
Applying Aspect-Orientation in Designing Security Systems: A Case Study

Shu Gao, Yi Deng, Huiqun Yu, Xudong He, Konstantin Beznosovi, Kendra Cooperii
School of Computer Science, Florida International University

iDepartment of Electrical and Computer Engineering, Univeristy of British Columbia
iiDepartment of Computer Science, University of Texas at Dallas

 {sgao01, deng, yhq, hex}@cs.fiu.edu; ibeznosov@ece.ubc.ca; iikcooper@utdallas.edu

Abstract. As a security policy model evolves, the design
of security systems using that model could become
increasingly complicated. It is necessary to come up with
an approach to guide the development, reuse and
evolution of the design. In this paper, we propose an
aspect-oriented design approach to designing flexible and
extensible security systems. A case study demonstrates
that such an approach has multifold benefits and is worth
further exploration.

1. Introduction

A security policy model always evolves; accordingly, the
design of a security system using that policy model
should reflect the changes. Using role-based access
control (RBAC) as an example, currently it supports role
hierarchy, static separation of duty relations, and dynamic
separation of duty relations. As research on RBAC
progresses, more concerns have been and will be covered.
So the model hierarchy of RBAC is quickly becoming
more and more complicated, which requires that the
security system supporting RBAC be flexible and
extensible. To address this issue at the design level, we
propose an aspect-oriented approach to designing flexible
and extensible security systems. This paper illustrates the
approach through a case study, which is part of a design
for CORBA access control (AC) supporting RBAC
models.

Although some papers in the literature have dealt with
separating security concerns in application system design,
little research has been done to explore the use of aspect-
orientation in designing security systems. Our work is a
first step toward a systematic aspect-oriented approach to
advance the design of security systems.

2. A Case Study

The CORBA AC [13] is a reference model for enforcing
access control in the middleware layer of distributed
applications. It is aimed to provide a standard way to

separate access control and application logic. CORBA AC
specification is policy neutral in that only essential and
general access control interfaces are specified. To
implement a functional CORBA AC mechanism, certain
access control policy models have to be supported. In this
case study, we choose RBAC models, which have been
widely recognized as a well-defined general approach for
access control in large-scale authorization management.

2.1. Problem Analysis

In [14], the RBAC96 family contains four models:
RBAC0, RBAC1, RBAC2, and RBAC3. RBAC0 is the base
model that contains (1) entities – users (U), roles (R),
permissions (P); (2) static relationships – user assignment
(UA – between users and roles), permission assignment
(PA – a between roles and permissions); and (3) dynamic
relationship – sessions (S) (a one to many relationship
between a single user and his/her multiple roles). RBAC1
extends RBAC0 with a hierarchical structure representing
the partial order relation on roles. RBAC2 extends RBAC0
with constraints on entities such as conflicting roles as
well as relationships such as a user can only assume a
limited number of roles. RBAC3 is the combination of
both extensions of hierarchy and constraints such that
constraints can be defined on roles at the different levels
of the hierarchy.

Since RBAC1 to RBAC3 are derived from RBAC0, one
design issue is how to effectively reuse the design for
RBAC0 to realize RBAC1 to RBAC3. The RBAC family is
still evolving. The number of RBAC models is increasing
to cover a variety of emerging concerns and specific
application needs. For example, in the proposed RBAC
standard by NIST [4], the time concern is incorporated
into the concept of dynamic separation of duty relations
(DSD), while the old constraint model was called static
separation of duty relations (SSD). Very likely, context
concern will also be introduced in the near future. If we
follow the conventions used in [14], we can illustrate the
evolution of RBAC family with Figure 1.

In Figure 1.b, RBAC3 is a new model with temporal
constraints (DSD) 1 ; RBAC4 is yet another new model
covering context (spatial) concern. It is remarkable how
fast the complexity can grow with the introduction of new
concerns. Hence another very important design issue is
how to achieve flexibility and extensibility in designing
security systems using such models.

2.2. Design Approach

Given the above issues, it is necessary to have a design
approach that facilitates design reuse and evolution.
Separation of concerns [5] has been one of the
fundamental principles in software development in the
past three decades. At design phase, separation of
concerns allows designers to focus on one concern
without being distracted by other complexities. In our
case study, following this principle can help us manage
complexity, comprehensibility, composition and
evolution of the design.

Recently, a new software implementation paradigm called
aspect-oriented programming (AOP) based on the
principle of separation of concerns was proposed [7],
which has generated extensive research interest. As
Kiczales et al. point out in [7], existing programming
languages including procedural, functional, and object-
oriented languages decompose a system into functional
components. However the implementations of some
properties (e.g. synchronization, real-time constraints,
error handling, audit, security enforcement) cannot be
encapsulated into a single component. Frequently
classified as “crosscutting properties”, these properties are
usually present in more than one functional component.
Implementations of such properties in mainstream
languages necessarily result in tangled code. Code
tangling denotes the use of a single method to implement
multiple properties. The purpose of AOP is to provide
mechanisms that explicitly capture crosscutting structures,
so crosscutting concerns can be encapsulated.

1 The RBAC3 in RBAC96 family is now RBAC5 in the extended
RBAC family.

The studies in AOP have already been extended to aspect-
oriented design (AOD), due to the significance of
software architecture in system development. In order to
obtain a good aspect-oriented design, three key issues
must be addressed:

(1) The identification of aspects;
(2) The notations used to specify aspects;
(3) The rules to compose aspects together.

Yet another important issue is the analysis method of the
design product. But this is beyond the scope of this paper.

For this case study, we regard each concern in RBAC
models as an aspect and thus we have four aspects: role
hierarchy (RH), static constraints (SSD), temporal
constraints (DSD), and spatial constraints (SC). These
four aspects are orthogonal and are faithful reflections of
the separation of concerns principle. With this aspect-
oriented view, the development of RBAC models will be
incremental and compositional. For example, RBAC13
(Figure 1.b) will be built by integrating the base model
RBAC0 with aspects RH, DSD, and SC. Therefore this
approach will greatly enhance the reusability of the base
model and aspects, as well as provide great flexibility for
RBAC evolution to meet new system needs. Thus we
have a nice and elegant solution to issue (1).

A common practice in AOD is to extend UML notations
[6] as AOD notations. The benefit of using UML is the
ease of learning and use. Issue (3) is usually closely
related to the implementation models. Our proposed
aspect-oriented approach is flexible in that it does not
depend on any particular implementation model. For the
CORBA AC design, we use the widely studied AspectJ
[1] as the implementation model. Consequently, the
composition rules of AspectJ are adopted. In the
following subsection, we briefly introduce AspectJ and
the extended UML notations to be used in our design.

2.3. AspectJ and UML Extension

AspectJ is an aspect-oriented extension of Java. AspectJ
defines two types of crosscutting: dynamic crosscutting
and static crosscutting. Dynamic crosscutting supports
defining and advising points during the dynamic
execution of a program. Static crosscutting allows adding
new attributes, operations, and many other declarations
that may affect the static type hierarchy to a class or
aspect. By explicitly capturing dynamic and static
crosscutting, AspectJ provides a totally new way to
encapsulate crosscutting concerns. Novel as it is, the
aspect-oriented method behind AspectJ is relatively easy
to understand. Some key concepts are defined (from [8],
modified) as below:

Join point: A predictable point in the execution of an
application.

a. The RBAC96
Model Hierarchy

b. The RBAC Model Hierarchy with Time and
Context Concerns

Figure 1. Evalution of RBAC family

Pointcut: A structure designed to identify and select join
points within a program.
Advice: Code to be executed when a join point is reached
in the application code.
Inter-type declaration: A powerful mechanism to add
attributes and methods to previously established classes.
Aspect: A structure analogous to an object-oriented class
that encapsulates join points, pointcuts, advices, and inter-
type declarations.

Join point, pointcut, and advice are used to realize
dynamic crosscutting. The join point is a well-defined
point in a program where another concern will crosscut
this program. It can be method calls, constructor calls,
method call execution, constructor call execution, field
get, field set, exception handler execution and other points
in the execution of a program. AspectJ uses a designator
that takes a join point as a parameter to tell the aspect-
oriented program when it should match the join point. The
pointcut is a structure to group such designators.
Whenever a join point is matched by a designator, the
pointcut containing it is triggered. Some advice defined
for the triggered pointcut will be executed. Depending on
the type of the advice (before, after or around), the code
in the advice is executed before, after, or in place of the
join point. Inter-type declaration is for static crosscutting.
New attributes and methods can be added to existing
classes without having to explicitly modify the classes.
AOP introduces a new component type – aspect. The
aspect is used to encapsulate crosscutting concerns. It
contains the join points, pointcuts, and advices.

Figure 2. Extension of UML class diagram

We informally extend UML notations to model aspect-
oriented design (Figure 2)2. An aspect is a regular class
with the newly created stereotype <<aspect>>. An inter-
type declaration has a new stereotype <<introduction>>.
It is like an attribute or a method in a regular class, except
that its name should start with the name of the target
class/aspect to which the new attribute/method is
introduced. Advices have the stereotypes of <<before>>,

2 Some ideas are borrowed from [15].

<<after>> and <<around>>. An advice has no name. The
name after <<before>>, <<after>> or <<around>> is the
name of the pointcut for which an advice is defined. A
pointcut is represented by one or more navigated
association(s) from an aspect to a class/aspect which the
aspect crosscuts. The pointcut’s name is labelled at the
crosscutting aspect side. The join point’s name is labelled
at the side of the class/aspect being crosscut.

2.4. The Aspect-Oriented Design

Based on the above discussion, this subsection introduces
an aspect-oriented design for CORBA AC that operates
with RBAC0-3 in the RBAC96 family. It is not our
purpose to present a complete and detailed design here;
instead, we would focus on demonstrating how AOD
realizes the separation of concerns principle, and how it
helps to manage the complexity shown in Figure 1.

Base Design – Main Concern

As we have analyzed in subsection 2.1 and 2.2, the main
concern of this case study is to realize a CORBA AC
mechanism that supports RBAC0. The design of the main
concern will be reused and crosscut by the design of new
concerns, therefore it is called the base design. When
working on a design, it is better to have some knowledge
of other concerns that may arise. However, it is always
the case that the designers hardly know what will happen
in the future. The good news is that, with AOD, we do not
have to worry about other concerns.

Aspect One – Role Hierarchy

Let us see what new attributes and methods need to be
introduced and which existing methods need to be
modified to support role hierarchy. First, as a direct result
of role hierarchy, functions used to manage the partial
order relation are need: add_inheritance(),
delete_inheritance(). They should be added to the Role
class in the base design. Consequently, the Role class
needs to maintain a list of immediate ascendants and a list
of immediate descendants. Second, in the base design,
there is a method get_assigned_roles(user) in the UAList
class, which returns all roles assigned to the given user
and is used to determine a user’s access permission to
resources. When role hierarchy exists,
get_assigned_roles(user) cannot return all roles that a user
actually has, since some roles not assigned can be
inherited. For example, in a bank, the role manager
inherits the role employee. If John is assigned to be the
manager, then he is also a bank employee though he is not
explicitly assigned to that role. The access control system
needs to find all roles a user actually has in order to
determine the user’s permissions correctly. Therefore, we
add get_authorized_roles(user) to the UAList class for
returning all roles including the inherited ones of a user.

Similarly, we need authorized_users(role) (in the UAList)
and authorized_roles(user) (in the UA class) to take the
place of corresponding “assigned_” ones in the base
design. Accordingly, in the base design, two methods that
used to call get_assigned_roles(user): authenticate() from
the PrincipalAuthenticator class and set_roles() from the
Credentials class, now have to been modified to call
get_authorized_roles(user).

The concern to support role hierarchy crosscuts the main
concern in that it cannot be implemented in a localized
way with vanilla object-oriented approach (Figure 3).
Several classes in the base design need to be modified or
extended. On one hand, the crosscutting problem makes
it expensive to modify; on the other hand, the resulting
design is hard to understand and maintain.

Figure 3. Tangled implementation of RH concern

With AOD, we can address this problem by explicitly
representing crosscutting, and encapsulate the
crosscutting concerns into aspects. The AOD class
diagram for implementing RBAC1 is shown in Figure 4.
In the figure, two dashed frames are used to indicate the
design for the main concern and the design for the role
hierarchy concern respectively. Since the base design is
too large, only those classes directly affected by adding
the new concern are listed here and relationships other
than crosscutting are omitted. As it shows, the

implementations of two concerns are well modularized
without any tangling. An aspect called RH contains all the
implementation of the RH concern. Inside the RH aspect,
several inter-type declarations are defined to insert new
attributes and methods into existing classes. Only one
pointcut handle_rh and one join point
!UAList.get_assigned_roles(user) (“!” means it is a
method call type join point) are defined. At runtime, any
method call to UAList.get_assigned_roles(user) generated
by PrincipalAuthenticator or Credentials instance will
trigger the handle_rh pointcut. The <<around>> type
advice code defined for handle_rh will then be executed
in place of the UAList.get_assigned_roles(user) method.
In this design, the advice code will call
UAList.get_authorized_roles(user) which is defined in the
same aspect.

Aspect Two – Static Constraints

RBAC2 allows security administrator to set static
separation of duty constraints on the assignment of users
to roles. In [4], an SSD constraint is defined in the form of
(rs, n) where rs is a role set, and n is called “cardinality”
which is a natural number ≥ 2. (rs, n) means that no user
is assigned to n or more roles from the set rs.

Figure 5. AOD for implementing RBAC2

To implement RBAC2, first we need several functions to
manage SSD constraints. They are: create_ssd_set(),
add_ssd_role_member(), del_ssd_role_member(),
del_ssd_set(), set_ssd_cardinality(), list_ssd_sets(),
ssd_set_roles(), and ssd_set_cardinality(). Besides these,
every time the SSD relation or the user-role assignment
relation is modified, the system must check whether the
SSD constraints have been broken. So there should be a
function to enforce these constraints.

It is worth noticing that the management functions for
SSD constraints do not crosscut the base design. They
are newly defined functions and do not need to be
inserted into any classes in the base design. Should they
be encapsulated into an aspect structure? We prefer not,

Figure 4. AOD for implementing RBAC1

since we can define two new classes: SSD and SSDList,
which can encapsulate these functions quite well.

The implementation of RBAC2 crosscuts the main
concern only at the point where assign_user() of the UA
class is executed. A method call to the function that
enforces SSD constraints need to be added after the
execution of assign_user().

The function enforcing SSD constraints crosscuts SSD
and SSDList class, because these two classes contain
methods that may change the SSD relation.

Thus, we design an aspect CheckConstraints. In this
aspect, there is a pointcut enforce_constraints. An
<<after>> type advice is defined for this pointcut. Inside
the advice is the code enforcing SSD constraints. There
are several join points defined. All of them are of method
call execution type (which will be represented by “?” in
the diagram). Specifically, the execution of
SSDList.create_ssd_set(), UA.assign_user(), and any
methods in SSD class that modifies the role_set or
SSD_Cardinality attribute will trigger the
enforce_constraints pointcut.

The aspect-oriented design for static constraints concern
is shown in Figure 5. Although the static constrains
concern is not implemented by one aspect, but by two
classes and an aspect, the implementation of this concern
is still well modularized.

Composition Design – RBAC3

RBAC3 combines role hierarchy and static constraints.
Now the advantage of AOD is obvious. By composing the
base design, Aspect One and Aspect Two together, with

minor modification and without destroying current
modularity, we get the design for RBAC3 (Figure 6).
According to the composition rule of AspectJ, the aspect
RH dynamically crosscuts the aspect CheckConstraints.
This is because the advice code enforcing SSD constraints
used to call get_assigned_roles(user) to find a user’s
roles. With the existence of role hierarchy, now
get_assigned_roles(user) should be replaced by
get_authorized_roles(user). We also need to define a new
join point, which is the execution of
Role.add_inheritance(). It will trigger the
enforce_constraints pointcut. In the figure, two
<<pointcut>> associations from RH to CheckConstraints
and from CheckConstraints to Role reflect these
modifications.

3. Related Work

Aspect-oriented programming is an emerging technology.
Recently the research on how to extend this paradigm to
design level has attracted more and more attention [3, 16,
17]. The application of AOD to security domain is
promising. However, research results are rare. Both [2]
and [9] point out that the separation of concerns principle
can be used to separate security concerns from application
concerns. This is an important and relatively obvious
application of AOD to security. Unlike them, we explore
the use of aspect-orientation to advance the design of
security systems. Due to the novelty of AOD, virtually no
research has been done in this direction.

A number of UML extensions have been proposed to
support AOD. Examples of such extensions are [11, 12,

Figure 6. AOD for implementing RBAC3

15]. So far, no extension has been widely accepted. This
to some extent hampers the application of AOD. Based on
the belief that UML notation should be easy to read and
understand, we introduced some stereotypes with [15] as
an aid for describing the CORBA AC design.

There is little work reported on implementing RBAC in
CORBA systems. The design in this paper is based on our
previous research, described in [10], which shows that
CORBA Security architecture is capable of supporting
RBAC0 – RBAC3 and determines strategies for
implementation. However, it does not propose a specific
design of CORBA Security. Using one of the strategies
from [10], this paper suggests a specific way for
implementing RBAC96 model on CORBA systems.

4. Conclusion

The principle behind AOD is separation of concerns. By
applying AOD approach in CORBA AC design, a number
of benefits of separation of concerns are acquired. Since
RBAC extensions covering different concerns can be
encapsulated using aspects, we get better modularity with
the CORBA AC design. Better modularity leads to better
comprehensibility, reusability, flexibility and
maintainability. Because there are well defined
mechanisms explicitly supporting both dynamic and static
crosscutting, the design can be incrementally extended to
cover temporal, spatial or other future concerns in RBAC
models.

Through this case study, we propose an aspect-oriented
design approach to designing security systems. Our work
is a first step toward a systematic aspect-oriented
approach to advance the design of security systems. Our
approach is easy to learn and apply. Although we have
used the composition rules of AspectJ and an extended
UML design notation for the design presented, our
approach does not depend on a specific implementation
model.

Our next step is to apply formal methods in AOD. Formal
analysis is very useful for detecting possible errors early
in the design phase, which is especially important to the
design of security systems.

5. Acknowledgements

This work is supported in part by NSF under grant No.
CCR-0226763 and No. HRD-0317692.

References

[1] AspectJ homepage. http://eclipse.org/aspectj/

[2] B.D. Win, F. Piessens, W. Joosen and T. Verhanneman. On
the Importance of the Separation-of-Concerns Principle in
Secure Software Engineering. In Workshop on the
Application of Engineering Principles to System Security
Design, December 22, 2002.

[3] B. Tekinerdogan and M. Aksit. Deriving Design Aspects
from Canonical Models. In Object-Oriented Technology, S.
Demeyer and J. Bosch (Eds.), LNCS 1543, ECOOP'98
Workshop Reader, Springer Verlag, pp. 410-413, July
1998.

[4] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn and R.
Chandramouli. Proposed NIST Standard for Role-Based
Access Control. ACM Transactions on Information and
System Security, vol. 4, pp. 224-274, 2001.

[5] E.W. Dijkstra. A Discipline of Programming. Englewood
Cliffs, NJ: Prentice Hall, 1976.

[6] G. Booch, J. Rumbaugh and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley
Longman, Inc, 1999.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V.
Lopes, J.-M. Loingtier and J. Irwin. Aspect-Oriented
Programming. In Proceedings of ECOOP'97 - Object-
Oriented Programming, 11th European Conference,
Jyvaskyla, Finland, 1997.

[8] J.D. Gradecki and N. Lesiecki. Mastering AspectJ: Aspect-
Orineted Programming in Java. Wiley Publishing, Inc,
2003.

[9] J. Viega, J.T. Bloch and P. Chandra. Applying Aspect-
Oriented Programming to Security. Cutter IT Journal, vol.
14, no. 2, pp. 31-39, 2001.

[10] K. Beznosov and Y. Deng. A Framework for Implementing
Role-Based Access Control Using CORBA Security
Service. In the Fourth ACM Workshop on Role-Based
Access Control, Fairfax, Virginia, USA, Octorber, 1999.

[11] M. Basch and A. Sanchez. Incorporating Aspects into the
UML. In Proceedings of Third International Workshop on
Aspect-Oriented Modeling, March 2003.

[12] O. Aldawud, T. Elrad and A. Bader. UML Profile for
Aspect-Oriented Software Development. In Proceedings of
Third International Workshop on Aspect-Oriented
Modeling, March 2003.

[13] OMG. CORBA Security Service Specification, Version
1.8, March 2002.

[14] R. Sandhu, E. Coyne, H. Feinstein and C. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2):38-
47, February 1996.

[15] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L.
Seinturier and L. Martelli. A UML Notation for Aspect-
Oriented Software Design. In Aspect-Oriented Modeling
with UML Workshop at AOSD 2002, Enschede, the
Netherlands, 2002.

[16] S. Clarke and R. J. Walker. Composition Patterns: An
Approach to Designing Reusable Aspects. In Proceedings
of the 23rd International Conference on Software
Engineering (ICSE), Toronto, Canada, May 2001.

[17] S. M. Sutton Jr. and P. Tarr. Aspect-Oriented Design Needs
Concern Modeling. In Aspect Oriented Design 2002
Workshop, April 23, Enschede, The Netherlands.

