
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Analysis of ANSI RBAC Support in COM+

Wesam Darwish, Konstantin Beznosov ⁎
University of British Columbia, Vancouver, Canada

a b s t r a c ta r t i c l e i n f o

Article history:
Received 25 March 2009
Received in revised form 5 October 2009
Accepted 31 December 2009
Available online 25 January 2010

Keywords:
COM+
RBAC
Access control

We analyze access control mechanisms of the COM+ architecture and define a configuration of the COM+
protection system in more precise and less ambiguous language than the COM+ documentation. Using this
configuration, we suggest an algorithm that formally specifies the semantics of authorization decisions in
COM+. We analyze the level of support for the American National Standard Institute's (ANSI) specification of
role-based access control (RBAC) components and functional specification in COM+.
Our results indicate that COM+ falls short of supporting even Core RBAC. The main limitations exist due to
the tight integration of the COM+ architecture with the underlying operating system, which prevents
support for session management and role activation, as specified in ANSI RBAC.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In role-based access control (RBAC) systems, permissions are
associated with roles and users are assigned to appropriate roles. A
role can represent competency, authority, responsibility or specific
duty assignments. A major purpose of RBAC is to facilitate access
control administration and review. It arguably addresses the needs of
the commercial enterprises better than lattice-based MAC [1] and
owner-based DAC [2]. Many papers describe ways to model or
implement RBAC using the technologies employed by the commercial
users. For example, Oracle [3], NetWare [4], Java [5], DG/UX [6], J2EE
[7,8], object-oriented systems [9], object-oriented databases [10], MS
Windows NT [11], enterprise security management systems [12].
Evidence of RBAC becoming a dominant access control paradigm is the
approval of the American National Standard for Information Technol-
ogy Role-Based Access Control (ANSI RBAC) [13] in 2004.

The ANSI RBAC standard consists of two main parts: the RBAC
ReferenceModel, and the RBAC System and Administrative Functional
Specification. The two parts specify four profiles: Core RBAC with the
minimum set of features included in all RBAC systems, Hierarchical
RBAC that defines role hierarchies, as well as Static Separation of Duty
Relations and Dynamic Separation of Duty Relations that define static
and dynamic constraint relations, accordingly.

At the same time, commercial middleware technologies—such as
Common Object Request Broker Architecture (CORBA) [14], COM+
[15], Enterprise Java Beans (EJB) [16]—became mature, with distrib-
uted enterprise applications routinely developed with the use of
middleware. Each middleware technology, however, comes with its
own security subsystem [17–19], sometimes dependent and specific

to the underlying operating system (OS). For instance, COM+ security
[17] is tied into Microsoft Windows OS and its services.

The ability of particular middleware technology to support specific
type of access control policy is an open and practical question. It is not
a simple question because of the following three reasons.

First, different middleware technologies and their subsystems
are defined in different forms and formats. For example, CORBA is
specified in the form of open application programming interfaces
(APIs), whereas EJB is defined through APIs as well as the syntax and
semantics of the accompanying extensible markup language (XML)
files used for configuring the EJB container. COM+ is defined through
APIs as well as graphical user interfaces (GUI) for configuring the
behavior of a COM+ server. The variations in the form, terminology,
and format of the middleware definitions lead to the difficulty of
identifying the correspondence among the (security and other)
capabilities of any two middleware technologies.

Second, the capabilities of the middleware access controls are not
defined in the terms of any particular access control model, such as
RBAC, lattice-based MAC [1] and owner-based DAC [2], etc. Instead,
the controls are defined in terms of general mechanisms which are
supposed to be adequate for the majority of cases and could be
configured to support various access control models. Designed
to support a variety of policy types as well as large scale and diversity
of distributed applications, the controls seem to be a result of engi-
neering compromises between, among others, perceived customer
requirements, the capabilities of the target run-time environment,
and their expected usage. For example, CORBA access controls are
defined in the terms of principal's attributes, required, and granted
rights, whereas EJB controls are defined using role mappings and role–
method permissions. Assessing the capability of middleware controls
to enforce particular types of authorization policies is harder due to
the mismatch in the terminology between the published access
control models and the documentation of the middleware controls.

Computer Standards & Interfaces 32 (2010) 197–214

⁎ Corresponding author.
E-mail address: beznosov@ece.ubc.ca (K. Beznosov).

0920-5489/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.csi.2009.12.001

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r.com/ locate /cs i



Author's personal copy

Third, the security subsystem semantics in commercial middle-
ware is defined imprecisely, leaving room for misinterpretation.
For example, the EJB specification does not address nor dictate how
the EJB security roles should be mapped to the operational environ-
ment's security principals, leaving the semantics of this mapping up
for interpretation by various vendors. Another example is the CORBA
OMG specification, where the functionality of various interfaces is
not always defined precisely [20]. In this paper, we clarify the
semantics of the security subsystem and analyze its ability to support
ANSI RBAC for one particular industrial middleware technology—
COM+.

We defined the protection state of the access control subsystem of
COM+. Our definitions offer precise and unambiguous interpretation
of the middleware access control. The language of the middleware
protection state enables the analysis of the access control system on
the subject of its support for specific access control models. To
demonstrate the utility of the protection state definitions and to aid
application developers and owners, we analyzed the degree to which
COM+ supports the family of role-based access control models as
defined by ANSI RBAC Standard [13].

We have formalized the authorization-related parts of COM+
[17] into protection state configuration through studying its de-
scription and specifications. Then, we used the protection state
configuration to analyze the middleware in regards to its support for
a particular ANSI RBAC feature, e.g., role hierarchies. When it was
possible, we showed how the corresponding ANSI RBAC construct
can be expressed in the language of the middleware protection state.
In the cases when support for specific ANSI RBAC feature required
implementation-dependent functionality, we explicitly stated what
needed to be implemented by themiddleware providers, or enforced
by the security administrators. When we could not identify the
means of supporting an ANSI RBAC feature, we stated so. We have
summarized the results of our analysis at the end of the paper in
Section 6.

Our analysis shows that COM+ falls short of supporting all ANSI
RBAC required functions, although COM+ has better support than
CORBA or EJB. The limitations that prevent full support are mainly due
to the mismatch between session-oriented nature of RBAC and
request-oriented architecture of COM+ and other commercial
middleware that we analyzed elsewhere [62,63]. This mismatch
calls into question the mandatory support for sessions and related
functionality in ANSI RBAC systems. When it comes to multi-host
deployments of COM+ systems RBAC administration becomes prob-
lematic and the lack of support for enumerating COM+ objects across
hosts becomes an impediment. While role hierarchies and separation
of duty constraints are not directly supported, they can be, with the
help of custom tools for administering COM+ systems.

The work presented in this paper establishes a framework for
implementing and assessing implementations of ANSI RBAC using
COM+. The results provide directions for COM+ developers support-
ing ANSI RBAC in their systems and criteria for users and application
developers for assessing support for required and optional compo-
nents of ANSI RBAC.

The rest of the paper is organized as follows. Section 2 provides
an overview of ANSI RBAC and COM+. Section 3 discusses related
work. Section 4 formally defines the protection state of the COM+
access control subsystem. A mapping from ANSI RBAC based policies
into the COM+ protection state is defined in Section 5. We discuss
the results of our analysis in Section 6. Section 7 concludes the
paper.

2. Background

This section provides background on ANSI RBAC and COM+
Security that is necessary for understanding the rest of the paper.
Readers familiar with both can skip directly to Section 3.

2.1. Overview of ANSI RBAC

Role-based access control (RBAC) was introduced more than a
decade ago [21,22]. Over the years, RBAC has enjoyed significant
attention as many research papers were written on topics related to
RBAC; and in recent years, vendors of commercial products have
started implementing various RBAC features in their solutions.

The National Institute of Standards and Technology (NIST) ini-
tiated a process to develop a standard for RBAC to achieve a
consistent and uniform definition of RBAC features. An initial draft
of a standard for RBAC was proposed in the year 2000 [23]. A second
version was later publicly released in 2001 [24]. This second version
was then submitted to the International Committee for Information
Technology Standards (INCITS), where further changes were
made to the proposed standard. Lastly, INCITS approved the
standard for submittal to the American National Standards Institute
(ANSI). The standard was later approved in 2004 [13]. The ANSI
RBAC standard consists of two main parts as described in the fol-
lowing sections.

2.1.1. Reference Model
The RBAC Reference Model defines sets of basic RBAC elements,

relations, and functions that the standard includes. This model is
defined in terms of four major RBAC components as described in the
following sections. Fig. 1 depicts these RBAC components.

2.1.1.1. Core RBAC. Core RBAC defines the minimum set of elements
required to achieve RBAC functionality. Core RBAC must be imple-
mented as a minimum in RBAC systems. The other components
described below, which are independent of each other, can be
implemented separately.

Core RBAC elements are defined as follows [13]:

Definition 1 [Core RBAC].

• USERS, ROLES, OPS, and OBS (users, roles, operations, and objects
respectively)

• UA ⊆ USERS×ROLES, a many-to-many mapping user-to-role as-
signment relation

• assigned_users (r:ROLES)→2USERS, the mapping of role r onto a set of
users. Formally: assigned_users(r)={u∈USRES|(u,r)∈UA}

• PRMS=2(OPS×OBS), the set of permissions
• PA ⊆ PERMS×ROLES, a many-to-many mapping permission-to-role
assignment relation.

• assigned_permissions(r:ROLES)→2PRMS, the mapping of role r
onto a set of permissions. Formally: assigned_permissions(r)=
{p∈PRMS|(p,r)∈PA}

• Op(p:PRMS)→ {op ⊆ OPS}, the permission to operation mapping,
which gives the set of operations associated with permission p

• Ob(p:PRMS)→ {ob ⊆ OBS}, the permission to object mapping,
which gives the set of objects associated with permission p

• SESSIONS= the set of sessions
• session_users(s:SESSIONS)→USERS, the mapping of session s onto
the corresponding user

• session_roles(s:SESSIONS)→2ROLES, themappingof session sonto a set of
roles. Formally: session_roles(si) ⊆ {r∈ROLES|(session_users(si),r)∈UA}

• avail session_perms(s:SESSIONS)→2PRMS, the permissions available
to a user in a session = ∪

r∈sessionroles sð Þ
assigned permissions rð Þ

2.1.1.2. Hierarchical RBAC. This component adds relations to support
role hierarchies. Role hierarchy is a partial order relation that defines
seniority between roles, whereby a senior role has at least the per-
missions of all of its junior roles, and a junior role is assigned at least
all the users of its senior roles. A senior role is also said to “inherit” the
permissions of its junior roles.

198 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

The standard defines two types of role hierarchies. These types are
shown in Fig. 2, and are defined as follows:

• General Role Hierarchies: provide support for arbitrary partial order
relations to serve as the role hierarchy. This type allows for multiple
inheritance of assigned permissions and users; that is, a role can
have any number of ascendants, and any number of descendants

• Limited Role Hierarchies: provide more restricted partial order
relations that allow a role to have any number of ascendants, but
only limited to one descendant

In the presence of role hierarchy, the following is defined:

• authorized_users(r)= {u∈USERS|r′≻_ r,(u,r′)∈UA} is the mapping of
role r onto a set of users

• authorized_permissions(r)={p∈PRMS|r ≻_ r′,(p,r′)∈PA} is the map-
ping of role r onto a set of permissions

where rsenior ≻_ rjunior indicates that rsenior inherits all permissions of
rjunior, and all users of rsenior are also users of rjunior.

2.1.1.3. Constrained RBAC. Static Separation of Duty (SSD) Relations
component defines exclusivity relations among roles with respect to
user assignments. Dynamic Separation of Duty (DSD) Relations com-
ponent defines exclusivity relations with respect to roles that are
activated as part of a user's session.

2.1.2. Functional specification
For the four components defined in the RBAC Reference Model, the

RBAC System and Administrative Functional Specification defines the
three categories of various operations that are required in an RBAC
system. These categories are defined as follows.

The category of administrative operations defines operations re-
quired for the creation and maintenance of RBAC sets and relations.
Examples of these operations are listed here. A complete list of
these operations, as well as their formal definition is included in the
standard.

• Core RBAC administrative operations include AddUser, DeleteUser,
AddRole, DeleteRole, AssignUser, GrantPermission, and so on

• Hierarchical RBAC administrative operations include AddInheri-
tance, DeleteInheritance, AddAscendant, and AddDescendant

• SSD Relations administrative operations include CreateSsdSet,
AddSsdRoleMember, SetSsd-SetCardinality, and so forth

• DSD Relations administrative operations include CreateDsdSet,
AddDsdRoleMember, SetDsd-SetCardinality, and so on.

The administrative reviews category defines operations required to
perform administrative queries on the system. Examples of Core RBAC
administrative review functions include RolePermissions, UserPer-
missions, SessionRoles, and RoleOperationsOnObjects. Other opera-
tions for other RBAC components can be found in the standard.

Fig. 2. Examples of Hierarchical RBAC.

Fig. 1. ANSI RBAC sets, relations, and main functions.

199W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

The system level functionality category defines operations for
creating and managing user sessions and making access control
decisions. Examples of such operations are CreateSession, DeleteSes-
sion, AddActiveRole, and CheckAccess.

2.2. Overview of COM+ security

The following sub-section provides a brief informal overview of
COM+. More information can be found on the Microsoft MSDN
Library web site [25], or various COM+ books, such as [26].

2.2.1. COM+
The Microsoft Component Object Model (COM), Distributed COM

(DCOM), and COM+ are all programming frameworks for creating
component based software.

The Component Object Model (COM) [27] is an object-based
programming model and a binary standard that enables components
written in different languages to interoperate. Like CORBA, EJB, and
Web Services, COM is based on the principles of information
hiding and design by contract [28]. This enables the software
components to be reused without any dependencies on the way a
component interface is implemented, as long as the implementation
satisfies the component's specification. The reuse of these com-
ponents is based on compiled, binary code. This allows COM
components to be upgraded in already deployed systems without
having to recompile the applications that use them. Various languages
such as C++, Visual Basic and others can be used to develop COM
components.

DCOM [29] extends COM with the support for distributed
interprocess communication between COM applications; that is, the
DCOM architecture enables components or processes to communicate
across a computer network. The DCOM communication protocol con-
sists of a set of extensions, layered on the distributed computing
environment (DCE) remote procedure call (RPC) specification [30],
providing object-oriented RPC (ORPC).

Built on top of COM, and using the DCOM communication protocol,
COM+ provides services that handle object and connection pooling,
thread synchronization, security, and other resource management
tasks. The goal of COM+, like other middleware technologies, is to
facilitate application development and deployment without requiring
application developers to deal with low-level tasks such as load
balancing, distributed transactions, remote method invocation, and so
forth. The following are definitions of various COM+ terms.

Interface defines a set of public operations (a.k.a. methods) that can
be invoked by client applications. The interface does not
provide any implementation for those methods. In other
words, the interface defines a specific way for using the
COM+ component. Each interface is identified by a globally
unique identifier (GUID).

Class is a software construct that provides a concrete implemen-
tation of one or more interfaces. These classes are compiled
into binary files called servers.

Object is an executable instance of a COM class.
Component is a software unit of compositionwith specified interfaces

[31]. In COM, a component is compiled code (usually in the
form of a library) that complies with the COM standard, and
can create COM objects.

Server is a collection of one or more classes that provide services to
clients. These services are provided through the methods of
the COM classes. In addition to containing the implemen-
tation logic for the classes, servers also support standard
COM methods for object activation.

Application is a groupof oneormore components. Anapplication canbe
a server, a client, or a collection of both. There are two types of
COM+ applications: server applications and library applica-

tions. Server applications run in their own processes whereas
library applications run in the same process as their clients.

Given these definitions, we proceed to describe the declarative and
the runtime parts of COM+ systems.

2.2.1.1. Declarative part. Since various programming languages are
used to develop COM components, a means to describe COM classes
and interfaces in amanner independent of a programming language is
required. The Microsoft Interface Definition Language (MIDL) [32] is
used for this purpose. Once COM+ interfaces are defined in MIDL, an
MIDL compiler is used to generate the software code required to
implement each interface.

Fig. 3 illustrates the definition of an example interface IEmployee
and class CEmployee in MIDL. The first three lines include IDL
definitions for the base interface of all COM interfaces, IUnknown; and
two custom interfaces used in the example IProject and IExperience.
Lines 5–10 define a custom structure for the EmployeeInfo data type.
The BSTR keyword defines a string. Lines 12–15 define all attributes
for the IEmployee interface. The object keyword informs the MIDL
compiler to generate C++ code to be used to implement COM
objects; when this keyword is not used, the MIDL compiler generates
code suitable for DCE RPC programs. Since each interface should be
uniquely identified, a Universally Unique Identifier (UUID) [30] is
used on line 14 to identify this interface.1

Lines 16–23 in the example contain the actual definition of the
IEmployee interface, which inherits from IUnknown, as required for all
COM interfaces. In addition to themethods specified on lines 17–22, the
IEmployee interface also inherits the AddRef, Release , and QueryInter-
face methods defined by IUnknown. The former two methods are used
for managing the life cycle of COM+ objects. Since a single class may
implementmore than one interface, QueryInterface ()method is used to
obtain a reference to the implementation of a specific interface. For each
method parameter, in or out attributes define parameters to be set by
the caller or returned to the caller, respectively. The HRESULT is a type
that encapsulates a 32-bit return value indicating either successful
method execution or a specific error. Lines 27–31 define the class that
will be included in the EmployeeLib library andwhat interfaces the class
implements, along with the class attribute(s), such as its uuid.

2.2.1.2. Runtime part. COM+ objects have certain attributes that
specify their runtime requirements for using various COM+ services,
such as synchronization, transactions, security, and so on. These at-
tributes are maintained in a repository referred to as the COM+
catalog. When a client application creates an instance of a COM+
server object, the COM+ catalog is consulted for information required
to instantiate the server.

Each COM+ component has a set of attributes that defines the
component's run-time needs, such as transactional, threading, and
security. A context is a set of runtime constraints associated with one or
more COM objects. Each object is associated with only a single context
for the duration of the object's life. If the caller and the target object are
located in the samecontext, no constraint checks, including those related
to security, are performed; however, if they are running in different
contexts, the incoming call goes through an interceptor. The interceptor
can do whatever is necessary to satisfy the runtime constraints.

Some of the runtime constraints are related to application's
security. COM+ security controls the invocation of object methods
in order to allow only authorized users to execute those methods.
Several COM+ security features can be used to protect applications.
The following section provides an informal description of various
COM+ security aspects.

1 A UUID is equivalent to a GUID. Although the latter is more commonly used in
COM+, the keyword uuid is used in IDL files. GUIDs are either created using the
guidgen.exe utility, or programmatically using the CoCreateGuid function.

200 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

2.2.2. Security subsystem
The security architecture of COM+ employs roles for expressing

access control policies. A COM+ role identifies a group of users that
share the same permissions to access services provided by a COM+
application. Once roles are defined for an application, the administrator
assigns individual Windows user accounts or user groups to roles. Roles
are granted permissions to access certain components, interfaces, or
methods in the application. EachCOM+applicationdefines its ownroles.

COM+ security functions are enforced outside of the application
through security interceptors, which are lightweight object proxies.
These interceptors ensure that the role attempting to access the server
component is authorized to do so. And before clients are authorized to
invoke server methods, they may have to be authenticated. COM+
provides various levels of authentication that can be used to secure
calls into an application.

Similar to other middleware technologies, a client-side layer (we
refer to this layer as the Client Security Service (CSS)) and server side
layer (Target Security Service (TSS)) are responsible for enforcing
COM+ security policies. The following is a list of various functions
provided by these layers.

2.2.2.1. Client Security Service. The CSS is responsible for providing an
interface for clients to examine or modify the security settings of a
particular connection with an out-of-process COM+ object. For
example, the CSS informs the client application what authentication
levels are acceptable by the server. The CSS is also responsible for
passing client credentials to TSS, when required. On the other hand, if
the client application requires the server identity to be authenticated,
CSS will enforce this requirement. When a connection is established
between the client and the server, CSS cryptographically protects
request messages and verifies response messages.

2.2.2.2. Target Security Service. In addition to participating in the
authentication protocol negotiation with the client, the TSS supports
administration of the server security. TSS can also be given a security
descriptor containing a discretionary access control list (DACL) and
perform process-wide access checks against the DACL and security
tokens of the clients on all incoming calls. TSS interceptor enforces
access policies whenever a call is to be dispatched to the application.

2.2.2.3. Implementation of security functions. COM+ provides applica-
tionswith security features, such as authorization and authentication. In
order to secure COM+ applications, authorization and authentication
features of COM+ are required at a minimum. COM+ also offers other
security features, such as auditing. Based on the security requirements
for eachapplication, variousCOM+security features canbeutilized. The
following is a brief description of theminimumrequirements to secure a
COM+ application. We elaborate more on access control in Section 4.1.

2.2.2.4. Authentication. In COM+, Security Service Providers (SSPs)
offer authentication services to both clients and servers. SSPs are
implemented as DLLs, and can support a variety of authentication
protocols, e.g., Kerberos [33], Windows NT LAN Manager (NTLM)
challenge–response authentication protocol [34], public/private key
[35] based authentication protocols.

COM+ allows server applications to be configured to require
different levels of client authentication. The names of these levels and
their descriptions are as follows:

• None: no client authentication is required
• Connect: authentication is required when a connection between the
client and server applications is established

• Call: authentication is required on every method invocation
• Packet: authentication is required for each network packet

Fig. 3. An example employee.idl file.

201W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

• Packet Integrity: authentication is required for each packet, and data
integrity is also checked; and

• Packet Privacy: data encryption, integrity checking, and authenti-
cation are required for each packet.

Once the client is authenticated, all COM+ roles to which the
client's principal or group are assigned get activated.

2.2.2.5. Administration. The Microsoft Component Services adminis-
trative GUI can be used to deploy and configure COM+ applications.
The GUI allows administrators to do the following:

• create application specific roles,
• assign users and groups to roles,
• assign permissions to roles,
• specify the minimum level of authentication and message protec-
tion a COM+ application would accept,

• enable authorization checks.

The Component Services GUI is built on top of the Component
Services Administration Library (COMAdmin) [36]. This means that
the functionality provided by the GUI can be also achieved
programmatically, allowing administrative tasks to be automated
through, for example, scripting.

3. Related work

Over the past decade, there has been no shortage of papers
proposing ways to support RBAC. The overwhelming majority of this
work, however, is about support for RBAC96 [22], which defines the
reference models for plain, hierarchical, and constrained RBAC but
does not specify the functions to be supported by an RBAC imple-
mentation. The paucity of analysis or proposals for supporting ANSI
RBAC is not surprising, given the fact that the standard was published
in 2004. Because of the lack of research on support for ANSI RBAC,
and because of the significant similarities between RBAC96 and
ANSI RBAC, we review related work on supporting or implementing
RBAC96 in operating systems, databases, web applications, and dis-
tributed systems, including middleware.

Since the mainstream operating systems, with the exception of
Solaris [37], do not provide direct support for RBAC, researchers and
developers have been employing either groups (e.g., [38,39]) or user
accounts (e.g., [40,41]) to simulate roles. This choice determines
whether more than one role can be activated in a session. Role hier-
archies are either not supported [37,40] or are simulated by main-
taining additional system files with the role hierarchy and various
book-keeping data [38,39]. No implementations we reviewed support
static SoD. Just one case of dynamic SoD comes as a side effect with
those implementations that simulate roles with user accounts
(i.e., [40,41]): the role set in this DSoD is equal to the set of all roles
in the system, and the cardinality of the role set is exactly one. In other
words, any session can have only one role activated at any given time;
the current role is deactivated while another role is activated.

We analyzed DB2 [42] and MySQL [43] and updated the analysis
of RBAC support in commercial databasemanagement systems (DBMS)
—conducted by Ramaswamy and Sandhu [44]—with the latest versions
of the corresponding systems. Commercial DBMS continue to have the
most advanced support for RBAC96. Informix Dynamic Server v7.2 [45],
IBM DB2 [42], Sybase Adaptive Server v11.5 [46], and Oracle Enterprise
Server v8.0 [47] directly support roles and role hierarchies. Only Oracle
and Sybase allowusers to havemore thanone role activated at any time,
though. On the other hand, Informix also provides limited support for
dynamic SoD, and Sybase features support for both types of SoD.

In RBAC implementations for client–server systems, including
Web applications, roles are either “pushed” from the client to
the server in the form of attribute certificates or HTTP cookies, as in
[48–50], or “pulled” by the server from a local or remote database, as

in [49,51–54]. The former enables selective activation of roles by
users, and the latter simplifies the implementation of client au-
thentication but activates all of the assigned roles for the user.
However, Web implementation of NIST RBAC [52] has hybrid design,
which allows the user to select the roles to be “pulled” by the server.
A number of implementations use a database, possibly accessible
through the Lightweight Directory Access Protocol (LDAP) [55] front-
end, as in [48,49,51,54], to store role and other information. Role
hierarchies are only supported by some implementations, using either
manual assignment of permissions of junior roles to senior ones
[49], additional files [56], a database [52] or an LDAP server [53,54].
JRBAC-WEB [56] and RBAC/Web [52] also support both types of SoD.

The work most relevant to ours addresses support for RBAC in
middleware. Ahn [57] outlines a proposal for enforcing RBACpolicies for
distributed applications that utilize Microsoft's Distributed Component
Object Model (DCOM) [29,58]. His proposal employs the following
elements of Windows NT's architecture: (1) registry for storing and
maintaining the role hierarchy, and permission-to-role assignment
(PA), (2) user groups for simulating roles and maintaining user-to-role
assignment (UA), and (3) a custom-built security provider that follows
the RBAC model to make access control decisions, which are requested
and enforced by the DCOM run-time. Since the support for role
hierarchy is indicated but not explained in [57], we assume that the
Windows NT registry can be used to encode the hierarchy so that the
RBAC security provider can refer to it while making authorization
decisions. Similar to the proposals for RBAC support in operating
systems, theuseofOSusergroups for simulating roles enables activation
of more than one role. Yet, like with the pull model in client–server
systems, all assigned roles are activated, leaving no choice to the user.
Ahn does not indicate in [57] support for any kind of SoD, nor does he
explain how RBAC policies can be enforced consistently and automat-
ically in a multi-computer deployment of DCOM-accessible objects.

RBAC-JaCoWeb [59,60] utilizes the PoliCap [61] policy server to
implement CORBASec specification in a way that supports RBAC.
PoliCap holds all data concerning security policies within a CORBASec
policy domain, including users, roles, user-to-role and role-to-
permission assignments, role hierarchy relations, and SoD constraints.
Most of the authorization policy enforcement is performed by an
RBAC-JaCoWeb CORBA security interceptor. At the time of the client
binding to a CORBA object, the interceptor obtains necessary data
from the PoliCap server and instantiates CORBASec-compliant
DomainAccessPolicy and RequiredRights objects that contain the
privilege and control attributes appropriate for the application object.
When the client makes invocation requests later, the access decisions
are then performed based on the local instances of these objects.
Initially, the client security credentials object—created as part of the
binding—has no privilege attributes, only AccessId, which is obtained
from the client's X.509 certificate used in the underlying SSL
connection. If the invocation cannot be authorized with the current
set of client privilege attributes, the interceptor “pulls” additional
user's role attributes from the PoliCap server. Only those roles that are
(1) assigned to the user, (2) necessary for the invocation in question
to be authorized, and (3) not in conflict with any DSoD constraints are
activated. These role attributes are added to the client's credentials
and are later reused on the server for other requests from the same
principal. The extent to which RBAC-JaCoWeb conforms to the
CORBASec specification is unclear from [59,60]. Nevertheless, RBAC-
JaCoWeb serves as an example of implementation-specific extensions
to CORBAsec that enable better support for RBAC advanced features,
such as role hierarchies and SoD, which—as will be seen from the
results of our analysis—cannot be supported without extending a
CORBASec implementation with additional operations.

In [62,63], we analyze the access control architectures of CORBA
and EJB, respectively, and their support for ANSI RBAC. In this paper,
we use a similar formalization approach, which employs set theory
to abstract the various elements of the access control architecture of

202 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

each middleware technology. With this abstraction, we then define
protection system state and study how ANSI RBAC components can be
supported. Our results in [62,63] indicate that the lack of support
for ANSI RBAC in both CORBA and EJB is partially attributed to the
lack of support for user accounts and their management. However,
despite the fact that COM+ offers such support, it still fails to sup-
port all Core ANSI RBAC functions. As we show later in this paper,
the common limitation of all three middleware technologies that
prevents them from supporting the minimal required components of
Core RBAC is the lack of support for sessions and role (de)activation.
This can be arguably attributed to shortcomings in the ANSI RBAC
standard itself.

4. COM+ protection state

In this section, we informally describe access control architecture
for COM+. Then, we formally define a configuration of the COM+
protection state. The COM+ concepts presented here are common to
both COM+ versions 1.0 [15] and 1.5 [64].

4.1. COM+ access control

Authorizations in COM+ can be specified at the granularity of the
component (all class instances), interface, or method. If a client is
permitted to access a component as a whole, then that client can
invoke any of the component's methods. If the client is permitted to
access only certain interfaces in the component, the client will be able
to invoke only the methods in those interfaces. The scope of rights on
interfaces is limited to the components implementing them, which
means that different clients could have different access rights to the
same interface implemented by different components. Furthermore,
the client can be permitted to invoke only certain methods in an
interface.

The built-in security of COM+ provides several features that can
be used to protect COM+ applications. COM+ provides two methods
of controlling access to resources: declarative and programmatic. The
declarative method can be used to control access to components,
interfaces, or even methods. Using the declarative approach, access
control can be achieved without having to write code. As various
application attributes are stored in the COM+ catalog, administrative
tools can be used to manipulate the COM+ catalog and configure

access control for various application components. This approach
facilitates the decoupling between application logic and security logic.

On the other hand, the programmatic approach can be used to
achieve finer granularity of control. Interface methods can be imple-
mented to check role memberships of clients using functions such as
IsCallerInRole (). In addition, the following interfaces provide extra
information pertaining to security as follows:

ISecurityCallContext provides access to information on the current
method invocation.
ISecurityCallersColl provides access to information about individ-
ual callers in the collection of callers.
ISecurityIdentityColl provides access to the collection of informa-
tion pertaining to the caller's identity.

The TSS controls client access to COM+ server applications. Based
on the server application's access policy, security checks are per-
formed before a client's call is successfully dispatched to a server
object. For example, if the COM+ server is not running, the client
needs to have sufficient permissions to launch the server application
before any method can be invoked. TSS checks client permissions to
activate the server process. In addition, when a call enters the running
server process, further access checks are performed.

Access permissions are enforced using roles. The Component
Services GUI allows administrators to create roles for a specific appli-
cation when deploying it, and to map users to those roles. Once the
roles are created, the administrator can choose which components,
interfaces and methods in the COM+ application can be accessed by
the users assigned to those roles. Fig. 4 uses the Unified Modeling
Language (UML) notation to summarize the relationships among
authorization-related elements of the COM+ access control architec-
ture, where account and group in the figure refer to Microsoft
Windows based user account and users group, respectively.

An example of role-permission assignments in a COM+ applica-
tion is shown in Table 1. The first row illustrates assignments of
permissions to invoke method m1 on interface i1 in component c1 to
roles r1 and r2. This indicates that only principals with roles r1 and/or
r2 are allowed to invoke methodm1 on c1. The second row in the table
illustrates an assignment of permission to invoke all methods on
interfaces i1 and i2 in component c2 to role r3. The last row shows an
example of allowing roles r1, r2, and r3 to invoke all methods provided
by component c3.

Fig. 4. UML model of COM+ access control architecture.

203W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

4.2. Formalization of the protection state

In this section, we formalize the protection state of a COM+
system. In this formalization, we attempt to preserve the COM+
terminology.

Definition 2 [COM+ Protection State]. A configuration of a COM+
system protection state for a given application is a tuple (R,U,G,UGA,C,
I,M,UA,GA,PA,isSecurityEnabled,user_roles) interpreted as follows:

• R is a set of the COM+ security roles as defined in the COM+catalog
for a specific application.

• U is a set of users.
• G is a set of user groups.
• UGA ⊆ U×G is a many-to-many relation of users to groups.
• C is a set of COM+ components for a specific application.
• I is a set of COM+ interfaces provided by the COM+ components in
a specific application.

• M′ is a set of COM+ method signatures, {m1, m2, …}
• M ⊆ C× I×M′ is a set of COM+ methods implemented for the
provided interfaces. Members of this set are denoted cj.ik.ml, where
cj∈C, ik∈ I, and ml∈M. The set also includes the elements cj.ik.m⁎,
which are all methods in interface ik provided by component cj; and
the elements cj.i⁎.m⁎, which are all methods in all interfaces provided
by component cj.

• UA ⊆ R×U is a relation of COM+ security roles to users.
• GA ⊆ R×G is a relation of COM+ security roles to groups.
• PA ⊆ R×M is a role-to-method relation.
• isSecurityEnabled is a boolean indicating whether access control
should be enforced.

• direct_user_roles(u:U):U→ 2R is a function mapping each user u to a
set of roles that u is directly assigned to. Formally, direct_user_roles
(u:U) ⊆ {r|(r,u)∈UA}.

• group_roles(g:G):G→2R is a function mapping each group g
to a set of roles that g is directly assigned to. Formally, group_roles
(g:G) ⊆ {r|(r,g)∈GA}.

• user_ groups(u:U):U→2G is a function mapping each user u
to a set of groups that u is a member of. Formally, user_groups
(u:U) ⊆ {g|(u,g)∈UGA}.

• indirect_user_roles(u:U) is a functionmapping user groups to a set of
roles. Formally, indirect_user_roles(u:U) ⊆ ∪g∈user_groups(u){r|(r,g)∈GA},
where these roles are indirectly assigned to the user because the roles
are (directly) assigned to the groups to which the user belongs.

• user_roles(u:U)≡direct_user_roles(u)∪ indirect_user_roles(u) is a set
of all user roles.

Given the protection state of a COM+ application, Algorithm 1
defines the outcome of an access control decision. Line 1 defines the
signature of the Authorize function, which takes in an element from
the power set of all available roles, and an element from the set of
COM+methods. The Authorize function returns either allow or deny.
If isSecurityEnabled is true, it means that the application deployer
or administrator explicitly enabled component level access checks.
In such case, the algorithm proceeds to check the calling user's role
membership, as shown on lines 5–9. Line 6 shows that if any of
the roles the user is assigned to has explicit permission to invoke
the method m1 in interface ik in component cj, the algorithm will
authorize the user to invoke the method in question. Furthermore, if

any of the roles the user is assigned to has implicit permission to
invoke the method in question, the algorithm will also authorize
the user to invoke the method. By implicit permission we mean a
permission that is inferred from either allowing the role to invoke all
methods in the specific interface ik thatm1 belongs to, or allowing the
role to invoke all methods in all interfaces in a specific component cj
that m1 is part of. If none of these conditions (either explicit or
implicit permissions) is true, the authorization algorithm denies the
user its request to invoke the method, as shown on line 10.

Algorithm 1. Authorization decision in COM+

1: Authorize(p : 2R,c.i.m : M)→{allow,deny}
2: if isSecurityEnabled≠ true then
3: return allow
4: else
5: for all r∈p do
6: if (r,c.i.m)∈PA∨(r,c.i.m⁎)∈PA∨(r,c.i⁎.m⁎)∈PA then
7: return allow
8: end if
9: end for

10: return deny
11: end if

5. Support for ANSI RBAC in COM+

For a system to comply with ANSI RBAC, Core RBAC must be
implemented at a minimum; the other three RBAC components
(Hierarchical RBAC, Static Separation of Duty Relations, and Dynamic
Separation of Duty), as described in Section 2.1, are optional. In
Section 5.1, we first examine the extent to which a COM+ protection
state—as formalized in Definition 2—can support each of the four ANSI
RBAC components. In Section 5.3, we illustrate our formalization
with an example. In Section 5.4, we then analyze the degree to which
COM+ supports the functional specification of ANSI RBAC.

5.1. Reference model components

5.1.1. Core RBAC
Defined in Section 4, the COM+ protection state configuration

can realize security policies that are based on Core RBAC as follows.
Core RBAC ROLES set maps directly to COM+ security roles (set R). In
COM+, roles can be assigned to individual user accounts as well
as Windows groups. In RBAC, however, there is no concept of groups.
To map the COM+ use of groups into ANSI RBAC, we introduced
function users(g:G), which returns all users in a given group. Given
this function, the USERS set in RBAC would map to the union of U
and all sets that users(g:G) function returns for all groups. RBAC
permission assignment (PA) is equivalent to the one in COM+. More
formally, we define Core RBAC in the language of the COM+
protection system as follows:

Definition 3 [Core RBAC in COM+]. Core RBAC in the language of
COM+ is defined by the COM+ system protection state outlined in
Definition 2, as well as the following additional elements:

• users(g:G)→{u∈U}, a function that returns a set of users in a
certain group.

• USERS = U∪ ∪
g∈G

users g : Gð Þ is a set of individual users and all group

users, where members of USERS are user accounts in Windows and
users in all groups.

• ROLES=R is a set of roles, where members of ROLES are the roles
defined for a specific COM+ application.

Table 1
Examples of role-permission assignment in a COM+ application.

Roles Methods

r1, r2 c1i1m1

r3 c2i1⁎, c2i2⁎
r1, r2, r3 c3⁎

204 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

• OPS is a set of operations, where members of this set are operations
that can be invoked on COM+ components; for example, OPS=
{mx, my, m⁎,…}.

• OBS ⊆ C× I is a set of objects, where these objects are defined to be
specific interfaces on certain components, or all interfaces on a
certain component; for example, OBS={c1iy,c1iz,c1i⁎,c2ix,c2i⁎,…}.

• UA=USERS×ROLES, is a many-to-many assignment of users to
roles.

• assigned_users(r:ROLES)={u∈USERS|(u,r)∈UA} is a function that
returns the set of users in USERS that are assigned to the given role r.

• PRMS ⊆ OPS×OBS is a set of permissions to invoke COM+ interface
methods for certain components. The existence of cjikml, cjikm⁎ or
cji⁎m⁎ in PRMS grants permission to invoke a specific methodm1, all
methods in interface ik or all methods in all interfaces in component
cj, respectively; for example, PRMS={c1iymx,c1izm⁎,c2ixmy,…}.

• PA ⊆ PRMS×ROLES, a many-to-many assignment of permissions to
COM+ roles.

• assigned_permissions(r:ROLES)={p∈PRMS|(p,r)∈PA} is a function
that returns the set of permissions in PRMS that are assigned to the
given role r.

• Op(p:PERMS)→ {op∈OPS} is a function that returns a set of
operations that are associated with the given permission p, e.g.,
Op(cjikml)=ml.

• Ob(p:PERMS)→{ob∈OBS} is a function that returns a set of objects
that are associated with the given permission p, e.g., Ob(cjikml)=
{cjik}.

• SESSIONS is a set of sessions for a specific application. Members of
this set are mappings between authenticated users and their acti-

vated roles for a specific COM+ application. Like with many other
systems, in a COM+ application environment, all assigned roles are
activated for a user once the user is authenticated.

• session_users(s:SESSIONS)→USERS, the mapping of session s onto
the corresponding user.

• session_roles(s:SESSIONS)→2ROLES, the mapping of session s onto a
set of roles. Formally: session_roles(si) ⊆ {r∈ROLES|(session_users
(si),r)∈UA}.

• avail_session_perms(s:SESSIONS)→2PRMS, the permissions available
to a user in a session = ∪

r∈session roles sð Þ
assigned permissions rð Þ.

As shown in Definition 3, most of the elements required to support
Core RBAC are already provided in the COM+ protection state
(Definition 2). However, the mapping between RBAC elements and
the COM+ protection state is not straightforward.

For example, user groups do not exist in RBAC. Expanding groups
into sets of users is required in order to have group support in RBAC.
Another option would be to use COM+ groups to define the RBAC
USERS set as U×G; however, because there is a user-to-group rela-
tionship in COM+, this mapping would not be ideal.

Another example is the OPS set. This RBAC set does not directly
map to COM+ operations. COM+ operations are uniquely defined
by an interface and a method. However, defining RBAC OPS as a
subset of I×M would not result in the correct mapping of RBAC
PRMS. The mapping between the OBS and COM+ protection state
elements is not straightforward, either. Objects in COM+ refer to
instances of classes; however, in the RBAC terminology, an object
is the resource being protected. In COM+ what is being protected
is either a component, interface, or method. A straight forward
mapping would define RBAC OBS in terms of C× I×M; however,
this mapping would be incorrect, as it would define PRMS as
OPS×C× I×M.

Finally, the elements related to SESSIONS are not addressed in
Definition 2. This is due to the fact that user sessions are specific to the
MS Windows platform and are not specific to COM+. Since all
operating system processes on an MS Windows platform must be
associated with a logon session, these sessions are handled by the
operating system and are transparent to the COM+ application.

5.1.2. Hierarchical RBAC
General Role Hierarchies and Limited Role Hierarchies comprise

the Hierarchical RBAC component of the ANSI RBAC Reference Model.
Both role hierarchies are formally defined in terms of the sets
and relations of the Core RBAC component. These components are

Fig. 5. Example COM+ interfaces.

Fig. 6. Sample authorization policy for the example COM+ application describing what actions are allowed. All other actions are denied.

205W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

described in Section 2.1.1. Neither the COM+ catalog nor the
administrative tool that is part of the COM+ environment directly
support creating hierarchical relationships between roles.

5.1.3. Constrained RBAC
Static Separation of Duty (SSD) and Dynamic Separation of Duty

(DSD) relations are part of the Constrained RBAC component of
ANSI RBAC [13]. Similar to the Hierarchical RBAC component, these
relations are defined in terms of Core RBAC elements. Essentially,
SSD constrains user-to-role assignment (UA set and assigned_users
function) and the role hierarchy (RH set and authorized_users function).
DSD, on the other hand, constrains the role activation (SESSIONS set
and session_roles function). The COM+ catalog does not allow for
specifying any constraints on user-to-role assignments, whether static
or dynamic; neither does it allow for specifying any constraints on
role activation. As such, SSD and DSD are not supported in COM+.

5.2. Translating RBAC Policies to COM+

In Definition 2 and Definition 3 we presented a protection state for
COM+ systems, and how Core RBAC can be modeled in the language
of the COM+protection state, respectively. In this section, we present
an algorithm that translates an arbitrary RBAC policy into a COM+
protection state.

Algorithm 2 formalizes the translation from an RBAC policy to the
COM+ protection state defined in Definition 2. For clarity, we identify
the RBAC sets in the algorithm with an RBAC subscript. The algorithm
requires the following two functions defined as follows:

• component(o:OBS)→c: returns the component corresponding to a
given object o.

• interface(o:OBS)→ i: returns the interface corresponding to a given
object o.

5.3. Example

In this section we present an example that illustrates how ANSI
RBAC can be supported in a COM+ system as discussed earlier. This
example is a simple COM+ application that maintains employee and
engineering project records in an engineering company. The applica-
tion allows users to perform various operations on the project and
employee records, based on the users' roles in the company. The
application consists of a single component, EngineeringProjectService
(EPS), which supports the following COM+ interfaces: Engineering-

Project, and Employee. These interfaces are shown in Fig. 5. In this
example, we define seven different user roles. Based on these roles and
according to the policies listed in Fig. 6, users are allowed to invoke
variousmethods in this application. These roles are defined as follows:

• Employee represents a company employee.
• Engineering Department represents an employee of the engineering
department.

• Engineer performs various engineering tasks in the company.
• Product Engineer is responsible for managing a product line.
• Quality Engineer is a quality assurance engineer.
• Project Lead overseas and leads the development of a project.
• Director is an engineering department director.
• Administrator represents all employees who belong to upper
management as well as operations.

Algorithm 2. Operational definition of translating from an ANSI RBAC
system state to the one of COM+.

1: {Initialize COM+ sets and relations.}
2: R←ROLESRBAC
3: U←USERSRBAC
4: G←Ø
5: UGA←U
6: C←Ø
7: I←Ø
8: M←Ø
9: UA←Ø

10: GA←Ø
11: PA←Ø
12: isSecurityEnabled←true
13: for all p∈PRMSRBAC do
14: for all (opr, obj )∈p do
15: c←component(obj)
16: i← interface(obj)
17: C←C∪{c}
18: I←I∪{i}
19: M←M∪{opr}
20: end for
21: end for
22: for all pa∈PARBAC do
23: for all ((opr; obj); r)∈pa do

Table 2
Example COM+ role–method permissions.

206 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

24: UA←UA∪{r}×assigned_users(r)
25: PA←PA∪{(r; opr)}
26: end for
27: end for

System access control policy that defines what actions each role is
allowed to perform is summarized in Table 2, where a check mark
(“✓”) denotes a granted permission for a specific COM+ role to
execute the corresponding method. Tables in Fig. 7 show examples of
users-to-roles assignments, groups-to-roles assignments, and an
example of system users, and their group memberships from the
underlying MS Windows operating system environment. The follow-
ing is a formalization of this example system's protection state as in
Definition 2.

• R={Employee, Engineering Department, Engineer, Product Engi-
neer, Quality Engineer, Project Lead, Director, Administrator}

• U={Alice, Bob, Carol, Dave, Eve, Fred}
• G={hardware, software, accounting, management}
• UGA={(Alice, accounting), (Bob, hardware), (Carol, software),
(Dave, software), (Eve, software), (Fred, management)}

• C={EPS}
• I={EngineeringProject, Employee}

• M={EPS.EngineeringProject.MakeChanges, EPS.EngineeringProject.
ReviewChanges, EPS.EngineeringProject.InspectQuality, EPS.Engineer-
ingProject.ReportProblem, EPS.EngineeringProjcet.CloseProblem, EPS.
EngineeringProject.CreateNewRelease, EPS.EngineeringProject.GetDe-
scription, EPS.EngineeringProject.Close, EPS.Employee.GetBasicInfo,
EPS.Employee.AssignToProject, EPS.Employee.UnassignFromProject,
EPS.Employee.AddExperience, EPS.Employee.GetExperience, EPS.Em-
ployee.Fire }

• UA={(Employee, Alice), (Engineer, Rob), (Quality Engineer, Carol),
(Product Engineer, Dave), (Project Lead, Eve), (Director, Fred)}

• GA={(Engineering Department, hardware), (Engineering Depart-
ment, hardware), (Administrator, accounting), (Administrator,
management)}

• PA ={(Employee, EPS.Employee.GetBasicInfo), (Employee, EPS.Em-
ployee.GetExperience), (Engineering Department, EPS.Engineering-

Project.ReportProblem), (Engineering Department, EPS.Employee.
GetBasicInfo), (Engineering Department, EPS.Employee.GetExperi-
ence) (Engineer, EPS.EngineeringProject.MakeChanges), (Engineer,
EPS.EngineeringProject.ReviewChanges), (Engineer, EPS.Employee.
GetBasicInfo), (Engineer, EPS.Employee.GetExperience), (Product
Engineer, EPS.EngineeringProject.CreateNewRelease), (Product En-
gineer, EPS.Employee.GetBasicInfo), (Product Engineer, EPS.Em-
ployee.GetExperience), (Quality Engineer, EPS.EngineeringProject.
InspectQuality), (Quality Engineer, EPS.Employee.GetBasicInfo),
(Quality Engineer, EPS.Employee.GetExperience), (Project Lead,
EPS.EngineeringProject.CloseProblem), (Project Lead, EPS.Employ-
ee.GetBasicInfo), (Project Lead, EPS.Employee.GetExperience), (Di-
rector, EPS.EngineeringProject.Close), (Director, EPS.Employee.*),
(Administrator, EPS.EngineeringProject.GetDescription), (Adminis-
trator, EPS.Employee.GetBasicInfo), (Administrator, EPS.Employee.
GetExperience)}

• isSecurityEnabled=true

In this example, the user_roles(u:U) function, as formalized
in Definition 2, returns the roles assigned to a specific user whether this
assignment is direct as specified in UA, or by inference using the
information from theuser's group assignment as specified inUGA and the
user's group's role assignment as specified in GA. For example, user_roles
(Fred)={Director,Administrator}, where the (Director,Fred)∈UA, and
(Fred,management)∈UGA and (Administrator,management)∈GA. In ac-
cordancewith Definition 3, we also identify the following sets in order to
support Core RBAC.

• USERS={Alice, Bob, Carol, Dave, Eve, Fred}∪{Bob}∪{Carol, Dave,
Eve}∪{Alice}∪{Fred}={Alice, Bob, Carol, Dave, Eve, Fred}

• OPS={MakeChanges, ReviewChanges, InspectQuality, ReportPro-
blem, CloseProblem, CreateNewRelease, GetDescription, Close,
GetBasicInfo, AssignToProject, UnassignFromProject, AddExperi-
ence, GetExperience, Employee.Fire }

• PRMS=M

5.4. Functional specification

In this section, we examine the ability of COM+ middleware
to support ANSI RBAC administrative operations for the creation and
maintenance of RBAC sets and relations, review functions for

Fig. 7. Example COM+ application user, group, and role mappings.

207W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

performing administrative queries, and system functions for creating
and managing user sessions and making access control decisions. For
those RBAC functions that are supported by COM+, we provide
example pseudo-code fragments (with syntax very similar to C++)
showing how these functions can be implemented. In these fragments,
we use procedures from COM+ Component Services Administration
Library (COMAdmin) [36] and Network Management API [65].

COMAdmin provides a variety of classes and programming
interfaces for managing COM+ applications, as well as for manipu-
lating various attributes stored in the COM+ catalog. COMAdminCa-
talog is one of the classes used to access COM+ configuration data
stored in the COM+ catalog. The class implements two interfaces:
ICOMAdminCatalog and ICOMAdminCatalog2; the latter is available
only in COM+ version 1.5. The COMAdminCatalog provides the
GetCollection method, which can be used to retrieve COMAdminCa-
talogCollection objects that represent COM+ applications, COM+
components, and so on. Each COMAdminCatalogCollection can be
further queried for more information or “sub-collections,” or manipu-
lated as required. Fig. 8, illustrates the relationships among various
collections that are referenced throughout this section in the pseudo-
code fragments. The arrows indicate the ability to navigate from one

collection to another using the GetCollection method of the
COMAdminCatalogCollection object. In addition to the GetCollection
method, the COMAdminCatalogCollection class provides Add and
Remove methods for adding and removing objects from a certain
collection. For example, to add a new COM+ role to a certain appli-
cation, an algorithm similar to the one outlined in Fig. 9 can be used.
Due to space limitations, we omit definitions of simple custom
helper procedures such as GetCatalogObject, FindApplication, and
CreateRoleObject. For the same reason, we also omit invocations of
Populate method on the COM+ administration collections.

5.4.1. Administrative commands for Core RBAC

AddUser, DeleteUser create a new user and delete an existing user
from the system. These commands can be implemented
using the NetUserAdd, and the NetUserDel methods of
the Win32 Network Management APIs. The NetUserAdd
method adds a new user account to a system given the
system's Domain Name Service (DNS) [66] name, or its
NetBIOS [67] name. On the other hand, the NetUserDel

Fig. 9. Pseudo-code for adding a COM+ role to an application.

Fig. 8. COM+ administration collections.

208 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

method deletes a user account from the system. Considering
Definition 2, the NetUserAdd and NetDelUser methods can
be used to manipulate U by adding or deleting elements.
In addition to these methods, the Win32 Network Manage-
ment procedures NetGroupAdd, NetGroupAddUser, Net-
GroupDel, and NetGroupDelUser can be used to manipulate
G and UGA.

AddRole, DeleteRole methods enable creation and deletion of roles.
These methods can be implemented by manipulating the
COM+ catalog using the Add and Remove methods on the
COM+ Roles collection. As shown in Fig. 8, this collection
objects can be accessed by first getting a reference to the
Applications collection, then obtaining a reference to the
Roles collection. Figs. 9 and 10 provide pseudo-code for the
AddRole and DeleteRole functions, respectively.

AssignUser, DeassignUser allow user-to-role assignments to be
created and deleted. These commands can be implemented
by manipulating the UsersInRole COM+ collection, as
shown in Fig. 8. Once the reference to this collection is
obtained, the Add or Removemethods can be used to assign
a user to a role, or to remove a user from a role assignment.
Figs. 11 and 12 provide pseudo-code for implementing
AssignUser and DeassignUser functions, respectively.

GrantPermission, RevokePermission are used to grant or revoke the
permission to invokeanoperationonanobject to a role. These
methods can be implemented by manipulating the RolesFor-
Component, RolesForInterface, and RolesForMethod COM+
collections. Fig. 8 shows how to navigate from the Applica-
tions collection to one of these role related collections. Using
the Add and Remove methods provided by each one of these

collections, a role object can be added to or removed from the
collection. By adding a role to the RolesForComponent
collection, for example, the role is granted permission to
invoke all of the COM+ component's methods. On the other
hand, adding a role to the RolesForMethod collection allows
the role to invoke only a specificmethod (assuming the role is
not added to the RolesForComponent or RolesForInterface
collections). Figs. 13 and 14 show pseudo-code for imple-
menting GrantPermission and RevokePermission functions,
respectively.

CreateSession, DeleteSession, AddActiveRole, DropActiveRole are
used to create and delete a session for a user, and activate or
deactivate a role for a user in a given session, respectively.
Sessions are handled by Windows, and are created upon
user authentication. Role activation and deactivation are
also handled by Windows, and are transparent to the user
application. However, once the session is established, roles
cannot be (de)activated for that session. We could not find
Windows or COM+ APIs that would provide support for
implementing these functions.

CheckAccess indicates whether a user is allowed or is not allowed to
perform a given operation on a given object. Algorithm 1
defined in Section 4.2 can be used to implement Check-
Access. However, since user sessions are handled transpar-
ently by Windows, the Authorize function in Algorithm 1
doesn't take a user session as an input parameter.

AssignedUsers, AssignedRoles return the set of users assigned to a
specific role, and the set of roles assigned to a specific
user, respectively. These functions can be implemented
by querying various COM+ collections for their items.

Fig. 11. Pseudo-code for assigning a user to a specific role for a COM+ application.

Fig. 10. Pseudo-code for removing a COM+ role from an application.

209W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

Fig. 13. Pseudo-code for granting permission to a COM+ role to perform a specific operation.

Fig. 14. Pseudo-code for revoking permission from a COM+ role to perform a specific operation.

Fig. 12. Pseudo-code for deleting the assignment of a user to a role for a COM+ application.

210 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

AssignedUsers can be implemented directly by querying
the UsersInRole collection; this is shown in Fig. 15. Assign-
edRoles can be implemented by searching for all roles
assigned to a given user, also using the UsersInRole col-
lection; this is shown in Fig. 16.

5.5. Advanced review functions for Core RBAC

RolePermissions, UserPermissions return the set of permissions
granted to a given role and user, respectively. RolePermis-
sions can be implemented by identifying which roles are
assigned to which component, interface, or method. This is
done by querying the RolesForComponent, RolesForInter-
face, and RolesForMethod collections (see Fig. 8). UserPer-
missions, on the other hand, can be implemented by
identifying which users are assigned to which roles using
the UsersInRole collection; then RolePermissions can be
used for each one of the user's roles to determine all
permissions assigned to the user by knowing which roles
the user is assigned to. Querying the appropriate collections
to retrieve permissions can be programmed using similar
steps as the ones used in Fig. 13.

SessionRoles, SessionPermissions return the active roles and per-
missions associated with a session. Since all roles assigned
to the user are activated when the user's session is created,
the AssignedRoles and UserPermissions methods discussed
previously can be used to implement SessionRoles and
SessionPermissions, respectively.

RoleOperationsOnObject, UserOperationsOnObject return the
operations that a given role or user can perform on an object.
These functions can be implemented by querying the
RolesForComponent, RolesForInterface , and RolesForMethod
collections to identify which methods the given role is
allowed to invoke. Similarly, the UserOperationsOnObject
can be implemented by first identifying which roles are
assigned to the given user using the UsersInRole collection,
then identifyingwhichmethods each one of the user's roles is
allowed to invoke. Querying the appropriate collections to
retrieve permissions can be programmed using similar steps
as the ones used in Fig. 13.

Table 3 provides a summary of the above discussion. Support for
ANSI Core RBAC functions is classified in two categories as follows:
the first category identifies the functions that can be supported
using APIs built into the COM+ operating environment; the second
category contains the functions that are not supported. Even if
the operating environment provides APIs that are capable of imple-
menting functionality to support sessions and role activation, such an
implementation would be proprietary and completely outside the
scope of the COM+ standard. As such, the ANSI Core RBAC functions
in the last column of the table are flagged as unsupported.

6. Discussion

In addition to our analysis of ANSI RBAC support in COM+, we also
analyzed support for ANSI RBAC in two other commercial middleware
technologies CORBA [14] and EJB [16]. While details of our analysis for
these middleware can be found elsewhere [62,63], a summary for all
three is provided in Table 4. Results of our investigation for COM+

Fig. 15. Pseudo-code for returning the set of users assigned to a given role for a COM+ application.

Fig. 16. Pseudo-code for returning the set of roles assigned to a given user for a COM+ application.

211W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

suggest that it also falls short of fully supporting ANSI RBAC. Among
the three technologies, however, it becomes the closest, providing
support for about 80% of ANSI Core RBAC functions.

The biggest missing group is Supporting System Functions,
which are required for session management [13, p.37]. Specifically,
the missing functions from this group are responsible for session
creation/deletion and for role activation/deactivation. The last two are
intended to be used by users for altering the set of active roles in the
session.

It was interesting to find out that none of the analyzedmiddleware
technologies (see Table 4) support either of these four functions. The
only explanation we found is that ANSI RBAC (as well as RBAC96)
is session-oriented, whereas CORBA, EJB, and COM+ are request-
oriented. In RBAC, a session is used as a holder for the activated roles,
which can be retrieved using session_roles function. Consequently,
access requests are tied to a particular session via CheckAccess, whose
one of the input parameters is session. Role activation and deactivation
are also tied into the notion of a session. As such, these two functions
make little sense without session or its surrogate. In contrast to
RBAC, the analyzed middleware technologies are request-oriented.
Authorization decisions are based on the credentials associated with
the request. As a result, subject's roles can be either pushed, as in
CORBA, by CSS during connection establishment, or pulled, as in EJB
and COM+, by the TSS from its (possibly local) data store. Moreover,
since in COM+ roles are specific to each COM+ application and are
pulled by TSS, remote clients have no control over the selection of the
roles activated when they access individual COM+ applications,
making user-driven role activation/deactivation impractical. It seems
that making ANSI RBAC session-oriented prevents request-oriented
(e.g., COM+, EJB and CORBA) and possibly other systems from sup-
porting the standard in full. This is why we second suggestion by Li
et al. [68] to make session-specific functionality an optional com-
ponent of the standard.

Another caveat with support for ANSI RBAC in COM+ becomes
apparent when one considers a multi-host COM+ deployment.
Unless COM+ applications are managed through Active Directory,
administrative functions would have to be performed on host-by-host
basis, making the process error-prone. Also such functions as User-
Permissions would require enumeration of all COM+ objects, which
is not presently supported in multi-host deployments of COM+
applications.

In addition to the lack of support for the aforementioned functions,
role hierarchy is not directly supported in COM+ or in the Microsoft
Component Services GUI described in Section 2.2.2. Nonetheless,
support for role hierarchy is still possible, thanks to the COMAdmin
[36] library's APIs. A custom administrative application can be created
to replace the Component Services GUI and provide support for role
hierarchy. This application is required to maintain role hierarchy
relations and manipulate various COM+ collections, such as the
UsersInRole collection (see Fig. 8). For example, when a role hierarchy
is introduced, the custom administrative application is required to
manipulate the RolesForComponent, RolesForInterface, and the Roles-
ForMethod COM+ collections to ensure that appropriate roles are
added to these collections to reflect the fact that roles would inherit
permissions based on the role hierarchy.

Static separation of duty constraints are not supported by COM+.
However, the custom administrative application described above
would allow for this support. The application would implement
functions—such as AssignUser—in a manner that would ensure that
static SoD constraints are met before a user is assigned to a certain
role. On the other hand, dynamic SoD constraints may not be imple-
mentable since role activation and sessions are handled by Windows.

In summary, the role-based access control provided by COM+ falls
short of supporting all ANSI RBAC required functions, although COM+
has better support than CORBA or EJB. The limitations that prevent full
support are mainly due to the mismatch between session-oriented
nature of RBAC and request-oriented architecture of COM+ and other
commercial middleware that we analyzed elsewhere [62,63]. This
mismatch calls into question the mandatory support for sessions and
related functionality in ANSI RBAC systems. When it comes to multi-

Table 3
Functions defined by ANSI Core RBAC and their support in COM+.

Core RBAC functions Built-in API support Supported
by Win32
Network
Management
APIs

Supported by
COMAdmin
library

Supported by Win32
Network Management
APIs

Administrative commands
AddUser ✓

DeleteUser ✓

AssignUser ✓

DeassignUser ✓

AddRole ✓

DeleteRole ✓

GrantPermission ✓

RevokePermission ✓

Supporting system functions
CreateSession ✓

DeleteSession ✓

AddActiveRole ✓

DropActiveRole ✓

CheckAccess ✓

Review functions
AssignedUsers ✓

AssignedRoles ✓

Advanced review functions
RolePermissions ✓

SessionPermissions ✓

UserPermissions ✓

SessionRoles ✓

RoleOperationsOnObject ✓

UserOperationsOnObject ✓

Table 4
ANSI Core RBAC functions and their support in various middleware technologies.

Core RBAC functions CORBA EJB COM+

Administrative commands
AddUser ✓

DeleteUser ✓

AssignUser ✓

DeassignUser ✓

AddRole ✓ ✓

DeleteRole ✓ ✓

GrantPermission ✓ ✓ ✓

RevokePermission ✓ ✓ ✓

Supporting system functions
CreateSession
DeleteSession
AddActiveRole
DropActiveRole
CheckAccess ✓ ✓ ✓

Review functions
AssignedUsers ✓

AssignedRoles ✓

Advanced review functions
RolePermissions ✓

SessionPermissions ✓

UserPermissions ✓

SessionRoles ✓

RoleOperationsOnObject ✓

UserOperationsOnObject ✓

212 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

host deployments of COM+ systems RBAC administration becomes
problematic and the lack of support for enumerating COM+ objects
across hosts becomes an impediment. While role hierarchies and
separation of duty constraints are not directly supported, they can be,
with the help of custom tools for administering COM+ systems.

7. Conclusion

Understanding middleware access control mechanisms is critical
for protecting the resources of enterprise applications. In this paper,
we described in detail the architecture of access control mechanisms
in COM+ and defined a configuration of the COM+protection system
in precise and unambiguous terms of set theory. Based on this
definition, we formalized the semantics of authorization decisions
in COM+. We analyzed support for various ANSI RBAC functions in
COM+, and illustrated our discussion with an example. We also
showed how some of the ANSI RBAC functions can be supported using
Windows and COM+ programming interfaces. Our result indicate
that, as in CORBA and EJB, the required functions for creating and
deleting sessions and for activating and deactivations roles in a
session are not supported. This failure to support session-specific
functions across three major commercial middleware technologies
points to a systemic mismatch between session-oriented architecture
of RBAC and real-world distributed systems.

References

[1] D.E. Bell, L.J. LaPadula, Secure computer systems: unified exposition and multics
interpretation, Technical Report ESD-TR-75-306, MITRE, March 1975.

[2] B.W. Lampson, Protection, 5th Princeton Conference on Information Sciences
and Systems, ACM Press, New York, NY, USA, 1971, p. 437, http://portal.acm.org/
citation.cfm?id=775268.

[3] L. Notargiacomo, Role-based access control in oracle7 and trusted oracle7, the
First ACM Workshop on Role-Based Access Control, ACM Press, Gaithersburg,
Maryland, USA, 1995, pp. 65–69.

[4] J. Epstein, R. Sandhu, Netware 4 as an example of role-based access control,
Proceedings of the First ACMWorkshop on Role-Based Access Control, ACM Press,
Gaithersburg, Maryland, USA, 1995, pp. 71–82.

[5] L. Giuri, Role-based access control in Java, Proceedings of the Third ACM
Workshop on Role-Based Access Control, ACM Press, Fairfax, Virginia, USA,
1998, pp. 91–99.

[6] W.J. Meyers, RBAC emulation on trusted dg/ux, Proceedings of the Second ACM
Work- shop on Role-Based Access Control, ACM Press, Fairfax, Virginia, USA, 1997,
pp. 55–60.

[7] F. Zhang, X. Sheng, Y. Niu, F. Wang, H. Zhang, The research and scheme of RBAC
using J2EE security mechanisms, in: R. Jain, B.B. Dingel, S. Komaki, S. Ovadia (Eds.),
Broadband Access Communication Technologies, vol. 6390, SPIE, Boston, MA,
USA, 2006, p. 63900L, doi:10.1117/12.685797, http://link.aip.org/link/?PSI/6390/
63900L/1.

[8] V. Bindiganavale, J. Ouyang, Role based access control in enterprise application—
security administration and user management, 2006 IEEE International Confer-
ence on Information Reuse and Integration, IEEE, IEEE Press, Waikoloa Village, HI,
2006, pp. 111–116, doi:10.1109/IRI.2006.252397, http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=4018474.

[9] J. Barkley, Implementing role-based access control using object technology, The
First ACM Workshop on Role-Based Access Control, ACM Press, Fairfax, Virginia,
USA, 1995, pp. 93–98, http://www.acm.org/pubs/citations/proceedings/comm-
sec/270152/p293-barkley/.

[10] R.K. Wong, RBAC support in object-oriented role databases, Proceedings of The
Second ACM Workshop on Role-Based Access Control, ACM Press, Fairfax,
Virginia, USA, 1997, pp. 109–120.

[11] J. Barkley, A. Cincotta, Managing role/permission relationships using object access
types, The Third ACMWorkshop on Role-Based Access Control, ACM Press, Fairfax,
Virginia, USA, 1998, pp. 73–80.

[12] R. Awischus, Role based access control with security administration manager
(SAM), The Second ACM Workshop on Role-Based Access Control, ACM Press,
Fairfax, Virginia, USA, 1997, pp. 61–68.

[13] ANSI, ANSI INCITS 359-2004 for Role Based Access Control, 2004.
[14] OMG, The common object request broker: architecture and specification,

Specification formal/99-10-08, Object Management Group, 1999.
[15] R.J. Oberg, Understanding & Programming COM+: A Practical Guide to Windows

2000 DNA, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000 http://portal.acm.
org/citation.cfm?id=345834&dl=ACM&coll=portal#.

[16] L.G. DeMichiel, L.Ü. Yalcinalp, S. Krishnan, Enterprise JavaBeans Specification,
Version 2.0, Sun Microsystems, 2001.

[17] G. Eddon, The COM+ security model gets you out of the security programming
business, Microsoft Systems Journal 11 (1999).

[18] OMG, CommonObject Services Specification, Security Service Specification v1.8, 2002.
[19] B. Hartman, D.J. Flinn, K. Beznosov, Enterprise Security With EJB and CORBA, John

Wiley & Sons, Inc., New York, 2001 http://konstantin.beznosov.net/professional/
books/enterprise_security_with_EJB_and_CORBA.html.

[20] D. Basin, F. Rittinger, A formal analysis of the CORBA security service, ZB 2002:
Formal Specification and Development in Z and B, LNCS 2272, Springer, 2002,
pp. 330–349.

[21] D. Ferraiolo, R. Kuhn, Role-based access controls, Proceedings of the 15th NIST-
NCSC National Computer Security Conference, National Institute of Standards
and Technology/Na- tional Computer Security Center, Baltimore, MD, USA, 1992,
pp. 554–563.

[22] R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based access control models,
IEEE Computer 29 (2) (1996) 38–47.

[23] R. Sandhu, D. Ferraiolo, R. Kuhn, The NIST model for role-based access control:
towards a unified standard, RBAC '00: Proceedings of the fifth ACM workshop on
Role-based access control, ACM, New York, NY, USA, 2000, pp. 47–63, http://doi.
acm.org/10.1145/344287.344301.

[24] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R. Chandramouli, Proposed NIST
standard for role-based access control, ACM Transactions on Information and
System Security 4 (3) (2001) 224–274 http://ite.gmu.edu/list/journals/tissec/
p224-ferraiolo.pdf.

[25] Microsoft, COM+ Administration Collections, 2008 http://msdn2.microsoft.com/
en-us/library/ms687763(VS.85).aspx.

[26] G. Eddon, Inside COM+ Base Services, Microsoft Programming Series, Microsoft
Press, 1999 http://www.amazon.com/exec/obidos/ASIN/0735607281/qid=
953825136/sr=1-1/103-0762350-4861460.

[27] D. Box, Essential COM, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997 foreword By-Grady Booch and Foreword By-Charlie Kindel.

[28] I. Sommerville, Software Engineering8th ed., Addison Wesley, 2006.
[29] N. Brown, C. Kindel, Distributed component object model protocol (DCOM/1.0),

Tech. Rep. draft-brown-dcom-v1-spec-03.txt, Microsoft Corporation, January
1998, http://www.lisp-p.org/nmcom/draft-brown-dcom-v1-spec-03.html.

[30] TOG, DCE 1.1: Remote Procedure Call, The Open Group, catalog number c706
Edition (August 1997).

[31] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley Professional, 2002.

[32] Microsoft, Microsoft Interface Definition Language, 2005 http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/midl/midl/midl_start_page.asp.

[33] S.P. Miller, B.C. Neuman, J.I. Schiller, J.H. Saltzer, Kerberos authentication and
authorization system, Tech. rep. Massachusetts Institute of Technology, 1987,
citeseer.ist.psu.edu/miller88kerbero.html.

[34] Microsoft, Microsoft NTLM, 2005 http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/secauthn/security/microsoft_ntlm.asp.

[35] C. Adams, S. Lloyd, Understanding PKI: Concepts, Standards, and Deployment
Considerations2nd ed., Addison Wesley Professional, 2002.

[36] Microsoft, Automating COM+ Administration, 2006 http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cossdk/html/f302eb02-2ef5-42ee-a18f-
59f7e60b38df.asp.

[37] SunMicrosystems Inc., RBAC in the Solaris™ operating environment, http://www.
sun.com/software/whitepapers/wp-rbac/wp-rbac.pdf, white Paper, 2000 http://
www.sun.com/software/whitepapers/wp-rbac/wp-rbac.pdf.

[38] R. Sandhu, G.-J. Ahn, Decentralized group hierarchies in UNIX: an experiment and
lessons learned, Proc. 21st NIST-NCSC National Information Systems Security
Conference, National Institute of Standards and Technology/National Computer
Security Center, Arlington, Virginia, USA, 1998, pp. 486–502, http://citeseer.ist.
psu.edu/321354.html.

[39] G.-J. Ahn, R. Sandhu, Decentralized user group assignment in Windows NT, The
Journal of Systems and Software 56 (1) (2001) 39–49.

[40] G. Faden, RBAC in UNIX administration, RBAC '99: Proceedings of the Fourth ACM
Workshop on Role-Based Access Control, ACM Press, New York, NY, USA, 1999,
pp. 95–101, http://doi.acm.org/10.1145/319171.319180.

[41] T.M. Chalfant, Role based access control and secure shell — a closer look at two
Solaris™operating environment security features, Tech. rep., Sun BluePrints™On-
Line, June 2003, http://www.sun.com/blueprints/0603/817-3062.pdf.

[42] S. Tran, M. Mohan, Security Information Management Challenges and Solutions,
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0607tran/
index.html, 2006 http://www.ibm.com/developerworks/db2/library/techarticle/
dm-0607tran/index.html.

[43] MySQL AB, MySQL, http://www.mysql.com, 2007 http://www.mysql.com.
[44] C. Ramaswamy, R. Sandhu, Role-based access control features in commercial

database management systems, Proc. 21st NIST-NCSC National Information
Systems Security Conference, National Institute of Standards and Technology/
National Computer Security Center, Arling- ton, VA, USA, 1998, pp. 503–511, http:
//citeseer.ist.psu.edu/ramaswamy98rolebased.html.

[45] IBM, IBM Informix Dynamic Server Administrator's Guide, Informix Dynamic
Server 10.0; Document ID: G251-2267-02, December 2005 http://www-306.ibm.
com/software/data/informix/pubs/library/ids_100.html.

[46] Sybase Inc., System Administration Guide: Volume 1— Adaptive Server Enterprise
15.0, document ID: DC31654-01-1500-02, October 2005 http://infocenter.sybase.
com/help/topic/com.sybase.help.ase_15.0.sag1/sag1.pdf.

[47] R. Baylis, P. Lane, D. Lorentz, Oracle Database Administrator's Guide, 10g Release 1
(10.1), December 2003 http://otn.oracle.com/pls/db10g/db10g.homepage.

[48] K.Gutzmann,Access control andsessionmanagement in theHTTPenvironment, IEEE
Internet Computing 5 (1) (2001) 26–35 http://dx.doi.org/10.1109/4236.895139.

[49] J.S. Park, R. Sandhu, G.-J. Ahn, Role-based access control on the web, ACM
Transactions on Information and System Security (TISSEC) 4 (1) (2001) 37–71.

213W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214



Author's personal copy

[50] R. Robles, M.-K. Choi, S.-S. Yeo, T. hoon Kim, Application of role-based access
control for web environment, Ubiquitous Multimedia Computing, UMC '08. Inter-
national Symposium on (2008), 2008, pp. 171–174, doi:10.1109/UMC.2008.41.

[51] L.S. Bartz, hyperDRIVE: leveraging LDAP to implement RBAC on the web,
Proceedings of the Workshop on Role-based Access Control, ACM Press, New
York, NY, 1997, pp. 69–74, http://doi.acm.org/10.1145/266741.266759.

[52] D.F. Ferraiolo, J.F. Barkley, D.R. Kuhn, A role-based access control model and
reference implementation within a corporate intranet, ACM Transactions on
Information and System Security (TISSEC) 2 (1) (1999) 34–64.

[53] D.W. Chadwick, A. Otenko, The PERMIS X.509 role based privilege management
infrastructure, SACMAT '02: Proceedings of the Seventh ACM Symposium on
Access Control Models and Technologies, ACM Press, New York, NY, USA, 2002,
pp. 135–140, http://doi.acm.org/10.1145/507711.507732.

[54] W. Zhou, C. Meinel, Implement role based access control with attribute
certificates, The 6th International Conference on Advanced Communication
Technology (ICACT2004), vol. 1, National Computerization Agency, Electronics
and Telecommunications Research Institute, Korea, Korea, 2004, pp. 536–541.

[55] M. Wahl, T. Howes, S. Kille, RFC 2251: Lightweight Directory Access Protocol, vol.
3, 1997 http://rfc.net/rfc2251.html.

[56] L. Giuri, Role-based access control on the Web using Java, Proceedings of the
Fourth ACM Workshop on Role-based Access Control, ACM Press, New York, NY,
USA, 1999, pp. 11–18, http://doi.acm.org/10.1145/319171.319173.

[57] G.-J. Ahn, Role-based access control in DCOM, Journal of Systems Architecture 46
(13) (2000) 1175–1184 http://dx.doi.org/10.1016/S1383-7621(00)00017-5.

[58] Microsoft, DCOM Architecture, 1998 http://www.microsoft.com/NTServer/app-
service/techdetails/prodarch/DCOM/2_DCOMArchitecture.asp.

[59] C. Westphall, J. Fraga, A large-scale system authorization scheme proposal
integrating Java, CORBA and web security models and a discretionary prototype,
Latin American Network Operations andManagement Symposium, IEEE Press, Rio
de Janeiro, Brazil, 1999, pp. 14–25.

[60] R.R. Obelheiro, J.S. Fraga, Role-based access control for CORBA distributed object
systems, Proceedings of the IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2002), IEEE,Washington, DC, USA, 2002,
p. 53.

[61] C.M. Westphall, J. da Silva Fraga, M.S. Wangham, R.R. Obelheiro, L.C. Lung,
PoliCap— proposal, development and evaluation of a policy service and capa-
bilities for CORBA Security, SEC '02: Proceedings of the IFIP TC11 17th
International Conference on Information Security, Kluwer, B.V., Deventer, The
Netherlands, 2002, pp. 263–274.

[62] K. Beznosov, W. Darwish, Support for ANSI RBAC in CORBA, Technical Report
LERSSE- TR-2007-01, accessible from http://lersse-dl.ece.ubc.ca/search.py?
recid=129, Laboratory for Education and Research in Secure Systems Engineer-
ing, University of British Columbia, July 27 2007, http://lersse-dl.ece.ubc.ca.

[63] W. Darwish, K. Beznosov, Support for ANSI RBAC in EJB, Technical Report LERSSE-
TR-2009-34, accessible from http://lersse-dl.ece.ubc.ca, Laboratory for Education
and Research in Secure Systems Engineering, University of British Columbia,
January 21 2009, http://lersse-dl.ece.ubc.ca.

[64] J. Lowy, Windows XP: Make Your Components More Robust with COM+ 1.5
Innovations, August 2001 http://msdn.microsoft.com/msdnmag/issues/01/08/
ComXP/default.aspx.

[65] Microsoft, Network Management, 2006 http://msdn.microsoft.com/library/de-
fault.asp?url=/library/en-us/netmgmt/netmgmt/network_management.asp.

[66] P. Mockapetris, Domain Names — Concepts and Facilities, 1987 http://www.ietf.
org/rfc/rfc1034.txt.

[67] N.W. Group, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport:
Concepts and Methods, 1987 http://www.ietf.org/rfc/rfc1001.txt.

[68] N. Li, J.-W. Byun, E. Bertino, A Critique of the ANSI Standard on Role Based Access
Control, CERIAS and Department of Computer Science, March 3 2006 http://www.
cs.purdue.edu/homes/ninghui/papers/aboutRBACStandard.pdf.

214 W. Darwish, K. Beznosov / Computer Standards & Interfaces 32 (2010) 197–214


