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Authorization
Database

Access Control

• Access control
– enforced by a reference monitor

• Authorization
– concerned with making access

control decisions based on rules

– Rule example
“subject physician
can do action read
on object patient record” Reference

monitor

Objects

Authorization
Decisions

Subjects Access Control
Mechanism

actions
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What Is Application Security?

• Complex policies:
– example
“subject attending physician can do action read

on object current episode sensitive records of the patient”
– fine grain, domain-specific, dynamic and/or context

sensitive. E.g.
• based on user-patient relationship
• emergency context

• Need organization-wide enforcement
– potentially large number of heterogeneous distributed

applications and users
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Problems of Enterprise Application Security

• Can not be easily handled by existing general
purpose security mechanisms

• Largely embedded in application systems today
– because of

• need for fine grain access control
• factors for authorization decision known only to

application

• Costly, error-prone multiple points of control
• Expensive life-cycle
• Lack of means to assure organization-wide

consistency and end-to-end properties
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Approaches to Application Access Control:
Policy Agents
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•   J. Hale, P. Galiasso, M. Papa, and S. Shenoi,
“Security Policy Coordination for Heterogeneous Information
Systems,” Annual Computer Security Applications Conference,
Phoenix, Arizona, USA, 1999.

•  Accommodates existing body of
products and technologies
•  Inherent fault tolerance
•  Enterprise security is naturally
compartmentalized
•  Nominal performance overhead
•  High degree of run time autonomy

•  How to map?!
•  Least expressive and most
coarse-grain policy supported
•  Distribution of policy updates



Approaches to Application Access Control: Proxies

     Proxy ApplicationAccess

Policies

Enforce
ment

•  DCOM, CORBA
•  B. Hailpern and H. Ossher, “Extending Objects to Support Multiple Interfaces and Access Control,” IEEE
Transactions on Software Engineering, vol. 16, pp. 1247-1257, 1990.
• J. Barkley, “Implementing Role-based Access Control Using Object Technology,” The First ACM Workshop on Role-
Based Access Control, Fairfax, Virginia, USA, 1995.
• R. Filman and T. Linden, “SafeBots: a Paradigm for Software Security Controls,” New Security Paradigms Workshop,
Lake Arrowhead, CA USA, 1996.
• C. W. W.A. Wulf, and D. Kienxle, “A new model of security for distributed systems,” 1995.
• T. Riechmann and F. J. Hauck, “Meta Objects for Access Control: A Formal Model for Role-based Principals,” New
Security Paradigms Workshop, 1998.

•  No changes to an application system
•  External enforcement
•  Reference monitor size is controlled

•  Coarse granularity of access control
•  Decisions and enforcement outside of
application
•  No application-specific enforcement
•  Policy and authorization data consistency?
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Authorization Services:
A Solution to Enterprise Application Security

• Access control decisions external to
application

• Logically centralized administration of
enterprise wide policies

• Simplified application development
• Any level of granularity
• Easy policy changes and updates
• Just is time authorization decisions

• Application system part of reference
monitor

• Performance, fault tolerance, scalability,
resource representation

Application Authorization Service
Access Policy Decision

PoliciesEnforce
ment

• V. Varadharajan and C. C. a. J. Pato, “Authorization in Enterprise-wide Distributed System: A Practical
Design and Application,” 14th Annual Computer Security Applications Conference, 1998.

• T. Y. C. Woo and S. S. Lam, “Designing a Distributed Authorization Service,” IEEE INFOCOM, San
Francisco, 1998.

• R. Simon and M. E. Zurko, “Adage: An Architecture for Distributed Authorization,” OSF Research Institute,
Cambridge 1997.
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Resource Access Decision Service
Architecture Objectives

• Decouple authorization and application logic
• Generic
• Fine-grain resources
• Use of underlying middleware and its security
• Existing authorization mechanisms
• Policy-neutral
• Minimum application involvement
• Multi-policy systems
• Request-specific and dynamic factors
• Co-existence of parts from different vendors
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Resource Access Decision (RAD):
External View

1. Application Request

 AS RADClient

2. Authorization request

3. Reply to authorization request4. Reply to application request

Application Client Authorization 
Service

Middleware

Application
System
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RAD Architecture

Access Decision 
Object

Application System

 Policy

EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: * evaluate

RAD
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Walk Through

ADOAS

access_allowed({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver, role=nurse})

PEL RBAC PEDCDAS

get_policy_decision_evaluators({patient_id=29984329,record_part=PN})

get_dynamic_attributes({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse})

combine_decisions({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse }, {RBAC PE})

evaluate({patient_id=29984329,record_part=PN}, read, {user_id=g,role=caregiver,role=nurse })

RAD

role caregiver
can read
patient_name
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RAD Configuration Example

Access Decision 
Object

Application System

Policy EvaluatorLocator

PolicyEvaluator

DynamicAttributeService

DecisionCombinator

2: get_policy_decision_evaluators

3: get_dynamic_attributes

4: combine_decisions

1: access_allowed

5: evaluate

RAD

Relationships

RBAC

Logical OR

PolicyEvaluator
RelBAC

6: evaluate
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RAD Features and Issues

• Features:
– Centralized administration of access control mechanisms

– Dynamic change of access control policies
– Independent development and evolution of application and

authorization services
– Policy-neutral by encapsulating policy evaluation in independent

policy evaluators
– Support for domain/request-specific factors

• Major issues
– Performance in terms of response time

– Policy modeling
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CORBA-based Application Authorization
Service (CAAS)

• Test-bed for research on RAD:
– Performance
– Policy Modeling

• Requirements
– Re-configurable
– Easy to implement
– Portable to different platforms
– First step towards future research
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ClientClient ASAS CAAS

CAAS: CORBA-based Application Authorization Service

• Compliant with RAD

• Defined in OMG IDL
• Implemented in Java

• ORB-independent

CORBA ORB

NamingEventCAASASClient

CORBA Security
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CAAS Architecture

DecisionCombinator

combine_decisions()

<<IDL Interface>>

PolicyEvaluator

evaluate()

<<IDL Interface>>

ObjectResolver

loader

COSNaming

resolves OR to

DecisionCombinatorContextPolicyEvaluatorLocatorContext

ResourceAccessDecider
DynamicAttributeServiceContext

PolicyEvaluatorContext

loads

1..1

1..n

loads

1..1

1..n

loads
1..1

1..n

loads

1..1

1..n

loads
1..1 1..n

PolicyEvaluatorLocatorAdminExt
<<IDL Interface>>

PolicyEvaluatorAdminExt
<<IDL Interface>>

DynamicAttributeServiceExt

<<IDL Interface>>

DynamicAttributeServiceAdminExt
<<IDL Interface>> +admin

PolicyEvaluatorLocator

get_policy_decision_evaluators()

<<IDL Interface>>

AccessDecisionAdmin
<<IDL Interface>>AccessDecision

access_allowed()
multiple_access_allowed()

<<IDL Interface>>
1..*11

+admin
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CAAS: Highly Configurable

• Changeable and portable
– e.g. provides both run-time interface for authorization and administrative

interface for configuring CAAS components

• Supports different types of policies
– federations, multi-policy, relationship-based access control (RelBAC)

• For details: http://cadse.cs.fiu.edu/research_projects/RAD
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Reference Configuration Host/Process/PE-Host Configuration
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CAAS: Use of Design Patterns

DecisionCombinatorContext

DecisionCombinatorContext()
combine_decisions()

DecisionCombinatorStrategy

makeDecision()

<<Interface>>

0..* 1..10..*
-strategy

1..1

Strategy 
Pattern

AbstractAndOrCombinator

shouldDeny()
makeDecision()

OpenWorldAndOrCombinationPolicy ClosedWorldAndOrCombinationPolicy

Template 
Method Pattern

DecisionCombinatorOperations
<<Interface>>

DecisionCombinator

combine_decisions()

<<IDL Interface>>

tie 
mechanism

grant access if no PE returns "NO" grant access if all PE's return "YES"



Policy Evaluators Design

PolicyEvaluator

evaluate()

<<IDL Interface>>

PolicyEvaluatorAdmin

set_policies()
add_policies()
list_policies()
set_default_policy()
delete_policies()

<<IDL Interface>>

Strategy 
Pattern

AlwaysDenyEvaluator AlwaysGrantEvaluator

NullPoliciesByResourceNameMap

AlwaysGrantDenyAbstractEvaluator

PolicyEvaluatorAdminExtOperations

<<Interface>>
PolicyEvaluatorAdminExt

shutdown()

<<IDL Interface>>

PolicyEvaluatorExt
<<IDL Interface>>

+thePolicyEvaluatorAdminExt

PolicyEvaluatorExtOperations

<<Interface>>

PolicyEvaluatorStrategy

evaluateUsingPolicy()
areValidPolicies()
list_policies()
getDafultPolicy()

<<Interface>>

PoliciesByResourceNameMap

clear()
hasResourceName()
getPolicies()
isEmpty()
putPolicies()
removePolicies()

<<Interface>>

PolicyEvaluatorContext

set_policies()
add_policies()
list_policies()

delete_policies()
evaluate()

0..*0..*

1..1

0..*

1..1

0..*

1..1

tie 
mechanism

Null Object  
Pattern

Template
Pattern

NtfsFileSystemPermissionsEvaluatorUnixFileSystemPermisionsEvaluator

FileSystemPermissionsEvaluator

RBACEvaluator
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Configurations for Performance Test
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Client
App. Server

External Auth.

RAD

Business Logic Delay

time t3

time t4

• Measure response time perceived by the client: Temb= (t2 - t1) and T = (t4-t3).
• Measure response time increase I=(T%Temb -1)*100
• Repeat for 1ms, 10ms, 100ms, 1sec, 10sec business logic delays.
• Repeat for 1, 10, 100, 1000 authorization requests.
• Repeat for different configurations.
• Conduct measurements under low network load (< 1%)

App. Server
Embedded Auth.
Business Logic Delay

time t1time t2

Conducting Performance Measurements
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Performance Evaluation of CAAS
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Distributed AAS architecture

AS 1

AS 2

AS 3

AS 4

ADO

GDAS

PEL
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SDAS
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ADO

GDAS

PEL

DC
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LPS

PE

CM

PC EC

GPS

GPEL

Non-replicable
PE

DCPE

PC EC

SDAS

AS        :- Application service
PC       :- Policy Cache
EC       :- Evaluation Cache
CM       :- Cluster Manager
LPS     :- Local Policy Store
GPS    :- Global Policy Store
GPEL  :- Global PEL
SDAS  :- Specialized DAS
GDAS  :- Generalized DAS

Cluster

Cluster
EC
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Next Steps

• Distributed AAS architecture
– Configurability

• dynamic policy changes support
• support for different distributed (e.g. healthcare and

Internet based e-commerce) environments
– Adequate performance (distributed authorization and load

balancing)
– High availability (replication and fault tolerance)
– Application composibility

• Case study
– Real life policies in healthcare (HIPAA)
– Sample application(s)
– Workload and scenario simulation
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