
Authorization Recycling in Hierarchical
RBAC Systems

QIANG WEI
University of British Columbia
JASON CRAMPTON
Royal Holloway, University of London
KONSTANTIN BEZNOSOV and MATEI RIPEANU
University of British Columbia

As distributed applications increase in size and complexity, traditional authorization architec-

tures based on a dedicated authorization server become increasingly fragile because this decision

point represents a single point of failure and a performance bottleneck. Authorization caching,
which enables the re-use of previous authorization decisions, is one technique that has been used

to address these challenges.

This paper introduces and evaluates the mechanisms for authorization “recycling” in RBAC
enterprise systems. The algorithms that support these mechanisms allow making precise and

approximate authorization decisions, thereby masking possible failures of the authorization server
and reducing its load. We evaluate these algorithms analytically as well as using simulation and a

prototype implementation. Our evaluation results demonstrate that authorization recycling can

improve the performance of distributed access control mechanisms.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]: Security
and Protection; C.2.4 [Computer-Communication Networks]: Distributed Systems—Distributed applications;
C.4 [Computer-Communication Networks]: Performance of Systems—Reliability, availability, and service-
ability

General Terms: Security, Design, Performance, Reliability

Additional Key Words and Phrases: SAAM, RBAC, access control, authorization recycling

1. INTRODUCTION

Modern access control solutions [Borders et al. 2005; DeMichiel et al. 2001; Entrust 1999;
Karjoth 2003; Netegrity 2000; OMG 2002; Securant 1999; Spencer et al. 1999; Oracle
2008] are based on the request-response model as illustrated in Figure 1. In this model,
a policy enforcement point (PEP) intercepts application requests, obtains access control
decisions (also known as authorizations) from a policy decision point (PDP), and enforces
these decisions.

In the large enterprise systems currently deployed, PDPs are commonly implemented
as logically centralized authorization servers. This design provides important benefits:
consistent policy enforcement across multiple PEPs and reduced administration cost for
authorization policies. Like all centralized approaches, however, this architecture has two
critical drawbacks: the PDP is a single point of failure and a potential performance bottle-
neck.

The single point of failure property of the PDP leads to reduced availability: the autho-
rization server may not be reachable due to a failure (transient, intermittent, or permanent)

ACM Journal Name, Vol. V, No. N, June 2009, Pages 1–0??.

2 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

client

subject

application server

authorization
server

policy
decision point

(PDP)

resource

policy
enforcement point

(PEP)

application
request

application
response

authorization
request

authorization
response

Fig. 1. Access control based on request-response model.

of the network, of the software located in the critical path (e.g., the operating system), of
the hardware, or even as a result of a misconfiguration of the supporting infrastructure. A
conventional approach to improving the availability of a distributed infrastructure is fail-
ure masking through redundancy (either information, time, or physical [Johnson 1996]).
However, redundancy and other general purpose fault-tolerance techniques for distributed
systems scale poorly, and become technically and economically infeasible when the num-
ber of entities in the system reaches thousands [Kalbarczyk et al. 2005; Vogels 2004]. At
the same time, large-scale commodity computing is becoming a reality, with eBay hav-
ing 12,000 servers and 15,000 application server instances [Strong 2007], and Google
estimated to have “more than 450,000 servers spread in at least 25 locations around the
world” [Markoff and Hansell 2006].

In a massive-scale enterprise system with non-trivial authorization policies, making au-
thorization decisions is often computationally expensive due to the complexity of the poli-
cies involved and the large size of the resource and user populations. Thus, the centralized
PDP often becomes a performance bottleneck [Nicomette and Deswarte 1997]. Addition-
ally, the communication delay between the PEP and the PDP can make the authorization
overhead prohibitively high.

The state-of-the-practice approach to improving overall system availability and reducing
the authorization processing delays observed by the client is to cache authorizations at
each PEP—what we refer to as authorization recycling. Existing authorization solutions
commonly provide PEP-side caching [Borders et al. 2005; Entrust 1999; Oracle 2008;
Netegrity 2000; Spencer et al. 1999]. These solutions, however, only employ a simple
form of authorization recycling: a cached authorization is reused only if the authorization
request in question exactly matches the original request for which the authorization was
made. We refer to such reuse as precise recycling.

To improve authorization system availability and reduce delay, we previously proposed
the Secondary and Approximate Authorization Model (SAAM) [Crampton et al. 2006].
SAAM adds a secondary decision point (SDP) to the request-response model, as shown in
Figure 2. The SDP is collocated with the PEP and can resolve authorization requests not
only by precise recycling but also by computing approximate authorizations from cached
authorizations. SAAM is independent of the specifics of the application and access control
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 3

client

subject

application server
authorization

server

PDP

resource

PEP

Secondary
Decision

Point (SDP)

application
request

application
response

authorization
request

authorization
response

authorization
request

authorization
response

Fig. 2. SAAM adds a secondary decision point (SDP) to the request-response model.

policy. For each class of access control policies, however, specific algorithms for inferring
approximate responses—generated according to the particular access control policy—need
to be designed.

This paper proposes SAAMRBAC—the SAAM authorization recycling algorithm for
role-based access control (RBAC) model. Introduced more than a decade ago, RBAC [Fer-
raiolo and Kuhn 1992; Sandhu et al. 1996] has been deployed in many organizations for
access control enforcement and eventually matured into the ANSI RBAC standard [ANSI
2004]. In RBAC, instead of directly assigning permissions to users, the users are assigned
to roles and the roles are mapped to permissions. A role normally represents the organiza-
tional position that is responsible for certain job functions. Users are assigned appropriate
roles according to their qualifications. Permissions are a set of many-to-many relations
between objects and operations. Roles describe the relationship between users and permis-
sions through user-to-role assignment (UA) and permission-to-role assignment (PA). Our
inference algorithm makes use of this structure to infer approximate authorizations for new
requests.

Compared to approaches that proactively pull or push the entire PA set (or even the
whole policy) to each SDP, our approach—based on on-demand caching of authorization
responses—offers two advantages. First of all, if the working-set of the PEP is a signif-
icantly smaller subset of the whole policy, it may well be the case that the SDP cache is
“warm” enough and hence able to answer a significant proportion of authorization requests
more quickly than the PDP (since the cache size is significantly smaller than the whole
RBAC policy and the SDP is collocated with the PEP). Thus, depending on application
workload and deployment scenario, our approach offers the possibility of rapid response
times without the need for large caches. Second and more importantly, our approach allows

ACM Journal Name, Vol. V, No. N, June 2009.

4 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

for the PEP and PDP remain unchanged. That is, the middleware used for PEP-to-PDP
communications can be reconfigured in such a way that the SDP is interposed between the
PEP and PDP. As a result, the SDP can act as a PDP’s proxy for the PEP, without requir-
ing any modification at the PEP or at the PDP. This means that one can retrofit existing
authorization systems with our SDP without changing PEPs or PDPs. For this purpose,
dynamic weaving [Schroder-Preikschat et al. 2006] or other existing techniques, such as
meta-objects [Astley et al. 2001], for automatically generating custom RPC stubs are read-
ily available. Those RBAC systems that already employ SDPs for precise recycling are
even more amenable to being retrofitted with the SAAMRBAC aproximate recycling logic
proposed in this paper.

To evaluate properties of SAAMRBAC algorithms we used an experimental testbed with
100 subjects, 3,000 permissions and 50 roles. The evaluation results demonstrate an 80%
increase, compared to precise recycling, in the number of authorization requests that can be
served without consulting the access control policies stored remotely at the PDP. These re-
sults suggest that deploying SAAMRBAC improves the availability and scalability of RBAC
systems, which in turn improves the performance of the enterprise systems.

To summarize, we make four technical contributions. First, we define inference rules
specific to RBAC authorization semantics and develop recycling algorithms from these
rules. Second, we suggest how modification to these algorithms in order to support hier-
archical RBAC. Third, we develop algorithms that update SDP cache to handle different
types of policy changes. Finally, we study deployment strategies of our algorithms to
achieve different performance-related goals.

The rest of this paper is organized as follows. Section 2 presents background, including
SAAM and RBAC. Section 3 describes SAAMRBAC design. Section 4 reports results of
evaluating SAAMRBAC. Section 5 discusses related work. We conclude in Section 6.

2. BACKGROUND

This section provides background on SAAM and ANSI RBAC that is necessary for under-
standing the rest of the paper.

2.1 Secondary and approximate authorization model

SAAM [Crampton et al. 2006] is a general framework for making use of cached PDP
responses to compute approximate responses for new authorization requests. An autho-
rization request is a tuple (s, o, a, c, i), where s is the subject, o is the object, a is the
access right, c is the contextual information relevant to the request, and i is the request
identifier. Two requests are equivalent if they only differ in their identifiers. An authoriza-
tion response is a tuple (r, i, E, d), where r is the response identifier, i is the corresponding
request identifier, d is the decision, and E is the evidence. The evidence can be used in
some SAAM implementations to aid the response verification.

In addition, SAAM defines primary, secondary, precise, and approximate authorization
responses. A primary response is a response made by the PDP, whereas a secondary re-
sponse is produced by an SDP. A response is precise if it is a primary response to the
request in question or a (secondary) response to an equivalent request. Otherwise, if the
SDP infers the response based on primary responses to other requests, the response is ap-
proximate.

In general, the SDP infers approximate responses based on cached primary responses
and any information that can be deduced from the application request and system environ-
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 5

ment. The larger the number of cached responses, the more information is available to the
SDP, and the SDP will become a better and better PDP simulator.

We say an SDP is safe if any request it allows would also be allowed by the PDP [Cramp-
ton et al. 2006]. A safe SDP returns either undecided or deny for any request for which it
cannot infer an allow response. A safe SDP can be configured or designed to implement a
closed world policy1 by simply denying any request that it cannot evaluate. More generally,
we allow the SDP to return an undecided response; it is then up to the PEP to decide how
such a response should be handled. In most cases, the PEP will deny the request, thereby
“failing safe”—one of the important principles identified by [Saltzer and Schroeder 1975].
We say an SDP is consistent if any request it denies would also be denied by the PDP.

In general, one would wish to implement a safe and consistent SDP, which returns the
same response as the PDP would have for any request that it can evaluate. Clearly, any
SDP that only returns precise decisions—by only returning responses for equivalent re-
quests for which decisions have been cached—is safe and consistent. However, such an
SDP is rather limited. SAAM seeks to extend the functionality of the SDP so that it can
generate approximate responses and remain safe and consistent. However, the limitations
of the underlying access control policy, time or space complexity of the inference algo-
rithms, or business requirements could limit an SDP implementation to being either safe
or consistent, but not both.

2.2 Role-based access control

There are a number of RBAC models in the literature, including RBAC96 [Sandhu et al.
1996] and the ANSI RBAC standard [ANSI 2004]. All such models assume the existence
of a set of users U , a set of roles R and a set of permissions P . They also assume the
existence of a user-to-role assignment relation UA ⊆ U × R and a permission-to-role
assignment relation PA ⊆ P × R. A user u is authorized for a permission p ∈ P if there
exists a role r ∈ R such that (u, r) ∈ UA and (p, r) ∈ PA.

Many models also assume the existence of a role hierarchy RH , which is modeled as
a partial order on the set of roles. That is RH ⊆ R × R, where RH is reflexive, anti-
symmetric, and transitive. It is customary to write r 6 r′ rather than (r, r′) ∈ RH . In this
case, u is authorized for p if there exist roles r, r′ ∈ R such that (u, r) ∈ UA, r > r′, and
(p, r′) ∈ PA.

An important innovation in RBAC96 and ANSI RBAC is the concept of sessions. A user
initiates a session (typically when authenticating to the system) by activating some subset
of the roles to which he is assigned. Access requests are evaluated in the context of the
session that initiates the request. A request for permission p is granted if the user session
contains a role r and there exists a role r′ such that r > r′ and (p, r′) ∈ PA.

3. SAAMRBAC

SAAMRBAC applies SAAM concepts to RBAC systems. In a system using SAAMRBAC,
the SDP caches authorization requests and the corresponding authorization decisions, and
computes new authorization decisions based on the cache when the PDP is unable to make
a timely decision. As these decisions are not obtained from the PDP, they are by necessity
secondary. In this section we present the algorithms that can be employed by an SDP in

1A closed world policy allows a request if there exists an allow response for it, and denies it otherwise.

ACM Journal Name, Vol. V, No. N, June 2009.

6 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

the context of RBAC systems. We show that an SDP that implements these algorithms will
make safe and consistent secondary decisions.

3.1 Assumptions

In general, we assume that the PDP is the only component that has access to the entire
authorization policy and the SDP is not aware of the policy. In particular, we assume that
the SDP does not have direct access to the permission-to-role assignment relation (PA). It
is the job of the SDP to try to “reconstruct” PA on the basis of information that can be
inferred from primary responses to previous requests. If we relieve this assumption, e.g.,
the PDP is able to “push” the entire policy to the SDP, then the SDP may compute a precise
response using the same authorization logic as the PDP. However, pushing entire policy
is rarely done in enterprise-grade deployments due to the limitations of the underlying
security protocols, the scale of the authorization policies, the administrative constraints,
or the cost of keeping up to date user, attribute, and permission data at multiple SDPs.
Providing SDP with no direct access to PA also enables transparently interposing SDP
between PEP and PDP without having to modify the protocol between the two. This is
an important practical benefit when it comes to retrofitting existing authorization systems
with SDP-like components.

We further assume that authorization requests made to the SDP (and the PDP) include
the set of roles, this information being supplied by the PEP. This role information arrives
at the PEP in a number of different ways [Lorch et al. 2003]. First, it can be “pushed” from
the client’s security subsystem, as in CORBA [OMG 2002], DCE [Gittler and Hopkins
1995], SESAME [Kaijser 1998], and GAA API [Ryutov and Neuman 2000], where the
security attributes are a part of the security context of the application request. Second,
it can also be “pulled” by the PEP from external attribute services such as LDAP or the
Shibboleth Attribute Authority [Internet2 2008].

For most of Section 3, we assume that the SDP does not have access to the role hier-
archy relation and does not try to reconstruct hierarchical relationships between roles. In
Section 3.8, we drop this assumption and show how our approach needs to be modified
when the SDP is aware of the role hierarchy structure.

3.2 Preliminaries

We must first consider how to map SAAM notions of subject and request to appropriate
RBAC concepts. The notion of session is important in RBAC96 and ANSI RBAC for im-
plementing the principle of least privilege [Saltzer and Schroeder 1975]: by activating a
strict subset of the roles to which she is authorized, a user may limit the privileges that
she can exercise while interacting with a computer system. It is a session that is synony-
mous with a subject in identity-based access control systems, since access decisions are
made on the basis of the permissions that are available to the activated roles. Accordingly,
SAAMRBAC models a subject as a set of roles.

The Core Specification of ANSI RBAC, similarly to RBAC96, defines two functions
that map sessions to users and roles: session users(s : SESSIONS) → USERS and
session roles(s : SESSIONS)→ 2ROLES . SAAMRBAC abstracts a subject as a set of
roles activated in a given session. In the terms of above functions, a subject in SAAMRBAC
is an output of session roles(. . .). Therefore, if user u started two sessions s1 and s2,
they are treated as two separate—and possibly unrelated—subjects in SAAMRBAC, un-
less same roles are activated for both of these sessions. On the other hand, if another
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 7

user u′ started session s3, and the sets of activated roles in s2 and s3 are equal, then
SAAMRBAC algorithms do not distinguish between the corresponding subjects. Further-
more, in SAAMRBAC, we do not take into account the relationship between users and their
sessions.

RBAC96 treats permissions as “uninterpreted symbols”, because such entities are very
likely to be application- and context-specific. However, ANSI RBAC defines permissions
to be object-operation pairs. It seems appropriate to regard a SAAM request (s, o, a, c, i)
and an RBAC request (s, p, c, i) as equivalent, where p = (o, a).

A response (r, i, E, d) indicates the decision to a request (s, p, c, i). For simplicity, we
introduce the following conventions that will be used in the remainder of the paper: we
omit c and i from requests; we omit r, E and i from responses; we write +(s, p) to denote
a grant decision for request (s, p), and−(s, p) to denote a deny decision. More specifically,
+(s, p) means that there exists role r ∈ s such that (p, r) ∈ PA and −(s, p) means that
there does not exist such an r. We also write X − Y to denote the set {x ∈ X : x 6∈ Y }.

3.3 Inference rules

Using the notation from the previous section, we first note the following rules that can be
applied to generate approximate responses.

Rule+. If +(s, p) and s′ ⊇ s, then request (s′, p) should be granted.
Rule−. If −(s, p) and s′ ⊆ s, then request (s′, p) should be denied.

Rule+ follows from the fact that if some permission p is granted for the set of roles s, then
there exists r ∈ s such that r is authorized for p, and r ∈ s′ for any s′ ⊇ s. Rule− follows
from the fact that if p is denied for the set of roles s, then there does not exist r ∈ s such
that r is authorized for p; trivially, no subset of s will be authorized for p.

In the following sub-sections, we first present naive algorithms and show that they are
suboptimal in terms of success rate and space. Then, we define canonical form of cache
and describe algorithms that work over such cache.

3.4 Naive algorithms

We construct two relations Cache+ ⊆ 2R×P and Cache− ⊆ R×P to generate approx-
imate responses. The basic idea is to use primary deny responses to build Cache− and
primary allow responses to build Cache+.

Cache construction. Whenever the SDP receives a deny response−(s, p), the pair (r, p)
is added to Cache− for every role r ∈ s (since we know that no role in s can be authorized
for p). In contrast, whenever the SDP receives an allow response +(s, p), the pair (s, p) is
added to Cache+.

Request evaluation. Then to evaluate a request (s, p), the SDP first checks whether s
contains a role r such that (r, p) 6∈ Cache−. (If not, no role in s is authorized for p and
the SDP denies the request.) Then the SDP checks whether there exists (s, p) ∈ Cache+

such that s′ ⊇ s. If so, then the SDP allows the request and otherwise the SDP returns
undecided. The algorithm to evaluate request (s, p) is summarized below.

(1) Let s+ = {r ∈ s : (r, p) 6∈ Cache−}
(2) If s+ = ∅, then deny (every role in s was not authorized for p)
(3) Else

ACM Journal Name, Vol. V, No. N, June 2009.

8 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

(a) If there exists (s′, p) ∈ Cache+ such that s ⊇ s′ then allow
(b) Else undecided

PROPOSITION 1. An SDP that implements the above request evaluation algorithm is
safe and consistent.

PROOF. Consider the response produced by the SDP for request (s, p). If the SDP
produces a deny response then for all r ∈ s, there exists (r, p) ∈ Cache−. This means that
the PDP must have generated a number of responses of the form −(s1, p), . . . ,−(sk, p),
k > 1, such that for all r ∈ s, r ∈ si for some i. Hence, the PDP would also deny (s, p).

If the SDP produces an allow response then there exists (s′, p) ∈ Cache+ such that
s ⊇ s′. Hence, the PDP would allow request (s, p), since it must have allowed (s′, p).

The naive algorithms, however, may return undecided responses for some requests that
would be allowed by the PDP. Suppose that ({r1, r2, r3}, p) ∈ Cache+ and (r3, p) ∈
Cache−. Now the evaluation of request ({r1, r2, r4}, p) with the above algorithm re-
turns undecided because {r1, r2, r4} 6⊇ {r1, r2, r3}. However, {r1, r2, r4} ⊃ {r1, r2}
and hence request ({r1, r2, r4}, p) can safely be authorized. The optimized algorithms we
present in the following sections correct this problem.

3.5 Cache compression

We have seen that the naive method of constructing the cache may not optimize the “hit
rate” – the proportion of requests for which the SDP can provide a definitive answer. We
now define the canonical form of the cache.

DEFINITION 1. Given a cache, Cache = (Cache+,Cache−), we say Cache is in
canonical form if the following conditions hold:

(1) if for all (s, p) ∈ Cache+, there does not exist r ∈ s such that (r, p) ∈ Cache−;
(2) for all distinct (s, p), (s′, p) ∈ Cache+, s 6⊆ s′ and s 6⊇ s′.

The first of the two requirements above ensures that all roles of a subject s that are
known not to be authorized for a permission are removed from s. The second requirement
simply ensures that there is no redundancy in the cache: it makes no difference to the allow
responses returned by the request evaluation algorithm; in other words, it minimizes the
amount of storage required for Cache+.

Cache compression improves the hit rate. In particular, we claim the following state-
ments hold:

(1) If Cache+ satisfies property (2) but does not satisfy property (1) above, then the hit
rate is not optimal.

(2) If Cache+ does not satisfy property (2) above, then the size of the cache is not mini-
mal. That is, there exists a smaller cache that provides the same hit rate.

(3) If the cache is in canonical form, then any smaller cache has a lower hit rate.

Proof of Claim 1. Suppose that Cache+ does not satisfy property (1). Then there exists
(s, p) ∈ Cache+ such that r ∈ s and (r, p) ∈ Cache−. Now request (s′, p), where s′ ⊇
s− {r}, is authorized since r is not authorized for p. However, s′ 6⊇ s and by assumption
Cache+ satisfies property (2) so there does not exist s′′ ⊆ s such that (s′′, p) ∈ Cache+.
Hence, the SDP cannot resolve request (s′, p). Hence, the hit rate is not optimal.
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 9

Proof of Claim 2. Suppose that (s, p), (s′, p) ∈ Cache+ and s′ ⊇ s. Then (s′, p) is
authorized and any request (s′′, p), where s′′ ⊇ s′, is authorized because s′′ ⊃ s. Hence
(s′, p) may be omitted from Cache+.

Proof of Claim 3. Suppose now that (s, p) ∈ Cache+ and there does not exist (s′, p) ∈
Cache+ such that s′ ⊃ s or s′ ⊂ s. Then request (s, p) is authorized when the SDP uses
Cache+ but is not authorized if we remove (s, p) from Cache+ (since, by assumption,
there is no s′ ⊂ s such that (s′, p) ∈ Cache+, we cannot find an entry (s′, p) ∈ Cache+

such that s ⊇ s′). In other words, omitting (s, p) from Cache+ will decrease the hit rate.

3.6 Optimized algorithms

We now present optimized algorithms that produce a canonical form of the cache in or-
der to improve the likelihood of the evaluation algorithm returning an allow response.
Henceforth, we write Cache− ⊆ 2R × P , making it consistent with the representation of
Cache+. Naturally, the meaning of (s, p) ∈ Cache− is that all roles in s are known not to
be authorized for p. The full algorithm (C) for constructing compressed cache relations is
shown in Figure 3(a). To satisfy property (1) of the canonical form definition, in line 3C,
which handles negative primary responses, we delete any roles in s from sets of roles that
had previously been authorized for p (that is, tuples in Cache+). Analogously, in line 15C,
which handles positive primary responses, we delete any roles from s that are known not
to be authorized for p. To satisfy property (2) of the canonical form definition, line 10C is
used to prevent any superset of existing roles in Cache+ from being added and line 14C is
used to prune redundant tuples from Cache+.

Figure 3(b) shows the decision algorithm (D) for generating an approximate response,
which follows directly from rules Rule+ and Rule− (Section 3.3) and the construction
of the cache. Since s may include roles that are known not to be authorized for p, we
remove those roles first and then see whether the remaining roles are authorized for p. In
other words, given request (s, p), we first find (s−, p) ∈ Cache− (line 2D) and compute
those roles in s that are not in s− (line 3D), namely s − s−. If this set is empty, then we
know that all roles in s are in s−; that is, s ⊆ s− and the request should be denied (by
Rule−). Otherwise, we need to check whether there is a tuple (s+, p) ∈ Cache+ such that
s+ ⊆ (s− s−).

The following example shows how the optimized algorithms work. Suppose Cache−

and Cache+ are empty and the following primary responses are obtained from the PDP:

−({r1, r2}, p), +({r2, r3, r4}, p), +({r4, r5, r6}, p), −({r4, r7}, p).

Table I illustrates how Cache− and Cache+ develop as these responses are processed by
the SDP. Notice how r4 is removed from both tuples in Cache+ once the primary deny
response −({r4, r7}, p) is processed.

Note also that the final contents of Cache− and Cache+ are independent of the order in
which primary responses are received. If, for example, we reverse the order of the last two
responses, we find that r4 is added to Cache− a step earlier and that r4 does not appear
with r5 and r6 in a tuple in Cache+.

Now suppose we wish to generate secondary responses for the following requests:
(1) ({r3, r4}, p), (2) ({r1, r4, r7}, p), (3) ({r1, r5}, p).
—The SDP returns an allow response for request (1) because ({r3}, p) ∈ Cache+.
—The SDP returns a deny response for request (2) because ({r1, r2, r4, r7}, p) ∈ Cache−.

ACM Journal Name, Vol. V, No. N, June 2009.

10 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

Input: response q
1C: AddResponse(q)

2C: if q = −(s, p) then
3C: replace each (s+, p) ∈ Cache+ with (s+ − s, p)
4C: if (s−, p) ∈ Cache− then
5C: replace it with (s ∪ s−, p)
6C: else
7C: add (s, p) to Cache−

8C: end if
9C: else // we know that q = +(s, p)

10C: if there exists (s+, p) ∈ Cache+ such that s+ ⊆ s then
11C: return
12C: end if
13C: find (s−, p) ∈ Cache−

14C: delete all (s+, p) ∈ Cache+ such that s− s− ⊆ s+
15C: add (s− s−, p) to Cache+

16C: end if
(a) The cache construction algorithm

Input: request (s, p)

1D: EvaluateRequest(s, p)

2D: find (s−, p) ∈ Cache−

3D: d← s− s−
4D: if d = ∅ then
5D: return deny
6D: else
7D: for all (s+, p) ∈ Cache+ do
8D: if s+ ⊆ d then
9D: return allow
10D: end if
11D: end for
12D: return undecided
13D: end if

(b) The decision algorithm

Fig. 3. SAAMRBAC optimized recycling algorithms

Response Cache+ Cache−

−({r1, r2}, p) ({r1, r2}, p)
+({r2, r3, r4}, p) ({r3, r4}, p) ({r1, r2}, p)
+({r4, r5, r6}, p) ({r3, r4}, p), ({r1, r2}, p)

({r4, r5, r6}, p)
−({r4, r7}, p) ({r3}, p), ({r1, r2, r4, r7}, p)

({r5, r6}, p)

Table I. Building Cache+ and Cache− from primary responses

—The SDP returns an undecided response for request (3).

It is worth noting that although the SDP does not explicitly store primary responses, it
will always return the same response as the PDP for any requests whose decisions have
been included in the cache relations. More formally, we have the following result.
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 11

PROPOSITION 2. Suppose the PDP has produced a response for request (s, p). Then
an SDP that implements the construction and decision algorithms in Figure 3 will produce
the same response as the PDP for request (s, p).

PROOF. First note that lines 3C and 15C imply that if (t−, p) ∈ Cache− and (t+, p) ∈
Cache+, then t− ∩ t+ = ∅.

Given that the PDP has produced a response, there are two possibilities to consider. If
the PDP produced an allow response for (s, p), then (s+, p) ∈ Cache+ for some s+ ⊆ s,
by construction of Cache+. If there does not exist (s−, p) ∈ Cache− then we are done.
Otherwise, consider d = s−s− (as computed in line 3D). We claim that d ⊇ s+ and hence
the SDP will return an allow response. To establish the above claim, consider r ∈ s+. Then
r ∈ s since s+ ⊆ s. Now s+ ∩ s− = ∅ and r ∈ s+. Hence, r 6∈ s− and r ∈ s− s− = d.

Conversely, if there exists a primary deny response for (s, p), then (s−, p) ∈ Cache−

for some s− ⊇ s, by construction of Cache−. Hence s− s− = ∅ and the SDP will return
a deny response (line 5D).

LEMMA 1. An SDP that implements the construction and decision algorithms is safe
and consistent.

PROOF. We need to show that if the SDP produces a conclusive (i.e., not undecided)
secondary response for request (s, p), then that response is the one that would be produced
by the PDP.

Suppose that the SDP produces the response −(s, p). Then there exists (s−, p) ∈
Cache− such that s ⊆ s− (by line 5D). Moreover, for each r ∈ s−, r is not authorized for
p, by construction of Cache−. Hence, the PDP would return −(s, p).

Suppose that the SDP produces the response +(s, p). Then there exists (s+1 , p) ∈
Cache+ such that s ⊇ s+1 , which implies the existence of a primary response +(s+2 , p)
with s+2 ⊇ s

+
1 . This implies the existence of r ∈ s+2 such that r is authorized for p. More-

over, the construction of Cache− and Cache+ implies that r ∈ s+1 . Hence r ∈ s, since
s ⊇ s+1 and r ∈ s+1 , and the PDP would return +(s, p).

3.7 Discussion

We now briefly and informally discuss the expected behavior of the SDP algorithms. In
Section 4, we describe the experimental work we undertook to evaluate the actual behavior.

Suppose p is assigned to roles r1, . . . , rk, and that there are n users u1, . . . , un with
ui assigned to roles si ⊆ R. Now a user ui may request p using a subject comprising
any subset of si. In principle, therefore, Cache− may contain (s−, p), where s− ⊆ R −
{r1, . . . , rk}, and Cache+ may contain (s+, p), where s+ ⊆ si for some i.

3.7.1 Secondary response rate. Let us suppose that (s+1 , p), . . . , (s
+
m, p) ∈ Cache+

and (s−, p) ∈ Cache−. Then the probability that our SDP can produce an approximate
response (a “hit”) is the probability of it returning either allow or deny. Clearly, the smaller
s+1 , . . . , s

+
m are, the greater the chance of an allow response, because allow responses re-

quire the subject to be a superset of an element in Cache+. Conversely, the larger s− is,
the greater the chance of a deny response are, because allow responses require the subject
to be a subset of an element in Cache−.

In short, the probability of a hit increases as the size of s− increases and the sizes of
s+i decrease. It can be seen from the construction algorithm that the effect of processing
a primary response (whether it is an allow or deny response) is to either increase the size

ACM Journal Name, Vol. V, No. N, June 2009.

12 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

of s− or decrease the size of s+i (or both). In other words, increasing the cache size will
increase the hit rate.

It is worth noting that it is advantageous to have negative primary responses in the cache,
because these affect both Cache+ and Cache−. If there have only been allow primary re-
sponses, then Cache− = ∅ and hits can only be obtained from secondary allow responses.

For a cache of fixed size, it is advantageous to have s− large and s+i small. It is easy to
see that s− will be large if the number of roles to which p is assigned is small and there
have been a large number of requests for p that have been denied (by the PDP). One way
to ensure small s+i is by assigning each user to a small number of roles.

Alternatively, we are likely to get a hit if there is a significant amount of overlap between
the sets of roles assigned to different users. This situation arises when each user is assigned
to a significant fraction of the available roles or when some roles are more popular than
others so that many users are assigned to those roles. In summary, we would expect the
probability of a hit (the “hit rate”) to increase when users are assigned to a small number
of roles, or to a significant proportion of the roles available, or to a similar set of roles due
to the uneven role assignment. We sought to confirm these expectations by experiment, the
results of which are reported in Section 4.1.2.

3.7.2 Performance considerations. Clearly, the number of tuples in Cache− is
bounded by |P |, while the number of tuples in Cache+ is bounded by |P | 2|R|. For a re-
quest (s, p), a secondary deny response can be computed in time proportional to |s| log |R|,
as we simply need to determine whether s is a subset of the roles contained in s−. There-
fore, the number of primary deny responses is unlikely to have a significant effect on
performance. However, the time taken to compute a secondary allow response grows with
the number of primary allow responses.

The time taken by the construction algorithm to process a primary response is propor-
tional to the size of Cache+. In the case of a deny response, it is necessary to check each
tuple in Cache+ and remove any roles that formed part of the denied request (line 3C). In
the case of an allow response, we check to see whether each tuple has been made redundant
by the new information (line 14C).

However, we note that the existence of redundant tuples in Cache+ does not compro-
mise the ability of the SDP to compute correct secondary responses, although it may de-
grade the response time. Therefore, we could periodically purge Cache+ of redundant
tuples, rather than delete them as new primary responses are added, thereby improving the
processing time for primary allow responses.

In summary, it is easier to incorporate new primary allow responses into the cache rather
than deny responses, but it is harder to produce secondary allow responses than deny re-
sponses. We investigate these aspects in Section 4.1.4.

3.8 Using the role hierarchy in SAAMRBAC

When flat RBAC is employed, the binding of a session to a set of roles is trivial: the session
is associated with the roles activated by the user. However, in hierarchical RBAC, there are
two possibilities, which we call pre-request and post-request session-to-role binding. We
assume that a user initiates a session s ⊆ R by selecting some subset of the roles to which
she is assigned. The set of permissions for which the session is authorized is determined
by the permissions assigned to the roles in s and to any roles in R that are junior to at least
one role in s. It is this set of roles, therefore, that should be used to evaluate requests, not
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 13

simply s. More formally, let ↓s denote {r′ ∈ R : ∃r ∈ s, r′ 6 r}. Then the evaluation of
a request originating from session s requires the computation of the permissions for which
the roles in ↓s are authorized.

Pre-request binding occurs when the user authenticates. The user u first activates a set
of roles s for which she is authorized: that is, for all r ∈ s, there exists r′ > r and
(u, r′) ∈ UA. The authentication service uses the role hierarchy to compute ↓s, which is
then bound to each process associated with session s. This set of roles forms part of the
application request that is passed to the PEP. Clearly, pre-request binding means that the
computation of all roles associated with a session is performed once, which means that
request evaluation should be quicker. Post-request binding occurs when the PDP evaluates
an access request. In this case, the PDP has to compute ↓s before querying the PA relation.

In the case of pre-request binding, neither the PDP nor the SDP need be aware of the
role hierarchy. Hence, we only need to consider what we should do if post-request binding
is employed. So far, we have assumed that the SDP is unaware of the role hierarchy. As an
optimization, let us now assume that the SDP is aware of the structure of the role hierarchy,
and examine how the SAAMRBAC algorithms need to be modified.

We first note that the SDP could perform post-request binding in exactly the same way
as the PDP would. However, we observe that it is not necessary to do this when checking
Cache−. To see this, suppose that (s−, p) ∈ Cache− and request (s, p) is received by
the SDP. We can check whether s ⊆ s−, as before. Moreover, if s ⊆ s−, then no role
belonging to ↓s can be authorized for p either (otherwise, some role in s, and hence s−,
would be authorized for p). Hence, it suffices to compute ↓s only if the request is not
denied. The revised decision algorithm is shown in Figure 4. Notice the use of ↓d, where
d = s− s−, in line 8D′. Also note that ↓d can be computed in polynomial time.2

Input: request (s, p)

1D′: EvaluateRequest(s, p)

2D′: find (s−, p) ∈ Cache−

3D′: d← s− s−
4D′: if d = ∅ then
5D′: return deny
6D′: else
7D′: for all (s+, p) ∈ Cache+ do
8D′: if s+ ⊆ ↓d then
9D′: return allow
10D′: end if
11D′: end for
12D′: return undecided
13D′: end if

Fig. 4. The decision algorithm in a hierarchical setting

3.9 Handling policy changes

An enterprise authorization system must support changes to security policies. If the access
control policy changes and the SDP is not updated accordingly, the SDP may make incor-
rect decisions. Policy changes in an RBAC system occur as a result of changes to one of

2More specifically, it can be computed in time proportional to the total number of edges and vertices in the role
hierarchy using a simple modification to a standard graph traversal algorithm.

ACM Journal Name, Vol. V, No. N, June 2009.

14 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

U , P , UA, PA, R, or RH . Changes to U , P , or UA do not affect the cache construction
and decision-making algorithms. Hence, we only consider changes to PA, R, and RH .

The first type of change involves modification of PA. In particular, we considered the
following two basic cases.

—A permission p is assigned to a role r, that is, (p, r) is added to PA.
If the cache is not updated, the SDP may return incorrect negative decisions for some
requests for p. Specifically, if (s, p) ∈ Cache− and r ∈ s, then any request (s′, p) such
that s′ ⊆ s and r ∈ s′ will be denied despite the fact that r is now authorized for p. To
avoid this situation, r needs to be removed from (s, p) ∈ Cache−. Moreover, ({r}, p)
should be added to Cache+.

—A permission p is revoked from a role r, that is, (p, r) is removed from PA.
If the cache is not updated, the SDP may make false positive decisions, because it may
compute allow decisions to those requests that are denied by the PDP. To avoid this,
we need to replace (s, p) ∈ Cache− (if it exists) with (s ∪ {r}, p), or add ({r}, p) to
Cache− otherwise. Moreover, we need to delete every (s, p) ∈ Cache+ such that r ∈ s.
This is because we cannot assume that any of the remaining roles in s are authorized for
p.

The full algorithm for updating the cache relations to deal with updates to PA is shown
in Figure 5(a). Comparing it with the cache construction algorithm (Figure 3(a)), we note
that there are two main differences. First, if p is revoked from r, it is not sufficient to
remove r from each tuple in the Cache+; instead, all tuples in Cache+ that contain r
need to be removed (line 3UPA). Second, if p is assigned to r, we add ({r}, p) to Cache+

(line 16UPA) and also delete r from the set of roles in Cache− (line 13UPA), since we know
that r is authorized for p.

PA changes can be signaled to the SDP by passing “artificial” responses to it. For exam-
ple, when (p, r) is added to PA, the SDP can be sent response +({r}, p). These responses
are “artificial” in the sense that they are not generated as a result of a genuine request. In
order to distinguish them from normal primary responses, we call them policy update re-
sponses. When the SDP receives a policy update response, it will invoke the cache update
algorithm (shown in Figure 5(a)), rather than the cache construction algorithm.

We note that adding ({r}, p) to Cache+ may not be necessary but it is a desirable opti-
mization step for two reasons. First, having many tuples of the form ({r}, p) in Cache+

will lead to a higher hit rate since more sessions will be a strict superset of an entry in
Cache+. Second, it helps remove redundancy from Cache+ as shown in line 15UPA.3 In
an extreme case, while all permissions are being added to PA from scratch and the cache is
updated using the cache update algorithm, Cache+ will increasingly resemble PA. How-
ever, due to the limited size of cache storage and the large size of PA, it is unlikely that the
SDP will eventually store the whole PA in the cache. By using some cache replacement
algorithm, e.g., the least-frequently used (LRU) algorithm, SDP is able to keep a small but
most-used portion of PA in the cache.

The second type of changes that we considered involves modification ofR, in particular,
when a role r is removed from R. Assuming that users cannot start a session that includes
deleted role(s), keeping r in the cache will not affect the correctness of the responses that

3Note line 15UPA is used to remove redundancy from Cache+: as for the construction algorithm, this step may
be omitted and Cache+ periodically purged of redundant tuples instead.

ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 15

Input: policy update response q
1UPA: UpdateCache(q)
2UPA: if q = −({r}, p) then
3UPA: remove those (s+, p) ∈ Cache+ for which r ∈ s+
4UPA: if (s−, p) ∈ Cache− then
5UPA: replace it with (s− ∪ {r}, p)
6UPA: else
7UPA: add ({r}, p) to Cache−

8UPA: end if
9UPA: end if
10UPA: if q = +({r}, p) then
11UPA: find (s−, p) ∈ Cache−

12UPA: if r ∈ s− then
13UPA: replace it with (s− − {r}, p)
14UPA: end if
15UPA: delete all (s+, p) ∈ Cache+ such that r ∈ s+
16UPA: add ({r}, p) to Cache+

17UPA: end if
(a) The cache update algorithm when PA is changed

Input: the role r which is to be removed
1UR: UpdateCache(r)

2UR: for all p in Cache− do
3UR: find (s−, p) ∈ Cache−

4UR: if r ∈ s− then
5UR: replace it with (s− − {r}, p)
6UR: end if
7UR: end for
8UR: for all p in Cache+ do
9UR: delete all (s+, p) ∈ Cache+ such that r ∈ s+
10UR: end for

(b) The cache update algorithm when a role is removed from R

Fig. 5. Cache update algorithms

the SDP makes, but will degrade the performance of the SDP. Therefore, it is still desirable
to purge the cache of those roles.

The full algorithm for updating the cache relations to deal with updates to R is shown
in Figure 5(b). Unlike the previous cache update algorithm, this algorithm must consider
all tuples containing r in both Cache− and Cache+. Therefore, this change may result in
a large number of tuples being removed from the cache. Like the previous algorithm, all
tuples in Cache+ that contain r need to be removed, because we can not assume that any
of the remaining roles in the tuple are authorized for p.

Third, we consider those changes that involve modification of RH . No support for
changes in RH is needed if pre-request binding is used. When post-request binding is
used, the SDP needs to be updated with the new RH so that the computation of ↓d is
correct when a request is evaluated (line 8D′ in Figure 4).

PROPOSITION 3. A safe and consistent SDP that implements the cache update algo-
rithm is still safe and consistent after a policy change.

PROOF. We need to show that, after a policy change, if the SDP produces a secondary
response for request (s, p), then that response is the one that would be produced by the

ACM Journal Name, Vol. V, No. N, June 2009.

16 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

PDP after the same policy change.
First, we consider the case when (p, r) is added to PA. For any request (s, p) such that

r /∈ s, the policy change has no effect on the decisions returned by the PDP and SDP. We
now consider the case when r ∈ s. Clearly, the SDP will return allow for all such requests,
since ({r}, p) was added to Cache+ as a result of the cache update. Equally, the PDP will
return allow for such requests since (p, r) ∈ PA as a result of the policy change.

Second, we consider the the case when (p, r) is removed from PA. As above, we need
only consider the case when r ∈ s. If the SDP returns an allow decision then there exists
(s+, p) ∈ Cache+ such that s+ ⊆ s and r 6∈ s+. Hence, there exists some role r′ ∈ s+
that is authorized for p. Since the only change to PA was to remove the authorization for
role r, we may infer that the PDP would also allow request (s, p), since r′ ∈ s. If the SDP
returns a deny decision then s ⊆ s−∪{r}. In other words, no role in s−∪{r} is authorized
for p and now that (p, r) has been removed from PA, the PDP will also return deny.

Third, we consider the case when role r is removed fromR. No new session will contain
role r and Cache− and Cache+ are able to decide fewer requests.

—Suppose first that (s, p) was allowed by the SDP and the PDP before the removal of r.
Now if (s−{r}, p) is denied by the SDP after the removal of r, then (s−, p) ∈ Cache−

and r′ ∈ s− for all r′ ∈ s − {r}, which in turn implies that no role in s − {r} is
authorized for p and the request would also be denied by the PDP.
If, however, (s− {r}, p) is allowed by the SDP after the removal of r, then there exists
(s+, p) ∈ Cache+ such that s− {r} ⊇ s+ and hence it would be allowed by the PDP.
(There are also requests that may be allowed by the SDP before the removal of r, but
cannot be decided after. However, these requests are irrelevant to the definitions of safety
and consistency.)

—Suppose now that (s, p) was denied by the SDP and the PDP before the removal of r.
Then (s− {r}, p) will be denied after r’s removal. Hence, any request that is denied by
the SDP after r’s removal will be denied by the PDP.

3.9.1 Propagating policy changes. An important question to answer is how to propa-
gate update messages to SDPs. We provide in [Wei et al. 2007] a detailed discussion on the
alternatives for propagating update messages and a solution for implementing well defined
semantics for policy updates. In what follows, we briefly describe our solution.

We first state our assumptions relevant to the access control systems. We assume that the
PDP makes decisions using an access control policy stored persistently in a policy store of
the authorization server. In practice, the policy store can be a policy database or a collection
of policy files. We further assume that security administrators deploy and update policies
through the policy administration point (PAP), which is consistent with the XACML archi-
tecture [XACML 2005]. To avoid modifying existing authorization servers and maintain
backward compatibility, we further add a policy change manager (PCM), collocated with
the policy store. The PCM monitors the policy store, detects policy changes, and informs
the SDPs about the changes.

Based on the fact that not all policy changes are at the same level of criticality, we divide
policy changes into three types: critical, time-sensitive, and time-insensitive changes. By
discriminating policy changes according to these types, system administrators can choose
to achieve different consistency levels. In addition, system designers are able to provide
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 17

different consistency techniques to achieve efficiency for each type. Our design allows a
SAAMRBAC deployment to support any combination of the three types. In the rest of this
section, we define each type of policy change and discuss the consistency properties.

Critical changes of authorization policies are those changes that need to be propagated
urgently throughout the enterprise applications, requiring immediate updates on all SDPs.
When an administrator makes a critical change, our approach requires that she also spec-
ifies a time period t for the change. PCM will attempt to propagate the policy change by
contacting all SDPs involved, and must within period t either inform the administrator that
the change has been successfully performed or provide a list of SDPs that have not con-
firmed the change. In the latter case, administrators might want to resort to out-of-band
means of flushing caches of the unconfirmed SDPs by, for example, restarting them. To
support critical changes, SDPs would have to implement algorithms in Figure 5 and PCM
would have to “push” changes to SDPs, which requires adding SDP-PCM communication
channel. Support for two other types of policy changes is less intrusive, however.

Time-sensitive changes in authorization policies are less urgent than critical ones but
still need to be propagated within a known period of time. When an administrator makes a
time-sensitive change, it is the PCM that computes the time period t during which caches of
all SDPs are guaranteed to become consistent with the change. As a result, even though the
PDP starts making authorization decisions using the modified policy, the change becomes
in effect throughout the SAAMRBAC deployment only after time period t. Notice that this
does not necessarily mean that the change itself will be reflected in the SDPs’ caches by
then, only that the caches will not use responses invalidated by the change.

We suggest using time-to-live (TTL) approach for processing time-sensitive changes.
Every primary response is assigned a TTL that determines how long the response should
remain valid in the cache, e.g., one day, one hour, or one minute. The assignment can
be performed by either the SDP, the PDP itself, or a proxy, through which all responses
from the PDP pass before arriving to the SDPs. The choice depends on the deployment
environment and backward compatibility requirements. Every SDP periodically purges
from its cache those responses whose TTL elapses.

The TTL value can also vary from response to response. Some responses (say, authoriz-
ing access to more valuable resources) can be assigned a smaller TTL than others.

When the administrator makes a time-insensitive change, the system guarantees that all
SDPs will eventually become consistent with the change. No promises are given, however,
about how long it will take. Support for time-insensitive changes is necessary because
some systems may not be able to afford the cost of, or are just not willing to support, critical
or time-sensitive changes. A simple approach for supporting time-insensitive change is for
system administrators to periodically flush SDPs caches.

3.10 Implementation considerations

To facilitate the integration with existing access control systems, the SDP should provide
the same policy evaluation interface to its PEP as the PDP, thus enabling SAAM incre-
mental deployment without any change to existing PEP or PDP components. Similarly,
in systems that already employ authorization caching but do not use SAAM, the SDP can
offer the same interface and protocol as the existing cache component.

SAAM may be deployed for a variety of performance-related reasons, depending on the
specific application, geographic distribution, and network characteristics. These reasons
will typically include one or more of the following: to reduce the overall load on the PDP;

ACM Journal Name, Vol. V, No. N, June 2009.

18 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

to minimize the delay in responding to the client; and to minimize the network traffic gen-
erated by the authorization service. We now discuss two alternative ways for managing the
interactions between the PEP, the SDP, and the PDP. These strategies lead to different per-
formance characteristics. Hence, different performance-related priorities can be realized
by choosing different deployment strategies.

The first strategy is concurrent authorization by the SDP and the PDP. When the SDP
receives an authorization request from the PEP, it forwards the request to the PDP. While
waiting for a decision from the PDP, it also computes a decision locally. The SDP then re-
turns to the PEP the first conclusive decision it receives or computes. The use of concurrent
authorization reduces system response time but increases load on the PDP. Alternatively,
we may use sequential authorization. The SDP only forwards the request to the PDP if
it cannot decide the request. The use of sequential authorization reduces network traffic
and load on the PDP, at the cost of increased response time as observed by the PEP. The
evaluation of these two strategies is presented in Section 4.2.

4. EXPERIMENTAL EVALUATION

While the previous section described SAAMRBAC algorithms and estimates their complex-
ity, this section presents an experimental evaluation of those algorithms. We used both
simulation and a prototype implementation for evaluation. The simulation enabled us to
study the algorithms by hiding the complexity of underlying communication, while the
prototype enabled us to study the system performance in a more dynamic and realistic
environment.

4.1 Simulation-based evaluation

In the simulation-based evaluation, we studied three performance aspects of our algo-
rithms: the achieved hit rate, the impact of policy changes on the hit rate, and the com-
putational cost.

First, we studied the hit rate, which we define to be the ratio between the number of
requests resolved by the SDP (regardless of the specific allow/deny decision) and the total
number of requests received. A high hit rate has the effect of masking transient PDP
failures, thus improving the overall authorization system’s availability. It also reduces the
load on the PDP, thus improving the system’s scalability, and the authorization system
response time.

Our informal analysis in Section 3.7 suggested that the hit rate is influenced by the
following factors: (1) the cache warmness (the ratio between the number of authorization
responses cached at the SDP and the number of possible requests); (2) the percentage of
deny responses in the cache at a fixed cache warmness; (3) the characteristics of the RBAC
policy, including the ratios between the numbers of users, permissions, and roles in the
system; and (4) the popularity distribution of roles. Section 4.1.2 presents results of our
experiments investigating the impact of these factors on the hit rate.

The second performance aspect we studied was the impact of policy changes on the hit
rate. We wanted to understand how the algorithms for handling policy changes (Figure 3)
affected the hit rate. Section 4.1.3 presents the experiment results.

The third performance aspect we investigated was the computational cost of the SDP
algorithms. We measured two types of computational cost: the inference time—the time
that the SDP takes to infer an approximate response (allow or deny) using its cache; and
the update time—the time that the SDP takes to incorporate a new primary response in
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 19

its cache. In particular, the lower the inference time, the more efficient the SDP is in
accelerating the access control system. As cache warmness appears to be the main factor
influencing performance, Section 4.1.4 presents the influence of cache warmness on the
inference and update time.

4.1.1 Experimental setup. To conduct the experiments, we implemented SAAMRBAC
recycling algorithms and integrated the implementation with the SAAM evaluation engine
used in [Crampton et al. 2006]. Each run of the evaluation involved two stages.

The first stage was to create the data input files that were required for the simulation. The
engine first created an RBAC policy and assigned roles to both users (UA) and permissions
(PA). Second, the engine created the warming set and testing set, which were simply lists
of requests. Each request was made up of a subject and a permission. The warming set was
a pseudo-random permutation of all possible requests, while the testing set was a random
sampling of requests.

In the second stage, the simulation engine started operating by alternating between
warming and testing modes. In the warming mode, the engine used a subset of the requests
from the warming set, evaluated them using a simulated PDP, and sent the responses to
the SAAMRBAC SDP to build up the cache. During this phase, the evaluation engine also
recorded the time required to add primary responses to the cache. Once the desired cache
warmness was achieved, the engine calculated the average update time and then switched
into the testing mode during which the SDP cache remained constant. We used this mode
to evaluate the hit rate and the inference time at controlled, fixed levels of cache warmness.
The engine submitted requests from the testing set, recorded the inference time. Once all
the requests in the testing set had been submitted, the engine calculated the hit rate as the
ratio of the testing requests resolved by the SDP to all test requests and the average in-
ference time, and then switched back to the warming mode. These two modes were then
repeated for different levels of cache warmness, from 0% to 100% in increments of 5%.

For all experiments we used a Linux machine with two Intel Xeon 2.33 GHz processors
and 4 GB of memory. The evaluation framework ran on Sun’s 1.5.0 Java Runtime Envi-
ronment (JRE). Each experiment was run ten times and the average results are reported.

We assumed for simplicity that a user always activated all her roles. This assumption
allowed us to describe the entire request space more easily because we could assume then
that the request space was defined by the set of users and the set of permissions rather than
the set of permissions and the set of all subsets of any set of roles for which some user was
authorized. However, we do not believe that this assumption had a detrimental impact on
our results. Indeed, our choice was likely to mean that the hit rate was lower than might be
expected if users were to use subsets of their authorized roles. The reason for this is due to
the fact that smaller role sets in subjects mean that (1) the likelihood of a negative response
is increased, which increases the hit rate, and (2) the size of role sets in Cache+ may be
reduced, which means that the chance of a hit is also increased.

The reference RBAC policy used in our experiments contained 100 users, 3,000 permis-
sions, and 50 roles. Thus the overall size of the request space and the warming set was
300,000. The testing set contained 20,000 unique requests which were randomly selected
from the request space. For simplicity, we only considered the flat RBAC model. Each as-
signed role was randomly selected from R. The probability of a given user being assigned
to a given role was 0.1. Hence the number of roles assigned to a user was binomially
distributed with mean 5 and variance 4.5, and the number of users to which a role was as-

ACM Journal Name, Vol. V, No. N, June 2009.

20 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

cache warmness (%)

PR
AR-naive algorithms

AR-optimized algorithms

(a) Hit rate as a function of cache warmness

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

ca
ch

e
siz

e
(K

B)

cache warmness (%)

naive algorithms
optimized algorithms

(b) Cache size as a function of cache warmness

Fig. 6. Comparing optimized algorithms and naive algorithm of approximate recycling (AR), with precise recy-
cling (PR), for an RBAC system with 100 users, 3,000 permissions, and 50 roles.

signed was binomially distributed with mean 10 and variance 9. Similarly, the probability
of a given permission being assigned to a given role was 0.04.

While the scale of the system we studied was limited by the computational resources
available we believe that the values of these parameters are not important in themselves.
We were interested in configuring a reasonably large system that would manifest a behavior
asymptotically similar to possible real-world deployments. Additionally, we studied the
impact of varying the number of users, roles per user, roles, and roles per permission as
well as the popularity distribution of roles on system’s performance. We note that, while
the overall number of permissions in the system may influence the response time as a large
number of permissions leads to less efficient memory use by the SDP, it will not influence
the achieved hit rate.

4.1.2 Evaluating hit rate. We first studied the hit rate for the reference RBAC con-
figuration. Figure 6(a) presents the hit rate as a function of cache warmness for both
approximate recycling and precise recycling with the reference policy. As expected, the
hit rate of approximate recycling (AR in the figure) increased with cache warmness and
was always higher than that of precise recycling (PR in the figure). In addition, the results
demonstrate that optimized recycling algorithms achieved a better hit rate than naive re-
cycling algorithms. The improvement was relatively small because it was only due to the
increase in secondary allow responses.

Figure 6(b) compares the cache size of the naive and optimized approximate recycling
algorithms. The results demonstrate that the optimized algorithms help reduce the cache
size significantly. Specifically, using the optimized algorithms, the cache size stabilized at
about 600KB after cache warmness reached about 20%. Using the naive algorithms, how-
ever, the cache size kept increasing with the cache warmness, and eventually reached about
1,700KB. The reason is that optimized algorithms maintain the cache in canonical form.
In the rest of our evaluation, we used the optimized algorithms for all the experiments.

We then studied the impact of varying the number of users while the other configuration
parameters were fixed. Figure 7(a) shows the percentage increase for the hit rate compared
with precise recycling for an RBAC system that had 50, 100, and 200 users respectively.
As expected, an increase in the number of users increased the chance that a role-permission
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 21

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

hi
t r

at
e

pe
rc

en
ta

ge
 in

cr
ea

se
 (%

)

cache warmness (%)

50 users
100 users
200 users

(a) Hit rate percentage increase as the SDP cache
warmness varies, for 50, 100, and 200 users in the
RBAC system.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

percentage of deny responses (%)

(b) Hit rate variation with the percentage of pri-
mary deny responses in the SDP cache for 15%
cache warmness.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

hi
t r

at
e

(%
)

total roles

10% cache warmness
20% cache warmness
30% cache warmness

(c) Hit rate variation with the total number of roles
in the RBAC system

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

hi
t r

at
e

(%
)

roles per user

10% cache warmness
20% cache warmness
30% cache warmness

(d) Hit rate variation with the mean number of
roles per user

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

hi
t r

at
e

(%
)

roles per permission

10% cache warmness
20% cache warmness
30% cache warmness

(e) Hit rate variation with the mean number of
roles per permission

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

hi
t r

at
e

(%
)

alpha

10% cache warmness
20% cache warmness
30% cache warmness

(f) Hit rate variation with the coefficient α in Zipf
distribution.

Fig. 7. The impact of various system characteristics on the hit rate.

pair was already cached thus leading to a higher hit rate. When averaged over the full range
of cache warmness, the percentage increase was 36%, 80%, and 132% for 50, 100, and 200
users respectively.

For the experiments described in the rest of this section, we fixed the cache warmness
ACM Journal Name, Vol. V, No. N, June 2009.

22 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

and studied the impact of other system characteristics on the achieved hit rate. We choose
to explore hit rate for relatively low cache warmness values as this is the region where
we estimate the system is most likely to operate due to workload characteristics, limited
storage space, or frequently changing access control policies.

First, we studied the impact of the percentage of deny responses in the cache. In some
systems, users may know what they are allowed to do and what not, or the user interface
may even hide unauthorized actions from users. Hence, the cache may contain more pri-
mary allow responses than primary deny responses. To study this effect in the experiment,
we engineered the warming set so that the PDP could generate a specified proportion of
deny responses, which ranged from 0 to 100%. Figure 7(b) confirms our prediction that
a higher proportion of deny responses leads to a higher hit rate. The intuition behind this
result is that a negative primary response for a permission and a user means that the permis-
sion is not assigned to any of the user’s roles. In contrast, a positive primary response only
allows us to infer that the permission is assigned to at least one of the roles, but without the
ability to infer exactly which role. Note that we only show the results for 15% cache warm-
ness because the maximum cache warmness we could reach by using only allow responses
was less than 20%.

Second, we studied the impact of the total number of roles on the hit rate by varying
it from 10 to 100 (Figure 7(c)) and keeping constant the number of users and the mean
number of roles a user/permission is assigned to. The results indicate that, as the number
of roles increases, the hit rate decreases. This confirms our intuition that, as the number of
roles increases, the overlap between the sets of roles each user is assigned to also decreases
thus reducing the likelihood of a successful inference.

Third, we studied the impact of the mean number of roles to which each user is assigned
by varying it from one to all the roles the system (50 roles) while keeping all other param-
eters constant. The results in Figure 7(d) suggest that the influence of this parameter on
the hit rate is more complex. We now describe our understanding of these curves. The hit
rate was low when each user was assigned to few (less than five) roles because there were
few roles in each entry of Cache+ and Cache− and hence the chances of making an ap-
proximate response were limited. As the number of roles per user increased, the size of the
entries of the role sets in the cache increased and the chance of two users’ role sets over-
lapping increased. While the overlap was still relatively low (when each user was assigned
to less than ten roles), the deny responses dominated the content of the SDP cache. How-
ever, when the number of roles per user increased further, Cache+ started increasing at the
expense of Cache−, leading to the decrease in the hit rate (as we predicted in Section 3.5).
Moreover, for entries of the form (s, p) ∈ Cache+, s was likely to be large (since there
were few deny responses to reduce their size). Since subjects contained all roles assigned
to a user and users were assigned to a large number of roles, it became difficult to generate
an allow secondary response for (s, p), because s was large and our approach requires a
tuple (s′, p) ∈ Cache+ such that s′ ⊆ s, and in such tuples s′ was also likely to be large.
Less intuitive is the sharp increase to 100% in the hit rate on the right side of the graph.
This increase was likely due to the fact that each user was assigned to (almost) all the roles
in the system and, as a result, (almost) every user had the same set of roles. In practice, we
would expect the number of roles to be a relatively small compared to the number of users
(e.g., [Schaad et al. 2001] find it to be around 3–4%) and that users will be allocated to a
small fraction of those roles. Our experimental results suggest that the characteristics of
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 23

real RBAC systems will not compromise the efficacy of our algorithms.
Fourth, we studied the impact of the mean number of roles to which each permission

was assigned. Figure 7(e) confirms the results of our analytical analysis, which predicted
that a larger number of roles per permission leads to a lower hit rate. This effect can be
also attributed to the decrease of Cache−.

Finally, we studied the impact of role popularity distribution. In all our previous experi-
ments, roles were uniformly assigned to users and permissions so that all roles were equally
“popular” in UA and PA relations. However, in reality some roles may be assigned to users
or permissions more frequently than other roles. For example, in an enterprise most users
are assigned an “employee” role while only a few are assigned a “manager” role. To model
this type of highly uneven popularity, we used a Zipf distribution.

Zipf distributions have been widely used to model heterogeneous popularity distribu-
tions (e.g., web page popularity [Breslau et al. 1999], web site popularity [Adamic and
Huberman 2002], and query term popularity [Klemm et al. 2004].) A set of data obeys
Zipf’s law if the frequency of an item is inversely proportional to (some non-negative)
power of its rank (determined by frequency of occurrence). More formally, suppose we
have a frequency distribution (x1, f1), . . . , (xn, fn), where data item xi occurs fi times
and f1 > f2 > · · · > fn. Then the distribution obeys Zipf’s law if

fi ∝
1
iα

for some α > 0. Using English language as an example, the relative frequency of the most
popular word “the” is 7%, and the relative frequencies of the next most popular words (“of”
and “and”) are 3.5% and 2.7%, respectively [Francis and Kucera 1967]. In other words,
the most popular word occurs twice as often as the next most popular, and approximately
three times as often as the third most popular word. The frequency of words approximately
follows Zipf’s law with α = 1.

In our experiment, roles selected from the role set R and assigned to users and permis-
sions followed Zipf distribution. In particular, the more popular roles were assigned to
more users in UA than the less popular roles. A role that appeared more frequently in UA
(that is, was more commonly assigned to users), however, was assigned to fewer permis-
sions in PA. This simulated a scenario where, for example, the “employee” role is usually
assigned to more users than the “manager” role but the “employee” role usually has fewer
permissions than the “manager” role.

Note that by using a Zipf distribution and varying α for role assignment, we implicitly
simulated the existence of a role hierarchy RH . A popular role in UA simulated a junior
role in RH that had fewer permissions but was assigned to more users. In contrast, a
less popular role in UA simulated a senior role in RH that had more permissions (as it
inherited permissions from all its junior roles) but was assigned to fewer users. In addition,
by varying α, we also implicitly varied the shape of the RH graph. When α is small the
corresponding RH graph has a wide and shallow shape. A large α makes the RH graph
narrow and deep.

Since the popularity distribution becomes less and less skewed with the decrease of α,
collapsing to a uniform distribution when α = 0, we varied α between 0 and 1.5 in steps
of 0.1. The results in Figure 7(f) show that, when α was lower than 1, the hit rate was
almost the same as in the uniform distribution. When α was larger than 1, the hit rate
began to increase along with α. This is expected because the number of “overlapping”

ACM Journal Name, Vol. V, No. N, June 2009.

24 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

roles between users increased. This was also due to the increase of negative responses in
the cache because more users were assigned fewer permissions. However, when the cache
warmness increased, this improvement was less significant due to the already high hit rate.

4.1.3 Evaluating the impact of policy changes. We also studied the impact of policy
changes on the hit rate. Since the hit rate depends on the cache warmness, and a policy
change may result in removing one or more responses from SDP caches, we expected that
frequent policy changes at a constant rate would unavoidably result in a reduced hit rate.
This section quantifies this effect.

In the experiments, the simulation engine was responsible for firing a random policy
change and sending the policy change message to both the PDP and SDP at pre-defined
intervals, e.g., after every 10,000 requests. The experiment switched from the warming
mode to the testing mode once a policy change message was received. After measuring
the hit rate right before and after each policy change, the experiment switched back to the
warming mode.

We studied three types of policy change operations: adding a tuple to the PA relation;
deleting a tuple from the PA relation; and deleting a role from R. When adding a tuple,
the warmness of the cache increases slightly (since a single tuple is added to Cache+), so
we would expect to see a slight increase in the hit rate. Our experiments confirmed this,
although the hit rate never increased by more than 0.1%. Conversely, deleting a tuple from
PA causes a reduction in the warmness of the cache, and is expected to result in a decrease
in the hit rate. Again, our experiments confirmed this expectation, and the decrease in hit
rate was negligible.

We now focus on the impact of deleting a role, as it is expected to have a more significant
impact on the hit rate. We first studied how the hit rate was affected by an individual policy
change, i.e., the removal of a single role from R. We expected that SAAMRBAC inference
algorithms were sufficiently robust so that an individual change would result in only minor
degradation of the hit rate. In the experiment, the warming set contained 200,000 requests
which were selected from the total request space with equal probability (with replacement).
A randomly selected role was removed fromR every 10,000 requests and tuples containing
that role in UA and PA were also deleted. Then the cache was updated accordingly. After
the experiment switched back to the warming mode from the testing mode, the removed
role was returned toR; UA and PA were also restored. Thus, the simulated system kept its
policy characteristics. Any change in the hit rate was attributed to the reduced SDP cache
size.

Figure 8(a) shows the hit rate as a function of the number of observed requests, with
policy changes (lower curve) or without policy changes (upper curve). Because the hit rate
was measured just before and after each policy change, every kink in the curve indicates a
hit rate drop caused by a policy change. The results suggest that the hit rate drops were rel-
atively small; the maximum hit rate drop was 6.2%, and the average was 4.0%. After each
drop, the curve climbed again because the cache warmness increased with new requests.

Although the hit rate drop for each policy change was small, one can see that the cumu-
lative effect of policy changes could be large. As Figure 8(a) shows, the hit rate decreased
about 20% in total when the request number reached 200,000. This result led us to another
question: Would the hit rate finally stabilize at some point?

To answer this question, we ran another experiment to study how the hit rate varied with
continuous policy changes over a longer term. We used a larger number of requests (i.e.,
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 25

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

hi
t r

at
e

(%
)

number of requests (x10,000)

no policy change
10,000 requests/change

(a) Hit rate as a function of number of requests
with and without changes to R.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

number of requests (x10,000)

no policy change
20,000 requests/change
10,000 requests/change

5,000 requests/change
2,500 requests/change

(b) Hit rate as a function of number of requests at
various frequencies of R changes at a larger time
scale.

Fig. 8. The impact of removing a role from R on hit rate. In both figures, the order of the curves (from top to
bottom) matches that of the legends.

1,000,000), and varied the frequency of policy changes from 2,500 to 20,000 requests per
change.

Figure 8(b) shows the hit rate as a function of the number of observed requests, with
each curve corresponding to a different frequency of random policy changes. Because of
the continuous policy change, one cannot see a perfect asymptote of curves. However,
the curves indicate that the hit rate stabilized after 200,000 requests. As we expected,
the more frequent the policy changes were, the lower the stabilized hit rates were, since
the responses were removed from the SDP caches more frequently. This result suggests
that if R is changed frequently, it is preferable to purge the cache periodically instead of
immediately.

Figure 8(b) also shows that each curve has a knee. The steep increase in the hit rate
before the knee implies that caching new responses improves the hit rate dramatically in
this interval. Once the number of responses passes the knee, the benefit brought by caching
further responses becomes negligible.

4.1.4 Evaluating inference and update time. Figure 9(a) shows the inference time for
allow and deny approximate responses as a function of cache warmness for our refer-
ence configuration. As expected, the computational overhead to infer allow responses was
larger than that for deny responses. The inference time increased with cache warmness
for two reasons: first, when more responses were cached, the SDP used more responses
for inference leading to higher computational overheads. Second, larger cache sizes led to
less efficient memory usage by the SDP (that is, SDP data did not fit in the host’s cache
anymore).

Figure 9(b) shows the time for updating the SDP cache using both allow and deny pri-
mary responses as a function of cache warmness. As expected, the update time also in-
creased with cache warmness. Additionally, the SDP used more time to process allow
than deny responses. The reason is that in the case of processing each allow response
+(s, p), the SDP had to purge redundant tuples, i.e., delete all (s+, p) ∈ Cache+ such that
s − s− ⊆ s+, which involved an extra subset computation. This result suggests that, to
improve the update time, the purge operation should be done in a periodical manner.

ACM Journal Name, Vol. V, No. N, June 2009.

26 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

in
fe

re
nc

e
tim

e
(µ

s)

cache warmness (%)

allow responses
deny responses

(a) Inference time (the time to generate approxi-
mate responses) variation with cache warmness

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

up
da

te
 ti

m
e

(µ
s)

cache warmness (%)

allow responses
deny responses

(b) Update time (the time to add a primary response
to the cache) variation with cache warmness

Fig. 9. The impact of cache warmness on the inference and update time.

It is worth noting in Figure 9 that both the inference time and update time stabilized when
cache warmness reached about 40%. This was because at about 40% warmness the SDP
was able to resolve all possible requests so new responses provided no new information to
the cache.

4.2 Prototype-based evaluation

We have also implemented a simplified SAAMRBAC prototype system to evaluate the per-
formance of overall authorization system. In particular, we studied the response time for
two SAAM authorization schemes (described in Section 3.10): sequential authorization
and concurrent authorization.

4.2.1 Experimental setup. The prototype system consisted of the implementations of
PEP, SDP, and PDP. The PEP was process-collocated with the SDP, while the SDP com-
municated with the PDP using Java Remote Method Invocation (RMI). The PEP/SDP and
PDP were located in two separate cluster nodes connected by a 1Gbps network. Each node
was equipped with two Intel Xeon 2.33 GHz processors and 4 GB of memory, running Fe-
dora Linux 2.6.24.3. Upon generating a random request at the PEP, the system attempted
to resolve the request using one of the following two authorization schemes: sequential
authorization, where a request was resolved first by the SDP and then by the PDP, or con-
current authorization, where a request was resolved by the SDP and the PDP concurrently.

For each authorization scheme, we ran experiments in the following two scenarios: (1)
Scenario I, where the SDP and the PDP were collocated on the same local area network
(LAN) and that the authorization policy of the PDP was relatively simple thus allowing
the PDP to make authorization decisions swiftly; and (2) Scenario II, where the SDP was
separated from the PDP by a wide area network (WAN) or/and the PDP had a complex
authorization policy. To model this scenario, we simulated additional 40ms delay added to
each authorization request sent to the PDP.

4.2.2 Evaluating response time. In our experiments, response time was measured as
the time elapsed after the PEP generated a request until it received the response for that
request. At the start of each experiment, the SDP caches were empty. The PEP uniformly
selected a request from the request space, sent it to the SDP, and then recorded the response
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 27

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90 100

re
sp

on
se

 ti
m

e
(µ

s)

cache warmness (%)

no caching
precise recycling

SAAM: sequential authorization
SAAM: concurrent authorization

(a) Scenario I: the SDP and the PDP were collo-
cated on the same LAN and that the authorization
policy of the PDP was relatively simple.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

re
sp

on
se

 ti
m

e
(m

s)

cache warmness (%)

no caching
precise recycling

SAAM: sequential authorization
SAAM: concurrent authorization

(b) Scenario II: the SDP was separated from the
PDP by a WAN or/and the PDP had a complex au-
thorization policy.

Fig. 10. Response time variation with cache warmness.

time for each request. After every 10,000 requests, the PEP calculated the mean response
time and used it as an indicator of the response time for that period.

For both scenarios, we also ran experiments for the authorization system without SAAM.
This included authorization without caching or only using precise recycling. Our purpose
was to evaluate the gains in terms of response time by using SAAM. Figure 10 shows
the results. It can be concluded that using SAAM helped to reduce the system response
time in both scenarios and this reduction increased with cache warmness. Additionally, as
we expected, the two SAAM authorization schemes showed different patterns in the two
scenarios, which we explain below.

Figure 10(a) shows the result for Scenario I. The figure demonstrates that the response
time for both authorization schemes decreased with cache warmness, while sequential au-
thorization decreased more quickly. The reason was likely due to the lower cost of resolv-
ing requests at the SDP. When cache warmness increased, more requests were resolved by
the SDP. Since the SDP was process-collocated with the PEP, getting responses through an
interprocess call to the SDP was faster than getting responses through a network RMI call
to the PDP.

More specifically, when cache warmness was small, i.e, less than 30%, concurrent au-
thorization achieved shorter response time than sequential authorization. This was due to
the extra time incurred by cache misses in sequential authorization. One unusual pattern
in our result is that sequential authorization achieved lower response time as cache warm-
ness exceeds 30%. This was possibly caused by the thread management overhead in our
concurrent authorization implementation. We should point out that, in an optimized imple-
mentation, concurrent authorization should at least achieve the same response time as the
sequential authorization since concurrent authorization always uses first returned response.

Figure 10(b) shows the results for Scenario II. As expected, both response times de-
creased with cache warmness. More interestingly, the curves for concurrent and sequential
SAAMRBAC authorizations almost overlapped each other. The reason is that in this sce-
nario the extra time incurred by cache misses and thread management were small compared
to the 40ms delay at the PDP. Therefore, their impact on the response time was trivial.

ACM Journal Name, Vol. V, No. N, June 2009.

28 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

4.3 Discussion

The results of our experiments indicate that approximate recycling leads to higher SDP
hit rates than precise recycling alone, thus improving the availability and scalability of
the access control system. Compared with the naive algorithms, the optimized algorithms
achieve a higher hit rate using a smaller cache. These results extend our understanding of
the factors that influence the hit rate as follows:

—For cache warmness between 5% and 50%, the hit rate for approximate recycling is
notably better than that of precise recycling.

—Larger numbers of users in the system having similar role memberships substantially
improve the hit rate.

—A higher proportion of deny responses in the cache leads to a higher hit rate.
—As the number of roles increases, the overlap between the sets of roles each user is

assigned to decreases thus reducing the likelihood of a successful inference based on
cached responses.

—The hit rate is low when each user is assigned to few (1-3) roles because the SDP cache
has little relevant information. With the increase of overlap in users’ roles, the number
of relevant entries increases, resulting in the increase of the hit rate. While the overlap is
still relatively low (when each user has less than ten roles), the deny responses dominate
the content of the SDP cache, resulting in a higher hit rate. However, when the number
of roles per user increases further, Cache+ starts increasing at the expense of Cache−,
leading to the decrease in the hit rate. When each user is assigned to (almost) all the
roles in the system (almost) every user has the same set of roles, and the hit rate increases
sharply to 100%.

—A larger number of roles per permission leads to a lower hit rate.
—Zipf’s popularity distribution of roles leads to a higher hit rate when α is larger than 1,

due to the increased overlap of roles assigned to users and permissions.

The volume of information available for inference, the percentage of deny responses,
and the distribution of role assignment are the factors that are not controlled by the admin-
istrators of RBAC systems. Other factors that impact performance, however, e.g., the total
number of roles, the number of roles per user, and roles per permission, might be engi-
neered (e.g., by role engineering [Vaidya et al. 2007]) by the designers of access control
policies who might be able to tune these factors to achieve higher hit rates using the trends
our experiments and evaluation revealed. Thus, we believe our evaluation results can be
used to inform efficient SAAMRBAC deployment in real enterprise systems, even though
our experimental testbed was relatively small compared to large-scale systems deployed in
organizations (e.g., [Schaad et al. 2001]).

Results of our evaluation indicate that the impact of the update to PA is trivial, as only
a single permission is affected. In contrast, frequent policy changes to R may have a
large impact on the hit rate. Since the correctness of the response is not affected if the
cache is not updated immediately, it is preferable to purge the cache periodically instead of
immediately.

Our experiments with SAAMRBAC also demonstrate inference and update time well un-
der 1ms, and we believe that response times can be further reduced by optimizing the
implementation. We note that a low inference time is a key attribute for a real-world de-
ployment as it directly affects the perceived performance of the access control system: an
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 29

application request cannot be processed until the PEP obtains a response, either primary
or secondary. Cache changes triggered by adding primary responses or policy changes, on
the other hand, can be implemented in the background to hide their impact on perceived
performance.

The evaluation results on response time further suggest that the usefulness of SAAM
techniques for reducing the response time of the overall access control system, especially
in network-based deployments where network latencies are much larger or the PDP au-
thorization logic is complex. The results with two authorization schemes indicate that
concurrent authorization is only helpful when the PDP can make authorization decisions
quickly. In other cases, sequential authorization is preferable because it can achieve both
reduced response time and reduced load at the PDP.

An alternative to approximate recycling for RBAC systems is to replicate RBAC policy
at each SDP. Run-time benefits of the proposed approach—compared to just replicating
PA and RH relations at each SDP—depend on a number of factors. The first factor is the
size of the policy (mainly the PA, since this is likely to be the largest) relative to the size
of a PEP working-set (the set of all requests that come through the PEP). For a workload
with good locality and a large PA, the proposed approach will require less space and may
well be faster. Furthermore, if the PA is very large (say, larger than 109 elements) then
it may be too expensive to duplicate the hardware that supports the PDP to additionally
support each SDP. The second factor is the ability of a PDP to predict the working set of
a PEP. If the PDP is able to predict a PEP’s future working set then providing the SDP
with corresponding subsets of PA and RH will work better than authorization recycling
(regardless of the relative sizes of the policy and the PEP working set). The third factor is
the frequency of policy changes and the scope of these changes, i.e., how many elements in
the PA they affect. The fourth factor is the relative benefits brought by one-time replication
of the PA (or some subset of it)—as proposed by [Tripunitara and Carbunar 2009], for
example—to the SDPs, as opposed to item-by-item caching of the responses.

Depending on the workload and policy characteristics, the most efficient solution may
combine the proposed approach with the replication of some policy elements. For example,
RH can be replicated to the SDPs, as suggested in Section 3.9. As a case in point, PEPs in
IBM Tivoli Access Manager [Karjoth 2003], which encodes PA in the form of access con-
trol lists, can operate in two modes. In “remote mode,” a PEP sends authorization requests
to the PDP. In “local mode,” the PEP maintains a local replica of the authorization policy
and performs all authorization decisions locally. Depending on the configuration, the pol-
icy local replica can be “pulled from” and/or “pushed” by the master authorization service
database. “Overhead of policy replication” is mentioned in the technical documentation of
the Access Manager [Bücker et al. 2003], but no evaluation is reported.

5. RELATED WORK

To improve the performance and availability of access control systems, caching of autho-
rization decisions has been employed in a number of commercial systems [Entrust 1999;
Oracle 2008; Netegrity 2000], as well as several academic access control systems [Bor-
ders et al. 2005; Spencer et al. 1999]. However, all these systems only compute precise
authorizations and therefore are only effective for resolving repeated requests. [Beznosov
2005] introduces the concept of recycling approximate authorizations, and later [Crampton
et al. 2006] formally define SAAM and introduce the concept of SDP. The SDP can resolve

ACM Journal Name, Vol. V, No. N, June 2009.

30 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

new requests by extending the space of supported responses to approximate ones. In other
words, SAAM provides a richer alternative source for authorization responses than the ex-
isting approaches do. Additionally, to further improve the performance and availability of
access control systems, [Wei et al. 2007] explore the cooperation between multiple SDPS
and combine SDP cooperation and approximate authorizations.

The inference of approximate responses usually depends on the underlying access con-
trol policy. For access control systems based on the Bell-LaPadula (BLP) model [Bell and
LaPadula 1973b; 1973a], SAAMBLP [Crampton et al. 2006] uses the relationships between
subjects and objects of previous responses to infer approximate responses. In comparison
with SAAMBLP, SAAMRBAC infers relationships between sets of roles and the permissions
assigned to those roles, thereby enabling the computation of approximate responses. Other
work [Motro 1989; Rizvi et al. 2004; Rosenthal and Sciore 2001] uses the relationships
between (database) objects to infer new authorizations.

In general, SAAM is a domain-specific approach to improving performance and fault
tolerance of access control mechanisms that employ remote authorization servers. The
general classes of fault tolerance solutions are failure masking through information redun-
dancy (e.g., error correction checksums), time redundancy (e.g., repetitive invocations), or
physical redundancy (e.g., data replication). SAAM employs physical redundancy [John-
son 1996]: when the PDP is unavailable, the SDP is able to mask the fault by providing
the requested access control decision if relevant authorization responses are cached. The
SAAM approach requires no specialized operating system or communication software ex-
cept modifications to the logic of the PEP cache. No distributed state, election, or synchro-
nization algorithms are necessary either. With SAAM, only authorization responses are
cached, and no dynamic authorization data are replicated, enabling linear scalability with
the number of PEPs and PDPs.

6. CONCLUSION

As distributed systems become increasingly large and complex, their access control in-
frastructures face new challenges. Conventional request-response authorization architec-
tures become fragile and scale poorly to large systems. Caching authorization decisions
has long been used to improve access control infrastructure availability and performance.
SAAMRBAC extends this approach by enabling the inference of approximate authoriza-
tions for RBAC systems. We propose new algorithms to compactly cache authorization
decisions and to efficiently infer approximate decisions from cached data. Our evaluation
results demonstrate an average percentage increase of 36-132% in the number of authoriza-
tion requests that can be served without consulting the original decision point, compared
to precise recycling. These results suggest that deploying SAAMRBAC improves the avail-
ability and scalability of RBAC systems, and in turn the performance of entire enterprise
systems.

Acknowledgments

Initial ideas of authorization recycling and approximate authorizations have benefited sig-
nificantly from the presentation and discussion of [Beznosov 2005] at the New Security
Paradigms Workshop (NSPW) ’05. Members of the Laboratory for Education and Re-
search in Secure Systems Engineering (LERSSE) gave valuable feedback on the earlier
drafts of this paper. The authors are grateful to the SACMAT and TISSec anonymous re-
viewers for their helpful comments. Research on SAAMRBAC by the first and third authors
ACM Journal Name, Vol. V, No. N, June 2009.

Authorization Recycling in Hierarchical RBAC Systems · 31

have been partially supported by the Canadian NSERC Strategic Partnership Program,
grant STPGP 322192-05.

REFERENCES

ADAMIC, L. AND HUBERMAN, B. 2002. Zipf’s law and the Internet. Glottometrics 3, 1, 143–50.
ANSI. 2004. ANSI INCITS 359-2004 for role based access control.
ASTLEY, M., STURMAN, D. C., AND AGHA, G. A. 2001. Customizable middleware for modular distributed

software. Communications of the ACM (CACM) 44, 5, 99–107.
BELL, D. AND LAPADULA, L. 1973a. Secure computer systems: A mathematical model. Tech. Rep. MTR-

2547, Volume II, Mitre Corporation, Bedford, Massachusetts.
BELL, D. AND LAPADULA, L. 1973b. Secure computer systems: Mathematical foundations. Tech. Rep. MTR-

2547, Volume I, Mitre Corporation, Bedford, Massachusetts.
BEZNOSOV, K. 2005. Flooding and recycling authorizations. In Proceedings of the New Security Paradigms

Workshop (NSPW’05). ACM Press, Lake Arrowhead, CA, USA, 67–72.
BORDERS, K., ZHAO, X., AND PRAKASH, A. 2005. CPOL: high-performance policy evaluation. In Proceed-

ings of the 12th ACM conference on Computer and Communications Security (CCS’05). ACM Press, New
York, NY, USA, 147–157.

BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S. 1999. Web caching and Zipf-like distri-
butions: Evidence and implications. In Proceedings of the Conference on Computer Communications (INFO-
COM’99). IEEE Computer Society, New York, NY, USA, 126–134.

BÜCKER, A., ANTONIUS, J., RIEXINGER, D., SOMMER, F., AND SUMIDA, A. 2003. Enterprise Business
Portals II with IBM Tivoli Access Manager. IBM Redbooks, ibm.com/redbooks.

CRAMPTON, J., LEUNG, W., AND BEZNOSOV, K. 2006. Secondary and approximate authorizations model
and its application to Bell-LaPadula policies. In Proceedings of the 11th ACM Symposium on Access Control
Models and Technologies (SACMAT’06). ACM Press, Lake Tahoe, CA, USA, 111–120.

DEMICHIEL, L. G., YALÇINALP, L. Ü., AND KRISHNAN, S. 2001. Enterprise JavaBeans Specification, Version
2.0. Sun Microsystems.

ENTRUST. 1999. GetAccess design and administration guide.
FERRAIOLO, D. AND KUHN, R. 1992. Role-based access controls. In Proceedings of the 15th NIST-NCSC

National Computer Security Conference. National Institute of Standards and Technology/National Computer
Security Center, Baltimore, MD, USA, 554–563.

FRANCIS, W. AND KUCERA, H. 1967. Computational analysis of present-day American English. Providence,
RI: Brown University Press.

GITTLER, F. AND HOPKINS, A. C. 1995. The DCE security service. Hewlett-Packard Journal 46, 6, 41–48.
INTERNET2. 2008. Shibboleth System. http://shibboleth.internet2.edu/.
JOHNSON, B. 1996. Fault-tolerant computer system design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

Chapter An introduction to the design and analysis of fault-tolerant systems, 1–87.
KAIJSER, P. 1998. A review of the sesame development. Lecture Notes in Computer Science 1438, 1–8.
KALBARCZYK, Z., LYER, R. K., AND WANG, L. 2005. Application fault tolerance with Armor middleware.

IEEE Internet Computing 9, 2, 28–38.
KARJOTH, G. 2003. Access control with IBM Tivoli Access Manager. ACM Transactions on Information and

Systems Security 6, 2, 232–57.
KLEMM, A., LINDEMANN, C., VERNON, M. K., AND WALDHORST, O. P. 2004. Characterizing the query

behavior in peer-to-peer file sharing systems. In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement. ACM, New York, NY, USA, 55–67.

LORCH, M., PROCTOR, S., LEPRO, R., KAFURA, D., AND SHAH, S. 2003. First experiences using xacml
for access control in distributed systems. In XMLSEC ’03: Proceedings of the 2003 ACM workshop on XML
security. ACM, New York, NY, USA, 25–37.

MARKOFF, J. AND HANSELL, S. 2006. Google’s not-so-very-secret weapon. International Hearald Tribune,
June 13, 2006.

MOTRO, R. 1989. An access authorization model for relational databases based on algebraic manipulation of
view definitions. In Proceedings of the 5th International Conference on Data Engineering. IEEE Computer
Society, Los Angeles, CA, USA, 339–347.

ACM Journal Name, Vol. V, No. N, June 2009.

32 · Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu

NETEGRITY. 2000. Siteminder concepts guide. Tech. rep., Netegrity.
NICOMETTE, V. AND DESWARTE, Y. 1997. An authorization scheme for distributed object systems. In Pro-

ceedings of the 1997 IEEE Symposium on Security and Privacy (S&P’97). IEEE Computer Society, Oakland,
CA, 21–30.

OMG. 2002. Common object services specification, security service specification v1.8.
ORACLE. 2008. Oracle entitlements server: Programming security for web services. Tech. rep., Oracle. Septem-

ber.
RIZVI, S., MENDELZON, A., SUDARSHAN, S., AND ROY, P. 2004. Extending query rewriting techniques

for fine-grained access control. In Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data. ACM Press, Paris, France.

ROSENTHAL, A. AND SCIORE, E. 2001. Administering permissions for distributed data: Factoring and auto-
mated inference. In Proceedings of 15th Annual Working Conference on Database and Application Security.
Kluwer Academic Publishers, Niagara Falls, Ontario, Canada, 91–104.

RYUTOV, T. AND NEUMAN, C. 2000. Generic authorization and access control application program interface:
C-bindings. Internet Draft draft-ietf-cat-gaa-bind-03, Internet Engineering Task Force. March 9.

SALTZER, J. AND SCHROEDER, M. 1975. The protection of information in computer systems. Proceedings of
the IEEE 63, 6, 1278–1308.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control models. IEEE
Computer 29, 2, 38–47.

SCHAAD, A., MOFFETT, J., AND JACOB, J. 2001. The role-based access control system of a european bank:
a case study and discussion. In SACMAT ’01: Proceedings of the sixth ACM symposium on Access control
models and technologies. ACM, New York, NY, USA, 3–9.

SCHRODER-PREIKSCHAT, W., LOHMANN, D., SCHELER, F., GILANI, W., AND SPINCZYK, O. 2006. Static
and dynamic weaving in system software with AspectC++. In HICSS ’06: Proceedings of the 39th Annual
Hawaii International Conference on System Sciences. IEEE Computer Society, Washington, DC, USA, 214.1.

SECURANT. 1999. Unified access management: A model for integrated web security. Tech. rep., Securant
Technologies. June 25.

SPENCER, R., SMALLEY, S., LOSCOCCO, P., HIBLER, M., ANDERSEN, D., AND LEPREAU, J. 1999. The
Flask security architecture: System support for diverse security policies. In Proceedings of the 8th USENIX
Security Symposium. USENIX Association, Washington, D.C., 123–140.

STRONG, P. 2007. How Ebay scales with networks and the challenges. In the 16th ACM/IEEE International
Symposium on High-Performance Distributed Computing (HPDC’07). ACM Press, Monterey, CA, USA. In-
vited talk.

TRIPUNITARA, M. V. AND CARBUNAR, B. 2009. Efficient access enforcement in distributed role-based access
control (RBAC) deployments. In SACMAT ’09: Proceedings of the 14th ACM symposium on Access control
models and technologies. ACM, Stresa, Italy, 155–164.

VAIDYA, J., ATLURI, V., AND GUO, Q. 2007. The role mining problem: Finding a minimal descriptive set of
roles. In Proceedings of the 12th ACM Symposium on Access Control Models and Technologies (SACMAT).
ACM Press, Sophia Antipolis, France, 175–184.

VOGELS, W. 2004. How wrong can you be? Getting lost on the road to massive scalability. In the 5th Interna-
tional Middleware Conference. ACM Press, Toronto, Canada. Keynote address.

WEI, Q., RIPEANU, M., AND BEZNOSOV, K. 2007. Cooperative secondary authorization recycling. In Proceed-
ings of the 16th ACM/IEEE International Symposium on High-Performance Distributed Computing (HPDC).
ACM Press, Monterey Bay, CA, 65–74.

XACML. 2005. OASIS eXtensible Access Control Markup Language (XACML) version 2.0. OASIS Standard.

ACM Journal Name, Vol. V, No. N, June 2009.

