

SUPPORTING END-TO-END SECURITY
ACROSS PROXIES WITH MULTIPLE-
CHANNEL SSL

Yong Song, Victor C.M. Leung, Konstantin Beznosov
Department of Electrical and Computer Engineering, University of British Columbia,
2356 Main Mall, Vancouver, BC V6T 1Z4, Canada

Abstract: Secure Socket Layer (SSL) has functional limitations that prevent end-to-end
security in the presence of untrusted intermediary application proxies used by
clients to communicate with servers. This paper introduces Multiple-Channel
SSL (MC-SSL), an extension of SSL, and describes and analyzes the design of
MC-SSL proxy channel protocol that enables the support for end-to-end
security of client-server communications in the presence of application
proxies. MC-SSL is able to securely negotiate multiple virtual channels with
different security characteristics including application proxy and cipher suite.

Keywords: Network security; mobility; authentication; integrity; privacy.

1. INTRODUCTION

In this paper, we propose multiple-channel SSL (MC-SSL), a new
protocol based on TLS/SSL [1] (for brevity, referred in this paper as SSL). It
enjoys several advantages over current SSL variants. First, MC-SSL can
significantly strengthen end-to-end security when application proxies or
gateways are involved. Second, MC-SSL supports multiple cipher suites in
the same connection so that different degrees of protection are available for
client-server communications. Third, MC-SSL can flexibly satisfy various
security requirements for content delivery because new factors, such as
security policies, device capabilities, and security attributes of contents, are
introduced into the security model.

MC-SSL is especially helpful for resource-constrained devices such as
PDAs and cellular phones because they tend to need application proxies for
functions such as content transformation or virus scanning. Such devices can

2 Y. Song, V. Leung, K. Beznosov

also better utilize battery and other resources by selectively choosing the
degree of cryptographic protection for data transmission. Moreover, because
MC-SSL is a general protocol that can negotiate multiple security channels,
it can flexibly meet the requirements from various terminals, servers,
applications, and users. In this paper we mainly describe those parts of MC-
SSL that are relevant to the support of end-to-end security in the presence of
application proxies. For example, we do not present the concrete protocol
related to multiple cipher suites. Instead, we focus on the high-level model
issues and the detailed design of the proxy channel protocol, which is
considered to be a prominent feature of MC-SSL. The MC-SSL architecture
supports two types of channels between a client and a server: end-to-end
channels and proxy channels. The proxy channel protocol is able to securely
set up and use a proxy channel, and hence greatly improves the end-to-end
security when a proxy is needed.

The remainder of the paper is organized as follows. Section 2 analyzes
the functional limitations of SSL that triggered our work on MC-SSL.
Section 3 presents the high-level description of MC-SSL. Section 4 discusses
related work. Section 5 presents the proxy protocol, which is the focus of
this paper. Section 6 discusses advantages and disadvantages of the proxy
protocol. Section 7 concludes the paper, and describes future work.

2. PROBLEM MOTIVATION

Although it is currently a de facto security protocol at transport layer for
Internet applications, SSL has several functional limitations. First, while
SSL can provide an application with a secure point-to-point connection, it
does not have facilities to securely deal with application proxies: if a proxy P
is involved between a client C and a server S, C will normally set up a SSL
connection with P, and then P will act as the delegate of C and set up
another SSL connection with S. These kinds of proxies are needed for
functional or performance reasons such as virus scanning, content
transforming/filtering, or compression. For instance, in order to enable
wireless terminals to access the Internet, WAP gateway architecture adopted
the chain proxy model although the connection between C and P in the
architecture is replaced with WTLS, a variant of TLS protocol. The SSL
chain proxy model shown in the lower part of Figure 1, in which P can read
and modify sensitive data at will, requires unconditional trust in P at least
from one side, S’s or C’s. This can be satisfied only if P is administrated by
the organization or individual that administrates S or C as well. In that case,
the trust model is actually equivalent to the end-to-end trust model with two
entities, and P can be merged with S or C. In other cases, S or C must take

Supporting End-to-End Security across Proxies with MC-SSL 3

risks of information leakage and tampering at P because P is a third party in
the trust model. Since communication through a third party application
proxy requires S or/and C to trust P unconditionally with all the information
passed through it, we consider the dilemma between passing all the data
through P and not using a proxy at all as a limitation.

C SSSL

C SSSL SSLP

Figure 1. End-to-end model and chain proxy model

The second functional limitation of SSL is that it employs only one
cipher suite at any given time. Although SSL allows re-negotiating the
cipher suite of a connection, frequent re-negotiations are not practical
because it is inefficient to change cipher suites back and forth using
relatively expensive handshake protocol. Accordingly, lots of data is overly
protected. For instance, a handheld user checks his corporate email inbox all
day. He wants encryption for the id/password of his email account but he
does not need strict confidentiality for his emails. It might be good enough
for him to have good encryption for the id/password transmission, but no
encryption for email contents. This way, the battery power will not be
drained. However, the SSL architecture gives all or nothing dilemma. As
another example, consider a handheld user who accesses the application
server of her stock brokerage. She wants the stock prices to be accurate, but
does not require them to be encrypted since they are publicly available;
however, she requires the best security protection when she is temporarily
transmitting id/password or doing transactions. In this case, using two
different cipher suites are better than using only the strongest cipher suite
because the battery power is greatly reserved. To summarize, the
requirement for communication security does not entail the strongest cipher.
Security is tightly related to other requirements. As pointed out by Abadi and
Needham, encryption is not wholly cheap, and not asking precisely why it is
being done can lead to redundancy [2]. The SSL’s support for one cipher
suite at a time combined with the relatively high cost of changing suites just
in time makes it difficult for applications to optimize the strength of data
protection according to the changes in the sensitivity of the data in the
channel.

4 Y. Song, V. Leung, K. Beznosov

Further, to allow S to take various requirements into account and
optimize a secure channel using power and other constraints, C may want to
send S its terminal capabilities and the security policy configured for a
particular application or server. For example, C could need to define whether
proxies are allowed to be used for passing data with sensitivity below a
certain level, and what types of data need proxies. Lack of negotiation
support for proxies and multiple cipher suites is the third functional
limitation of SSL, which directly results from the first and the second
limitations. These functional limitations of SSL form an obvious gap
between SSL and the requirements of real world applications and devices.
When security-sensitive mobile applications become more popular, the gap
will become more apparent.

3. HIGH LEVEL DESCRIPTION OF MC-SSL

Three key features of MC-SSL help us to address the above limitations of
SSL. Going in reverse order, MC-SSL supports channel negotiation
according to the parties’ security policies, device capabilities, and security
attributes of data.

To address second limitation (only one cipher suite at a time), MC-SSL
provides a set of customizable secure channels in order to meet the practical
requirements of different clients, servers, and applications. MC-SSL uses a
multiple-channel model, in which each channel can possess its own
characteristics including cipher suite and data flow direction.

To address the first limitation (the dilemma between an unconditionally
trusted proxy and no proxy at all), we introduce a special type of channel:
proxy channel, which enables MC-SSL to support partially trusted proxies,
the focus of this paper. Figure 2 shows the conceptual proxy model of MC-
SSL, in which three SSL connections form a triangle. C-P-S is a proxy
channel, and C-S is an end-to-end channel. In this model, C-P-S is no longer
an independent proxy channel that is shown in Figure 1. Instead, it relies on
the C-S channel to control channel negotiation and application data delivery.
Besides, C and S can deliberately choose C-S or C-P-S to deliver data
according to the requirements for proxy and the sensitivity of data. As a
result, sensitive data, such as id/password or credit card number, do not have
to be exposed to P. The protocol for proxy channels is described in Section 5
and discussed in Section 6.

A MC-SSL session may negotiate zero or more proxy channels. Each of
them and the corresponding end-to-end channel form a triangular
relationship with the proxy as the third vertex. Theoretically, the maximum
number of proxy channels solely depends on the available resources at C and

Supporting End-to-End Security across Proxies with MC-SSL 5

S. However, a proxy channel currently supports only one proxy. We expect
that for most practical client-server applications, one-hop proxy channels
should suffice because multiple proxies can be transformed into a “proxy
cluster” in which one proxy acts as the cluster head. On the other hand, we
are planning to extend MC-SSL to support multi-hop proxy channels so as to
further generalize the model of MC-SSL.

In SSL, a cipher suite consists of a key exchange algorithm, a cipher, and
a hash algorithm, e.g., {RSA, 3DES_EDE_CBC/168, SHA-1}. The hash
algorithm is used to compute Message Authentication Code (MAC). In MC-
SSL, a cipher suite consists of only two elements: a cipher for data
encryption/decryption, and a hash algorithm for MAC. We can define it as a
structure as follows:

{cipher and key size, hash algorithm for MAC} (1)

A MC-SSL connection can have multiple cipher suites. We can characterize
a point-to-point connection as follows: {point 1, point 2, key exchange
algorithm, {cipher suite 1, cipher suite 2, …}}, where each cipher suite
forms a channel. Every MC-SSL connection must first negotiate a cipher
suite strong enough to form the primary (or backbone) channel, which is
employed to set up and control other channels, named as secondary
channels. Figure 3 illustrates a sample connection between A and B, which
is characterized by {A, B, RSA, {CS1, CS2, CS3, CS4}}, where RSA is the
key exchange algorithm, and CS1 to CS4 are four different cipher suites.
The primary channel is channel 1, for which CS1 is used.

P

Figure 2. Triangular proxy model of MC-SSL

6 Y. Song, V. Leung, K. Beznosov

1

4
3

2

Figure 3. Multiple cipher suites inside a point-to-point connection

1

P5
4 4

5

2

3

Figure 4. Multiple-channel model of MC-SSL

A combination of the proxy model and the multiple cipher suites
produces the multiple-channel model shown in Figure 4. In MC-SSL, a
channel can be defined as a virtual communication “pipe” with or without
intermediate application proxies. Two MC-SSL endpoints communicate with
each other through the pipe using a cipher suite. In addition, a channel can
be either duplex, or simplex with a flow direction. We can characterize a
MC-SSL channel with a set of attributes:

{channel id, endpoint1, endpoint2, proxy, direction, cipher suite} (2)

Channel id is the identifier of a channel in a MC-SSL session context.
Endpoint1 and endpoint2 are either DNS names or IP addresses of
corresponding machines. Proxy attribute is null if a channel is an end-to-end
channel; otherwise, it is the DNS name or IP address of the proxy in a proxy
channel. Direction can be one of the following values: D, C, and S. D
indicate a duplex channel; C or S indicates a simplex channel pointing to C
or S, respectively. Cipher suite has been defined in expression (1). Figure 4
shows a sample MC-SSL session having five channels. Channel 1 and 4 are
primary (or backbone) channels, and channel 2, 3, and 5 are secondary
channels. In addition, only channel 1 is a duplex channel for application
data; others are simplex channels from S to C. Typically, C can use channel

Supporting End-to-End Security across Proxies with MC-SSL 7

1 to send encrypted requests to S, and S can choose one of the five channels
to send back the responses according to the contents. In addition, these
channels are negotiated in the following order: channel 1 is the first; channel
2 and 3 are negotiated through channel 1; channel 4 is the first proxy
channel, which is also negotiated through channel 1; channel 5 is negotiated
through channel 4. Except for channel 1, other channels can be set up at any
time. In Section 5 we present the protocol to negotiate and use primary
channels, especially primary proxy channels.

4. RELATED WORK

We have not found other published research work that resembles MC-
SSL protocol and this framework as a whole although there are other
approaches that address the issues we are concerned about.

There are a few other approaches that address the end-to-end security for
the case of chained proxies. One solution is to make application data
unreadable to P by end-to-end encryption-based tunneling. For instance, the
approach proposed by Kwon et al. [3] requires C to encrypt data twice: first
for S using KS, and then for P using KP. Consequently, functions at the
application layer, such as content transformation and virus scanning, cannot
be performed by P.

Another solution is to simultaneously set up a SSL connection and a SSL
chain between C and S, both shown in Figure 1. This approach is adopted by
Kennedy [4]. To provide confidentiality, sensitive data is sent through the
end-to-end connection instead of P. This is a typical approach, but it is
insecure for the following reasons: most web/application servers still
authenticate their clients using id/password. If C trusts P and gives its
id/password to P, then P can impersonate C in unconstrained fashion. There
are a number of solutions for C to avoid exposing id/password to P including
sharing the master key or the symmetric session keys with P, or helping P
sign the verification data. However, P can still impersonate C in a session
and conduct person-in-the-middle attacks. MC-SSL is securer than this
approach. In MC-SSL, every entity authenticates each other with their
genuine identities; therefore, there is no impersonation in MC-SSL. Besides,
every connection between any pair of C, S, and P has exclusive session
keys.

A simple extension to SSL has been proposed by Portmann and
Seneviratne [5] in order to get an extra cleartext channel without encryption
and MAC protection; however, the security strength of this method is
questionable because the cleartext channel is established without strict
negotiation, and moreover, a malicious attacker can modify and inject

8 Y. Song, V. Leung, K. Beznosov

cleartext data at will if there is no security protocol at the application layer.
Besides, their approach is not capable of creating other types of channels
except the primary end-to-end channel and the extra cleartext channel.

Finally, we would like to compare MC-SSL with XML security solutions
including XML Security [6,7] and Web Services Security (WSS) [8,9]. XML
Security is a set of core specifications that define XML syntaxes to represent
encryption, hash, and digital signature. WSS is a framework that unites a
number of existing and developing specifications for the purpose of
constructing comprehensive security solutions for XML-based Web services.
WSS is based on XML Security. Compared with XML Security and Web
Services Security, MC-SSL is a complete and compact protocol under
application layer, which is able to provide authentication, key exchange, and
secure data transportation for client-server applications with or without the
needs of proxies. On the other hand, both XML Security and WSS are not
self-contained protocols, and they do not attempt to specify a fixed security
protocol for authentication and key exchange so that they can have the
extensibility and flexibilities to integrate existing or new security
technologies at different layers. As with SSL, MC-SSL can be combined
with XML Security, or adopted by WSS for securing Web service. For
example, by combining XML Security with MC-SSL, an application can use
MC-SSL to do authentication and key exchange for client, server, and
proxies, and use XML Security to perform complex encryptions and/or
digital signatures on application data.

5. PROXY CHANNEL PROTOCOL

In this section, we explain the design of proxy channel protocol in MC-
SSL. We deliberately designed the proxy protocol as a protocol layer on top
of SSL as shown in the right part of Figure 5. The left part shows the current
Internet architecture. Such a design can keep underlying SSL protocol
unchanged if a client needs only the MC-SSL proxy protocol without
multiple cipher suites, or needs only SSL to access an SSL-based server
without MC-SSL proxy protocol. The whole protocol described in this
section deals with primary channels including the primary end-to-end
channel and primary proxy channels, such as channel 1 and 4 shown in
Figure 4.

The proxy protocol consists of three sub-protocols: handshake,
application data, and alert protocols. Handshake protocol sets up the proxy
channel, application data protocol defines messages for transporting
application data, and alert protocol conveys warnings and fatal errors. The

Supporting End-to-End Security across Proxies with MC-SSL 9

alert protocol of MC-SSL is similar to that of SSL. We do not describe the
alert protocol in this paper. Please refer to RFC 2246 [1].

IP

TCP

SSL

Application

IP

TCP

SSL

MC-SSL Proxy

Application

Figure 5. SSL and MC-SSL proxy protocol in the Internet layered architecture

5.1 Handshake protocol

A full handshake is shown in Figure 6. There are four stages: C-S
handshake, C-P handshake, P-S handshakes, and confirmations of success.
The proxy protocol is based on SSL. Three SSL connections are established
to provide basic authentication, confidentiality, and data integrity between
peer points. In addition, the P-S connection may be replaced by a permanent
SSL or an IPSec connection.

After setting up a SSL connection, C and S exchange a pair of hello
messages to initiate a MC-SSL session. Both hello messages, i.e.
MC_CLIENT_HELLO and MC_SERVER_HELLO, have the following
fields: 1) protocol version; 2) session id, which is generated by S to identify
a MC-SSL session; 3) MAC key, which is used for the MAC in
APP_DATA_CONTROL_PROXY messages; 4) the hash algorithm for
MAC.

C then sends two messages to S: CLIENT_SECURITY_POLICY and
CLIENT_CAPABILITIES. They tell S about security policy and device
capabilities of C. Security policy may define whether a proxy is allowed to
deliver a certain type of information. Device capabilities include hardware
and software information such as screen resolution, power, CPU, memory,
OS, browser capabilities, virus scanning capability, etc.

After a MC-SSL session is started, S or C can start negotiating a proxy
channel at any time when necessary. In Figure 6, S sends C a
PROXY_SUGGESTION_S2C message, which contains information such as
the purpose of the proxy, the channel direction (simplex or duplex and so
on), the DNS name and the certificate of the proxy. C sends
PROXY_REQUEST_C2S back to S. It has similar fields as the previous

10 Y. Song, V. Leung, K. Beznosov

message. S responds with PROXY_REQUEST_RESPONSE_S2C to give
the final decision.

C P S
SSL connection setup

CLIENT_SECURITY_POLICY

CLIENT_CAPABILITIES

PROXY_SUGGESTION_S2C

PROXY_REQUEST_C2S

PROXY_REQUEST_RESPONSE_S2C

SSL connection setup

PROXY_REQUEST_C2P

CLIENT_AUTHEN_REQ_P2C *

CLIENT_AUTHEN_RESP_C2P *

SSL connection setup

PROXY_REQUEST_P2S

PROXY_FINISH

PROXY_FINISH

PROXY_FINISH

1

2

3

* Indicates optional messages

4

MC_CLIENT_HELLO

MC_SERVER_HELLO

CLIENT_CAPABILITIES *

Figure 6. Message flow for a full handshake

Supporting End-to-End Security across Proxies with MC-SSL 11

The C-P handshake also starts with a SSL handshake, and then C sends P
a PROXY_REQUEST_C2P message to inform P the session id, processing
needed, channel direction, preferred authentication methods, handshake type,
and the IP address and port number of S. In addition, a flag indicates if
CLIENT_CAPABILITIES will follow. CLIENT_AUTHEN_REQ_P2C and
CLIENT_AUTHEN_RESP_C2P is a pair of messages for P to authenticate
C. The former tells C the authentication method, such as user id/password,
challenge/answer, or PKI certificate, and the latter returns authentication
data.

If the authentication is passed, P will start the handshake with S. Note
that during the SSL handshake S and P should authenticate each other using
their certificates. PROXY_REQUEST_P2S in Figure 6 carries a session id
for S to bind the proxy channel with the corresponding end-to-end channel.
The last three messages return the final result of negotiating a primary proxy
channel.

As SSL does, MC-SSL supports the resumption of a cached session,
which results in an abbreviated handshake. Some messages in Figure 6, such
as the client and server hello messages, the C-P and P-S proxy request
messages, and the final proxy finish message, are still necessary, but others
are omitted in an abbreviated handshake.

5.2 Application data protocol

The purpose of the application data protocol is to transport application
data between C and S. There are two ways to do this: one is through the end-
to-end channel as shown in the A part of Figure 7; the other is through the
proxy channel under the control of the end-to-end channel, as shown in the B
part of Figure 7. Figure 7 only shows that S sends data to C. The
transmission in the opposite direction uses the same messages.

To use the end-to-end channel, the sender encapsulates data into an
APP_DATA_DIRECT message and sends to the receiver through the end-
to-end channel. To transport a piece of content through the proxy channel,
three messages are involved: APP_DATA_TO_PROXY,
APP_DATA_FROM_PROXY, and APP_DATA_CONTROL_PROXY.
They have the same sequence number. The sender wraps the content into
APP_DATA_TO_PROXY, and sends it to P. After processing the content, P
generates APP_DATA_FROM_PROXY, and forwards the result to the
receiver. Besides, the sender will directly send the receiver an
APP_DATA_CONTROL_PROXY message in order to control the behavior
of P. The rest of this section briefly describes these three messages.

12 Y. Song, V. Leung, K. Beznosov

APP_DATA_FROM_PROXY

APP_DATA_CONTROL_PROXY

C P S

APP_DATA_TO_PROXY

APP_DATA_DIRECT

B

A

Figure 7. Message flow for transporting application data

APP_DATA_TO_PROXY contains such fields as content, processing
request, and change restriction. Field content can be a complete or
fragmental piece of content. Processing request tells P how to process the
content. Change restriction indicates if the content is unchangeable,
modifiable, or discardable. APP_DATA_FROM_PROXY includes such
fields as content and result. The former is the processed content. The latter
outlines the processing result. APP_DATA_CONTROL_PROXY conveys
information such as proxy channel id, content attributes, change restriction,
and MAC. Proxy channel id indicates which proxy channel the
corresponding APP_DATA_TO_PROXY has gone through. Field content
attribute is a compound string that describes some attributes of content, e.g.
content types. The benefit to know about content types is that the receiver
can test if P has injected new types of potentially dangerous code. MAC is
used for verifying the integrity of unmodifiable content, and is calculated
with HMAC hash function described in RFC 2246 [1]. MAC keys and the
hash algorithm are negotiated in the initial hello messages.

6. DISCUSSION OF PROXY PROTOCOL

As pointed out in section 2, when an application proxy is needed, some
applications allow or force C to use a SSL chain to access S through a proxy
such as a WAP gateway. Consequently, the end-to-end security completely
depends on the degree of trustworthiness of P. However, it is rare to have an
unconditionally trusted P administrated by a third party. MC-SSL lets C and
S themselves decide whether or not to have a proxy channel and how to use
it after having the secure end-to-end channel in place. Besides other
advantages, this feature enables making such a decision after both parties

Supporting End-to-End Security across Proxies with MC-SSL 13

have determined the degree of trust in each other, which could be a function
of the corresponding credentials.

The possible misuse of a proxy is another problem of the SSL chain
model. For instance, a user may mistakenly keep using the same proxy
configured in his browser even when a proxy or gateway that is hosted (and
therefore trusted) by a bank is available for online banking. To avoid such a
misuse, when starting a secure session, C should always first connect to S
rather than P, then negotiate a proxy with S, and finally connect to P to set
up the proxy channel. That is the order in which MC-SSL proceeds.

The following is our informal discussion of why MC-SSL proxy protocol
can enhance end-to-end security in the presence of proxies.
1. P is authenticated by S as a proxy instead of a client; therefore, P cannot

impersonate C. P is not only authenticated by its certificate, but also by
the session id received from C as a security token especially if session id
is implemented to be a cryptographically random string. Moreover, S has
already obtained the certificate of P before verification.

2. As described earlier, because C first connects and negotiates with S
rather than P, and the proxy is decided after S already has the security
policy and terminal capabilities of C, the risk of misusing proxies is
reduced. S can decide if C needs a proxy and what type of proxy is
needed, and even suggest a proxy.

3. Sensitive data such as id/password and credit card information can be
transported through the end-to-end channel, while relatively non-
sensitive data including Web pages, software, and email attachments can
go through proxies for content scanning or transformation. Note that
content scanning can increase system security. Neither does an end-to-
end SSL connection nor a SSL proxy chain provide both benefits.

4. A proxy channel can be explicitly negotiated as a one-way channel,
which eliminates the chance that P turns a response channel into a
request channel. For instance, we can have a one-way proxy channel that
only allows responses from S to C; all requests from C to S have to go
through the secure end-to-end channel. As a result, P cannot send any
fake request to S to trigger a transaction.

5. When unmodifiable data is delivered through P, the MAC of the data is
calculated and sent to the receiver through the end-to-end channel, and
hence P cannot modify the data without being detected.

6. When modification is permitted, content attributes such as content types
are sent to the receiver through the end-to-end channel. Information of
content types can prevent P from injecting dangerous code or contents.

We also need to analyze security issues still unsettled in MC-SSL proxy

protocol. Since the proxy protocol is on top of SSL, the strength of

14 Y. Song, V. Leung, K. Beznosov

communication security between two peer points is no weaker than that of
SSL. In addition, the cryptographic technique of the end-to-end MAC is also
inherited from SSL. Therefore, we do not search for vulnerabilities related to
the cryptographic techniques, and we mainly analyze the security issues at
the protocol level.
1. It is not easy for S and C to decide on using which channel to deliver

data: end-to-end channel or proxy channel. There are a number of
questions to answer such as the following: What is the sensitivity of the
data? Is the data too sensitive to be delivered through the proxy? What if
sensitive data needs a proxy? What is the worst consequence if P
modifies the data? What if insensitive data mixes with sensitive data?
And so on. For S, the security attributes of contents such as sensitivity
level need to be defined beforehand. Moreover, S needs to get the
security policies to help answer those questions. For C, it is normally
much harder to answer them. A conservative strategy is for C to choose
the end-to-end channel whenever the answer is unclear. Fortunately, in
typical Internet applications, S does not have to use a proxy to process
the data from C. To summarize, S and C must define their security
policies, security attributes of data or contents, and device capabilities.
How to define them is beyond the scope of this paper.

2. The proxy protocol alone cannot guarantee that P has correctly
performed its task. When data is modifiable, there are mainly two types
of threats: first, P can modify requests or responses between C and S;
second, P could inject code if the original content has some embedded
code. The strategy to thwart the first threat is neither to send sensitive
data through an untrustworthy proxy, nor to use any data from it as
sensitive data. To mitigate the second threat, S may deliver contents
without embedded code, or with embedded code which type is harmless
to C.
For some of the above problems, XML Security [6,7] is a good solution

if both C and S support it because XML is very flexible to describe data and
its attributes. We can use different keys to protect different parts of a XML
document. For instance, S can use the key for the end-to-end channel to
encrypt a XML element that requires end-to-end confidentiality before S
wraps the XML document into an APP_DATA_TO_PROXY message. As
mentioned in Section 4, XML Security can be well combined with MC-SSL
to further enhance end-to-end security.

Supporting End-to-End Security across Proxies with MC-SSL 15

7. CONCLUSIONS AND FUTURE WORK

In this paper, we present Multiple-Channel SSL, a new security protocol
extended from SSL. The multiple-channel model of MC-SSL is more
flexible and general than SSL, and hence it is able to satisfy diverse
requirements for different applications, especially for emerging mobile or
wireless applications. MC-SSL exhibits three advantages: first, it improves
end-to-end security in the presence of application proxies; second, MC-SSL
supports multiple cipher suites in the same connection so that appropriate
communication security can be selectively applied to different data or
contents; third, MC-SSL supports channel negotiation according to security
policies, device capabilities, and security attributes of contents.

We further present the proxy channel protocol including handshake
protocol and application data protocol. The handshake protocol completes
negotiation, authentication, key exchange, and channel binding, while the
application data protocol supports delivering application data through a
proxy channel. Besides analyzing the improvement in end-to-end security,
our discussion examines some unsettled issues and also suggests solutions to
address them.

MC-SSL is our ongoing research work, which we divide into multiple
phases. In the first phase, we developed the model and the proxy protocol. In
the second phase, we develop the protocol to support multiple cipher suites,
and also extend MC-SSL to support multi-hop proxy channels.

REFERENCE

[1] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, Jan. 1999
[2] M. Abadi and R. Needham, “Prudent Engineering Practice for Cryptographic Protocols,”

IEEE Trans. on Software Engineering, Vol. 22, No. 1, pp. 6-15, Jan. 1996
[3] E.K. Kwon, Y.G. Cho, and K.J. Chae, “Integrated Transport Layer Security: End-to-End

Security Model between WTLS and TLS,” Proc. IEEE 15th Int. Conf. on Information
Networking, Jan. 2001

[4] D. J. Kennedy, “An Architecture for Secure, Client-Driven Deployment of Application-
Specific Proxies,” Master Thesis in Computer Science, University of Waterloo, 2000

[5] M. Portmann and A. Seneviratne, “Selective Security for TLS,” Proc. IEEE 9th Int. Conf.
on Networks, pp. 216-221, Oct. 2001

[6] W3C, XML Signature Recommendations, http://www.w3.org/Signature/, Feb. 2002
[7] W3C, XML Encryption Recommendations, http://www.w3.org/Encryption/, Dec. 2002
[8] IBM Corp. and Microsoft Corp., “Security in a Web Services World: A Proposed

Architecture and Roadmap,” http://www-106.ibm.com/developerworks/webservices
/library/ws-secmap/, Apr. 2002

[9] OASIS Open, “Web Services Security: SOAP Message Security,” http://www.oasis-
open.org/committees/documents.php?wg_abbrev=wss, working draft 17, Aug. 2003

