solution can enable content
sharing across and beyond the boundaries of CSPs [42].

OpenID [37] and InfoCard [32] are mainstream Web SSO
solutions targeted for Internet-scale adoptions [26, 7]; how-
ever, they are facing an RP adoption problem [43]. Evidence
shows that although major CSPs acted quickly to become
OpenID IdPs (there are currently over one billion OpenID-
enabled accounts), only a limited number of websites have
adopted the role of RP [35, 22, 31, 34]. This is similar to
having more than a billion keys, but few locks to use. For
InfoCard, the list of RPs and IdPs is almost empty [46]. Fig-
ure 1, the broken triangle of the Web SSO identity ecosys-
tem, illustrates this RP adoption problem. Each dashed line
indicates a lack of driving force or incentive between two ac-
tors in the ecosystem. For instance, line B shows the lack of
incentive for a relying party to support SSO for users.

Fundamentally, Web SSO systems shift the functions of
identity collection and authentication from RPs to IdPs.
However, the incentive for RPs to rely on the identity asser-
tion services provided by IdPs is insufficient, as illustrated
by line A in Figure 1. RPs are not willing to relinquish con-
trol over their user base unless they can obtain user data
and verify the IdP’s authentication and data collection poli-
cies [23, 7]. In addition, RPs have to choose which IdPs to
trust as they are liable for any losses if IdPs get compro-
mised [30].

Current Web SSO solutions do not provide RPs with suf-
ficient business incentives for supporting Web SSO for users
(line B in Figure 1). CSPs are reluctant to modify their login
UI and process because new login procedures might confuse
and upset users [12, 38]. In addition, RPs might not want to
expose their users to potential business competitors because

49

Figure 1: The broken triangle of the Web SSO iden-
tity ecosystem. Each dashed line indicates a lack of
driving force or incentive between two actors.

once the attention of users has been redirected to an IdP
during the login process, they might not return [7]. As early
adoption does not appear to provide RPs with competitive
advantages, CSPs may be waiting until Web SSO technol-
ogy is mature and the cost of user training has already been
absorbed by other websites.

To encourage adoption by RPs, Web SSO systems have
to rely on the demand from users as the driving force (line C

in Figure 1). However, the login interaction flows provided
by today’s Web SSO solutions are shared-identity sign-on
(SISO) ones rather than true single sign-on. With SISO
solutions, users can use one identity to sign into multiple
RPs. Nevertheless, when accessing N RPs using one IdP, the
user must visit N + 1 different login forms (one for each RP
website and one on the IdP), choose an IdP to login N times
via N possible ways, read the consent page (e.g., consent to
release identity attributes, setup a custom identifier) on the
IdP N times, and log out N +1 times through N +1 different
interfaces. These complex and inconsistent user experiences
impose a cognitive burden on web users [12, 38, 7].

SISO redirects the user’s attention during the login pro-
cess. However, in addition to usability issues [12, 7], redirec-
tion exposes users to phishing attacks [24, 7, 27] and makes
IdP tracking possible [26]. InfoCard [32] redirects users only
to their identity selector. However, for N RPs using one IdP,
the user has to provide her credential to the IdP N times
unless a self-issued card (without password protection) is
selected. Moreover, using multiple identities in one brows-
ing session complicates the process for users even further.
When users sign on with multiple IdPs in one browser ses-
sion, they have to remember which identity was used for ac-
cessing which RP. Mixing identities in one browser session
can make it difficult for users to determine why an access
failed, and whom to contact when a problem is encountered.

SISO requires usable interfaces and login interaction flows
from both RPs and IdPs. Simply adding an OpenID textbox
or InfoCard icon to the traditional login page is not an op-
tion [12, 38]. To improve the user experience, some OpenID
RP adopters provide a list of IdP logos on their login form
for users to choose from. The users can simply click on an
IdP icon to initiate a sign-on process. However, this ap-
proach leads to the “NASCAR” problem [27] when the list
of IdPs grows too long to fit on the login screen. In addition,

using a list of IdPs restricts users’ freedom of choice, which
impairs healthy competition in the ecosystem.

SISO is especially problematic in Web 2.0 applications
that require access to personal data located on multiple
CSPs. For OAuth-based applications [33] that process a
user’s personal content from different providers, being pre-
sented with a login form on each CSP is annoying, and
imposes a cognitive impact on the user [3]. For client-
side mashups that use Ajax-style web services to acquire
user data from several websites, login forms will block such
communications. In addition, SISO-based solutions may be
more difficult to use on mobile devices that have limited
input capabilities.

Our research goal is to develop a Web SSO solution that
requires minimal user interaction and provides RPs with
clear value propositions to motivate their adoption. In our
vision of a true Web SSO system, a user should log into her
IdP once and gain access to all websites that she has an
account with, without being prompted to login again on each
website. In other words, when accessing N RPs using one
IdP, the user should provide her credential exactly once to
the IdP, consent at most N times (one for each RP if the
consent was not recorded for future use), and should perform
a logout process only once from the IdP.

Designing an usable Web SSO solution that fulfills our vi-
sion and motivates adoption by RP is challenging. To be
usable, the solution must leverage the skills and experiences
that an average Web user already has. It must not require
any special software being installed on end-user computers
or require users to manage public/secret keys or X.509 cer-
tificates for performing cryptographic operations. There are
currently over one billion OpenID-enabled “keys” provided
by major CSPs [34], and they are too valuable to be ig-
nored. Thus, the solution should be backward-compatible
with existing IdPs and RPs and support gradual adoption.
To facilitate adoption by RPs, the solution must not require
them to modify their login UI; how to design a usable login
UI and login interaction flow for web users is still an open
problem that ongoing single sign-on research is attempting
to address [38, 36]. Furthermore, the solution should be
readily employable for emerging Web 2.0 applications that
process personal data located on multiple CSPs.

To achieve our goal, we propose a new approach for Web
SSO that leverages OpenID and email, and builds identity
support into the browser. Our approach (1) builds OpenID
support directly into web browsers, (2) hides OpenID iden-
tifiers from users through the use of their existing email
accounts, (3) extends the OpenID protocol to perform au-
thentication directly with user-agents such as browsers (an
OpenIDua extension), and (4) introduces an OpenIDAuth
HTTP access authentication scheme to convey authenticated
identities automatically to websites that support OpenID for
authentication. To evaluate the feasibility of our approach,
we implemented the proposed protocols in Java, and set up
an OpenIDemail-enabled IdP and five RPs. In addition, we
designed an OpenIDemail Firefox extension to demonstrate
our vision of a true Web SSO solution.

With our approach, web users authenticate with their ex-
isting email accounts via an OpenIDemail-enabled browser.
With the user’s consent, their identity information trans-
parently “flows” into websites that require it. Our approach
provides users with intuitive and consistent login experiences
and does not require RPs to modify their existing login

50

forms. In addition, our approach can turn an anonymous
visitor into a marketable lead with one simple click, and
it could potentially decrease the sign-up form abandonment
rate on RPs’ websites through gradual engagement with vis-
iting users.

This paper makes the following contributions: (1) a novel
architecture and design of a browser-based Web SSO solu-
tion, (2) an OpenIDua extension that enables the OpenID
protocol to perform authentications directly with user agents,
(3) a new HTTP access authentication scheme that enables
an authenticated OpenID to be automatically provided to
RPs, and (4) a prototype implementation of the proposed
approach.

The rest of the paper is organized as follows. The next
section discusses background and related work. Section 3
discusses our design considerations, and Section 4 presents
the detailed design of our proposed solution. The prototype
implementation and evaluation of our approach is discussed
in Section 5. Section 6 discusses the implications of our
approach, and Section 7 summarizes the paper and outlines
future work.

2. BACKGROUND AND RELATED WORK
In this section, we provide background information on

Web SSO systems and present related work on browser-
supported login solutions. Readers familiar with the subject
can proceed directly to the next section.

2.1 Web SSO systems
To achieve Web SSO, major CSPs have provided a way

for other CSPs to accept user credentials from their do-
main (e.g., Microsoft Live ID, Yahoo BBAuth). However,
these systems are proprietary and centralized; identity in-
formation is maintained and controlled by a single admin-
istrative domain. Federated identity solutions such as Lib-
erty Alliance Project [25] and Shibboleth [21] enable cross-
domain single sign-on. However, these solutions require pre-
established trust relationships and agreements between or-
ganizations in the federation, making them hard to scale on
the Web.

OpenID [37] is an open, user-centric identity solution,
which avoids the scalability problems of federated identity
solutions. OpenID is user-centric in the sense that users are
free to choose or setup their own OpenID providers. One key
scalability feature of OpenID is that it does not require any
pre-established trust relationships between IdPs and RPs.
According to the OpenID Foundation [34], as of Septem-
ber 2009, more than one billion OpenID enabled user ac-
counts were provided by major CSPs (e.g., Google, Yahoo,
AOL, Microsoft). OpenID is a promising solution. However,
OpenID suffers from adoption [35, 22, 31, 34] and usability
problems [24, 7, 27], is vulnerable to phishing attacks [24, 7,
27], and imposes privacy concerns [26].

Information cards (known as InfoCard) [32] are personal
digital identities that are analogous to real-world identity
cards such as passports, driver licenses, and credit cards.
Each card contains assertions about a user’s identity that
are either self-issued or issued by an identity provider. When
logging into a web site, the user selects a card instead of typ-
ing a user name and password. Information cards have im-
portant features such as phishing-resistant authentication,
IdP-to-RP unlinkability, and real-time user consent. How-
ever, in comparison to OpenID, InfoCard is a heavy-weight

protocol. In particular, users need to install an identity
selector and relying parties must have a valid SSL certifi-
cate configured to provide secure channels when communi-
cating with identity selectors. Furthermore, because cards
are stored on the end user’s computer, they could be stolen
and used to impersonate the victim if the user’s computer
is compromised [18]. Additionally, InfoCard raises privacy
issues when used on shared/public computers and is difficult
to employ when users switch between multiple computers.

The OpenID Information Card specification [19] enables
OpenID IdPs and RPs to perform OpenID authentication
using InfoCards. The OpenID assertions from OpenID IdPs
to the RPs is performed by the identity selector, which
makes OpenID authentication resistant to phishing. Nev-
ertheless, the fundamental usability, security, and adoption
problems of InfoCard are not addressed.

2.2 Browser-supported login solutions
Sxipper [45] is a form manager that helps users fill-in web

forms such as registration or order forms. It also recognizes
login forms and leverages the Firefox built-in password man-
ager for single-click login. This Firefox add-on enables web
users to maintain several personae; each persona consists of
a set of user attributes such as name, email, and address.
When encountering a web form, Sxipper prompts the user
to pick a persona and then fills the corresponding form au-
tomatically. The main limitation of Sxipper is that users
still have to maintain a separate copy of their identity for
each CSP, which makes online profile management and con-
trolled content sharing difficult. In addition, Sxipper might
not detect forms correctly; and it stores sensitive informa-
tion such as credit card numbers on the user’s local machine.
This poses a security threat if the user’s computer is com-
promised and raises portability issues when users switch be-
tween computers or want to use a shared/public computer.

VeriSign’s Seatbelt Firefox add-on [47] is designed to make
OpenID more convenient to use by automatically filling in
a user’s OpenID URL when visiting relying parties. This
extension also provides an OpenID user with information
about their login state with their OpenID provider and au-
tomatically monitors OpenID transactions to help prevent
phishing attacks. Seatbelt is easy to use; however, it may
not detect OpenID login form fields precisely as a simple text
matching technique (e.g., openid, oidurl, open-id, open id)
is used to identify them. In addition, it requires Seatbelt
specific configurations and login state provision from the
participating OpenID IdPs. Furthermore, it is unable to
detect “rogue relying party proxying” phishing attacks (e.g.,
content scraped from the real site) that do not rely on HTTP
redirections when spoofing victims.

Weave Identity [29] from Mozilla Labs is a Firefox add-
on that leverages a Firefox built-in password manager for
single-click and automatic logins and integrates Weave server
accounts for automatic OpenID sign-on. Similar to VeriSign’s
Seatbelt, it might not detect and submit login forms cor-
rectly; and automatic OpenID login support is limited only
to Weave accounts. Moreover, Weave Identity and Seatbelt
are SISO solutions rather than true SSO ones.

3. DESIGN CONSIDERATIONS
In addition to the usability and backward-compatibility

requirements discussed in Section 1, we discuss other con-
siderations that affect our design decisions in this section.

51

Figure 2: System architecture and high-level data
flow of the proposed Web single sign-on system.

3.1 Build Identity Support Into Browser
The adoption of current Web SSO solutions is facing a

classic chicken-and-egg problem: CSPs do not want to change
their authentication procedures until a critical mass of users
have adopted Web SSO, and users have little incentive to
employ the technology unless many of their CSPs are sup-
ported as RPs [39]. In addition, users have no urgent need
for SSO as they can use a password manager as a limited
version of a personal identity manager [28].

To resolve this chicken-and-egg problem, future Web SSO
development needs additional forces from other sources be-
yond the actors in the Web SSO triangle [43]. As the browser
is the central piece that communicates with all actors in the
identity ecosystem, we conjecture that the browser can po-
tentially provide driving forces for RPs to adopt SSO when
it is directly augmented with identity support. Currently,
most web users are not aware that they already own SSO
“keys”hosted on major CSPs. To advocate users’ awareness,
an identity-enabled browser could prompt users to sign in
before browsing, provide users with an intuitive way for se-
lecting an identity to use when visiting websites, and make
it clear that they can sync their personal data from IdPs
to RPs right within the browser. By embedding the SSO
experience into most web users’ daily web-surfing activities,
the browser could drive users to reach the necessary critical
mass to overcome the resistance of CSPs to become RPs.

3.2 Motivate Adoption by RPs
A high conversion rate (i.e., the ratio of visitors who be-

come registered users) is desirable for many websites. How-
ever, most websites convert only a fraction of visitors into
customers (the average online conversion rate is around 3%,
with the highest at approximately 9%) [41]. One key factor
that affects a website’s conversion rate is the form aban-
donment rate—the ratio of visitors that fail to complete a
sign-up form [49]. Traditionally, websites redirect visitors
to sign up for an account before granting them access to
the protected resources or allowing them to create personal
content. For password recovery and to ensure future com-
munication with users, most websites also require validation
via email before activating an account. Many web services
need to identify each individual user before providing the
requested service (e.g., access to shared personal content
that is controlled by an access-control-list). However, this
requirement discourages potential customers from trying a
new web service. Thus, any new solutions should provide
RPs with mechanisms that could improve the conversion
rate on their websites to motivate their adoption.

3.3 Security Considerations
We focus on the threats posed from the interception of

user input and network traffic. The adversary’s goals are
to steal a user’s password or to gain unauthorized accesses
to an RP by impersonating an OpenID owner. To steal a
user’s password, an attacker could capture user passwords
directly or infer them from collected data. We assume a
user’s computer could be compromised. An attacker could
install keyloggers to capture the user’s key strokes and use
proxies to watch, replay, and modify network traffic between
all actors in the system. The solution should be secure even
under the threats of malicious CSPs, compromised user com-
puters, and network traffic sniffing and modification.

OpenID and other similar HTTP-redirection based proto-
cols (e.g., Google AuthSub [15], AOL OpenAuth [2], Yahoo
BBAuth [52]) may habituate users to being redirected to
IdP websites for authentication. If users do not verify the
authenticity of these websites before entering their creden-
tials (and they usually do not [40, 9]), phishing attacks are
possible. To prevent phishing attacks, users must confirm
the authenticity of an IdP before entering their credentials.

Research on methods of authenticating websites to users
include security indicators [6, 20], secure bookmarks for known
websites [8, 51, 53], and automated detection and blacklist-
ing of known phishing sites [10]. However, studies suggest
that security indicators are ineffective at preventing phish-
ing attacks [9, 40]; and blacklisting known phishing sites
still cause the problem of a high rate of false-positives and
false-negatives [54]. Even with improved security indicators,
users may ignore them [50, 40, 44].

Based on the results of user studies that evaluate the ef-
fectiveness of anti-phishing techniques [50, 9, 54, 40, 44], a
Web SSO solution should avoid relying on users’ cognitive
capabilities to detect phishing sites.

4. APPROACH
Our approach is based on the identity flow metaphor from

the design of operating systems (OS). In an OS, a user au-
thenticates to the OS and that authenticated identity au-
tomatically “flows” into all processes launched by the user.
Our approach treats a browser as an operating system and
each web site the user visits as a process. A user enters her
existing user name/password on the Web into a browser;
and with the user’s consent, that authenticated identity au-
tomatically flows into all websites that require an authenti-
cated identity.

4.1 System Architecture and Data Flow
The main actors in our system are an OpenIDemail iden-

tity provider, an RP that supports the OpenIDAuth HTTP
authentication scheme, and an OpenIDemail-enabled browser.
Figure 2 illustrates the system architecture and high-level
data flow among the actors.

An OpenIDemail provider is an existing OpenID identity
provider augmented with both an email-to-OpenID trans-
lation service (e.g., EAUT [13], WebFinger [17]) and an
OpenIDua extension. Web users are not accustomed to using
an OpenID URL as an identifier [9, 1]; email addresses on
the other hand, serve as user identifiers for many CSPs [1].
Our approach is not bound to any specific email-to-OpenID
translation service. In our implemented solution, we com-
bine EAUT and OpenID so that web users can login using
their email addresses to IdPs while transparently conveying

52

an OpenID identifier to RPs for identification. With EAUT,
an OpenIDemail provider is free to implement any custom
logic to map or translate an email to an OpenID. OpenIDua

is our proposed OpenID extension that allows IdPs to au-
thenticate directly with user-agents such as browsers. De-
tails of the OpenIDua extension are discussed in Section 4.2.

To “flow” authenticated identities automatically into web-
sites that support OpenID for authentication, we introduce
an HTTP access authentication scheme named OpenIDAuth.
Similar to the HTTP Basic or Digest authentication schemes,
OpenIDAuth is designed to allow a web browser, or other
client program, to provide credentials when making an HTTP
request. However, instead of utilizing the username and
password as credentials, OpenIDAuth uses OpenID and a
challenge/response protocol to ensure that a user “owns” the
claimed OpenID. Details of the HTTP OpenIDAuth scheme
are discussed in Section 4.3.

An OpenIDemail-enabled browser is a browser extended
with the OpenIDemail protocol. To login, a user mutually
authenticates to her IdP directly in the browser, instead
of performing authentication on the IdP’s web site. There
are three main steps to this login process (Steps 1 to 3 in
Figure 2):

1. Map an email address to an OpenID: After a user
enters her email address into an OpenIDemail-enabled
browser, the browser maps it to an OpenID identifier
via an email-to-OpenID mapping service and uses that
to discover the end-point of the IdP.

2. Establish a session key with IdP: The browser uses
an extended associate operation (defined in OpenIDua)
to exchange a shared session key with the IdP.

3. Mutually Authenticate with IdP: The browser
mutually authenticates with the IdP via an extended
checkid_immediate operation. This allows the IdP to
assert that the user owns the claimed OpenID iden-
tifier and the browser to validate the authenticity of
the IdP. During this process, the password hash of the
corresponding claimed OpenID is used as the shared
secret between these two parties.

Once mutual authentication has been successfully com-
pleted, the browser and the IdP share a tuple: OpenID i,
session handle h, and session key k.

When the user accesses protected content of an RP, the
RP responds with an HTTP 401 “Unauthorized” message
to the browser with the WWW-Authenticate scheme set
to OpenID:session. There are three steps required for the
browser and the RP to complete an OpenIDAuth authenti-
cation (Steps 4 to 6 in Figure 2):

4. Supply a claimed OpenID and the session han-
dle: The browser makes an HTTP request again with
the claimed OpenID i and the corresponding session
handle h in the request header.

5. Validate a claimed OpenID and the session han-
dle: The RP discovers an IdP based on i and then
sends i and h to the IdP to ensure that i and h are
valid. The IdP responds to the RP with a validation
result comprised of a nonce n and signature
s = HMAC(i||h||n, k).

6. Compute a response for a given challenge: If
the claimed OpenID is valid, the RP responds to the
browser with an HTTP 401 “Unauthorized” message;
it includes i, h, n in the response header and sets the
WWW-Authenticate scheme to “OpenID:challenge”.
The browser computes a signature s′ = HMAC(i||h||n, k)
based on the stored (h, k, i) tuple and the received
nonce n, and it sends s′ to the RP to check whether
s′ = s. If the check is successful, access is granted.

4.2 OpenIDua Extension
To allow an IdP to communicate directly with a browser

rather than relying on redirections with a RP, we propose
OpenIDua, which is an OpenID extension that “piggybacks”
extra information on the associate and checkid_immediate

operation messages. OpenIDua extends the associate op-
eration to prevent man-in-the-middle (MITM) attacks. The
original OpenID protocol uses the Diffe-Hellman (DH) key
exchange protocol to establish a session key; however, plain
DH is vulnerable to MITM attacks. To prevent this at-
tack between a browser and an IdP, our design piggybacks
the associate operation with a claimed OpenID. As de-
scribed in Section 8.2.3 of the original OpenID Specifica-
tion [37], the session key is only XORed with the hash of a
DH shared key (i.e., kenc = (k) ⊗ H(gab mod q). It is pos-
sible for an MITM attacker to perform two distinct DH key
exchanges with each party, which allowing the attacker to
decrypt then re-encrypt the messages passed between them.
With our extension, the additional claimed_id field can be
used by an IdP to find the corresponding password hash
which is only known to the IdP and the browser, but not
to the adversary. The function used to hash the password
is indicated in pwd_hash_type field. Based on our exten-
sion, the IdP responds to the browser with an encrypted
session key by XORing the session key with the password
hash and then XORing the result with the hash of a DH
shared key: kenc = (k ⊗Hp(p)) ⊗ H(gab mod q). Upon re-
ceiving the IdP’s response, the browser computes the session
key: k = Hp(p)⊗ (H(gab mod q) ⊗ kenc).

OpenIDua extends the checkid_immediate operation with
an extra field named enc_pwd_hash that contains a pass-
word hash encrypted with the session key k. This informa-
tion is used by an IdP to check whether a user “owns” the
claimed OpenID identifer. The encryption method is indi-
cated in the enc_type field. As this is a direct communica-
tion between a browser and an IdP, the value of the original
openid.return_to field should be ignored by the IdP. In
our prototype implementation, we set openid.return_to to
the browser’s User-Agent HTTP header. Below is a sample
request from a browser (text in bold font indicates our ex-
tension to the message):

[Browser request:]
openid.ns.ua=http://lersse.ece.ubc.ca/openid/ext/ua/1.0
openid.ua.enc pwd hash=QAWSDERF412QA
openid.ua.enc type=AES-256
openid.mod=checkid immediate
openid.claimed id=ece.ubc.ca/alice
openid.assoc handle=123456789
openid.return to=User-Agent: Mozilla/5.0 ...

The message format of the response from an IdP is identical
to the one for the original checkid_immediate operation.

53

This operation is also used by an RP to check whether a
given claimed OpenID and its corresponding session handle
have been authenticated with the IdP (without enc_pwd_hash
field) when processing a request for protected content.

4.3 HTTP OpenIDAuth Scheme
To transmit a claimed OpenID transparently to an OpenID-

enable web site, we introduce OpenIDAuth (Steps 4 and 6 in
Figure 2), which is an HTTP access authentication scheme.
For a given HTTP request to a protected resource, the RP
responds to the browser with the following message in order
to solicit a claimed OpenID and the corresponding session
handle:

[RP response:]
HTTP/1.1 401 Authorization Required
WWW-Authenticate: OpenID:session
realm=“*.ubc.ca” auth-domain=“www.ubc.ca”

The realm value and auth-domain specified in the response
header are used to define the realm of an authentication
session, which is the area of protected resources that shares
the same user credentials. To respond to an OpenID:session

message, the browser prompts the user to select an authenti-
cated identity for the specific realm on the RP. The browser
can optionally record this identity-to-realm mapping and use
it for future requests without prompting the user again (for
a specific period of time designated by the user). Once an
authenticated OpenID is selected, the browser makes an-
other HTTP request:

[Browser request:]
GET /private/content.html HTTP/1.1
Authorization: OpenID:session
user-id=“http://ece.ubc.ca/alice”, session-id=“1234”

When an RP receives such a request, it sends the sup-
plied OpenID and session id to an IdP via an extended
OpenID check_immediate operation to ensure the supplied
information is valid. If it is valid, the IdP responds with a
positive assertion that consists of a nonce n and signature
s = HMAC(i||h||n, k). The RP then uses n to challenge the
browser. To respond to the OpenID:challenge message, the
browser computes a signature over the list of fields specified
by the signed field (e.g., OpenID i, session handle h, nonce
n), and then sends the signature to the RP.

The RP then checks whether the response matches the sig-
nature generated by the IdP. If it does, the RP responds to
the browser with the requested resource and a logout URL
in the header. The browser uses the logout URL to notify
the RP when the single logout event is triggered by the user.

4.4 Log into an OpenIDemail Provider
We now provide the sequence of steps for logging into an
OpenIDemail provider as illustrated in Figure 3:

1. User U enters email e and password p into browser B.

2. B parses the domain d from e (email is in the form
user@domain) and prepends the string“http://”to d to
form an EAUT discovery URL. B retrieves an XRDS
document [16] on the URL, and lookups values repre-
senting an EAUT service E.

Figure 3: Flow for logging into an OpenIDemail

provider.

3. B sends e to E (i.e., https://lersse.ece.ubc.ca/eaut/).

4. E maps e to an OpenID identifier i and sends it back
to B.

5. B makes an HTTP request on i to fetch the document
hosted on I.

6. I responds with either an XRDS or HTML document
that contains the IdP endpoint URL IdP.

7. B generates a Diffie-Hellman (DH) modulus q, gener-
ator g, and a random DH private key a to initiate an
association operation that establishes a session key
k with IdP (Steps 7 to 11).

8. B sends i, q, g, and the DH public key ga mod q to
IdP.

9. IdP generates a new session handle h, a session key k,
and a random DH private key b. IdP then retrieves
the password hash Hp(p) based on i from its credential
store.

10. IdP sends gb mod q, h, and an encrypted session key
kenc = (k ⊗Hp(p)) ⊗ H(gab mod q) to B. Note that
k is XORed with Hp(p) to prevent MITM attacks.

11. B computes k = Hp(p)⊗ (H(gab mod q) ⊗ kenc) and
then stores the tuple (h, k, i).

12. To check whether U owns the claimed OpenID iden-
tifier i, B sends i, h, and E(Hp(p), k) to IdP via an
extended check_immediate operation.

13. IdP decrypts the encrypted password hash using k,
and checks whether Hp(p) matches the stored pass-
word hash for i.

14. After password verification, IdP sends back i, h, a
nonce n, and a signature HMAC(i||h||n, k) to B.

15. B verifies the signature using the session key computed
at Step 11 to ensure IdP holds the same session key.
Once the signature is verified, B acknowledges to U
that the authentication process has been successfully
completed.

Our design allows users to log in with multiple IdPs. Users
are prompted to choose an appropriate identity when ac-
cessing protected content on RPs.

4.5 Access Protected Content
When the login process has completed, the browser and

the IdP have been mutually authenticated and each has es-
tablished a tuple of (h, k, i). We now illustrate the data
flow for accessing protected content on an RP (Figure 4):

1. B makes an HTTP request r for the protected content.

54

Figure 4: Flow for accessing protected content.

2. RP responds with an HTTP 401 “Unauthorized” to B
with WWW-Authenticate scheme set to OpenID:session.

3. B presents an identity selection dialog for U to select
a claimed OpenID i. B sends r to RP again with i
and the corresponding session handle h in the request
header.

4. RP makes an HTTP request on i.

5. I responds with either an XRDS or HTML document
that contains the IdP endpoint URL IdP.

6. RP sends i, h to IdP via an extended check_immediate

operation to check whether i has associated with an
authenticated session h.

7. IdP verifies i and h based on the stored (h , k ,i)
tuple. If i and h are valid, IdP generates a nonce n
(e.g., 2009-09-15T17:11:51 ZUNIQUE) and computes
signature s = HMAC(i||h||n, k).

8. IdP sends i, h, n, and s to RP.

9. RP responds with an HTTP 401 “Unauthorized” to B
with WWW-Authenticate scheme set to OpenID:challenge

and uses the nonce n as a challenge.

10. B computes signature s′ = HMAC(i||h||n, k) based
on the stored (h, k, i) tuple and the received nonce n.

11. B sends r to RP again with i, h, n, and s′.

12. RP checks whether s = s′. If it does, RP returns
the protected content to B and a logout URL in the
response header.

Once the OpenIDAuth authentication process has com-
pleted, the RP can issue a cookie for the browser B to rep-
resent the current authenticated session. B then includes
this cookie in the HTTP request header for future commu-
nications with RP, instead of re-initiating an OpenIDAuth
process.

5. PROTOTYPE IMPLEMENTATION AND
EVALUATION

To evaluate our approach, we implemented the proposed
protocols in J2EE, and developed a Firefox extension to
communicate with the new protocols. For OpenIDua, we
extended OpenID4Java [5], which is an open-source Java
library that offers support for implementing OpenID iden-
tity providers and relying party websites. We setup an
OpenIDemail provider by augmenting an existing email server
with EAUT and the OpenIDua extension. We also aug-
mented five open-source J2EE web applications (Bookstore,
Employee Directory, Classifieds, Events, and Portal)
from gotocode.com to become OpenIDemail RPs.

Figure 5a shows a screen shot of the OpenIDemail Fire-
fox add-on when a user launches Firefox, but before the UI
of the browser is visible to the user. The user enters her
email account and types or “clicks through” her password
to start the login sequence discussed in Section 4.1, steps 1
to 3. Once logged in, the user’s current login information
will be shown on an icon located on the status bar of the
browser. The user can click on the icon to log out or sign
in with additional accounts via a popup menu (Figure 5b).
When the user is browsing to a protected resource on an RP
that supports OpenIDAuth, the Firefox add-on will prompt
the user to choose an identity (Figure 5c), before starting
the automatic identity provisioning discussed in Section 4.1,
steps 4 to 6. The add-on also records this action (i.e., “Re-
member it” in Figure 5c), which allows automatic login for
future access and assists users in determining which identity
was used for accessing which RP.

5.1 Web 2.0 Mashup Applicability Evaluation
To evaluate the applicability of our approach in Web 2.0

applications that aggregate personal data, we designed an
AJAX-style client-side mashup that combines Google Map
and personal photo albums from a prior developed Facebook
photo sharing application [42]. We augmented the photo
sharing application with OpenIDAuth and OpenIDua exten-
sion and added a location tagging function for album owners
to indicate where the photos were taken. We also added a
web service that returns a set of albums (in the form of a
JSON object) based on the authenticated user.

When a user loads the mashup, the Firefox add-on will
prompt the user to choose an identity when the sharing ap-
plication uses the OpenIDAuth protocol to solicit a claimed
identity (Figure 5d). Based on the authenticated identity,
the sharing application then returns the corresponding al-
bums to the mashup. For each album, the mashup places
a marker on the map using the album’s cover picture, as
shown in Figure 5e.

6. DISCUSSION
We now discuss why our approach is backward-compatible

with existing OpenID IdPs and RPs, how it provides RPs
with instant marketable leads and the potential for gradual
engagement, and how it improves the security of the OpenID
protocol.

6.1 Backward-Compatibility
Our solution is backward-compatible with existing OpenID

IdPs and RPs, and therefore supports gradual adoption.
First, the design of the OpenIDua extension is based on the
standard extension framework specified in the OpenID spec-
ification. Therefore, OpenIDemail providers can still com-
municate seamlessly with existing OpenID RPs. Second,
OpenIDAuth is activated by an RP only when an OpenIDemail

enabled browser is detected. In our design, the browser’s
OpenIDemail support is indicated in the user-agent HTTP
header by appending special text such as OpenIDemail/0.2.1
to this header. Thus, OpenIDAuth-enabled RPs can use
the original OpenID protocol to communicate with browsers
that do not have the OpenIDemail add-on installed.

We designed the OpenIDemail Firefox add-on to demon-
strate the benefits of our approach. We acknowledge that, in
order to achieve widespread adoption, the proposed solution

55

Figure 5: Screen shots of the OpenIDemail enabled browser.

should be built directly into browsers instead of provided as
an add-on to the browsers.

6.2 Gradual Engagement
With our approach, an RP can avoid sign-up forms in

favor of gradual engagement. When an anonymous visitor
consents to use one of her authenticated identifiers for the
visiting RP, the RP can grant the user the required permis-
sions for the task at hand without any interruption. This
instantly turns the visitor into a marketable lead, who is
identifiable by the user’s OpenID identifier and email ad-
dress. Once the visitor is identifiable, the RP can gradually
engage with the user to acquire additional attributes (e.g.,
gender, date of birth) when there is value for the user to pro-
vide them. Ultimately, the RP may be able to convert the
user from performing actions, such as simple page brows-
ing, to performing more desired transactions, such as sales
of products or software downloads.

Our approach allows users to choose (or switch) an iden-
tity from the browser with one simple click and their trust
may be built through gradual engagement with RPs. We
hypothesize that the one-click conversion rate and the grad-
ual engagement conversion rate would be higher than the
conversion rate with traditional login options. We plan to
conduct experimental studies as future work to assert this
hypothesis.

6.3 Security
Based on our design, phishing is prevented because users

enter their password only into the browser instead of on each
individual IdP web site, and the IdP has to know the pass-
word hash of the corresponding claimed OpenID in order

to complete the mutual-authentication process. To prevent
key stroke logging attacks, we designed a virtual keyboard
(Figure 5a) for user to “click-through” their passwords in-
stead of keying them. The virtual keyboard is positioned
differently each time it is displayed to prevent malware from
inferring the password based on the captured mouse-click
coordinates. The user’s email and password are only en-
tered into the chrome area of the browser to prevent login
form overlay attacks [27]. In addition, the proposed protocol
transmits only the encrypted password hash to the IdP to
prevent password sniffing or password-hash replay attacks
during the login processes.

To impersonate an OpenID owner, an attacker must know
the session key. Assume an attacker could route all traf-
fic to a malicious IdP proxy (local or remote) during login
processes. The proxy can then act as a MITM to watch
and forward traffic back-and-forth between the browser and
the real IdP. Thus, a MITM attacker can learn the claimed
OpenID, the session handle, and all DH-related information;
however, the session key cannot be derived as the password
hash is unknown to the attacker. The MITM attacker can
also learn the value (k⊗Hp(p)) from the IdP to the browser
during association stages. Later, the attacker may discover
both the password p and the key k by using an online brute-
force or dictionary attack on all possible p’s to discover all
possible k’s. Nevertheless, similar to all other password-
based authentication schemes, we assume IdPs employ cer-
tain brute-force attack countermeasures (e.g., exponential
delay response, n-trial account locking) to prevent online
dictionary attacks.

Another way for an attacker to attempt to compromise a
session key is to break in to the browser’s process to search

56

for the heap-allocated session key directly. To prevent such
an attack, techniques such as data space randomization [4],
which randomizes the representation of data stored in pro-
gram memory, could be employed to effectively prevent non-
control data attacks as well as code injection attacks. Even
in the extreme circumstance where a session key is mali-
ciously discovered, only the current login session is compro-
mised. The protection of heap-allocated session keys is an
important research topic, but it is outside the scope of this
paper.

While our approach attempts to address OpenID’s phish-
ing problem, other OpenID inherited security threats still
exist (as described in the Section 15 of the OpenID Speci-
fication [37]). The main threats are denial of service (DoS)
attacks against an IdP, and MITM attacks between an RP
and an IdP. How to make the OpenID protocol more re-
silient to DoS and MITM attacks between an IdP and an
RP is an open technical problem.

7. CONCLUSION
Similar to how credit cards reduce the friction of paying

for goods and services, Web SSO systems are built to reduce
the friction of using the Web. However, current Web SSO
solutions impose a cognitive burden on web users and do
not provide CSPs with sufficient incentives to become RPs.
In addition, web users do not have an urgent need for SSO
and RPs would rather wait until SSO technology is mature
and pervasive. In this paper, we present the architecture,
design, and implementation of a browser-based Web SSO
system that is a step towards fixing the broken Web SSO
triangle. Our approach embeds an intuitive and consistent
login experience in the browser, and can provide RPs with
instant marketable leads and the potential for gradual en-
gagement of website visitors to motivate their adoption.

In addition to normal browsing, our solution could be
employed to make the login process more usable in other
emerging application domains. For instance, our approach
can be applied to Web 2.0 mashups that aggregate personal
data from multiple CSPs or mobile devices that have lim-
ited input capabilities. In addition, the proposed OpenIDua

extension can be employed to leverage those billion OpenID-
enabled accounts into traditional rich-client applications and
appliance devices such as Netflix, XBox, and Zune.

For future work, we plan to conduct usability studies of
our prototype implementation to ensure the proposed mech-
anisms are usable to average web users. To motivate RPs
adoption, we plan to extend our solution with user data
exchange to enable RPs to import or synchronize user’s per-
sonal data from IdPs to their website. We also plan to per-
form a rigorous security analysis of the proposed protocols
using automatic security protocol validation tools.

8. ACKNOWLEDGMENTS
We thank members of the Laboratory for Education and

Research in Secure Systems Engineering (LERSSE) who sup-
plied valuable feedback on the earlier drafts of this paper.
Research on the OpenIDemail-enabled browser has been par-
tially supported by the Canadian NSERC ISSNet Internet-
worked Systems Security Network Program.

9. REFERENCES
[1] B. Adida. EmID: Web authentication by email

address. In Web 2.0 Security and Privacy Workshop
2008, Oakland, California, USA, 2008.

[2] AOL LLC. AOL Open Authentication API.
http://dev.aol.com/api/openauth, January 2008.

[3] P. Austel, S. Bhola, S. Chari, L. Koved, M. McIntosh,
M. Steiner, and S. Weber. Secure delegation for web
2.0 and mashups. In Workshop on Web 2.0 Security
And Privacy, 2008.

[4] S. Bhatkar and R. Sekar. Data space randomization.
In Detection of Intrusions and Malware, and
Vulnerability Assessment, volume 5137, pages 1–22,
Paris, France, 2008. Lecture Notes in Computer
Science.

[5] J. Bufu. OpenID4Java.
http://code.sxip.com/openid4java/, 2009.

[6] CoreStreet Ltd. Spoofstick.
http://www.spoofstick.com/, 2005.

[7] R. Dhamija and L. Dusseault. The seven flaws of
identity management: Usability and security
challenges. IEEE Security and Privacy, 6:24–29, 2008.

[8] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In SOUPS ’05:
Proceedings of the 2005 Symposium on Usable Privacy
and Security, pages 77–88, New York, NY, USA, 2005.
ACM.

[9] R. Dhamija, J. D. Tygar, and M. Hearst. Why
phishing works. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems, pages 581–590, Montréal, Québec, Canada,
2006. ACM.

[10] Earthlink Inc. Earthlink toolbar: scambloker for
Windows users. http://www.earthlink.net/, 2008.

[11] D. Florencio and C. Herley. A large-scale study of web
password habits. In WWW ’07: Proceedings of the
16th international conference on World Wide Web,
pages 657–666, New York, NY, USA, 2007. ACM.

[12] B. Freeman. Yahoo! OpenID:One Key, Many Doors.
http://developer.yahoo.com/openid/
openid-research-jul08.pdf, July 2008.

[13] D. Fuelling and W. Norris. Email Address to URL
Transformation 1.0. http://eaut.org/specs/1.0/, June
2008.

[14] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In Proceedings of the
second Symposium on Usable Privacy and Security,
pages 44–55, 2006.

[15] Google Inc. AuthSub authentication for web
applications. http://code.google.com/apis/accounts/
docs/AuthSub.html, December 2008.

[16] E. Hammer-Lahav. XRDS-Simple 1.0.
http://xrds-simple.net/core/1.0/, March 2008.

[17] E. Hammer-Lahav. WebFinger. http://webfinger.net/,
August 2009.

[18] X. Hao. Attacking Certificate-based Authentication
System and Microsoft InfoCard. In Power of
Community Security Conference, 2009.

[19] D. Hardt and J. Bufu. OpenID Information Cards 1.0
- Draft 01. https://openidcards.sxip.com/spec/
openid-infocards.html, August 2007.

57

[20] A. Herzberg and A. Jbara. Security and identification
indicators for browsers against spoofing and phishing
attacks. ACM Trans. Interet Technology., 8(4):1–36,
2008.

[21] Internet2. Shibboleth System.
http://shibboleth.internet2.edu/, 2008.

[22] JanRain Inc. Relying Party Stats.
http://blog.janrain.com/2009/01/
relying-party-stats-as-of-jan-1st-2008.html, 2009.

[23] A. Jøsang, M. A. Zomai, and S. Suriadi. Usability and
privacy in identity management architectures. In
ACSW ’07: Proceedings of the fifth Australasian
symposium on ACSW frontiers, pages 143–152,
Darlinghurst, Australia, Australia, 2007. Australian
Computer Society, Inc.

[24] B. Laurie. OpenID: Phishing Heaven.
http://www.links.org/?p=187, January 2007.

[25] Liberty Alliance. Liberty Alliance Project.
http://www.projectliberty.org/, 2002.

[26] E. Maler and D. Reed. The venn of identity: Options
and issues in federated identity management. IEEE
Security and Privacy, 6:16–23, 2008.

[27] C. Messina. OpenID Phishing Brainstorm.
http://wiki.openid.net/OpenID Phishing Brainstorm,
2009.

[28] D. Mills. Identity in the Browser (Mozila Labs).
https://mozillalabs.com/blog/2009/05/
identity-in-the-browser/, 2010.

[29] Mozila Labs. Weave Identity Account Manager.
https://wiki.mozilla.org/Labs/Weave/
Identity/Account Manager, 2009.

[30] S. J. Murdoch and R. Anderson. Verified by visa and
mastercard securecode: or, how not to design
authentication. In In the proceedings of Financial
Cryptography and Data Security 2010, January 2010.

[31] MyOpenID. OpenID Site Directory.
http://openiddirectory.com/, 2010.

[32] A. Nanda and M. B. Jones. Identity Selector
Interoperability Profile V1.5.
http://informationcard.net/specifications, July 2008.

[33] OAuth Core Workgroup. Oauth core 1.0 specification.
http://oauth.net/core/1.0/, December 2007.

[34] OpenID Foundation. Promotes, protects and nurtures
the OpenID community and technologies.
http://openid.net/foundation/, 2009.

[35] OpenID Foundation. OpenID Directory.
http://openiddirectory.com/, 2010.

[36] OpenID Wiki. Openid user experience.
http://wiki.openid.net/browse/
view=ViewFolder¶m=user-experience, April
2010.

[37] D. Recordon and B. Fitzpatrick. OpenID
authentication 2.0. http://openid.net/specs/
openid-authentication-2 0.html, December 2007.

[38] E. Sachs. Usability Research on Federated Login.
http://sites.google.com/site/oauthgoog/UXFedLogin,
October 2008.

[39] R. Sausner. Authentication Software: Widespread
Adoption Seen As Unlikely Before 2011.
http://www.americanbanker.com/usb issues/
116 4/-274048-1.html, 2006.

[40] S. E. Schechter, R. Dhamija, A. Ozment, and
I. Fischer. The emperor’s new security indicators. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy, pages 51–65, Washington, DC, USA,
2007. IEEE Computer Society.

[41] I. Strouchliak. Conversion rate optimization.
http://www.seochat.com/c/a/Website-Marketing-
Help/Conversion-Rate-Optimization/,
2009.

[42] S.-T. Sun, K. Hawkey, and K. Beznosov. Secure Web
2.0 content sharing beyond walled gardens. In
Proceedings of the 25th Annual Computer Security
Applications Conference (ACSAC), pages 409–418.
ACSA, IEEE Press, December 7-11 2009.

[43] S.-T. Sun, Y. BoshMaf, K. Hawkey, and K. Beznosov.
A Billion Keys, but Few Locks: The Crisis of Web
Single Sign-On. In Proceedings of the New Security
Paradigms Workshop (NSPW), Concord, MA, USA.,
to appear.

[44] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying Wolf: An empirical study of SSL
warning effectiveness. In Proceedings of 18th USENIX
Security Symposium, pages 399–432, 2009.

[45] Sxipper Inc. Sxipper form manager Firefox extension.
http://www.sxipper.com/, 2009.

[46] The Information Card Foundation. Advance the use of
Information Card.
http://informationcard.net/foundation, 2009.

[47] VeriSign Inc. VeriSign OpenID SeatBelt Plugin.
https://pip.verisignlabs.com/seatbelt.do, 2009.

[48] Wikipedia. Password fatigue.
http://en.wikipedia.org/wiki/Password fatigue, 2009.

[49] L. Wroblewski. Web Form Design: Fill in the blanks,
chapter Gradual Engagement. Rosenfeld media, 2008.

[50] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security
toolbars actually prevent phishing attacks? In CHI
’06: Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 601–610, New
York, NY, USA, 2006. ACM.

[51] M. Wu, R. C. Miller, and G. Little. Web wallet:
preventing phishing attacks by revealing user
intentions. In SOUPS ’06: Proceedings of the second
symposium on Usable privacy and security, pages
102–113, New York, NY, USA, 2006. ACM.

[52] Yahoo Inc. Browser-Based Authentication (BBAuth).
http://developer.yahoo.com/auth/, December 2008.

[53] K.-P. Yee and K. Sitaker. Passpet: convenient
password management and phishing protection. In
SOUPS ’06: Proceedings of the Second Symposium on
Usable Privacy and Security, pages 32–43, New York,
NY, USA, 2006. ACM.

[54] Y. Zhang, S. Egelman, L. Cranor, and J. Hong.
Phinding phish: Evaluating anti-phishing tools. In
Proceedings of the 14th Annual Network and
Distributed System Security Symposium (NDSS 2007),
2007.

58

