
Architectural Separation of Authorization and
Application Logic in Distributed Systems

Konstantin Beznosov, Research Associate

Center for Advanced Distributed Systems Engineering

School of Computer Science

Florida International University, Miami
http://www.cs.fiu.edu/~beznosov

5/22/00 Konstantin Beznosov, CADSE/FIU 2

Outline

• Introduction
– Access control
– Problem Statement
– Related work

• Resource Access Decision Architecture
• Application Authorization Service

– Implementation
– Performance considerations
– Distributed architecture

• Conclusions

3

Protection

Conventional Computer Security

Authorization Accountability Availability

A
cc

es
s

C
on

tr
ol

D
at

a
Pr

ot
ec

tio
n

Audit

Non-
Repudiation

Se
rv

ic
e

C
on

tin
ui

ty

D
is

as
te

r
R

ec
ov

er
y

Assurance

D
es

ig
n

A
ss

ur
an

ce

D
ev

el
op

m
en

t A
ss

ur
an

ce

O
pe

ra
tio

na
l A

ss
ur

an
ce

Preventing bad things
 from happening

Protection from
breaking rules

enforces the rules,
when rule check is possible

5/22/00 Konstantin Beznosov, CADSE/FIU 4

Authorization
Database

Access Control

• Access control
– enforced by a reference monitor

• Authorization
– concerned with making access

control decisions based on rules

– Rule example
“subject physician
can do action read
on object patient record” Reference

monitor

Objects

Authorization
Decisions

Subjects Access Control
Mechanism

actions

5/22/00 Konstantin Beznosov, CADSE/FIU 5

What Is Application Security?

• Complex policies:
– example
“subject attending physician can do action read

on object current episode sensitive records of the patient”
– fine grain, domain-specific, dynamic and/or context

sensitive. E.g.
• based on user-patient relationship
• emergency context

• Need organization-wide enforcement
– potentially large number of heterogeneous distributed

applications and users

5/22/00 Konstantin Beznosov, CADSE/FIU 6

Problems of Enterprise Application Security

• Can not be easily handled by existing general
purpose security mechanisms

• Largely embedded in application systems today
– because of

• need for fine grain access control
• factors for authorization decision known only to

application

• Costly, error-prone multiple points of control
• Expensive life-cycle
• Lack of means to assure organization-wide

consistency and end-to-end properties

5/22/00 Konstantin Beznosov, CADSE/FIU 7

Approaches to Application Access Control:
Policy Agents

agent

agent

agent

agent

Policies
Mechanism 1

Mechanism 2

Mechanism 3

Mechanism N

mapping 1

mapping 2

m
ap

pi
ng

 3

m
ap

pi
ng

 N

Application

Application

Application

Application

Access

Access

Access

Access

• J. Hale, P. Galiasso, M. Papa, and S. Shenoi,
“Security Policy Coordination for Heterogeneous Information
Systems,” Annual Computer Security Applications Conference,
Phoenix, Arizona, USA, 1999.

• Accommodates existing body of
products and technologies
• Inherent fault tolerance
• Enterprise security is naturally
compartmentalized
• Nominal performance overhead
• High degree of run time autonomy

• How to map?!
• Least expressive and most
coarse-grain policy supported
• Distribution of policy updates

Approaches to Application Access Control: Proxies

 Proxy ApplicationAccess

Policies

Enforce
ment

• DCOM, CORBA
• B. Hailpern and H. Ossher, “Extending Objects to Support Multiple Interfaces and Access Control,” IEEE
Transactions on Software Engineering, vol. 16, pp. 1247-1257, 1990.
• J. Barkley, “Implementing Role-based Access Control Using Object Technology,” The First ACM Workshop on Role-
Based Access Control, Fairfax, Virginia, USA, 1995.
• R. Filman and T. Linden, “SafeBots: a Paradigm for Software Security Controls,” New Security Paradigms Workshop,
Lake Arrowhead, CA USA, 1996.
• C. W. W.A. Wulf, and D. Kienxle, “A new model of security for distributed systems,” 1995.
• T. Riechmann and F. J. Hauck, “Meta Objects for Access Control: A Formal Model for Role-based Principals,” New
Security Paradigms Workshop, 1998.

• No changes to an application system
• External enforcement
• Reference monitor size is controlled

• Coarse granularity of access control
• Decisions and enforcement outside of
application
• No application-specific enforcement
• Policy and authorization data consistency?

5/22/00 Konstantin Beznosov, CADSE/FIU 9

Authorization Services:
A Solution to Enterprise Application Security

• Access control decisions external to
application

• Logically centralized administration of
enterprise wide policies

• Simplified application development
• Any level of granularity
• Easy policy changes and updates
• Just is time authorization decisions

• Application system part of reference
monitor

• Performance, fault tolerance, scalability,
resource representation

Application Authorization Service
Access Policy Decision

PoliciesEnforce
ment

• V. Varadharajan and C. C. a. J. Pato, “Authorization in Enterprise-wide Distributed System: A Practical
Design and Application,” 14th Annual Computer Security Applications Conference, 1998.

• T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorization Service,” IEEE INFOCOM, San
Francisco, 1998.

• R. Simon and M. E. Zurko, “Adage: An Architecture for Distributed Authorization,” OSF Research Institute,
Cambridge 1997.

5/22/00 Konstantin Beznosov, CADSE/FIU 10

Resource Access Decision Service
Architecture Objectives

• Decouple authorization and application logic
• Generic
• Fine-grain resources
• Use of underlying middleware and its security
• Existing authorization mechanisms
• Policy-neutral
• Minimum application involvement
• Multi-policy systems
• Request-specific and dynamic factors
• Co-existence of parts from different vendors

5/22/00 Konstantin Beznosov, CADSE/FIU 11

Resource Access Decision (RAD):
External View

1. Application Request

 AS RADClient

2. Authorization request

3. Reply to authorization request4. Reply to application request

Application Client Authorization
Service

Middleware

Application
System

5/22/00 Konstantin Beznosov, CADSE/FIU 12

RAD Architecture

Access Decision
Object

Application System

 Policy

EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: * evaluate

RAD

5/22/00 Konstantin Beznosov, CADSE/FIU 13

Walk Through

ADOAS

access_allowed({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver, role=nurse})

PEL RBAC PEDCDAS

get_policy_decision_evaluators({patient_id=29984329,record_part=PN})

get_dynamic_attributes({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse})

combine_decisions({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse }, {RBAC PE})

evaluate({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse })

RAD

role caregiver
can read
patient_name

5/22/00 Konstantin Beznosov, CADSE/FIU 14

RAD Configuration Example

Access Decision
Object

Application System

Policy EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: evaluate

RAD

Relationships

RBAC

Logical OR

PolicyEvaluator
RelBAC

6: evaluate

5/22/00 Konstantin Beznosov, CADSE/FIU 15

RAD Features and Issues

• Features:
– Centralized administration of access control mechanisms

– Dynamic change of access control policies
– Independent development and evolution of application and

authorization services
– Policy-neutral by encapsulating policy evaluation in independent

policy evaluators
– Support for domain/request-specific factors

• Major issues
– Performance in terms of response time

– Policy modeling

5/22/00 Konstantin Beznosov, CADSE/FIU 16

CORBA-based Application Authorization
Service (CAAS)

• Test-bed for research on RAD:
– Performance
– Policy Modeling

• Requirements
– Re-configurable
– Easy to implement
– Portable to different platforms
– First step towards future research

5/22/00 Konstantin Beznosov, CADSE/FIU 17

ClientClient ASAS CAAS

CAAS: CORBA-based Application Authorization Service

• Compliant with RAD

• Defined in OMG IDL
• Implemented in Java

• ORB-independent

CORBA ORB

NamingEventCAASASClient

CORBA Security

5/22/00 Konstantin Beznosov, CADSE/FIU 18

CAAS Architecture

DecisionCombinator

combine_decisions()

<<IDL Interface>>

PolicyEvaluator

evaluate()

<<IDL Interface>>

ObjectResolver

loader

COSNaming

resolves OR to

DecisionCombinatorContextPolicyEvaluatorLocatorContext

ResourceAccessDecider
DynamicAttributeServiceContext

PolicyEvaluatorContext

loads

1..1

1..n

loads

1..1

1..n

loads
1..1

1..n

loads

1..1

1..n

loads
1..1 1..n

PolicyEvaluatorLocatorAdminExt
<<IDL Interface>>

PolicyEvaluatorAdminExt
<<IDL Interface>>

DynamicAttributeServiceExt

<<IDL Interface>>

DynamicAttributeServiceAdminExt
<<IDL Interface>> +admin

PolicyEvaluatorLocator

get_policy_decision_evaluators()

<<IDL Interface>>

AccessDecisionAdmin
<<IDL Interface>>AccessDecision

access_allowed()
multiple_access_allowed()

<<IDL Interface>>
1..*11

+admin

5/22/00 Konstantin Beznosov, CADSE/FIU 19

CAAS: Highly Configurable

• Changeable and portable
– e.g. provides both run-time interface for authorization and administrative

interface for configuring CAAS components

• Supports different types of policies
– federations, multi-policy, relationship-based access control (RelBAC)

• For details: http://cadse.cs.fiu.edu/research_projects/RAD

CAAS
Processes

ADOADO
DASDAS

DCDC

PELPEL

Authorization Host

C
L

IE
N

T

Application
Process

Client Host Server Host

PE
Process

PEPE

PE Host

C
L

IE
N

T

CAASApplication

Client Host Server Host

Process

Reference Configuration Host/Process/PE-Host Configuration

5/22/00 Konstantin Beznosov, CADSE/FIU 20

CAAS: Use of Design Patterns

DecisionCombinatorContext

DecisionCombinatorContext()
combine_decisions()

DecisionCombinatorStrategy

makeDecision()

<<Interface>>

0..* 1..10..*
-strategy

1..1

Strategy
Pattern

AbstractAndOrCombinator

shouldDeny()
makeDecision()

OpenWorldAndOrCombinationPolicy ClosedWorldAndOrCombinationPolicy

Template
Method Pattern

DecisionCombinatorOperations
<<Interface>>

DecisionCombinator

combine_decisions()

<<IDL Interface>>

tie
mechanism

grant access if no PE returns "NO" grant access if all PE's return "YES"

Policy Evaluators Design

PolicyEvaluator

evaluate()

<<IDL Interface>>

PolicyEvaluatorAdmin

set_policies()
add_policies()
list_policies()
set_default_policy()
delete_policies()

<<IDL Interface>>

Strategy
Pattern

AlwaysDenyEvaluator AlwaysGrantEvaluator

NullPoliciesByResourceNameMap

AlwaysGrantDenyAbstractEvaluator

PolicyEvaluatorAdminExtOperations

<<Interface>>
PolicyEvaluatorAdminExt

shutdown()

<<IDL Interface>>

PolicyEvaluatorExt
<<IDL Interface>>

+thePolicyEvaluatorAdminExt

PolicyEvaluatorExtOperations

<<Interface>>

PolicyEvaluatorStrategy

evaluateUsingPolicy()
areValidPolicies()
list_policies()
getDafultPolicy()

<<Interface>>

PoliciesByResourceNameMap

clear()
hasResourceName()
getPolicies()
isEmpty()
putPolicies()
removePolicies()

<<Interface>>

PolicyEvaluatorContext

set_policies()
add_policies()
list_policies()

delete_policies()
evaluate()

0..*0..*

1..1

0..*

1..1

0..*

1..1

tie
mechanism

Null Object
Pattern

Template
Pattern

NtfsFileSystemPermissionsEvaluatorUnixFileSystemPermisionsEvaluator

FileSystemPermissionsEvaluator

RBACEvaluator

5/22/00 Konstantin Beznosov, CADSE/FIU 22

Configurations for Performance Test

C
L

IE
N

T

CAAS

Process/Object

Application
Process

Authorization
Process

Client Host Server Host

C
L

IE
N

T

Process/Process

Application
Process

CAAS Authorization
Processes

Client Host Server Host

ADOADO

DASDAS DCDC

PELPEL PEPE

C
L

IE
N

T

CAAS

Host/Object

Application
Process

Authorization
Process

Client Host Server Host Authorization Host

CAAS
Authorization

Processes

ADOADO
DASDAS

DCDC

PELPEL

Authorization Host

C
L

IE
N

T

Host/Process/PE-Host

Application
Process

Client Host Server Host

PE
Process

PEPE

PE Host

Boundaries crossed: Application -> RAD/RAD Components
Host=ORB+network; Process=ORB+process; Object=function call

5/22/00 Konstantin Beznosov, CADSE/FIU 23

Client
App. Server

External Auth.

RAD

Business Logic Delay

time t3

time t4

• Measure response time perceived by the client: Temb= (t2 - t1) and T = (t4-t3).
• Measure response time increase I=(T%Temb -1)*100
• Repeat for 1ms, 10ms, 100ms, 1sec, 10sec business logic delays.
• Repeat for 1, 10, 100, 1000 authorization requests.
• Repeat for different configurations.
• Conduct measurements under low network load (< 1%)

App. Server
Embedded Auth.
Business Logic Delay

time t1time t2

Conducting Performance Measurements

5/22/00 Konstantin Beznosov, CADSE/FIU 24

Performance Evaluation of CAAS

100

0

100

200

300

400

500

600

700

Application Processing Time/Authorization (ms)

R
es

po
ns

e
T

im
e

In
cr

ea
se

 %

Process/Object 32 10 1 0 0

Host/Object 76 31 4 0 0

Host/Object/PE 139 52 7 1 0

Host/Process 533 188 26 3 0

Process/Process 529 200 27 3 0

Host/Process/PE-Host 633 211 30 3 0

1 10 100 1000 10000

5/22/00

Distributed AAS architecture

AS 1

AS 2

AS 3

AS 4

ADO

GDAS

PEL

DC

SDAS

LPS

PE

CM

PC EC

ADO

GDAS

PEL

DC

SDAS

LPS

PE

CM

PC EC

GPS

GPEL

Non-replicable
PE

DCPE

PC EC

SDAS

AS :- Application service
PC :- Policy Cache
EC :- Evaluation Cache
CM :- Cluster Manager
LPS :- Local Policy Store
GPS :- Global Policy Store
GPEL :- Global PEL
SDAS :- Specialized DAS
GDAS :- Generalized DAS

Cluster

Cluster
EC

5/22/00 Konstantin Beznosov, CADSE/FIU 26

Next Steps

• Distributed AAS architecture
– Configurability

• dynamic policy changes support
• support for different distributed (e.g. healthcare and

Internet based e-commerce) environments
– Adequate performance (distributed authorization and load

balancing)
– High availability (replication and fault tolerance)
– Application composibility

• Case study
– Real life policies in healthcare (HIPAA)
– Sample application(s)
– Workload and scenario simulation

Contributions and Publications
• Analysis of requirements for access control in US healthcare domain

– K. Beznosov, “Issues in the Security Architecture of the Computerized Patient Record Enterprise,”
Second Workshop on Distributed Object Computing Security, Baltimore, Maryland, USA, 1998.

– K. Beznosov, “Requirements for Access Control: US Healthcare Domain,” Third ACM Workshop on
Role-Based Access Control, 1998.

• Modeling of RBAC in CORBA access control
– K. Beznosov and Y. Deng, “A Framework for Implementing Role-based Access Control Using CORBA

Security Service,” Fourth ACM Workshop on Role-Based Access Control, Fairfax, Virginia, USA, 1999.

• Introduction of relationships in access control and outlining implementation
– J. Barkley, K. Beznosov, and J. Uppal, “Supporting Relationships in Access Control Using Role Based

Access Control,” Fourth ACM Role-based Access Control Workshop, Fairfax, Virginia, USA, 1999.

• Application-level access control
– K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A Resource Access Decision Service for

CORBA-based Distributed Systems,” Annual Computer Security Applications Conference, Phoenix,
Arizona, USA, 1999.

– OMG, “Resource Access Decision Facility,” Object Management Group OMG document number:
corbamed/99-05-04, May 1999.

– K. Beznosov, L. Espinal, and Y. Deng, “Performance Considerations for CORBA-based Application
Authorization Service,” PODC Middleware Symposium (pending acceptance), 2000.

– L. Espinal, K. Beznosov, and Y. Deng, “Design Considerations for CORBA-based Application
Authorization Service,” In Proceedings of National Information Systems Security Conference (pending
acceptance), 2000.

