
Towards Improving the Availability
and Performance of Enterprise

Authorization Systems
by

Qiang Wei

B.Eng., The University of Science and Technology Beijing, 1998
M.Eng., Nanyang Technological University, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October, 2009

c© Qiang Wei 2009

Abstract

Authorization protects application resources by allowing only authorized entities to access them.
Existing authorization solutions are widely based on the request-response model, where a policy
enforcement point intercepts application requests, obtains authorization decisions from a remote
policy decision point, and enforces those decisions. This model enables sharing the decision
point as an authorization service across multiple applications. But, with many requests and
resources, using a remote shared decision point leads to increased latency and presents the risk
of introducing a bottleneck and/or a single point of failure. This dissertation presents three
approaches to addressing these problems.

The first approach introduces and evaluates the mechanisms for authorization recycling in
role-based access control systems. The algorithms that support these mechanisms allow a local
secondary decision point to not only reuse previously-cached decisions but also infer new and
correct decisions based on two simple rules, thereby masking possible failures of the central
authorization service and reducing the network delays. Our evaluation results suggest that
authorization recycling improves the availability and performance of distributed access control
solutions.

The second approach explores a cooperative authorization recycling system, where each
secondary decision point shares its ability to make decisions with others through a discovery
service. Our system does not require cooperating secondary decision points to trust each other.
To maintain cache consistency at multiple secondary decision points, we propose alternative
mechanisms for propagating update messages. Our evaluation results suggest that cooperation
further improves the availability and performance of authorization infrastructures.

The third approach examines the use of a publish-subscribe channel for delivering autho-
rization requests and responses between policy decision points and enforcement points. By
removing enforcement points’ dependence on a particular decision point, this approach helps
improve system availability, which is confirmed by our analytical analysis, and reduce system
administration/development overhead. We also propose several subscription schemes for differ-
ent deployment environments and study them using a prototype system.

We finally show that combining these three approaches can further improve the authorization
system availability and performance, for example, by achieving a unified cooperation framework
and using speculative authorizations.

ii

Contents

Abstract . ii

Contents . iii

List of Tables . vi

List of Figures . vii

Acknowledgements . ix

Dedication . xi

Statement of Co-Authorship . xii

1 Introduction . 1
1.1 Architecture of authorization solutions . 2
1.2 Problem motivation . 4
1.3 Research goals . 5
1.4 Contributions . 6
1.5 Dissertation outline . 8

2 Background and Related Work . 9
2.1 Access control policies and models . 10

2.1.1 The Bell-LaPadula model . 10
2.1.2 The role-based access control model . 11

2.2 Access control system implementations . 12
2.3 General fault-tolerance techniques . 14
2.4 Using replication to improve availability and performance 15

2.4.1 Group replication . 15
2.4.2 Caching . 16
2.4.3 Cooperative caching . 16

2.5 Caching in access control systems . 17
2.5.1 Caching decisions . 17
2.5.2 Caching polices . 18
2.5.3 Caching attributes . 19

iii

Contents

2.6 Secondary and approximate authorization model 20
2.6.1 SAAMBLP . 22

2.7 Summary . 22

3 Recycling RBAC Authorizations . 23
3.1 SAAMRBAC design . 24

3.1.1 Assumptions . 24
3.1.2 Preliminaries . 25
3.1.3 Inference rules . 26
3.1.4 Naive algorithms . 26
3.1.5 Cache compression . 27
3.1.6 Optimized algorithms . 28
3.1.7 Discussion . 31
3.1.8 Using the role hierarchy in SAAMRBAC 33
3.1.9 Handling policy changes . 33
3.1.10 Evidence construction and verification . 38
3.1.11 Implementation considerations . 42

3.2 Experimental evaluation . 43
3.2.1 Simulation-based evaluation . 43
3.2.2 Prototype-based evaluation . 52
3.2.3 Evaluating hit rate with real-world data 54
3.2.4 Discussion . 57

3.3 Summary . 59

4 Cooperative Secondary Authorization Recycling 60
4.1 CSAR design . 60

4.1.1 Design requirements . 61
4.1.2 System architecture . 61
4.1.3 Discovery service . 63
4.1.4 Adversary model . 65
4.1.5 Mitigating threats . 65
4.1.6 Consistency . 67
4.1.7 Eager recycling . 69

4.2 Evaluation of CSARBLP . 70
4.2.1 Simulation-based evaluation . 70
4.2.2 Prototype-based evaluation . 73

4.3 Evaluation of CSARRBAC . 82
4.4 Summary . 83

iv

Contents

5 Authorization Using the Publish-Subscribe Architecture 85
5.1 The publish-subscribe architecture . 86

5.1.1 The event notification service . 86
5.1.2 Subscription schemes . 87

5.2 System design . 87
5.2.1 Design requirements . 88
5.2.2 System architecture . 88
5.2.3 Subscription/unsubscription schemes . 91
5.2.4 Security considerations . 95
5.2.5 Consistency considerations . 97
5.2.6 Integrating pub-sub with authorization recycling 98

5.3 Evaluation . 100
5.3.1 Evaluating availability . 100
5.3.2 Evaluating performance . 103

5.4 Summary . 113

6 Conclusion . 114
6.1 Future work . 115

Bibliography . 117

v

List of Tables

3.1 Building Cache+ and Cache− from primary responses 30
3.2 Building Evidence+ and Evidence− from primary responses 42

vi

List of Figures

1.1 General access control model based on the reference monitor [TS01]. 2
1.2 Authorization systems based on the request-response model. 3
1.3 The tight coupling between PEPs and PDPs leads to fragile authorization archi-

tectures [Bez05]. Any PDP failure will affect all the PEPs that depend on that
PDP. 5

2.1 A BLP example . 11
2.2 RBAC model. 12
2.3 Access control system implementations [Bez05]. The PEP intercepts application

requests and generates authorization requests. The PEP can be implemented by
the underlying middleware or be a part of the application. 13

2.4 SAAM adds SDP to the request-response model. 20

3.1 SAAMRBAC optimized recycling algorithms . 29
3.2 The decision algorithm in a hierarchical setting 34
3.3 Cache update algorithms . 36
3.4 SAAMRBAC revised algorithms for evidence construction 40
3.5 The evidence verification algorithm . 41
3.6 Comparing optimized algorithm and naive algorithm of approximate recycling

(AR), with precise recycling (PR), for an RBAC system with 100 users, 3,000
permissions, and 50 roles. 45

3.7 The impact of various system characteristics on the hit rate. 47
3.8 The impact of removing a role from R on hit rate. In both figures, the order of

the curves (from top to bottom) matches that of the legends. 50
3.9 The impact of cache warmness on the inference and update time. 51
3.10 Response time variation with cache warmness. 54
3.11 The experiments with the HP policy . 55
3.12 The experiments with the real trace . 56

4.1 CSAR introduces cooperation between SDPs. 62
4.2 The architecture enabling the support for policy changes. 68
4.3 The impact of various parameters on hit rate. The requests for subfigures (a)—

(c) follow a uniform popularity distribution. 72

vii

List of Figures

4.4 Response time as a function of the number of requests observed by SDPs. The
requests follow a uniform distribution. 75

4.5 Response time comparison between overlap rate of 10% and 100%. The requests
follow a uniform distribution. 76

4.6 The impact of policy changes on hit rate with a single SDP. The requests follow
a uniform popularity distribution. 79

4.7 The impact of SDP cooperation on hit rate when policy changes. The requests
follow a uniform popularity distribution. The overlap rate between SDPs is 100%. 80

4.8 Adding CSAR-based policy enforcement to TPC-W. 81
4.9 The impact of policy enforcement on response time. 82
4.10 The impact of various parameters on hit rate . 83

5.1 Publish-subscribe architecture for delivering authorization requests and responses. 89
5.2 Basic sequence diagram in resolving an authorization request. 90
5.3 Trade-offs bettween (un)subscription schemes. 94
5.4 Pub-sub for the authorization recycling system. 99
5.5 Analytical results on availability: number of nines. 101
5.6 Analytical results on availability: percentage decrease of failed requests. 102
5.7 PEP publishes a request in Siena . 104
5.8 PDP subscribes to a request in Siena . 104
5.9 Response time comparison for the four PEP subscription schemes: request-based,

subject-based, session-base, and callback. 107
5.10 Response time as a function of the number of subscriptions. 108
5.11 Results for the session-based subscription scheme. 109
5.12 The impact of concurrent PEP subscriptions on the throughput. 110
5.13 Response time as a function of overlap rate, when 4 PDPs exist. 111
5.14 Response time comparison with approximate recycling 112

viii

Acknowledgements

I would like to gratefully and sincerely thank many people who have helped me during my
graduate studies at the University of British Columbia. Without their guidance, support and
patience, the writing of this dissertation would not have been completed.

My deepest gratitude is to Professors Konstantin (Kosta) Beznosov and Matei Ripeanu, my
research supervisors. We had many enlightening discussions. I am indebted to Kosta for his
guidance and tremendous help in idea development and presentation skills. He invests much
time toward providing his students with opportunities to gain a wider breadth of experience,
organizing reading groups, and activities to cultivate a harmonious environment. Kosta also
gave support in work and life, financial and otherwise. I am also grateful to Matei, who
became my co-supervisor despite his many other academic commitments. He spent many hours
contemplating my ideas, always coming back with inspiring comments. His participation led to
great progress.

I would also like to thank Professor Sathish Gopalakrishnan, who served on my supervisory
committee. He was accessible for valuable discussions about the ideas in this dissertation, and
provided insightful comments and constructive criticism.

I would also like to thank Professors William A. Aiello and Norm Hutchinson. They served
on my university examination committee and have provided many insightful comments to im-
prove this dissertation. I am also grateful to Professor Carlisle Adams, who served as the
external examiner of my doctoral examination. He read this dissertation very carefully and has
provided many helpful suggestions to further improve it.

I would like to extend my sincerest thanks to Professor Jason Crampton, who is a rigorous
mathematician. I am lucky for the opportunity to have worked with Jason on the first essay
in this dissertation; he taught me a lot about how to be systematic and exhaustive in theory
development. Without his expertise, this dissertation would lack some crucial ingredients.

My thanks go to all my colleagues from the Laboratory for Education and Research in
Secure Systems Engineering (LERSSE). I am very grateful for their friendship and assistance
in all aspects. Knowing them made my life richer.

I would like to give my special thanks to my wife, Xiaohua, for her love and support all these
years. She accompanies me on this journey, sharing my happiness and stress, even while we
were separated by the Pacific Ocean. This dissertation would not have been possible without
her.

The last, and surely not the least, I want to thank my parents and my sisters, who always
supported, encouraged and believed in me. I thank my parents for allowing me to be as

ix

Acknowledgements

ambitious, and for making me feel proud of my accomplishments. Their support has meant
much to me.

x

To my parents, sisters, and to my wife, Xiaohua

xi

Statement of Co-Authorship

The materials in Chapters 3, 4 and 5 of this dissertation have each been either published
or submitted for publication. The author of this dissertation performed all the design and
evaluation related to chapters 3, 4, and 5. He also co-authored the corresponding papers, under
the supervision of the co-authors who provided feedback and guidance throughout the research
process. Below are the details for each chapter.

• Chapter 3: A preliminary version of this chapter has been published. A full version of this
chapter has been submitted to a journal for publication. The author of this dissertation
wrote all the sections of this chapter, except Sections 3.1.4-5 and 3.1.7-8 which were mainly
written by Prof. Jason Crampton.

Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu, Authorization Recycling in Hier-
archical RBAC Systems, under second review, ACM Transactions on Information and
System Security (TISSEC), 32 pages, 2009.

Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu, Authorization Recycling in RBAC
Systems, in the Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies (SACMAT’08), Estes Park, Colorado, 11-13 June, 2008, pp.63-72.

• Chapter 4: An extended abstract of this chapter was published as a poster and a pre-
liminary version of this chapter has been published at conferences. A full version of this
chapter has been published in the IEEE Transactions on Parallel and Distributed Systems.
The author of this dissertation wrote all the sections of this chapter.

Q. Wei, M. Ripeanu, and K. Beznosov, Cooperative Secondary Authorization Recycling,
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 20 n.2, February
2009, pp.275-288.

Q. Wei, M. Ripeanu, and K. Beznosov, Cooperative Secondary Authorization Recycling,
in the Proceedings of the 16th ACM/IEEE International Symposium on High Performance
Distributed Computing (HPDC’07), Monterey, IEEE, 25-29 June, 2007, pp.65-74.

Q. Wei, M. Ripeanu, and K. Beznosov, ”Poster: Cooperative Secondary Authorization
Recycling,” poster at the 15th USENIX Security Symposium, August 2006, Vancouver,
Canada.

• Chapter 5: A preliminary version of this chapter has been published at an IEEE confer-
ence. A full version of this chapter has been submitted to a journal for publication. The

xii

Statement of Co-Authorship

author of this dissertation wrote all the sections of this chapter.

Q. Wei, M. Ripeanu, and K. Beznosov, Improving Availability of Distributed Authoriza-
tion Infrastructures Using the Publish-Subscribe Model, under review, IEEE Transactions
on Parallel and Distributed Systems (TPDS), 32 pages, 2009.

Q. Wei, M. Ripeanu, and K. Beznosov, Authorization Using Publish/Subscribe Models,
In the Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA’08), 10-12 December, 2008, Sydney, Australia, pp.53-
62.

xiii

Chapter 1

Introduction

Enterprise application systems have become a necessary infrastructure component in most or-
ganizations. By supporting various applications that are developed independently, and even
based on different designs and technologies, enterprise application systems promise to integrate
all the information flowing through an organization to achieve organization-wide interopera-
tion [Dav00]. This variegated information includes finance and accounting, human resources,
supply chains, customers, partners, and more. As a result, organizations increasingly depend
on reliable and efficient enterprise application systems [SV04].

At the same time, the magnitude of enterprise application systems is undergoing a revolution
as large-scale commodity computing is becoming a reality. For example, eBay has 12,000 servers
and 15,000 application server instances [Str07], and Google is estimated to have “more than
450,000 servers spread in at least 25 locations around the world” [MH06]. In other words,
enterprise application systems are becoming massive-scale and distributed.

Nowadays, security is receiving greater attention from organizations than ever before [All05].
Designing dependable security mechanisms that protect the system and resources becomes an
increasingly complex and difficult challenge as the magnitude and complexity of enterprise
application systems increase, and as information resources are interconnected by the Internet
and/or enterprise networks [Bez00].

Addressing security concerns in a distributed enterprise application system can be roughly
divided into two aspects [TS01]. One aspect concerns the communication between compo-
nents/processes that reside in different machines. The principal mechanism of ensuring secure
communication is to build a secure channel. A secure channel is usually achieved by ensuring
message confidentiality, mutual authentication, and message integrity, and it protects senders
and receivers against interception, modification, and fabrication of messages.

The other aspect concerns authorization or access control,1 which ensures that a subject
gets only those access rights to the resources or objects it is entitled to. Resources can be files
in an operating system or data entries in a database, and subjects can be application users or
computer programs. The structure of traditional access control mechanisms is based on the
conceptual model of reference monitor [And72]. As shown in Figure 1.1, a reference monitor
is responsible for mediating access by subjects to system resources. The reference monitor is
aware of the permissions that a subject has, and decides whether the subject is allowed to carry
out a specific operation on specific resources. To provide full protection, the reference monitor

1Formally, access control is about verifying access rights, whereas authorization is about granting access
rights [TS01]. In this dissertation, we use these terms interchangeably.

1

1.1. Architecture of authorization solutions

subject reference
monitor resource

request for
permission

authorized
request

Figure 1.1: General access control model based on the reference monitor [TS01].

is invoked each time a request is issued.
Access control in enterprise application systems is the focus of this dissertation. In particu-

lar, we propose various approaches to improving the availability and performance of the access
control infrastructure for enterprise application systems.

In the rest of this chapter, Section 1.1 provides an overview of typical authorization archi-
tectures used by the existing enterprise application systems, followed by a description of their
problems (Section 1.2) that motivate this dissertation. Section 1.3 summarizes our research
goals and their importance. Section 1.4 summarizes the contributions of this dissertation. Fi-
nally, Section 1.5 outlines the dissertation’s structure.

1.1 Architecture of authorization solutions

To protect application resources, an obvious solution is for applications to define their own
policies and authorization logic to enforce these policies [YB97], e.g., using Java Authentication
and Authorization Service (JAAS) [LGK+99]. In this design, the reference monitor is a single
component within the application. While this architecture gives developers complete control
over authorization during application development, it has a number of disadvantages. First,
once an application is in production, it is hard to make changes to authorization functions
(such as adding new requirements and modifying the authorization logic), as any change would
require the developer to modify the application code [GB99, HGPS99, Ora08a]. Second, in an
enterprise with a large number of applications, administrating authorization policies becomes
challenging, as it has to be done on application-by-application basis [Bez98]. Besides, it is
difficult to maintain policy consistency across multiple applications [HGPS99]. Third, the
architecture leads to challenges in the area of audit and compliance [Ora08a]. For example,
to comply with government regulations such as the Sarbanes-Oxley Act [Sar02], enterprises
are required to report and review users’ privileges. This implies that, in this architecture, an
auditor needs to check all the applications across the enterprise, which will be a difficult task.

For these reasons, the reference monitor is commonly split into two components, a policy en-

2

1.1. Architecture of authorization solutions

client

subject

application server

authorization
server

policy
decision point

(PDP)

resource

policy
enforcement point

(PEP)

application
request

application
response

authorization
request

authorization
response

Figure 1.2: Authorization systems based on the request-response model.

forcement point (PEP) and a policy decision point (PDP), as shown in Figure 1.2. Coming from
the Internet Engineering Task Force (IETF) and Distributed Management Task Force (DMTF)
specifications [YPG99, DBC+00] and used by eXtensible Access Control Markup Language
(XACML) [Com05], this design represents a common way of separating different functional
components involved in authorization.

The PEP is the module responsible for enforcing policy decisions. A PEP logically consists of
two parts: a front-end that intercepts the client requests and communicates with the PDP, and a
back-end that forwards the requests to the resources. As soon as the PEP receives an application
request for a resource access, it formulates an authorization request for an authorization decision
and sends it to the PDP. The PDP returns the decision and the PEP then enforces the decision
by either accepting and forwarding the request to the resources or denying the request.

The PDP is the module responsible for making decisions regarding access permissions to
the requested resources. As soon as the PDP receives a request for an access decision from the
PEP, it retrieves the policy associated with the protected resource from the policy store (not
shown in Figure 1.2.) Based on the information in the request and the access control policy (and
possibly other environmental or contextual data), the PDP decides whether to allow or deny
access for the requested operation at the remote resource. Finally, an allow or deny message is
sent back to the PEP.

The use of PEP and PDP enables the separation of authorization logic from application
logic, which reduces the application complexity. Besides, this separation frees developers from
dealing with the actual decision-making process, so that developers are able to concentrate on
the business logic [Ora08a]. In addition, this architecture is more capable and flexible in dealing
with the evolution of authorization requirements. Particularly, the authorization policy can be
changed without requiring any modification to the application code.

Furthermore, most modern authorization solutions [CZO+08, Kar03, Ent99, Net00, Sec99,
OMG02, DK06, BZP05, SSL+99, Ora08b] advocate the externalization of the PDP to a central-

3

1.2. Problem motivation

ized authorization server. This externalization architecture enables the reuse of authorization
logic at a centralized authorization server and consistent policy enforcement across multiple
applications. Besides, it provides a central point for administrators to manage policies and for
auditors to review users’ privileges. Therefore, it helps achieve more efficient policy manage-
ment, audit and compliance.

Therefore, this dissertation focuses on the architecture that uses the centralized PDP due
to its popularity in enterprise application systems. For simplicity, we denote it as the request-
response model, as the PEP sends each request to the central PDP and enforces the decision in
the returned response.

1.2 Problem motivation

Although the request-response model enables authorization logic reuse and consistent policy
enforcement, it commonly leads to a point-to-point communication architecture, where PEPs
obtain decisions from PDPs through synchronous remote procedure calls (RPC). This point-to-
point architecture, in turn, results in tight coupling between many PEPs and some particular
PDPs. When the scale of enterprise application systems increases, as shown in Figure 1.3, a
tightly-coupled point-to-point architecture suffers from two problems: fragility and poor per-
formance.

• Fragility. In a distributed authorization system, the authorization server may not be
reachable due to a failure (transient, intermittent, or permanent) of the network, of the
software located on the critical path (e.g., OS), of the hardware, or even from a misconfig-
uration of the supporting infrastructure. In that case, all applications depending on that
authorization server may not work properly. Hence, Fragility leads to reduced availabil-
ity. A conventional approach to improving the availability of a distributed infrastructure
is failure masking through redundancy of either information or time, or through physi-
cal redundancy [Joh96]. However, redundancy and other general purpose fault-tolerance
techniques for distributed systems scale poorly, and become technically and economically
infeasible when the number of entities in the system reaches thousands [KLW05, Vog04].

• Poor performance. In a massive-scale enterprise application system with non-trivial
authorization policies, making authorizations is often computationally expensive due to
the complexity of the policies involved and the large size of the resource and user popu-
lations. Thus, the authorization server often becomes a performance bottleneck [ND97].
Additionally, the communication delay between the application and the authorization
server—added to the inherent cost of computing an authorization—can make the autho-
rization overhead prohibitively high.

To address these problems, an alternative architecture is to co-locate PDPs with the corre-
sponding PEPs. In order to achieve central administration of policies, the policy of each PDP

4

1.3. Research goals

policy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginePDP

policy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginePDP

policy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginepolicy
enginePDP

PEP

PEP

PEPPEP

PEP
PEP

PEP

PEP PEP
PEP

PEP
PEP

PEP

PEP

PEP PEP
PEP

PEP

PEP PEP

PEP
PEP

PEP
PEP

PEP

PEP

PEP

PEP
PEP

PEP

PEP

PEP

PEP

Figure 1.3: The tight coupling between PEPs and PDPs leads to fragile authorization architec-
tures [Bez05]. Any PDP failure will affect all the PEPs that depend on that PDP.

can be delivered from a centralized policy store. Although this architecture reduces the network
latency in resolving a request, it posts new challenges to the policy design: the policy should be
expressed in such a way that it can be easily distributed to PDPs on-the-fly and then be verified
and processed by them efficiently [KS07]. When the policy size is large, the cost of keeping
up to date user, attribute, and permission data in multiple PDPs is also prohibitively high. In
addition, this architecture is not efficient when the authorization logic is comprehensive. For
example, in order to compute a response, the local PDP may still need to contact multiple
remote databases/directories to retrieve the attribute information for the subject and object
in each request, which might be time-consuming. For these reasons, this architecture is rarely
used in enterprise-grade deployments.

1.3 Research goals

The goals of this dissertation research are to address the above-mentioned problems. More
specifically, we want to investigate alternative solutions to improve the availability and perfor-
mance of access control systems. By improving these two aspects of access control systems, we
address the concerns of users, security administrators, and business managers in enterprises.

From a user’s perspective, the availability and performance of the access control system
affect the user’s experience in interacting with the application. Specifically, when the PEP is
unable to get a decision for a request, the PEP may have to deny the request by default. Hence,
the user is unable to perform the desired actions that should have been allowed, which leads

5

1.4. Contributions

to reduced user’s satisfaction. Lower satisfaction could also be a result of poor performance of
the access control system. Hence, it becomes important to tune the performance of enterprise
access control systems, as evident by an article [BH05] that discusses various performance tuning
techniques for IBM WebSphere Portal access control solutions.

Furthermore, as applications become more complex, the availability and performance of
access control systems become even more critical to end users. Compared to authentication,
authorization is usually required to perform for each application request. For example, Mer-
cury [Mer05] shows that the total time used for authorization can be seven times longer than
the total authentication time. As another example, as in Facebook and Amazon, a web page
is usually constructed by multiple “portlets,” each of which may display the data produced by
some complex web services [Ora09]. As a result, the application request for a single web page
may involve resolving multiple authorization requests at the back-end access control system. If
any of these authorization process fails or is delayed, the result of the application request would
be affected. Therefore, the application availability and performance increasingly depend on the
underlying access control systems.

Additionally, improving the availability of the access control system addresses the concerns
of security administrators. Bauer et al. [BCR+09] conducted a series of interviews with thirteen
administrators who manage access control policy in large universities/organizations. They show
that security administrators were very interested in features such as availability and the ability
to fail gracefully,2 because highly available access control systems reduce the burden of security
administration.

The availability of the access control system ensures the accessibility of enterprise application
systems, which is critical to the proper functioning of an enterprise. When systems are down,
the production and critical business processes come to a stop. The costs of being unable to
deliver service and product to customers can be extremely high. For example, a large company
claimed that the cost of downtime on their point of sale verification systems was in the order of
$5,000,000 per minute [MD99]. Therefore, it is important to make sure that the access control
service continues to run uninterrupted in the event of software and hardware failures.

1.4 Contributions

The central contribution of this dissertation is the design and evaluation of three approaches to
improving the availability and performance of enterprise authorization systems. This work is
based on a study of current enterprise authorization systems and their requirements for avail-
ability and performance. In detail, this work contributes to research in enterprise authorization
architectures as follows:

• Approximate recycling of authorizations. We propose mechanisms for authorization recy-
2In most of the interviews, administrators stated that availability and the ability to fail gracefully are their

major concerns in choosing an access control technology.

6

1.4. Contributions

cling in role-based access control (RBAC) systems [WCBR08, WCBR09]. The algorithms
that support these mechanisms allow approximate authorization decisions (a kind of in-
ferred decision) to be made at a secondary decision point (SDP), thereby masking possible
failures of the PDP and reducing the authorization decision time. The approximate recy-
cling can be integrated with the existing systems without modifying the PEP and PDP
by integrating the SDP. Besides the algorithms for constructing cache and making ap-
proximate decisions, we also propose the algorithms for updating cache in case of policy
changes and for constructing and verifying evidence. We also prove the correctness of
cache recycling and update algorithms: we prove that the SDP will always produce the
same decision (allow or deny) as the PDP. Hence, this mechanism is able to meet the audit
and legal compliance requirements. Our evaluation results confirm that the number of
authorization requests that can be served without consulting the remote PDP increases,
compared to the traditional caching mechanism.

• Cooperative authorization recycling. We propose a cooperative authorization recycling
mechanism where each SDP shares its capability of making decisions with other SDPs to
further mask authorization server failures and network delays [WBR06, WRB07, WRB09].
Our design does not require cooperating secondary decision points to trust each other.
To maintain cache consistency at multiple secondary decision points, we propose the
alternative mechanisms for propagating update messages. Our evaluation results show
that, by cooperation between SDPs, a large number of requests can be resolved even
when only a small portion of responses are cached at each SDP.

• Using the publish-subscribe architecture. We propose to use a publish-subscribe archi-
tecture to replace the point-to-point communication channel between PEPs and PDPs.
This reduces the dependency of each PEP on specific remote PDPs and also makes the
management of authorization infrastructure easier [WRB08]. Our design is independent
of the underlying access control policies and publish-subscribe technologies. For different
application scenarios, we propose various subscription schemes that can be used to im-
prove system performance. Our evaluation results demonstrate that this approach enables
remote PDPs to form a reliable PDP cloud, and thus improve the system availability.

• An integration of these approaches. While deploying (cooperative) SDPs and using the
publish-subscribe architecture can work independently, we also show that they can work
together to support distributed authorization infrastructures. In particular, although the
publish-subscribe architecture has a negative impact on the performance, using authoriza-
tion recycling helps mitigate this negative impact. Meanwhile, using the publish-subscribe
architecture helps achieve SDP cooperation as well as speculative authorizations (where
PDP can pre-compute authorizations based on the request history and push them to the
SDP).

7

1.5. Dissertation outline

1.5 Dissertation outline

The rest of this dissertation consists of five chapters. The outline of each chapter is described
as follows.

• In Chapter 2, we present a background of enterprise access control systems and related
work on improving their availability and performance.

• In Chapter 3, we propose the mechanisms that enable the inference of approximate au-
thorizations for RBAC systems. We define inference rules specific to RBAC authorization
semantics and develop the recycling algorithms based on these rules. We provide detailed
analytical and experimental results on availability and performance.

• In Chapter 4, we describe a cooperative authorization recycling design which further im-
proves the availability and performance of access control solutions. We address important
issues like security and consistency in such a design. We also present the evaluation results
using both simulation and a prototype system.

• In Chapter 5, we present an authorization architecture that uses the publish-subscribe
model to improve the robustness and manageability of the access control system. In
this architecture, PDPs can be viewed to form a reliable PDP cloud to PEPs. We also
propose and evaluate different optimization techniques to improve the performance of this
architecture.

• In Chapter 6, we conclude the dissertation by discussing the achieved results and outlining
future work.

8

Chapter 2

Background and Related Work

Access control is “a security function that protects shared resources against unauthorized ac-
cesses” [Til05]. The sub-system that provides access control to the resources of an enterprise
application system is called an access control system. This chapter presents the background
on building access control systems and related work on improving their availability and perfor-
mance.

A critical step of developing an access control system is a definition of a set of rules according
to which access is to be controlled. Collectively, these rules are called access control policy. A
formal representation of an access control policy is called an access control model, which enables
one to formally prove the various properties of the policy. Section 2.1 provides background on
the access control policies and models related to this dissertation.

An access control system usually provides two kinds of facility. First, it provides facilities
for making decisions whether or not a request should be authorized based on security policies.
Second, it provides facilities for managing user privileges, e.g., allocation and revocation of
privileges. In this dissertation, we focus on the first kind. Section 2.2 presents the background
on how decision and enforcement are usually implemented in enterprise access control systems.

Given the increase in both the number of servers and the scale of geographical areas, the
existing enterprise access control systems that employ remote authorization servers are essen-
tially distributed systems themselves. Section 2.3 and Section 2.4 review the solutions that use
replication to improve the availability and performance of generic distributed systems. Further-
more, Section 2.5 describes the work that uses caching—a temporary form of replication—for
access control systems. In particular, we discuss three caching solutions: decision caching,
policy caching, and attribute caching.

Although caching is simple, its impact on access control system performance and availability
is limited by a number of factors, e.g., cache size and the frequency of policy changes. In
order to achieve a greater improvement, Crampton et al. [CLB06] proposed the secondary
and approximate authorization model (SAAM), which extends the decision caching approach.
SAAM defines an authorization inference framework where cache can resolve requests that have
not been issued before. The approaches we propose in this dissertation are based on SAAM.
Therefore, we provide an overview of SAAM in Section 2.6.

Finally, Section 2.7 summarizes this chapter.

9

2.1. Access control policies and models

2.1 Access control policies and models

Access control policies can be grouped into three main classes: discretionary, mandatory, and
role-based. A discretionary access control policy (DAC) determines access based on identity
of subjects and allows a subject with a certain access permission to pass that permission on
to any other subject [SV01]. DAC is commonly used in both UNIX and Windows operating
systems. The access matrix model [Lam71] provides a framework for describing DAC and it
can be implemented in various mechanisms, such as access control lists (ACLs) and capabilities.
An access control list is associated with an object and specifies who or what is allowed to access
the object and what operations are allowed to be performed on the object, while a capability is
associated with a subject and specifies the accessible objects and also a set of legal operations
on those objects.

A mandatory access control policy (MAC) controls access based on mandated regulations
determined by a central authority. The most common form of mandatory policy is the multilevel
security policy modeled by a security lattice [San93]. Access to an object from a subject is
granted only if the relationship between their security levels is satisfied. MAC has been used
in military and other systems where security is the top priority, e.g., Trusted Solaris where
MAC makes it possible to prevent anything in the operating system from accessing the disk
driver [VV00]. Note that discretionary and mandatory policies are not mutually exclusive but
can be applied jointly as in the Bell-LaPadula (BLP) model [BL73a, BL73b]. In this case, for an
access to be granted, both a DAC policy and an MAC policy need to be satisfied. We elaborate
on the BLP model below in Section 2.1.1.

A role-based access control policy (RBAC) controls access based on the roles a subject is
assigned and the permissions that are allowed for those roles. Having been introduced more
than a decade ago, RBAC [FK92, SCFY96] has been deployed in many organizations for access
control enforcement, and eventually matured into the ANSI RBAC standard [ANS04]. In
RBAC, instead of directly assigning permissions to users, the users are assigned to roles and
the roles are mapped to permissions. A role normally represents the organizational position
that is responsible for certain job functions. Users are assigned appropriate roles according
to their qualifications. Permissions are a set of many-to-many relations between objects and
operations. Roles describe the relationship between users and permissions through user-to-
role assignment (UA) and permission-to-role assignment (PA). We elaborate the RBAC model
below in Section 2.1.2.

2.1.1 The Bell-LaPadula model

The Bell-LaPadula (BLP) model [BL73a, BL73b] combines mandatory and discretionary access
controls. The mandatory component defines the following sets and functions:

• a set of subjects S;

• a set of objects O;

10

2.1. Access control policies and models

• a lattice of security labels L;3

• a security function λ : S ∪O → L.

The simple security property permits a subject s to read an object o if λ(s) > λ(o); the
*-property permits a subject s to write to an object o if λ(s) 6 λ(o). The BLP model identifies
three generic access rights to which these security properties apply: read, which is a read-only
action; append, which is a write-only action; and write, which is a read-and-write action.
Hence, the request (s, o, write) is only granted if λ(s) = λ(o). Note that in the full BLP model,
a request must be authorized by an access matrix (in addition to satisfying the simple security
and *-properties).

For example, Figure 2.1(a) shows a typical security lattice with two security levels (high and
low, abbreviated to h and l, respectively) and two categories A and B. Figure 2.1(b) illustrates
the assignment of subjects and objects to security levels in L. Based on the simple security
property, s2 is only allowed to read o2, o4, and o5. Based on the *-property, s5 is only allowed
to write o3 and o5.

t(l, ∅)

t(l, {A}) t(l, {B})

t(l, {A,B})

HH
HH

HH
HH

H�
��
��HHHHHHHHH�����

t(h, ∅)

t(h, {A}) t(h, {B})

t(h, {A,B})

HH
HH

HH
HH

H�
��
��HHHHHHHHH�����

(a) The security lattice.

t{o4}
t{s5, o5} t{s4}

t{o3}

HH
HH

HH
HH

H�
��
��HHHHHHHHH

�����

t{s3, o2}
t{s2} t{o1}

t{s1}

HH
HH

HH
HH

H�
��
��HHHHHHHHH

�����

(b) The assignment of subjects and objects to secu-
rity levels.

Figure 2.1: A BLP example

2.1.2 The role-based access control model

There are a number of RBAC models in the literature, including RBAC96 [SCFY96] and the
ANSI RBAC standard [ANS04]. All these models assume the existence of a set of users U ,
a set of roles R and a set of permissions P . As shown in Figure 2.2, they also assume the
existence of a user-role assignment relation UA ⊆ U × R and a permission-role assignment
relation PA ⊆ P ×R. A user u is authorized for a permission p ∈ P if there exists a role r ∈ R
such that (u, r) ∈ UA and (p, r) ∈ PA.

3Strictly speaking, the BLP model requires L to have the form C × 2K , where C is a linearly ordered set of
security classifications and K is a set of needs-to-know categories.

11

2.2. Access control system implementations

Many models also assume the existence of a role hierarchy RH, which is modeled as a partial
order on the set of roles. That is RH ⊆ R × R, where RH is reflexive, anti-symmetric and
transitive. It is customary to write r 6 r′ rather than (r, r′) ∈ RH. In this case, u is authorized
for p if there exist roles r, r′ ∈ R such that (u, r) ∈ UA, r > r′ and (p, r′) ∈ PA.

An important innovation in RBAC96 and ANSI RBAC is the concept of sessions. A user
initiates a session (typically when authenticating to the system) by activating some subset of
the roles to which he is assigned. Access requests are evaluated in the context of the session that
initiates the request. A request for permission p is granted if the user session contains a role r and
there exists a role r′ such that r > r′ and (p, r′) ∈ PA. The Core Specification of ANSI RBAC,
similarly to RBAC96, also defines two mapping functions: session user(s : SESSIONS) →
USERS that maps each session to a single user, and session roles(s : SESSIONS)→ 2ROLES

that maps each session to a set of roles.

Users Operations objects

Sessions

RolesUser role
assignment

Permission role
assignment

Role hierarchy

Permissions

session_user session_roles

Figure 2.2: RBAC model.

2.2 Access control system implementations

Most modern access control systems are based on the request-response model [CZO+08, Kar03,
Ent99, Net00, Sec99, OMG02, DK06, BZP05, SSL+99, Ora08b], where the PEP intercepts
application requests from subjects and enforces decisions made by the centralized PDP. We
distinguish between the application request, which is generated by the subject and is dependent
on the application logic, and the authorization request, which is generated by the PEP and
is independent from the application logic. This decoupling, for instance, is performed by the
context handler in the XACML-compliant PEP [Com05]. The context handler generates an
XACML request context, which is sent to the PDP for processing. Another example is the
authorization request made by the CORBA Security [OMG02] interceptor to the AccessDecision

12

2.2. Access control system implementations

object (ADO), which acts as a PDP. The request to the ADO supplies the subject’s attributes,
target object ID, implemented interface, and the operation to be invoked, but omits other
parameters of the application request.

PEP implementations differ depending on the technology and the security requirements. As
shown in Figure 2.3, A PEP can be a security interceptor (such as in CORBA Security [OMG02],
ASP.NET [MMDV02], and most web servers), or can be a part of the component container (as in
COM+ [Edd99] and EJB [DK06]). A PEP can also be a part of the corresponding application
resource, e.g., implemented via static or dynamic “weaving” using aspect oriented software
development techniques [KLM+97].

The PDP is usually implemented in the form of an appliction-independent authorization
service using third-party components, such as IBM Tivoli Access Control Manager [Kar03]
and Oracle entitlement server [Ora08b]. Shared by multiple PEPs, the authorization service
provides APIs that allow PEPs to make calls to it. Additionally, the authorization service can
be centrally managed and therefore easy to administer.

application layer

communication layer

server application

security subsystem

policy decision
point
(PDP)application

request

application
request

authorization request

authorization response
policy enforcement point

(PEP)

authorization response

authorization request

PEP

Figure 2.3: Access control system implementations [Bez05]. The PEP intercepts application
requests and generates authorization requests. The PEP can be implemented by the underlying
middleware or be a part of the application.

Multiple PDPs may be involved in resolving an authorization request. Beznosov et al. [BDB+99]
present a resource access decision (RAD) service for CORBA-based distributed systems. The
RAD service allows dynamically adding or removing PDPs that represent different sets of po-
lices. In Stowe’s scheme [Sto04], a PDP that receives an authorization request from a PEP

13

2.3. General fault-tolerance techniques

forwards the request to other collaborating PDPs and combines their responses later. Each
PDP maintains a list of other trusted PDPs to which it forwards the request. Mazzuca [Maz04]
extends Stowe’s scheme. Besides issuing requests to other PDPs, each PDP can also retrieve
the policy from other PDPs and make decisions locally.

2.3 General fault-tolerance techniques

An important goal in designing a distributed system is to automatically mask partial failures
without seriously affecting the overall performance. As defined (jokingly) by Lamport and
cited in [Mul93, Pow94], a distributed system is “one that stops you getting your work done
when a machine you’ve never heard of crashes.” This “definition” reveals the uncertainty when
users interact with the distributed system, due to the defective components and the unreliable
communication channel. A well-designed distributed system should tolerate faults and continue
to operate to some extent even in their presence.

The key technique for handling failures in a distributed system is to mask them through
redundancy. There are three general classes of redundancy solutions [TS01]: information re-
dundancy, time redundancy, and physical redundancy.

With information redundancy, extra bits are usually added to the message before transmis-
sion to allow recovery from corrupted bits (e.g., due to packet loss in an unstable communication
channel.) An example is erasure coding, a technique for achieving high availability and relia-
bility in storage and communication systems [LCL04]. It transforms a message of n blocks into
a message with more than n blocks, such that the original message can be recovered from a
subset of those blocks even when some blocks were lost.

With time redundancy, an action (e.g., the remote method invocation or the message trans-
mission) is performed more than once if needed. Time redundancy usually deals with the
failures that are transient or intermittent and are unlikely to recur in the next moment, such as
transmission errors and transaction aborts. For example, checkpointing and rollback-recovery
are well-known techniques that use time redundancy to allow processes to make progress in
spite of failures [KT86]. With these techniques, a process takes a checkpoint from time to time
by saving its state on a stable storage. When a failure occurs, the process rolls back to its most
recent checkpoint, assumes the state saved in that check-point, and resumes execution.

With physical redundancy, extra equipment or processes are added to allow the system to
tolerate the loss or malfunction of some components. Physical redundancy can be done in either
hardware or software.

In general, the approaches proposed in this dissertation can be viewed as domain-specific
approaches that employ physical software redundancy to improve performance and fault tol-
erance of distributed enterprise authorization systems. In particular, when a PDP fails, other
PDPs, the SDP, or other SDPs may be able to mask the failure by providing the requested
access control decision. The only efficient way to achieve physical redundancy in distributed

14

2.4. Using replication to improve availability and performance

systems is by replication. Below we elaborate on the use of replication techniques.

2.4 Using replication to improve availability and performance

Replication has been used in almost all related work that cope with failures [TS01]. Other than
improving the system availability, replication also helps improve the performance of distributed
systems. In this section, we review the general replication techniques. Based on who initiates
the replication, there are two general approaches [TS01]: group replication and caching.

2.4.1 Group replication

Group replication usually occurs at the server side. In group replication, the server that handles
requests is usually replicated to form a group. In the simplest case, a message is sent to the
group itself. If one server in the group fails, another server can take over for it, thus improving
the system availability.

Group replication can also help improve the performance of a system, especially when the
distributed system needs to scale in the number of requests it can handle. By replicating the
data in multiple servers and later dividing the workload among replicas, the system performance
is improved, too.

Replicas can be created either permanently or dynamically. A permanent replica is created
at the start of the service and will not change thereafter. For example, a company usually
sets up multiple web servers to answer the incoming requests. Whenever a request comes,
a load-balancing server forwards it to one of the web servers, for instance, using a round-
robin strategy. In comparison, with dynamical replication, replicas are created dynamically to
adapt to the environmental changes. For instance, in Content Distribution Networks (CDNs),
the replica of web content is usually created dynamically to adapt to the change in clients’
distribution and access patterns [CKK02].

Group replication schemes generally follow two streams, primary-backup and active repli-
cation [Mul93]. In the primary-backup approach, replicas are designed to include a primary
and several backups and only the primary will interact with clients. After the primary re-
ceives a state update, it is responsible for propagating the update to all backups. In this sense,
primary-backup schemes are also called passive replication because backups passively receive
state changes without having any interaction with clients. In case that the primary fails, one of
the backups takes its place. In comparison, all servers are viewed the same in active replication
and each client request is processed by all of them. This however requires that the processes
hosted by all the servers are deterministic.4 Although this is hard to achieve in a real-world
deployment, active replication is still preferable for those systems that require quick response
time even under the presence of faults, or that must handle byzantine faults [Joh96].

4A deterministic process will produce a predictable response sequence when given an initial state and a request
sequence. Deterministic processes in different servers will reach the same final state if they start from the same
initial state and receive the same request sequence.

15

2.4. Using replication to improve availability and performance

Although group replication helps improve system availability and performance, it has a few
limitations. First, it has limited tolerance to network failures and partitioning as it usually
happens at the server side. Second, although the system throughput is increased by replication,
network latency is still inherent with each request. Third, group replication usually involves the
deployment of extra hardware that may result in high cost. Finally, group replication usually
scales poorly, and becomes technically and economically infeasible when the number of entities
in the system reaches thousands [KLW05, Vog04]. We next describe caching solutions that
partially address these problems.

2.4.2 Caching

Caching is a temporary form of replication. In essence, cache is client-side local storage facility
that temporarily stores a copy of the data requested before. The data is usually expensive to
compute at or retrieve from the original source. Therefore, cache may result in quick responses
to clients by avoiding additional delay. At the same time, caching is also important in improving
the system scalability and availability. As a number of requests can be served by the cache, the
number of requests that reach the original source is reduced. Even when the original source
fails, the cache is able to serve a portion of requests.

Caching has long been recognized as a powerful performance enhancement technique in many
areas of computer design. Most modern computer systems include a hardware cache between
the processor and main memory [Smi82], and many operating systems include a software cache
between the file system routines and the disk hardware [NWO88]. Caching has also been
extensively studied in the context of distributed systems, e.g., in the context of the web [Dav01].

When designing a caching mechanism, it is important to take consistency into consideration.
The value of caching is greatly reduced if cached copies are not updated when the data at the
original source changes. Cache consistency mechanisms ensure that cached copies of data are
eventually updated to reflect changes in the original data. There are several cache consistency
mechanisms currently in use: time-to-live fields, client polling, and invalidation protocols (e.g.,
using Lease [GC89]). A detailed discussion of each mechanism can be found in [TS01].

Although caching helps improve the system performance and availability, this improvement
depends on a number of factors, e.g., the frequency of changes of the original data and the size
limit of cache storage. As a result, a single cache may suffer from a low cache hit rate. We next
describe cooperative caching techniques that are introduced to deal with these problems.

2.4.3 Cooperative caching

In cooperative caching, many caches work together to serve requests of a set of clients. When
a cache is not able to resolve a data request, it may resort to other caches before forwarding
the request to the original data source. Cooperative caching of data has its roots in distributed
file and virtual memory systems in high-speed local area network (LAN) environments, where
network transfer time is much shorter than disk access time to serve a miss. It has then been

16

2.5. Caching in access control systems

used to support a large-scale and wide-area distributed file system, e.g., Shark [AFM05]. In
Shark, mutually-distrustful clients can exploit each other’s file caches to reduce load on an origin
file server. Using a distributed index, Shark clients find nearby copies of data, even when files
originate from different servers. Performance results show that the cooperation greatly reduces
server load and improves client latency for read-heavy workloads.

Cooperative caching has also been studied extensively in the context of the web, where
caches are placed at multiple levels of the network. Through the sharing and coordination of
cache state among multiple communicating caches, cooperative caching has been an important
technique to reduce web traffic and alleviate network bottlenecks [WC98, XBH06].

A critical step in designing a corporative caching system is the design of the mechanism that
allows a cache to be aware of the content/ability of other caches. In general, two mechanisms
have been proposed. The first is a centralized mechanism. With this mechanism, a centralized
directory server that contains location hints about the documents kept at every cache is set
up, as proposed by Provey and Harrison [JH97]. The second is a distributed mechanism. With
this mechanism, location hints are replicated locally at each cache, as proposed by Tewari et
al. [TDV99]. Similarly in Summary Cache [FCAB00], caches use a Bloom filter to exchange
compact messages indicating their content and keep local directories to facilitate searching
documents in other caches.

2.5 Caching in access control systems

Caching has been an important technique for improving the performance and availability of
access control systems. Based on the content that is cached, there are three general caching
mechanisms: caching decisions, caching policies, and caching attributes. In this section, we
briefly discuss each of these caching mechanisms. For each mechanism, we review the represen-
tative systems or protocols that have employed that mechanism.

2.5.1 Caching decisions

The state-of-the-practice and state-of-the-art approach is to cache authorization decisions—
what we refer to as authorization recycling in this dissertation. This technique has been
employed in a number of commercial systems, such as Oracle Entitlement Server [Ora08b]
and Entrust GetAccess [Ent99], as well as several academic authorization systems, such as
CPOL [BZP05] and Flask [SSL+99]. In these systems, there usually exists a cache manager
component that caches and manages the authorizations for previous authorization requests and
uses them for future decisions.

Oracle entitlement server (OES) OES [Ora08b] is a component of Oracle Fusion Mid-
dleware that provides a fine-grained authorization engine for enterprise applications. The OES
authorization server is able to cache the result of an authorization call, and use that result if

17

2.5. Caching in access control systems

future calls are made by the same subject. The authorization cache can automatically invalidate
itself if there is a change in policy or user profile. It is important to note that the decisions
are cached at the PDP in OES. This is specifically useful when the authorization logic is so
complex that the time for making a decision is much longer than the network latency. Besides,
the same cache can be shared by multiple PEPs.

CPOL Borders et al. [BZP05] propose CPOL, a flexible C++ framework for real-time high-
throughput policy evaluation in sensor networks or location-aware computing environments.
The goal of CPOL’s design is to evaluate policies as efficiently as possible and caching has
been used to achieve this goal. In particular, CPOL uses cache to store previous access tokens
returned from the authorization engine. Access tokens represent the rights that are given to an
entity in the system. The evaluation results show that CPOL was able to process 99.8% of all
requests from the cache, reducing the average handling time from 6µs to 0.6µs.

Distributed proof Bauer et al. [BGR05] present a distributed algorithm for assembling a
proof that a request satisfies an access-control policy expressed in a formal logic. As a different
form of decision, a proof assures that an access request to an object by a subject is allowed.
They introduce a “lazy” cooperating strategy, in which a party gets the help of others to
prove particular subgoals in the larger proof, versus merely retrieving certificates from them—
yielding a proof that is assembled in a more distributed fashion. They introduce caching as
an optimization technique. Since the lazy scheme distributes work among multiple nodes,
each node can cache the subproofs it computes. As future access to the same or a similar
resource (even by a different principal) will likely involve nodes that have cached the results of
previous accesses, caching leads to significant performance improvement. The evaluation results
demonstrate that the number of requests made by the second access is reduced by a factor of
two.

2.5.2 Caching polices

Another caching mechanism is to cache/replicate policies by the PEP so that each PEP can
make authorizations locally. Based on who initiates the caching process, there are two possible
ways to distribute policies from PDPs to PEPs.

First, the PDP initiates the policy replication by pushing the policies directly to the PEP.
While this approach is simple, it requires the PEP to store all policy information locally, which
however may not be feasible when the policy size is large. In addition, under this scheme, any
update to the policy (e.g., deleting a user) requires all affected PEPs to update their local copies
of the policy. If such updates are frequent or the number of affected PEPs is large, the cost is
prohibitively expensive. Finally, the PEP will incur additional processing cost for examining
potentially useless policy entries when trying to resolve the request from a specific user.

18

2.5. Caching in access control systems

Second, the PEP initiates the policy replication by pulling the policies from a policy repos-
itory as needed and then stores them locally as proposed by [TC09], for example. This scheme
exhibits better behavior in terms of storage requirements. However, this scheme also leads to
additional delays in evaluating requests and adds additional burden to the PEP. For example,
now the PEP needs to perform some additional processing when evaluating an access control
request, which may also incur extra communication overhead.

Similar to the approach where PDPs are co-located with the corresponding PEPs and their
policies are delivered from a centralized policy store, this approach posts new challenges to the
policy design and is inefficient when the authorization logic is comprehensive.

COPS The Common Open Policy Service (COPS) Protocol, defined by the IETF’s RFC
2748 [DBC+00], is a simple query and response protocol that is used to exchange policy infor-
mation between a policy server (PDP) and its clients (PEPs). The COPS protocol defines two
modes of operation: outsourcing and provisioning. In the outsourcing mode, the PDP receives
policy requests from the PEP, and determines whether or not to grant these requests. Therefore,
in the outsourcing mode, the policy rules are evaluated by the PDP. In the provisioning mode,
the PDP prepares and “pushes” configuration information to the PEP. In this mode, a PEP
can make its own decisions based on the locally stored policy information. The provisioning
mode has been used to transfer policy between network devices in the network environment
where the scale of the policy is usually quite small [SPMF03].

Tivoli Access Manager IBM Tivoli Access Manager [Kar03] provides an access control in-
frastructure for a corporate web environment. Using the application programming interface
(API) provided by the Tivoli Access Manager, one can program Tivoli Access Manager appli-
cations and third-party applications to query the Tivoli Access Manager authorization service
for authorization decisions. The authorization API supports two implementation modes. In
remote cache mode, one uses the authorization API to call the centralized Tivoli Access Man-
ager authorization server, which performs authorization decisions for the application. In local
cache mode, one uses the authorization API to download a local replica of the authorization
policy database. In this mode, the application can perform all authorization decisions locally.
“Overhead of policy replication” is mentioned in the technical documentation of the Access
Manager [BAR+03], but no evaluation is reported.

2.5.3 Caching attributes

The third approach is to cache attributes. Attributes provide a generic way for referring to users
and resources in access control systems. For example, the XACML [Com05] uses attributes
in order to specify applicable subjects, resources and actions in access control policies. User
identity, group memberships, security clearances, and roles can all be expressed using attributes.
The evaluation engine denies or allows access to resources based on matching the attributes held

19

2.6. Secondary and approximate authorization model

client

subject

application server

authorization
server

policy
decision point

(PDP)

resource

policy
enforcement point

(PEP)

application
request

application
response

authorization
request

authorization
response

secondary
decision

point (SDP)

authorization
request

authorization
response

Figure 2.4: SAAM adds SDP to the request-response model.

by the user with those required by the policy.
Attribute certificates, defined by RFC 3281[FH02] and based on the popular X.509 stan-

dard, are digitally signed documents that bind a user identity with a set of attributes. In a
highly distributed access control system that involves different domains, such as Grid com-
puting [Cha05], in order to enforce local policies for external users, the access control system
needs to be capable of fetching users’ attribute certificates from external sources. As attribute
certificates are usually distributed across multiple hosts, e.g., Internet-based web and remote
LDAP servers, a challenge is the length of time it takes to gather all the certificates from
remote servers. As a result, caching has been introduced in a number of access control sys-
tems [TEM03, Jim01, BDS00, CEE+01, BSF02] to reduce certificate-gathering time.

2.6 Secondary and approximate authorization model

In this dissertation, we are particularly interested in the decision caching mechanism as it is
simple and widely used. All existing approaches that use decision caching however only employ a
simple form of authorization recycling: a cached authorization is reused only if the authorization
request in question exactly matches the original request for which the authorization was made.
We refer to such reuse as precise recycling. In addition, no cooperative caching approach has
been proposed before in the context of access control systems.

Our approaches proposed in this dissertation are based on the secondary and approximate
authorization model (SAAM), which extends the traditional decision caching mechanism by
proposing approximate recycling. First proposed by Crampton et al. [CLB06], SAAM is a
general framework for making use of cached PDP responses to compute approximate autho-
rizations for new authorization requests. SAAM adds a secondary decision point (SDP) to the
request-response model (Figure 2.4). Collocated with the PEP, the SDP can resolve authoriza-
tion requests not only by reusing cached precise authorizations but also by utilizing them to
compute approximate authorizations.

SAAM formalizes the definition of authorization request and response. An authorization
request is a tuple (s, o, a, c, i), where s is the subject, o is the object, a is the access right, c is the

20

2.6. Secondary and approximate authorization model

contextual information relevant to the request, and i is the request identifier. Two requests are
equivalent if they only differ in their identifiers. An authorization response is a tuple (r, i, E, d),
where r is the response identifier, i is the corresponding request identifier, d is the decision,
and E is the evidence. The evidence can be used in some SAAM implementations to aid the
response verification.

In addition, SAAM defines primary, secondary, precise, and approximate authorization re-
sponses. A primary response is a response made by the PDP, whereas a secondary response is
produced by an SDP. A response is precise if it is a primary response to the request in question
or a (secondary) response to an equivalent request. Otherwise, if the SDP infers the response
based on primary responses to other (non-equivalent) requests, the response is approximate.

In general, the SDP infers approximate responses based on cached primary responses and
any information that can be deduced from the application request and system environment.
The larger the number of cached responses, the more information is available to the SDP. As
more and more PDP responses are cached, the SDP will become a better and better PDP
simulator.

An SDP is safe if any request it allows would also be allowed by the PDP [CLB06]. A
safe SDP returns either undecided or deny for any request for which it cannot infer an allow
response. A safe SDP can be configured or designed to implement a closed world policy5 by
simply denying any request that it cannot evaluate. More generally, the SDP may return an
undecided response; it is then up to the PEP to decide how such a response should be handled.
In most cases, the PEP will deny the request, thereby “failing safe”—one of the important
principles identified by Saltzer and Schroeder [SS75]. An SDP is consistent if any request it
denies would also be denied by the PDP.

In general, one would wish to implement a safe and consistent SDP, which returns the
same response as the PDP would have for any request that it can evaluate. Clearly, any
SDP that only returns precise decisions—by only returning responses for equivalent requests
for which decisions have been cached—is safe and consistent. However, such an SDP is rather
limited. SAAM seeks to extend the functionality of the SDP so that it can generate approximate
responses and remain safe and consistent. However, the limitations of the underlying access
control policy, time or space complexity of the inference algorithms, or business requirements
could limit an SDP implementation to being either safe or consistent, but not both.

SAAM abstractions are independent of the specifics of the application and access control pol-
icy in question. For each class of access control policies, however, specific algorithms for inferring
approximate responses—generated according to a particular access control policy—need to be
provided. A main contribution of this dissertation is the development of SAAMRBAC—SAAM
authorization recycling algorithms for RBAC. Below we review SAAMBLP—SAAM authoriza-
tion recycling algorithms for the BLP access control model, which is proposed in [CLB06].

5A closed world policy allows a request if there exists an allow response for it, and denies it otherwise.

21

2.7. Summary

2.6.1 SAAMBLP

The SAAMBLP inference algorithms use cached responses to infer information about the relative
ordering on security labels associated with subjects and objects. The evaluation results on these
algorithms show that the employment of approximate authorizations improves the availability
and performance of the access control sub-system.

For example, three requests, (s1, o1, read, c1, i1), (s2, o1, append, c2, i2), (s2, o2, read, c3, i3)
are allowed by the PDP and the corresponding responses are r1, r2 and r3. It can be inferred
that λ(s1) > λ(o1) > λ(s2) > λ(o2).6 Therefore, a request (s1, o2, read, c4, i4) should also be
allowed, and the corresponding response is (r4, i4, [r1, r2, r3], allow). SAAMBLP uses a special
data structure called dominance graph to record the relative ordering on subject and object
security labels, and evaluates a request by finding a path between two nodes in this directed
acyclic graph. Note that SAAMBLP inference algorithms only focus on the mandatory part of
the BLP model.

2.7 Summary

This chapter has presented background information on different access control models, and
discussed how caching has been used in distributed systems and access control systems in par-
ticular. Our review shows that the state-of-the-practice approach to improving overall system
availability and reducing the authorization processing delays is to cache authorizations at each
PEP. However, only precise recycling is employed: the cache is only used to serve returning
requests.

The SAAM model [CLB06] has been proposed to extend the precise recycling approach by
computing approximate authorizations at SDPs. However, SAAM is only an abstract model.
For each type of access control policies, specific inference algorithms need to be provided. The
next chapter presents a set of SAAM recycling algorithms for RBAC systems.

6Note that if such policy information is sensitive, e.g., in a military or government environment, all the PEP-
SDP-PDP channels need to be secured so that casual observers cannot make such inferences and only the SDP
can.

22

Chapter 3

Recycling RBAC Authorizations

This chapter presents an authorization recycling approach to improving the availability and
performance for role-based access control (RBAC) systems. Based on the secondary and ap-
proximate authorization model (SAAM), the algorithms that support these mechanisms allow a
local secondary decision point (SDP) to not only reuse previously-cached decisions but also infer
new decisions based on certain rules, thereby masking possible failures of the central autho-
rization service and reducing the network delays. We evaluate these algorithms experimentally.
The results suggest that authorization recycling improves the performance of distributed access
control systems.

Compared to approaches that proactively pull or push the policy to each SDP, our approach—
based on on-demand caching of authorization responses—offers two advantages. First of all, if
the working-set of the policy decision point (PEP) is a significantly smaller subset of the whole
policy, it may well be the case that the SDP cache is “warm” enough and hence able to answer
a significant proportion of authorization requests more quickly than the policy decision point
(PDP) (since the cache size is significantly smaller than the whole RBAC policy and the SDP is
collocated with the PEP). Thus, depending on application workload and deployment scenario,
our approach offers the possibility of rapid response times without the need for large caches.
Second and more importantly, our approach allows for the PEP and PDP remain unchanged.
That is, the middleware used for PEP-to-PDP communications can be reconfigured in such a
way that the SDP is interposed between the PEP and PDP. As a result, the SDP can act as
a PDP’s proxy for the PEP, without requiring any modification at the PEP or at the PDP.
This means that one can retrofit existing authorization systems with our SDP without changing
PEPs or PDPs. For this purpose, dynamic weaving [SPLS+06] or other existing techniques, such
as meta-objects [ASA01], for automatically generating custom RPC stubs are readily available.
Those RBAC systems that already employ SDPs for precise recycling are even more amenable
to being retrofitted with the SAAMRBAC aproximate recycling logic proposed in this chapter.

In Section 3.1, we first define inference rules specific to RBAC authorization semantics
and develop the recycling algorithms from these rules. Second, we study how to modify these
algorithms to support the role hierarchy. Third, we propose the policy update algorithms that
update the cache to handle different types of policy changes. Fourth, we propose the evidence
construction and verification algorithms that can verify the correctness of a secondary response.
Finally, we study the deployment strategies of our algorithms to achieve different performance-
related goals.

23

3.1. SAAMRBAC design

In Section 3.2, we present the evaluation results. To evaluate the properties of SAAMRBAC

algorithms we used an experimental testbed with 100 subjects, 3,000 permissions and 50 roles.
The evaluation results demonstrate an 80% increase, compared to precise recycling, in the
number of authorization requests that can be served without consulting the access control
policies stored remotely at the PDP. These results suggest that deploying SAAMRBAC improves
the availability and scalability of RBAC systems, which in turn improves the performance of
the enterprise application systems.

Finally, we summarize this chapter in Section 3.3.

3.1 SAAMRBAC design

SAAMRBAC applies SAAM concepts to RBAC systems. In a system using SAAMRBAC, the SDP
caches authorization requests and the corresponding authorization decisions, and computes new
authorization decisions based on the cache when the PDP is unable to make a timely decision.
As these decisions are not obtained from the PDP, they are by necessity secondary. In this
section we present the algorithms that can be employed by an SDP in the context of RBAC
systems. We show that an SDP that implements these algorithms will make safe and consistent
secondary decisions.

3.1.1 Assumptions

In general, we assume that the PDP is the only component that has access to the entire
authorization policy and the SDP is not aware of the policy. In particular, we assume that
the SDP does not have direct access to the permission-to-role assignment relation (PA). It is
the job of the SDP to try to “reconstruct” PA on the basis of information that can be inferred
from primary responses to previous requests. If we relieve this assumption, e.g., the PDP is
able to “push” the entire policy to the SDP, then the SDP may compute a precise response
using the same authorization logic as the PDP. However, pushing entire policy is rarely done
in enterprise-grade deployments due to the limitations of the underlying security protocols, the
scale of the authorization policies, the administrative constraints, or the cost of keeping up
to date user, attribute, and permission data at multiple SDPs. Providing SDP with no direct
access to PA also enables transparently interposing SDP between PEP and PDP without having
to modify the protocol between the two. This is an important practical benefit when it comes
to retrofitting existing authorization systems with SDP-like components.

We further assume that authorization request sent to the SDP (and the PDP) includes
the set of roles that are relevant to this request, this information being supplied by the PEP.
This role information arrives at the PEP in a number of different ways [LPL+03]. First, it
can be “pushed” from the client’s security subsystem, as in CORBA [OMG02], DCE [GH95],
SESAME [Kai98], and GAA API [RN00], where the security attributes are a part of the security
context of the application request. Second, it can also be “pulled” by the PEP from external

24

3.1. SAAMRBAC design

attribute services such as LDAP or the Shibboleth Attribute Authority [Int08].
For most of Section 3.1, we assume that the SDP does not have access to the role hierarchy

relation and does not try to reconstruct hierarchical relationships between roles. In Section 3.1.8,
we drop this assumption and show how our approach needs to be modified when the SDP is
aware of the role hierarchy structure.

3.1.2 Preliminaries

We must first consider how to map SAAM notions of subject and request to appropriate RBAC
concepts. The notion of session is important in RBAC96 and ANSI RBAC for implementing
the principle of least privilege [SS75]: by activating a strict subset of the roles to which she
is authorized, a user may limit the privileges that she can exercise while interacting with a
computer system. It is a session that is synonymous with a subject in identity-based access
control systems, since access decisions are made on the basis of the permissions that are available
to the activated roles. Accordingly, SAAMRBAC models a subject as a set of roles.

As we mentioned in Section 2.6, the Core Specification of ANSI RBAC defines two func-
tions that map sessions to users and roles: session user(s : SESSIONS) → USERS and
session roles(s : SESSIONS) → 2ROLES . SAAMRBAC abstracts a subject as a set of roles
activated in a given session.7 In the terms of above functions, a subject in SAAMRBAC is
an output of session roles(. . .). Therefore, if user u started two sessions s1 and s2, they are
treated as two separate—and possibly unrelated—subjects in SAAMRBAC, unless the same roles
are activated for both of these sessions. On the other hand, if another user u′ started session
s3, and the sets of activated roles in s2 and s3 are equal, then SAAMRBAC algorithms do not
distinguish between the corresponding subjects. Furthermore, in SAAMRBAC, we do not take
into account the relationship between users and their sessions.

RBAC96 treats permissions as “uninterpreted symbols”, because such entities are very likely
to be application- and context-specific. However, ANSI RBAC defines permissions to be object-
operation pairs. It seems appropriate to regard a SAAM request (s, o, a, c, i) and an RBAC
request (s, p, c, i) as equivalent, where p = (o, a).

A response (r, i, E, d) indicates the decision to a request (s, p, c, i). For simplicity, we intro-
duce the following conventions that will be used in the remainder of the chapter: we omit c and
i from requests; we omit r, E and i from responses; we write +(s, p) to denote a grant decision
for request (s, p), and −(s, p) to denote a deny decision. More specifically, +(s, p) means that
there exists role r ∈ s such that (p, r) ∈ PA and −(s, p) means that there does not exist such
an r. We also write X − Y to denote the set {x ∈ X : x 6∈ Y }.

7Note that static and dynamic separation of duty constraints can be enforced before or during the role
activation in a session. The resulted role set is then used for representing the subject in SAAMRBAC. Hence,
enforcing these constraints is orthogonal with SAAMRBAC algorithms.

25

3.1. SAAMRBAC design

3.1.3 Inference rules

Using the notation from the previous section, we first note the following rules that can be
applied to generate approximate responses.

Rule+ If +(s, p) and s′ ⊇ s, then request (s′, p) should be granted.

Rule− If −(s, p) and s′ ⊆ s, then request (s′, p) should be denied.

Rule+ follows from the fact that if some permission p is granted for the set of roles s, then
there exists r ∈ s such that r is authorized for p, and r ∈ s′ for any s′ ⊇ s. Rule− follows from
the fact that if p is denied for the set of roles s, then there does not exist r ∈ s such that r is
authorized for p; trivially, no subset of s will be authorized for p.

In the following sub-sections, we first present naive algorithms and show that they are
suboptimal in terms of success rate and space. Then, we define a canonical form of cache and
describe algorithms that work over such cache.

3.1.4 Naive algorithms

We construct two relations Cache+ ⊆ 2R × P and Cache− ⊆ R × P to generate approximate
responses. The basic idea is to use primary deny responses to build Cache− and primary allow
responses to build Cache+.

Cache construction Whenever the SDP receives a deny response −(s, p), the pair (r, p) is
added to Cache− for every role r ∈ s (since we know that no role in s can be authorized for
p). In contrast, whenever the SDP receives an allow response +(s, p), the pair (s, p) is added
to Cache+.

Request evaluation Then to evaluate a request (s, p), the SDP first checks whether s con-
tains a role r such that (r, p) 6∈ Cache−. (If not, no role in s is authorized for p and the SDP
denies the request.) Then the SDP checks whether there exists (s′, p) ∈ Cache+ such that
s ⊇ s′. If so, then the SDP allows the request and otherwise the SDP returns undecided. The
algorithm to evaluate request (s, p) is summarized below.

1. Let s+ = {r ∈ s : (r, p) 6∈ Cache−}

2. If s+ = ∅, then deny (every role in s was not authorized for p)

3. Else

(a) If there exists (s′, p) ∈ Cache+ such that s ⊇ s′ then allow

(b) Else undecided

Proposition 1. An SDP that implements the above request evaluation algorithm is safe and
consistent.

26

3.1. SAAMRBAC design

Proof. Consider the response produced by the SDP for request (s, p). If the SDP produces a
deny response then for all r ∈ s, there exists (r, p) ∈ Cache−. This means that the PDP must
have generated a number of responses of the form −(s1, p), . . . ,−(sk, p), k > 1, such that for
all r ∈ s, r ∈ si for some i. Hence, the PDP would also deny (s, p).

If the SDP produces an allow response then there exists (s′, p) ∈ Cache+ such that s ⊇ s′.
Hence, the PDP would allow request (s, p), since it must have allowed (s′, p).

The naive algorithms, however, may return undecided responses for some requests that
would be allowed by the PDP. Suppose that ({r1, r2, r3}, p) ∈ Cache+ and (r3, p) ∈ Cache−.
Now the evaluation of request ({r1, r2, r4}, p) with the above algorithm returns undecided be-
cause {r1, r2, r4} 6⊇ {r1, r2, r3}. However, {r1, r2, r4} ⊃ {r1, r2} and hence request ({r1, r2, r4}, p)
can safely be authorized. The optimized algorithms we present in the following sections correct
this problem.

3.1.5 Cache compression

We have seen that the naive method of constructing the cache may not optimize the “hit rate”
– the proportion of requests for which the SDP can provide a definitive answer. We now define
the canonical form of the cache.

Definition 1. Given a cache, Cache = (Cache+,Cache−), we say Cache is in canonical form
if the following conditions hold:

(1) if for all (s, p) ∈ Cache+, there does not exist r ∈ s such that (r, p) ∈ Cache−;

(2) for all distinct (s, p), (s′, p) ∈ Cache+, s 6⊆ s′ and s 6⊇ s′.

The first of the two requirements above ensures that all roles of a subject s that are known
not to be authorized for a permission are removed from s. The second requirement simply
ensures that there is no redundancy in the cache: it makes no difference to the allow responses
returned by the request evaluation algorithm; in other words, it minimizes the amount of storage
required for Cache+.

Cache compression improves the hit rate. In particular, we claim the following statements
hold:

1. If Cache+ satisfies property (2) but does not satisfy property (1) above, then the hit rate
is not optimal.

2. If Cache+ does not satisfy property (2) above, then the size of the cache is not minimal.
That is, there exists a smaller cache that provides the same hit rate.

3. If the cache is in canonical form, then any smaller cache has a lower hit rate.

27

3.1. SAAMRBAC design

Proof of Claim 1

Proof. Suppose that Cache+ does not satisfy property (1). Then there exists (s, p) ∈ Cache+

such that r ∈ s and (r, p) ∈ Cache−. Now request (s′, p), where s′ ⊇ s−{r}, is authorized since
r is not authorized for p. However, s′ 6⊇ s and by assumption Cache+ satisfies property (2) so
there does not exist s′′ ⊆ s such that (s′′, p) ∈ Cache+. Hence, the SDP cannot resolve request
(s′, p). Hence, the hit rate is not optimal.

Proof of Claim 2

Proof. Suppose that (s, p), (s′, p) ∈ Cache+ and s′ ⊇ s. Then (s′, p) is authorized and any
request (s′′, p), where s′′ ⊇ s′, is authorized because s′′ ⊃ s. Hence (s′, p) may be omitted from
Cache+.

Proof of Claim 3

Proof. Suppose now that (s, p) ∈ Cache+ and there does not exist (s′, p) ∈ Cache+ such that
s′ ⊃ s or s′ ⊂ s. Then request (s, p) is authorized when the SDP uses Cache+ but is not
authorized if we remove (s, p) from Cache+ (since, by assumption, there is no s′ ⊂ s such that
(s′, p) ∈ Cache+, we cannot find an entry (s′, p) ∈ Cache+ such that s ⊇ s′). In other words,
omitting (s, p) from Cache+ will decrease the hit rate.

3.1.6 Optimized algorithms

We now present optimized algorithms that produce a canonical form of the cache in order to
improve the likelihood of the evaluation algorithm returning an allow response. Henceforth, we
write Cache− ⊆ 2R × P , making it consistent with the representation of Cache+. Naturally,
the meaning of (s, p) ∈ Cache− is that all roles in s are known not to be authorized for p. The
full algorithm (C) for constructing compressed cache relations is shown in Figure 3.1(a). To
satisfy property (1) of the canonical form definition, in line 3C, which handles negative primary
responses, we delete any roles in s from sets of roles that had previously been authorized for p
(that is, tuples in Cache+). Analogously, in line 15C, which handles positive primary responses,
we delete any roles from s that are known not to be authorized for p. To satisfy property (2)
of the canonical form definition, line 10C is used to prevent any superset of existing roles in
Cache+ from being added and line 14C is used to prune redundant tuples from Cache+.

Figure 3.1(b) shows the decision algorithm (D) for generating an approximate response,
which follows directly from rules Rule+ and Rule− (Section 3.1.3) and the construction of the
cache. Since s may include roles that are known not to be authorized for p, we remove those
roles first and then see whether the remaining roles are authorized for p. In other words, given
request (s, p), we first find (s−, p) ∈ Cache− (line 3D) and compute those roles in s that are
not in s− (line 10D), namely s− s−. If this set is empty, then we know that all roles in s are in

28

3.1. SAAMRBAC design

Input: response q
1C: AddResponse(q)
2C: if q = −(s, p) then
3C: replace each (s+, p) ∈ Cache+ with (s+ − s, p)
4C: if (s−, p) ∈ Cache− then
5C: replace it with (s ∪ s−, p)
6C: else
7C: add (s, p) to Cache−

8C: end if
9C: else // we know that q = +(s, p)
10C: if there exists (s+, p) ∈ Cache+ such that s+ ⊆ s

then
11C: return
12C: end if
13C: find (s−, p) ∈ Cache−

14C: delete all (s+, p) ∈ Cache+ such that s− s− ⊆ s+

15C: add (s− s−, p) to Cache+

16C: end if
(a) The cache construction algorithm

Input: request (s, p)
1D: EvaluateRequest(s, p)
2D: find (s−, p) ∈ Cache−

3D: d← s− s−
4D: if d = ∅ then
5D: return deny
6D: else
7D: for all (s+, p) ∈ Cache+ do
8D: if s+ ⊆ d then
9D: return allow
10D: end if
11D: end for
12D: return undecided
13D: end if

(b) The decision algorithm

Figure 3.1: SAAMRBAC optimized recycling algorithms

s−; that is, s ⊆ s− and the request should be denied (by Rule−). Otherwise, we need to check
whether there is a tuple (s+, p) ∈ Cache+ such that s+ ⊆ (s− s−).

The following example shows how the optimized algorithms work. Suppose Cache− and
Cache+ are empty and the following primary responses are obtained from the PDP:

−({r1, r2}, p), +({r2, r3, r4}, p), +({r4, r5, r6}, p), −({r4, r7}, p).

Table 3.1 illustrates how Cache− and Cache+ develop as these responses are processed by the

29

3.1. SAAMRBAC design

Response Cache+ Cache−

−({r1, r2}, p) ({r1, r2}, p)
+({r2, r3, r4}, p) ({r3, r4}, p) ({r1, r2}, p)
+({r4, r5, r6}, p) ({r3, r4}, p), ({r1, r2}, p)

({r4, r5, r6}, p)
−({r4, r7}, p) ({r3}, p), ({r1, r2, r4, r7}, p)

({r5, r6}, p)

Table 3.1: Building Cache+ and Cache− from primary responses

SDP. Notice how r4 is removed from both tuples in Cache+ once the primary deny response
−({r4, r7}, p) is processed.

Note also that the final contents of Cache− and Cache+ are independent of the order in
which primary responses are received. If, for example, we reverse the order of the last two
responses, we find that r4 is added to Cache− a step earlier and that r4 does not appear with
r5 and r6 in a tuple in Cache+.

Now suppose we wish to generate secondary responses for the following requests:
(1) ({r3, r4}, p), (2) ({r1, r4, r7}, p), (3) ({r1, r5}, p).

• The SDP returns an allow response for request (1) because ({r3}, p) ∈ Cache+, even
though permission p is not assigned to r4, as indicated by the content of Cache−.

• The SDP returns a deny response for request (2) because ({r1, r2, r4, r7}, p) ∈ Cache−.

• The SDP returns an undecided response for request (3).

It is worth noting that although the SDP does not explicitly store primary responses, it
will always return the same response as the PDP for any requests whose decisions have been
included in the cache relations. More formally, we have the following result.

Proposition 2. Suppose the PDP has produced a response for request (s, p). Then an SDP
that implements the construction and decision algorithms in Figure 3.1 will produce the same
response as the PDP for request (s, p).

Proof. First note that lines 3C and 15C imply that if (t−, p) ∈ Cache− and (t+, p) ∈ Cache+,
then t− ∩ t+ = ∅.

Given that the PDP has produced a response, there are two possibilities to consider. If
the PDP produced an allow response for (s, p), then (s+, p) ∈ Cache+ for some s+ ⊆ s, by
construction of Cache+. If there does not exist (s−, p) ∈ Cache− then we are done. Otherwise,
consider d = s− s− (as computed in line 10D). We claim that d ⊇ s+ and hence the SDP will
return an allow response. To establish the above claim, consider r ∈ s+. Then r ∈ s since
s+ ⊆ s. Now s+ ∩ s− = ∅ and r ∈ s+. Hence, r 6∈ s− and r ∈ s− s− = d.

30

3.1. SAAMRBAC design

Conversely, if there exists a primary deny response for (s, p), then (s−, p) ∈ Cache− for
some s− ⊇ s, by construction of Cache−. Hence s − s− = ∅ and the SDP will return a deny
response (line 5D).

Lemma 1. An SDP that implements the construction and decision algorithms is safe and
consistent.

Proof. We need to show that if the SDP produces a conclusive (i.e., not undecided) secondary
response for request (s, p), then that response is the one that would be produced by the PDP.

Suppose that the SDP produces the response −(s, p). Then there exists (s−, p) ∈ Cache−

such that s ⊆ s− (by line 5D). Moreover, for each r ∈ s−, r is not authorized for p, by
construction of Cache−. Hence, the PDP would return −(s, p).

Suppose that the SDP produces the response +(s, p). Then there exists (s+1 , p) ∈ Cache+

such that s ⊇ s+1 , which implies the existence of a primary response +(s+2 , p) with s+2 ⊇ s+1 .
This implies the existence of r ∈ s+2 such that r is authorized for p. Moreover, the construction
of Cache− and Cache+ implies that r ∈ s+1 . Hence r ∈ s, since s ⊇ s+1 and r ∈ s+1 , and the
PDP would return +(s, p).

3.1.7 Discussion

We now briefly and informally discuss the expected behavior of the SDP algorithms. In Sec-
tion 3.2, we describe the experimental work we undertook to evaluate the actual behavior.

Suppose p is assigned to roles r1, . . . , rk, and that there are n users u1, . . . , un with ui

assigned to roles si ⊆ R. Now a user ui may request p using a subject comprising any subset
of si. In principle, therefore, Cache− may contain (s−, p), where s− ⊆ R − {r1, . . . , rk}, and
Cache+ may contain (s+, p), where s+ ⊆ si for some i.

Secondary response rate

Let us suppose that (s+1 , p), . . . , (s
+
m, p) ∈ Cache+ and (s−, p) ∈ Cache−. Then the probability

that our SDP can produce an approximate response (a “hit”) is the probability of it returning
either allow or deny. Clearly, the smaller s+1 , . . . , s

+
m are, the greater the chance of an allow

response, because allow responses require the subject to be a superset of an element in Cache+.
Conversely, the larger s− is, the greater the chance of a deny response are, because allow
responses require the subject to be a subset of an element in Cache−.

In short, the probability of a hit increases as the size of s− increases and the sizes of s+i
decrease. It can be seen from the construction algorithm that the effect of processing a primary
response (whether it is an allow or deny response) is to either increase the size of s− or decrease
the size of s+i (or both). In other words, increasing the number of primary responses processed
will increase the hit rate.

31

3.1. SAAMRBAC design

It is worth noting that it is advantageous to have negative primary responses in the cache,
because these affect both Cache+ and Cache−. If there have only been allow primary responses,
then Cache− = ∅ and hits can only be obtained from secondary allow responses.

For a cache of fixed size, it is advantageous to have s− large and s+i small. It is easy to see
that s− will be large if the number of roles to which p is assigned is small and there have been
a large number of requests for p that have been denied (by the PDP). One way to ensure small
s+i is by assigning each user to a small number of roles.

Alternatively, we are likely to get a hit if there is a significant amount of overlap between
the sets of roles assigned to different users. This situation arises when each user is assigned to
a significant fraction of the available roles or when some roles are more popular than others so
that many users are assigned to those roles. In summary, we would expect the probability of
a hit (the “hit rate”) to increase when users are assigned to a small number of roles, or to a
significant proportion of the roles available, or to a similar set of roles due to the uneven role
assignment. We sought to confirm these expectations by experiment, the results of which are
reported in Section 3.2.1.

Performance considerations

Clearly, the number of tuples in Cache− is bounded by the number of permissions |P |, while
the number of tuples in Cache+ is bounded by |P | 2|R|. For a request (s, p), a secondary deny
response can be computed in time proportional to |s| log |R|, as we simply need to determine
whether s is a subset of the roles contained in s−. Therefore, the number of primary deny
responses is unlikely to have a significant effect on performance. However, the time taken to
compute a secondary allow response grows with the number of primary allow responses.

The time taken by the construction algorithm to process a primary response is proportional
to the size of Cache+. In the case of a deny response, it is necessary to check each tuple in
Cache+ and remove any roles that formed part of the denied request (line 3C). In the case of
an allow response, we check to see whether each tuple has been made redundant by the new
information (line 14C).

However, we note that the existence of redundant tuples in Cache+ does not compromise
the ability of the SDP to compute correct secondary responses, although it may degrade the
response time. Therefore, we could periodically purge Cache+ of redundant tuples, rather than
delete them as new primary responses are added, thereby improving the processing time for
primary allow responses.

In summary, it is easier to incorporate new primary allow responses into the cache rather
than deny responses, but it is harder to produce secondary allow responses than deny responses.
We investigate these aspects in Section 3.2.1.

32

3.1. SAAMRBAC design

3.1.8 Using the role hierarchy in SAAMRBAC

When flat RBAC is employed, the binding of a session to a set of roles is trivial: the session is
associated with the roles activated by the user. However, in hierarchical RBAC, there are two
possibilities, which we call pre-request and post-request session-to-role binding. We assume that
a user initiates a session s ⊆ R by selecting some subset of the roles to which she is assigned.
The set of permissions for which the session is authorized is determined by the permissions
assigned to the roles in s and to any roles in R that are junior to at least one role in s. It is this
set of roles, therefore, that should be used to evaluate requests, not simply s. More formally, let
↓s denote {r′ ∈ R : ∃r ∈ s, r′ 6 r}. Then the evaluation of a request originating from session s

requires the computation of the permissions for which the roles in ↓s are authorized.
Pre-request binding occurs when the user authenticates. The user u first activates a set of

roles s for which she is authorized: that is, for all r ∈ s, there exists r′ > r and (u, r′) ∈ UA.
The authentication service uses the role hierarchy to compute ↓s, which is then bound to each
process associated with session s. This set of roles forms part of the application request that
is passed to the PEP. Clearly, pre-request binding means that the computation of all roles
associated with a session is performed once, which means that request evaluation should be
quicker. Post-request binding occurs when the PDP evaluates an access request. In this case,
the PDP has to compute ↓s before querying the PA relation.

In the case of pre-request binding, neither the PDP nor the SDP need be aware of the
role hierarchy. Hence, we only need to consider what we should do if post-request binding is
employed. So far, we have assumed that the SDP is unaware of the role hierarchy. As an
optimization, let us now assume that the SDP is aware of the structure of the role hierarchy,
and examine how the SAAMRBAC algorithms need to be modified.

We first note that the SDP could perform post-request binding in exactly the same way as
the PDP would. However, we observe that it is not necessary to do this when checking Cache−.
To see this, suppose that (s−, p) ∈ Cache− and request (s, p) is received by the SDP. We can
check whether s ⊆ s−, as before. Moreover, if s ⊆ s−, then no role belonging to ↓s can be
authorized for p either (otherwise, some role in s, and hence s−, would be authorized for p).
Hence, it suffices to compute ↓s only if the request is not denied. The revised decision algorithm
is shown in Figure 3.2. Notice the use of ↓d, where d = s− s−, in line 8D′. Also note that ↓d
can be computed in polynomial time.8

3.1.9 Handling policy changes

An enterprise authorization system must support changes to security policies. If the access
control policy changes and the SDP is not updated accordingly, the SDP may make incorrect
decisions. Policy changes in an RBAC system occur as a result of changes to one of U , P , UA,

8More specifically, it can be computed in time proportional to the total number of edges and vertices in the
role hierarchy using a simple modification to a standard graph traversal algorithm.

33

3.1. SAAMRBAC design

Input: request (s, p)
1D′: EvaluateRequest(s, p)
2D′: find (s−, p) ∈ Cache−

3D′: d← s− s−
4D′: if d = ∅ then
5D′: return deny
6D′: else
7D′: for all (s+, p) ∈ Cache+ do
8D′: if s+ ⊆ ↓d then
9D′: return allow
10D′: end if
11D′: end for
12D′: return undecided
13D′: end if

Figure 3.2: The decision algorithm in a hierarchical setting

PA, R, or RH. Changes to U , P , or UA do not affect the cache construction and decision-
making algorithms. Hence, we only consider changes to PA, R, and RH.

The first type of change involves modification of PA. In particular, we considered the
following two basic cases.

• A permission p is assigned to a role r, that is, (p, r) is added to PA.

If the cache is not updated, the SDP may return incorrect negative decisions for some
requests for p. Specifically, if (s, p) ∈ Cache− and r ∈ s, then any request (s′, p) such that
s′ ⊆ s and r ∈ s′ will be denied despite the fact that r is now authorized for p. To avoid
this situation, r needs to be removed from (s, p) ∈ Cache−. Moreover, ({r}, p) should be
added to Cache+.

• A permission p is revoked from a role r, that is, (p, r) is removed from PA.

If the cache is not updated, the SDP may make false positive decisions, because it may
compute allow decisions to those requests that are denied by the PDP. To avoid this, we
need to replace (s, p) ∈ Cache− (if it exists) with (s ∪ {r}, p), or add ({r}, p) to Cache−

otherwise. Moreover, we need to delete every (s, p) ∈ Cache+ such that r ∈ s. This is
because we cannot assume that any of the remaining roles in s are authorized for p.

The full algorithm for updating the cache relations to deal with updates to PA is shown
in Figure 3.3(a). Comparing it with the cache construction algorithm (Figure 3.1(a)), we note
that there are two main differences. First, if p is revoked from r, it is not sufficient to remove r
from each tuple in the Cache+; instead, all tuples in Cache+ that contain r need to be removed
(line 3UPA). Second, if p is assigned to r, we add ({r}, p) to Cache+ (line 16UPA) and also
delete r from the set of roles in Cache− (line 13UPA), since we know that r is authorized for p.

PA changes can be signaled to the SDP by passing “artificial” responses to it. For example,
when (p, r) is added to PA, the SDP can be sent response +({r}, p). These responses are

34

3.1. SAAMRBAC design

“artificial” in the sense that they are not generated as a result of a genuine request. In order to
distinguish them from normal primary responses, we call them policy update responses. When
the SDP receives a policy update response, it will invoke the cache update algorithm (shown in
Figure 3.3(a)), rather than the cache construction algorithm.

We note that adding ({r}, p) to Cache+ may not be necessary but it is a desirable opti-
mization step for two reasons. First, having many tuples of the form ({r}, p) in Cache+ will
lead to a higher hit rate since more sessions will be a strict superset of an entry in Cache+.
Second, it helps remove redundancy from Cache+ as shown in line 15UPA.9 In an extreme case,
while all permissions are being added to PA from scratch and the cache is updated using the
cache update algorithm, Cache+ will increasingly resemble PA. However, due to the limited
size of cache storage and the large size of PA, it is unlikely that the SDP will eventually store
the whole PA in the cache. By using some cache replacement algorithm, e.g., the least-recently
used (LRU) algorithm, SDP is able to keep a small but most-used portion of PA in the cache.

The second type of changes that we considered involves modification of R, in particular,
when a role r is removed from R. Assuming that users cannot start a session that includes
deleted role(s), keeping r in the cache will not affect the correctness of the responses that the
SDP makes, but will degrade the performance of the SDP. Therefore, it is still desirable to
purge the cache of those roles.

The full algorithm for updating the cache relations to deal with updates to R is shown
in Figure 3.3(b). Unlike the previous cache update algorithm, this algorithm must consider
all tuples containing r in both Cache− and Cache+. Therefore, this change may result in a
large number of tuples being removed from the cache. Like the previous algorithm, all tuples
in Cache+ that contain r need to be removed, because we can not assume that any of the
remaining roles in the tuple are authorized for p.

Third, we consider those changes that involve modification of RH. No support for changes
in RH is needed if pre-request binding is used. When post-request binding is used, the SDP
needs to be updated with the new RH so that the computation of ↓d is correct when a request
is evaluated (line 8D′ in Figure 3.2).

Proposition 3. A safe and consistent SDP that implements the cache update algorithm is still
safe and consistent after a policy change.

Proof. We need to show that, after a policy change, if the SDP produces a secondary response
for request (s, p), then that response is the one that would be produced by the PDP after the
same policy change.

First, we consider the case when (p, r) is added to PA. For any request (s, p) such that
r /∈ s, the policy change has no effect on the decisions returned by the PDP and SDP. We now
consider the case when r ∈ s. Clearly, the SDP will return allow for all such requests, since

9Note line 15UPA is used to remove redundancy from Cache+: as for the construction algorithm, this step
may be omitted and Cache+ periodically purged of redundant tuples instead.

35

3.1. SAAMRBAC design

Input: policy update response q
1UPA: UpdateCache(q)
2UPA: if q = −({r}, p) then
3UPA: remove those (s+, p) ∈ Cache+ for which r ∈ s+

4UPA: if (s−, p) ∈ Cache− then
5UPA: replace it with (s− ∪ {r}, p)
6UPA: else
7UPA: add ({r}, p) to Cache−

8UPA: end if
9UPA: end if
10UPA: if q = +({r}, p) then
11UPA: find (s−, p) ∈ Cache−

12UPA: if r ∈ s− then
13UPA: replace it with (s− − {r}, p)
14UPA: end if
15UPA: delete all (s+, p) ∈ Cache+ such that r ∈ s+
16UPA: add ({r}, p) to Cache+

17UPA: end if
(a) The cache update algorithm when PA is changed

Input: the role r which is to be removed
1UR: UpdateCache(r)
2UR: for all p in Cache− do
3UR: find (s−, p) ∈ Cache−

4UR: if r ∈ s− then
5UR: replace it with (s− − {r}, p)
6UR: end if
7UR: end for
8UR: for all p in Cache+ do
9UR: delete all (s+, p) ∈ Cache+ such that r ∈ s+
10UR: end for
(b) The cache update algorithm when a role is removed from R

Figure 3.3: Cache update algorithms

({r}, p) was added to Cache+ as a result of the cache update. Equally, the PDP will return
allow for such requests since (p, r) ∈ PA as a result of the policy change.

Second, we consider the case when (p, r) is removed from PA. As above, we need only
consider the case when r ∈ s. If the SDP returns an allow decision then there exists (s+, p) ∈
Cache+ such that s+ ⊆ s and r 6∈ s+. Hence, there exists some role r′ ∈ s+ that is authorized
for p. Since the only change to PA was to remove the authorization for role r, we may infer
that the PDP would also allow request (s, p), since r′ ∈ s. If the SDP returns a deny decision
then s ⊆ s− ∪ {r}. In other words, no role in s− ∪ {r} is authorized for p and now that (p, r)
has been removed from PA, the PDP will also return deny.

Third, we consider the case when role r is removed from R. No new session will contain

36

3.1. SAAMRBAC design

role r and Cache− and Cache+ are able to decide fewer requests.

• Suppose first that (s, p) was allowed by the SDP and the PDP before the removal of r.

Now if (s − {r}, p) is denied by the SDP after the removal of r, then (s−, p) ∈ Cache−

and r′ ∈ s− for all r′ ∈ s−{r}, which in turn implies that no role in s−{r} is authorized
for p and the request would also be denied by the PDP.

If, however, (s − {r}, p) is allowed by the SDP after the removal of r, then there exists
(s+, p) ∈ Cache+ such that s− {r} ⊇ s+ and hence it would be allowed by the PDP.

(There are also requests that may be allowed by the SDP before the removal of r, but
cannot be decided after. However, these requests are irrelevant to the definitions of safety
and consistency.)

• Suppose now that (s, p) was denied by the SDP and the PDP before the removal of r.

Then (s − {r}, p) will be denied after r’s removal. Hence, any request that is denied by
the SDP after r’s removal will be denied by the PDP.

An important question to answer is how to propagate update messages to SDPs. In Chap-
ter 4, we provide a detailed discussion on the alternatives for propagating update messages
and a solution for implementing well defined semantics for policy updates. For the sake of
completeness, below we briefly describe our solution in the context of SAAMRBAC.

Based on the fact that not all policy changes are at the same level of criticality, we di-
vide policy changes into three types: critical, time-sensitive, and time-insensitive changes. By
discriminating policy changes according to these types, system administrators can choose to
achieve different consistency levels. In addition, system designers are able to provide different
consistency techniques to achieve efficiency for each type. Our design allows a SAAMRBAC

deployment to support any combination of the three types.
Critical changes of authorization policies are those changes that need to be propagated

urgently throughout the enterprise applications, requiring immediate updates on all SDPs. We
assume that the policy is persistently located in a separate policy store. To avoid modifying
existing authorization servers and maintain backward compatibility, we add a policy change
manager (PCM) that monitors the policy, detects policy changes, and informs the SDPs about
the changes. To support critical changes, SDPs would have to implement algorithms in Fig-
ure 3.3 and PCM would have to “push” changes to SDPs, which requires adding SDP-PCM
communication channel. Support for two other types of policy changes is less intrusive, however.

Time-sensitive changes in authorization policies are less urgent than critical ones but
still need to be propagated within a known period of time. We suggest using time-to-live (TTL)
approach for processing time-sensitive changes. Every primary response is assigned a TTL that
determines how long the response should remain valid in the cache, e.g., one day, one hour, or

37

3.1. SAAMRBAC design

one minute. The assignment can be performed by the SDP to achieve backward compatibility.
Every SDP periodically purges from its cache those responses whose TTL elapses.

When the administrator makes a time-insensitive change, the system guarantees that
all SDPs will eventually become consistent with the change. A simple approach for supporting
time-insensitive change is for system administrators to periodically flush SDPs caches.

3.1.10 Evidence construction and verification

Recall that a SAAM authorization response is defined as (r, i, E, d), where r is the response
identifier, i is the corresponding request identifier, d is the response decision, and E is the
evidence containing information to verify the correctness of d. The previous sections omit E
for simplicity. In this section we discuss how to construct E and use it to verify a response.

If a response is primary, then E is empty because the response is generated by the PDP.
The PDP computes access control decisions using access control policies directly. Therefore, all
its decisions are assumed to be correct. To protect the authenticity and integrity of a primary
response during its transit between the PDP and the PEP, the PDP could cryptographically
sign the response. Then, a PEP may verify the primary response’s authenticity and integrity
by checking its signature.

In this section, we present algorithms for creating evidence and for using it to verify the
correctness of secondary responses, which are generated by the SDP. To be consistent with the
previous discussion, we write +(s, p, E) to denote a secondary allow response for request (s, p),
and −(s, p, E) to denote a secondary deny response. When the context is clear, we simply
use ±(s, p, E) to denote a general secondary response and ±(s, p) to denote a general primary
response.

Before we present the algorithms, let us first clarify what we mean by a secondary response
being “correct”. We say that a secondary response ±(s, p, E) is “correct”, if the same deci-
sion would be made by the PDP. Therefore, to verify the correctness of a secondary response
±(s, p, E), the evidence part E must contain enough information so that an entity external to
the SDP (e.g., the PEP or a third-party auditor) can conclude that the PDP would make the
same decision given the request and the policy at hand.

The first type of secondary response we consider is a precise response. Given a request (s, p),
the SDP generates a precise response ±(s, p, E), if the SDP finds in its cache a primary response
±(s, p) and the corresponding request (s, p). In this case, E = [±(s, p)]. The correctness of the
response can then be established through verifying that ±(s, p) has been produced by the PDP.

The other type of secondary response is approximate response. Since approximate responses
are inferred from primary responses in the cache, the set of these primary responses are con-
structed by the SDP as the evidence. Each primary response ±(s, p) tells whether or not the
roles of subject s are assigned to p. By combining this information from all the primary re-
sponses in the evidence, an external party may determine whether or not the roles of the subject
s′ in request (s′, p) are assigned to the same permission p, thus verifying the decision of the

38

3.1. SAAMRBAC design

approximate response ±(s′, p, E). The rest of this section describes the algorithms for evidence
construction and verification for approximate responses.

Evidence construction

Before it can construct an evidence, the SDP needs to associate the roles in both Cache−

and Cache+ to those primary responses that lead to the existence of those roles. Therefore, we
introduce two relations: Evidence+ and Evidence−. For each (s, p) ∈ Cache−, we use Evidence−

to associate each individual role of s to the corresponding primary deny responses. For each
(s, p) ∈ Cache+, we use Evidence+ to associate s to the corresponding primary allow responses.
More specifically, (r,−(s, p)) ∈ Evidence− represents that there exists a primary deny response
−(s, p) and r ∈ s. On the other hand, (s′,+(s, p)) ∈ Evidence+ represents that there exists a
primary allow response +(s, p) and s′ ⊆ s. Note that r or s′ may be associated with multiple
responses because they may appear in the roles of multiple subjects.

Evidence+ and Evidence− are constructed when the SDP constructs Cache+ and Cache−.
Figure 3.4(a) shows the revised cache construction algorithm (C′′) with the construction of
both Evidence+ and Evidence−. For a deny response −(s, p), s is split into individual roles and
each role leads to a new entry in Evidence− (lines 10C′′–12C′′). For an allow response +(s, p),
only one entry is added to Evidence+ after those roles that are not assigned to p have been
removed from s (line 21C′′). Note that any change to the entry in Cache+ (lines 3C′′ and 18C′′)
is accompanied by a change to Evidence+ (lines 4C′′ and 19C′′). Therefore, for each (s, p) in
Cache+, there is at least one (s, q) in Evidence+, where q is a primary allow response.

The evidence for an approximate response is constructed when the SDP infers an approxi-
mate decision. Figure 3.4(b) shows the revised decision algorithm (D′′) for generating E. The
generated E contains a set of primary responses. If the SDP makes a deny decision, E only
contains a set of primary deny responses. If the SDP makes an allow decision, E contains a set
of primary deny responses as well as a set of primary allow responses.

Note that computing evidence unavoidably adds additional overhead to both cache con-
struction and decision processes. Therefore, it should be only enabled when necessary. For
example, when a distributed version of SAAM is deployed and the cooperation between SDPs
is enabled [WRB09], it is critical for a remote SDP to verify the secondary response sent by
other SDPs.

Evidence verification

Evidence verification follows directly from rules Rule+ and Rule−. For an approximate deny
response −(s, p, E), a third party verifies that none of the roles of s are assigned to p. For
an approximate allow response +(s, p, E), the third party verifies that at least one role of the
s is assigned to p. The primary responses in the evidence E provide such information for
verification.

39

3.1. SAAMRBAC design

Input: response q
1C′′: AddResponse(q)
2C′′: if q = −(s, p) then
3C′′: replace each (s+, p) ∈ Cache+ with (s+ − s, p)
4C′′: replace each (s+,+(s′, p)) ∈ Evidence+ with (s+ − s,+(s′, p))
5C′′: if (s−, p) ∈ Cache− then
6C′′: replace it with (s ∪ s−, p)
7C′′: else
8C′′: add (s, p) to Cache−

9C′′: end if
10C′′: for all r ∈ s do
11C′′: add (r,−(s, p)) to Evidence−

12C′′: end for
13C′′: else // we know that q = +(s, p)
14C′′: if there exists (s+, p) ∈ Cache+ such that s+ ⊆ s then
15C′′: return
16C′′: end if
17C′′: find (s−, p) ∈ Cache−

18C′′: delete all (s+, p) ∈ Cache+ such that s− s− ⊆ s+
19C′′: delete all (s+,+(s′, p)) ∈ Evidence+ such that s− s− ⊆ s+
20C′′: add (s− s−, p) to Cache+

21C′′: add (s− s−,+(s, p)) to Evidence+

22C′′: end if
(a) The revised cache construction algorithm

Input: request (s, p)
1D′′: EvaluateRequest(s, p)
2D′′: E = ∅
3D′′: find (s−, p) ∈ Cache−

4D′′: i← s ∩ s−
5D′′: for all r ∈ i do
6D′′: if (r,−(s′, p)) ∈ Evidence− then
7D′′: add −(s′, p) to E
8D′′: end if
9D′′: end for
10D′′: d← s− s−
11D′′: if d = ∅ then
12D′′: return -(s,p,E)
13D′′: else
14D′′: for all (s+, p) ∈ Cache+ do
15D′′: if s+ ⊆ d then
16D′′: for all (s+,+(s′, p)) ∈ Evidence+ do
17D′′: add +(s′, p) to E
18D′′: end for
19D′′: return +(s,p,E)
20D′′: end if
21D′′: end for
22D′′: return undecided
23D′′: end if

(b) The revised decision algorithm

Figure 3.4: SAAMRBAC revised algorithms for evidence construction

40

3.1. SAAMRBAC design

Input: response ±(s, p, E)
1V: VerifyEvidence(±(s, p, E))
2V: d = ∅
3V: for all −(s′, p) in E do
4V: d = d ∪ s′
5V: end for
6V: if s ⊆ d and ±(s, p, E) = −(s, p, E) then
7V: return true
8V: end if
9V: s = s− d
10V: for all +(s′, p) in E do
11V: s′ = s′ − d
12V: if s′ ⊆ s and ±(s, p, E) = +(s, p, E) then
13V: return true
14V: end if
15V: end for
16V: return false

Figure 3.5: The evidence verification algorithm

Figure 3.5 presents the algorithm for verifying the evidence E of an approximate response
±(s, p, E). If it is a deny response −(s, p, E), then E should only contain deny responses.
Consider E = {−(s1, p), . . . ,−(sk−1, p)}. The algorithm merges all the roles of si, i.e., s′ =
s1 ∪ . . . sk−1 (line 4V). If s′ is a superset of s, the correctness of −(s, p, E) is verified because
all the roles of s are not assigned to p.

If the response is an allow response +(s, p, E), then E should contain both deny responses
and allow responses. Consider E = {−(s1, p), . . . ,−(sk−1, p),+(sk, p), . . . ,+(sn, p)}. The first
step is still to merge all the roles of the subjects in deny responses, i.e., d = s1 ∪ . . . sk−1. The
second step is to remove d from s (line 11V). If the resulted s is a superset of any s{k,...,n} − s′,
then the correctness of +(s, p, E) is verified because some roles of s are assigned to p.

In all other cases, the response fails the verification.
We note that each primary response in the evidence is signed by the PDP and the evidence

contains both the response and its signature. The first step of any verification should be
verifying the signature of each response to make sure that the response was generated by the
PDP and has not been changed. For the simplification purpose, this additional step is not
shown in Figure 3.5.

Example

Let us use the example in Section 3.1.6, where the following primary responses are obtained
from the PDP:

−({r1, r2}, p), +({r2, r3, r4}, p), +({r4, r5, r6}, p), −({r4, r7}, p).

41

3.1. SAAMRBAC design

Response Evidence+ Evidence−

q1 = −({r1, r2}, p) (r1, q1),
(r2, q1)

q2 = +({r2, r3, r4}, p) ({r3, r4}, q2) (r1, q1),
(r2, q1)

q3 = +({r4, r5, r6}, p) ({r3, r4}, q2), (r1, q1),
({r4, r5, r6}, q3) (r2, q1)

q4 = −({r4, r7}, p) ({r3}, q2), (r1, q1),
({r5, r6}, q3) (r2, q1),

(r4, q4),
(r7, q4)

Table 3.2: Building Evidence+ and Evidence− from primary responses

Table 3.2 illustrates the construction of Evidence− and Evidence+ as these responses are pro-
cessed by the SDP. In the resulting Evidence−, each individual role is mapped to a deny re-
sponse. On the other hand, in the resulting Evidence+, each role set is mapped to an allow
response, and each allow role set has a corresponding entry in Cache+ (Table 3.1).

For the two decided requests:
(1) ({r3, r4}, p), (2) ({r1, r4, r7}, p), the SDP returns the evidence {q4, q2} and {q4, q1} respec-
tively. Using the verification algorithm, both evidences can be verified correctly.

3.1.11 Implementation considerations

To facilitate the integration with existing access control systems, the SDP should provide the
same policy evaluation interface to its PEP as the PDP, thus enabling SAAM incremental
deployment without any change to existing PEP or PDP components. Similarly, in systems
that already employ authorization caching but do not use SAAM, the SDP can offer the same
interface and protocol as the existing cache component.

SAAM may be deployed for a variety of performance-related reasons, depending on the
specific application, geographic distribution, and network characteristics. These reasons will
typically include one or more of the following: to reduce the overall load on the PDP; to min-
imize the delay in responding to the client; and to minimize the network traffic generated by
the authorization service. We now discuss two alternative ways for managing the interactions
between the PEP, the SDP, and the PDP. These strategies lead to different performance char-
acteristics. Hence, different performance-related priorities can be realized by choosing different
deployment strategies.

The first strategy is concurrent authorization by the SDP and the PDP. When the SDP
receives an authorization request from the PEP, it forwards the request to the PDP. While
waiting for a decision from the PDP, it also computes a decision locally. The SDP then re-

42

3.2. Experimental evaluation

turns to the PEP the first conclusive decision it receives or computes. The use of concurrent
authorization reduces system response time but increases load on the PDP. Alternatively, we
may use sequential authorization. The SDP only forwards the request to the PDP if it cannot
decide the request. The use of sequential authorization reduces network traffic and load on the
PDP, at the cost of increased response time as observed by the PEP. The evaluation of these
two strategies is presented in Section 3.2.2.

3.2 Experimental evaluation

While the previous section described SAAMRBAC algorithms and estimates their complexity,
this section presents an experimental evaluation of those algorithms. We used both simulation
and a prototype implementation for evaluation. The simulation enabled us to study the algo-
rithms by hiding the complexity of underlying communication, while the prototype enabled us
to study the system performance in a more dynamic and realistic environment.

3.2.1 Simulation-based evaluation

In the simulation-based evaluation, we studied three performance aspects of our algorithms:
the achieved hit rate, the impact of policy changes on the hit rate, and the computational cost.

First, we studied the hit rate, which we define to be the ratio between the number of
requests resolved by the SDP (regardless of the specific allow/deny decision) and the total
number of requests received. A high hit rate has the effect of masking transient PDP failures,
thus improving the overall authorization system’s availability. It also reduces the load on the
PDP, thus improving the system’s scalability, and the authorization system response time.

Our informal analysis in Section 3.1.7 suggested that the hit rate is influenced by the follow-
ing factors: (1) the cache warmness (the ratio between the number of authorization responses
cached at the SDP and the number of possible requests); (2) the percentage of deny responses
in the cache at a fixed cache warmness; (3) the characteristics of the RBAC policy, including
the ratios between the numbers of users, permissions, and roles in the system; and (4) the
popularity distribution of roles. Section 3.2.1 presents results of our experiments investigating
the impact of these factors on the hit rate.

The second performance aspect we studied was the impact of policy changes on the hit rate.
We wanted to understand how the algorithms for handling policy changes (Figure 3.1) affected
the hit rate. Section 3.2.1 presents the experiment results.

The third performance aspect we investigated was the computational cost of the SDP algo-
rithms. We measured two types of computational cost: the inference time—the time that the
SDP takes to infer an approximate response (allow or deny) using its cache; and the update
time—the time that the SDP takes to incorporate a new primary response in its cache. In
particular, the lower the inference time, the more efficient the SDP is in accelerating the access
control system. As cache warmness appears to be the main factor influencing performance,

43

3.2. Experimental evaluation

Section 3.2.1 presents the influence of cache warmness on the inference and update time.

Experimental setup

To conduct the experiments, we implemented SAAMRBAC recycling algorithms and integrated
the implementation with the SAAM evaluation engine used in [CLB06]. Each run of the eval-
uation involved two stages.

The first stage was to create the data input files that were required for the simulation. The
engine first created an RBAC policy and assigned roles to both users (UA) and permissions
(PA). Second, the engine created the warming set and testing set, which were simply lists of
requests. Each request was made up of a subject and a permission. The warming set was
a pseudo-random permutation of all possible requests, while the testing set was a random
sampling of requests.

In the second stage, the simulation engine started operating by alternating between warming
and testing modes. In the warming mode, the engine used a subset of the requests from the
warming set, evaluated them using a simulated PDP, and sent the responses to the SAAMRBAC

SDP to build up the cache. During this phase, the evaluation engine also recorded the time
required to add primary responses to the cache. Once the desired cache warmness was achieved,
the engine calculated the average update time and then switched into the testing mode during
which the SDP cache remained constant. We used this mode to evaluate the hit rate and the
inference time at controlled, fixed levels of cache warmness. The engine submitted requests
from the testing set, recorded the inference time. Once all the requests in the testing set had
been submitted, the engine calculated the hit rate as the ratio of the testing requests resolved
by the SDP to all test requests and the average inference time, and then switched back to the
warming mode. These two modes were then repeated for different levels of cache warmness,
from 0% to 100% in increments of 5%.

For all experiments we used a Linux machine with two Intel Xeon 2.33 GHz processors and
4 GB of memory. The evaluation framework ran on Sun’s 1.5.0 Java Runtime Environment
(JRE). Each experiment was run ten times and the average results are reported.

We assumed for simplicity that a user always activated all her roles. This assumption
allowed us to describe the entire request space more easily because we could assume then that
the request space was defined by the set of users and the set of permissions rather than the set
of permissions and the set of all subsets of any set of roles for which some user was authorized.
However, we do not believe that this assumption had a detrimental impact on our results.
Indeed, our choice was likely to mean that the hit rate was lower than might be expected if
users were to use subsets of their authorized roles. The reason for this is due to the fact that
smaller role sets in subjects mean that (1) the likelihood of a negative response is increased,
which increases the hit rate, and (2) the size of role sets in Cache+ may be reduced, which
means that the chance of a hit is also increased.

The reference RBAC policy used in our experiments contained 100 users, 3,000 permissions,

44

3.2. Experimental evaluation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

cache warmness (%)

PR
AR-naive algorithms

AR-optimized algorithms

(a) Hit rate as a function of cache warmness

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

ca
ch

e
siz

e
(K

B)

cache warmness (%)

naive algorithms
optimized algorithms

(b) Cache size as a function of cache warmness

Figure 3.6: Comparing optimized algorithm and naive algorithm of approximate recycling (AR),
with precise recycling (PR), for an RBAC system with 100 users, 3,000 permissions, and 50
roles.

and 50 roles. Thus the overall size of the request space and the warming set was 300,000. The
testing set contained 20,000 unique requests which were randomly selected from the request
space. For simplicity, we only considered the flat RBAC model. Each assigned role was ran-
domly selected from R. The probability of a given user being assigned to a given role was
0.1. Hence the number of roles assigned to a user was binomially distributed with mean 5 and
variance 4.5, and the number of users to which a role was assigned was binomially distributed
with mean 10 and variance 9. Similarly, the probability of a given permission being assigned
to a given role was 0.04.

While the scale of the system we studied was limited by the computational resources avail-
able we believe that the values of these parameters are not important in themselves. We were
interested in configuring a reasonably large system that would manifest a behavior asymptoti-
cally similar to possible real-world deployments. Additionally, we studied the impact of varying
the number of users, roles per user, roles, and roles per permission as well as the popularity
distribution of roles on system’s performance. We note that, while the overall number of per-
missions in the system may influence the response time as a large number of permissions leads
to less efficient memory use by the SDP, it will not influence the achieved hit rate.

Evaluating hit rate

We first studied the hit rate for the reference RBAC configuration. Figure 3.6(a) presents the
hit rate as a function of cache warmness for both approximate recycling and precise recycling
with the reference policy. As expected, the hit rate of approximate recycling (AR in the figure)
increased with cache warmness and was always higher than that of precise recycling (PR in the
figure). In addition, the results demonstrate that optimized recycling algorithms achieved a
better hit rate than naive recycling algorithms. The improvement was relatively small because

45

3.2. Experimental evaluation

it was only due to the increase in secondary allow responses.
Figure 3.6(b) compares the cache size of the naive and optimized approximate recycling

algorithms. The results demonstrate that the optimized algorithms help reduce the cache size
significantly. Specifically, using the optimized algorithms, the cache size stabilized at about
600KB after cache warmness reached about 20%. Using the naive algorithms, however, the
cache size kept increasing with the cache warmness, and eventually reached about 1,700KB.
The reason is that optimized algorithms maintain the cache in canonical form. In the rest of
our evaluation, we used the optimized algorithms for all the experiments.

We then studied the impact of varying the number of users while the other configuration
parameters were fixed. Figure 3.7(a) shows the percentage increase for the hit rate compared
with precise recycling for an RBAC system that had 50, 100, and 200 users respectively. As
expected, an increase in the number of users increased the chance that a role-permission pair
was already cached thus leading to a higher hit rate. When averaged over the full range of
cache warmness, the percentage increase was 36%, 80%, and 132% for 50, 100, and 200 users
respectively.

For the experiments described in the rest of this section, we fixed the cache warmness and
studied the impact of other system characteristics on the achieved hit rate. We choose to
explore hit rate for relatively low cache warmness values as this is the region where we estimate
the system is most likely to operate due to workload characteristics, limited storage space, or
frequently changing access control policies.

First, we studied the impact of the percentage of deny responses in the cache. In some
systems, users may know what they are allowed to do and what not, or the user interface may
even hide unauthorized actions from users. Hence, the cache may contain more primary allow
responses than primary deny responses. To study this effect in the experiment, we engineered
the warming set so that the PDP could generate a specified proportion of deny responses, which
ranged from 0 to 100%. Figure 3.7(b) confirms our prediction that a higher proportion of deny
responses leads to a higher hit rate. The intuition behind this result is that a negative primary
response for a permission and a user means that the permission is not assigned to any of the
user’s roles. In contrast, a positive primary response only allows us to infer that the permission
is assigned to at least one of the roles, but without the ability to infer exactly which role. Note
that we only show the results for 15% cache warmness because the maximum cache warmness
we could reach by using only allow responses was less than 20%.

Second, we studied the impact of the total number of roles on the hit rate by varying it from
10 to 100 (Figure 3.7(c)) and keeping constant the number of users and the mean number of roles
a user/permission is assigned to. The results indicate that, as the number of roles increases, the
hit rate decreases. This confirms our intuition that, as the number of roles increases, the overlap
between the sets of roles each user is assigned to also decreases thus reducing the likelihood of
a successful inference.

Third, we studied the impact of the mean number of roles to which each user is assigned

46

3.2. Experimental evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

hi
t r

at
e

pe
rc

en
ta

ge
 in

cr
ea

se
 (%

)

cache warmness (%)

50 users
100 users
200 users

(a) Hit rate percentage increase (compared with
precise recycling) as the SDP cache warmness
varies, for 50, 100, and 200 users in the RBAC
system.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

percentage of deny responses (%)

(b) Hit rate variation with the percentage of pri-
mary deny responses in the SDP cache for 15%
cache warmness.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

hi
t r

at
e

(%
)

total roles

10% cache warmness
20% cache warmness
30% cache warmness

(c) Hit rate variation with the total number of roles
in the RBAC system

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

hi
t r

at
e

(%
)

roles per user

10% cache warmness
20% cache warmness
30% cache warmness

(d) Hit rate variation with the mean number of
roles per user

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

hi
t r

at
e

(%
)

roles per permission

10% cache warmness
20% cache warmness
30% cache warmness

(e) Hit rate variation with the mean number of
roles per permission

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

hi
t r

at
e

(%
)

alpha

10% cache warmness
20% cache warmness
30% cache warmness

(f) Hit rate variation with the coefficient α in Zipf
distribution.

Figure 3.7: The impact of various system characteristics on the hit rate.

47

3.2. Experimental evaluation

by varying it from one to all the roles the system (50 roles) while keeping all other parameters
constant. The results in Figure 3.7(d) suggest that the influence of this parameter on the hit
rate is more complex. We now describe our understanding of these curves. The hit rate was low
when each user was assigned to few (less than five) roles because there were few roles in each
entry of Cache+ and Cache− and hence the chances of making an approximate response were
limited. As the number of roles per user increased, the size of the entries of the role sets in the
cache increased and the chance of two users’ role sets overlapping increased. While the overlap
was still relatively low (when each user was assigned to less than ten roles), the deny responses
dominated the content of the SDP cache. However, when the number of roles per user increased
further, Cache+ started increasing at the expense of Cache−, leading to the decrease in the
hit rate (as we predicted in Section 3.5). Moreover, for entries of the form (s, p) ∈ Cache+, s
was likely to be large (since there were few deny responses to reduce their size). Since subjects
contained all roles assigned to a user and users were assigned to a large number of roles, it
became difficult to generate an allow secondary response for (s, p), because s was large and our
approach requires a tuple (s′, p) ∈ Cache+ such that s′ ⊆ s, and in such tuples s′ was also likely
to be large. Less intuitive is the sharp increase to 100% in the hit rate on the right side of the
graph. This increase was likely due to the fact that each user was assigned to (almost) all the
roles in the system and, as a result, (almost) every user had the same set of roles. In practice,
we would expect the number of roles to be a relatively small compared to the number of users
(e.g., [SMJ01] find it to be around 3–4%) and that users will be allocated to a small fraction
of those roles. Our experimental results suggest that the characteristics of real RBAC systems
will not compromise the efficacy of our algorithms.

Fourth, we studied the impact of the mean number of roles to which each permission was
assigned. Figure 3.7(e) confirms the results of our analytical analysis, which predicted that a
larger number of roles per permission leads to a lower hit rate. This effect can be also attributed
to the decrease of Cache−.

Finally, we studied the impact of role popularity distribution. In all our previous experi-
ments, roles were uniformly assigned to users and permissions so that all roles were equally
“popular” in UA and PA relations. However, in reality some roles may be assigned to users
or permissions more frequently than other roles. For example, in an enterprise most users are
assigned an “employee” role while only a few are assigned a “manager” role. To model this
type of highly uneven popularity, we used a Zipf distribution.

Zipf distributions have been widely used to model heterogeneous popularity distributions
(e.g., web page popularity [BCF+99], web site popularity [AH02], and query term popular-
ity [KLVW04].) A set of data obeys Zipf’s law if the frequency of an item is inversely pro-
portional to (some non-negative) power of its rank (determined by frequency of occurrence).
More formally, suppose we have a frequency distribution (x1, f1), . . . , (xn, fn), where data item

48

3.2. Experimental evaluation

xi occurs fi times and f1 > f2 > · · · > fn. Then the distribution obeys Zipf’s law if

fi ∝
1
iα

for some α > 0. Using English language as an example, the relative frequency of the most
popular word “the” is 7%, and the relative frequencies of the next most popular words (“of”
and “and”) are 3.5% and 2.7%, respectively [FK67]. In other words, the most popular word
occurs twice as often as the next most popular, and approximately three times as often as the
third most popular word. The frequency of words approximately follows Zipf’s law with α = 1.

In our experiment, roles selected from the role set R and assigned to users and permissions
followed the Zipf distribution. In particular, the more popular roles were assigned to more
users in UA than the less popular roles. A role that appeared more frequently in UA (that
is, was more commonly assigned to users), however, was assigned to fewer permissions in PA.
This simulated a scenario where, for example, the “employee” role is usually assigned to more
users than the “manager” role but the “employee” role usually has fewer permissions than the
“manager” role.

Note that by using a Zipf distribution and varying α for role assignment, we implicitly
simulated the existence of a role hierarchy RH. A popular role in UA simulated a junior role in
RH that had fewer permissions but was assigned to more users. In contrast, a less popular role
in UA simulated a senior role in RH that had more permissions (as it inherited permissions
from all its junior roles) but was assigned to fewer users. In addition, by varying α, we also
implicitly varied the shape of the RH graph. When α is small the corresponding RH graph
has a wide and shallow shape. A large α makes the RH graph narrow and deep.

Since the popularity distribution becomes less and less skewed with the decrease of α,
collapsing to a uniform distribution when α = 0, we varied α between 0 and 1.5 in steps of
0.1. The results in Figure 3.7(f) show that, when α was lower than 1, the hit rate was almost
the same as in the uniform distribution. When α was larger than 1, the hit rate began to
increase along with α. This is expected because the number of “overlapping” roles between
users increased. This was also due to the increase of negative responses in the cache because
more users were assigned fewer permissions. However, when the cache warmness increased, this
improvement was less significant due to the already high hit rate.

Evaluating the impact of policy changes

We also studied the impact of policy changes on the hit rate. Since the hit rate depends on the
cache warmness, and a policy change may result in removing one or more responses from SDP
caches, we expected that frequent policy changes at a constant rate would unavoidably result
in a reduced hit rate. This section quantifies this effect.

In the experiments, the simulation engine was responsible for firing a random policy change
and sending the policy change message to both the PDP and SDP at pre-defined intervals, e.g.,

49

3.2. Experimental evaluation

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

hi
t r

at
e

(%
)

number of requests (x10,000)

no policy change
10,000 requests/change

(a) Hit rate as a function of number of requests
with and without changes to R.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

number of requests (x10,000)

no policy change
20,000 requests/change
10,000 requests/change

5,000 requests/change
2,500 requests/change

(b) Hit rate as a function of number of requests at
various frequencies of R changes at a larger time
scale.

Figure 3.8: The impact of removing a role from R on hit rate. In both figures, the order of the
curves (from top to bottom) matches that of the legends.

after every 10,000 requests. The experiment switched from the warming mode to the testing
mode once a policy change message was received. After measuring the hit rate right before and
after each policy change, the experiment switched back to the warming mode.

We studied three types of policy change operations: adding a tuple to the PA relation;
deleting a tuple from the PA relation; and deleting a role from R. When adding a tuple, the
warmness of the cache increases slightly (since a single tuple is added to Cache+), so we would
expect to see a slight increase in the hit rate. Our experiments confirmed this, although the
hit rate never increased by more than 0.1%. Conversely, deleting a tuple from PA causes a
reduction in the warmness of the cache, and is expected to result in a decrease in the hit rate.
Again, our experiments confirmed this expectation, and the decrease in hit rate was negligible.

We now focus on the impact of deleting a role, as it is expected to have a more significant
impact on the hit rate. We first studied how the hit rate was affected by an individual policy
change, i.e., the removal of a single role from R. We expected that SAAMRBAC inference algo-
rithms were sufficiently robust that an individual change would result in only minor degradation
of the hit rate. In the experiment, the warming set contained 200,000 requests which were se-
lected from the total request space with equal probability (with replacement). A randomly
selected role was removed from R every 10,000 requests and tuples containing that role in UA
and PA were also deleted. Then the cache was updated accordingly. After the experiment
switched back to the warming mode from the testing mode, the removed role was returned to
R; UA and PA were also restored. Thus, the simulated system kept its policy characteristics.
Any change in the hit rate was attributed to the reduced SDP cache size.

Figure 3.8(a) shows the hit rate as a function of the number of observed requests, with
policy changes (lower curve) or without policy changes (upper curve). Because the hit rate was
measured just before and after each policy change, every kink in the curve indicates a hit rate

50

3.2. Experimental evaluation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

in
fe

re
nc

e
tim

e
(µ

s)

cache warmness (%)

allow responses
deny responses

(a) Inference time (the time to generate approxi-
mate responses) variation with cache warmness

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

up
da

te
 ti

m
e

(µ
s)

cache warmness (%)

allow responses
deny responses

(b) Update time (the time to add a primary re-
sponse to the cache) variation with cache warmness

Figure 3.9: The impact of cache warmness on the inference and update time.

drop caused by a policy change. The results suggest that the hit rate drops were relatively
small; the maximum hit rate drop was 6.2%, and the average was 4.0%. After each drop, the
curve climbed again because the cache warmness increased with new requests.

Although the hit rate drop for each policy change was small, one can see that the cumulative
effect of policy changes could be large. As Figure 3.8(a) shows, the hit rate decreased about
20% in total when the request number reached 200,000. This result led us to another question:
Would the hit rate finally stabilize at some point?

To answer this question, we ran another experiment to study how the hit rate varied with
continuous policy changes over a longer term. We used a larger number of requests (i.e.,
1,000,000), and varied the frequency of policy changes from 2,500 to 20,000 requests per change.

Figure 3.8(b) shows the hit rate as a function of the number of observed requests, with
each curve corresponding to a different frequency of random policy changes. Because of the
continuous policy change, one cannot see a perfect asymptote of curves. However, the curves
indicate that the hit rate stabilized after 200,000 requests. As we expected, the more frequent
the policy changes were, the lower the stabilized hit rates were, since the responses were removed
from the SDP caches more frequently. This result suggests that if R is changed frequently, it is
preferable to purge the cache periodically instead of immediately.

Figure 3.8(b) also shows that each curve has a knee. The steep increase in the hit rate
before the knee implies that caching new responses improves the hit rate dramatically in this
interval. Once the number of responses passes the knee, the benefit brought by caching further
responses becomes negligible.

Evaluating inference and update time

Figure 3.9(a) shows the inference time for allow and deny approximate responses as a function
of cache warmness for our reference configuration. As expected, the computational overhead

51

3.2. Experimental evaluation

to infer allow responses was larger than that for deny responses. The inference time increased
with cache warmness for two reasons: first, when more responses were cached, the SDP used
more responses for inference leading to higher computational overheads. Second, larger cache
sizes led to less efficient memory usage by the SDP (that is, SDP data did not fit in the host’s
cache anymore).

Figure 3.9(b) shows the time for updating the SDP cache using both allow and deny primary
responses as a function of cache warmness. As expected, the update time also increased with
cache warmness. Additionally, the SDP used more time to process allow than deny responses.
The reason is that in the case of processing each allow response +(s, p), the SDP had to purge
redundant tuples, i.e., delete all (s+, p) ∈ Cache+ such that s − s− ⊆ s+, which involved an
extra subset computation. This result suggests that, to improve the update time, the purge
operation should be done in a periodical manner.

It is worth noting in Figure 3.9 that both the inference time and update time stabilized
when cache warmness reached about 40%. This was because at about 40% warmness the SDP
was able to resolve all possible requests so new responses provided no new information to the
cache.

3.2.2 Prototype-based evaluation

We have also implemented a simplified SAAMRBAC prototype system to evaluate the perfor-
mance of the overall authorization system. In particular, we studied the response time for
two SAAM authorization schemes (described in Section 3.1.11): sequential authorization and
concurrent authorization.

Experimental setup

The prototype system consisted of the implementations of PEP, SDP, and PDP. The PEP
was process-collocated with the SDP, while the SDP communicated with the PDP using Java
Remote Method Invocation (RMI). The PEP/SDP and PDP were located in two separate
cluster nodes connected by a 1Gbps network. Each node was equipped with two Intel Xeon
2.33 GHz processors and 4 GB of memory, running Fedora Linux 2.6.24.3. Upon generating
a random request at the PEP, the system attempted to resolve the request using one of the
following two authorization schemes: sequential authorization, where a request was resolved first
by the SDP and then by the PDP, or concurrent authorization, where a request was resolved
by the SDP and the PDP concurrently.

For each authorization scheme, we ran experiments in the following two scenarios: (1)
Scenario I, where the SDP and the PDP were collocated on the same local area network (LAN)
and that the authorization policy of the PDP was relatively simple thus allowing the PDP to
make authorization decisions swiftly; and (2) Scenario II, where the SDP was separated from
the PDP by a wide area network (WAN) or/and the PDP had a complex authorization policy.

52

3.2. Experimental evaluation

To model this scenario, we simulated additional 40ms delay added to each authorization request
sent to the PDP.

Evaluating response time

In our experiments, response time was measured as the time elapsed after the PEP generated
a request until it received the response for that request. At the start of each experiment, the
SDP caches were empty. The PEP uniformly selected a request from the request space, sent it
to the SDP, and then recorded the response time for each request. After every 10,000 requests,
the PEP calculated the mean response time and used it as an indicator of the response time
for that period.

For both scenarios, we also ran experiments for the authorization system without SAAM.
This included authorization without caching or only using precise recycling. Our purpose was
to evaluate the gains in terms of response time by using SAAM. Figure 3.10 shows the results. It
can be concluded that using SAAM helped to reduce the system response time in both scenarios
and this reduction increased with cache warmness. Additionally, as we expected, the two SAAM
authorization schemes showed different patterns in the two scenarios, which we explain below.

Figure 3.10(a) shows the result for Scenario I. The figure demonstrates that the response time
for both authorization schemes decreased with cache warmness, while sequential authorization
decreased more quickly. The reason was likely due to the lower cost of resolving requests at the
SDP. When cache warmness increased, more requests were resolved by the SDP. Since the SDP
was process-collocated with the PEP, getting responses through an interprocess call to the SDP
was faster than getting responses through a network RMI call to the PDP.

More specifically, when cache warmness was small, i.e, less than 30%, concurrent authoriza-
tion achieved shorter response time than sequential authorization. This was due to the extra
time incurred by cache misses in sequential authorization. One unusual pattern in our result
is that sequential authorization achieved lower response time as cache warmness exceeds 30%.
This was possibly caused by the increased load at the SDP and additional thread management
overhead in our concurrent authorization implementation. We should point out that, in an
optimized implementation, concurrent authorization should at least achieve the same response
time as the sequential authorization since concurrent authorization always uses first returned
response.

Figure 3.10(b) shows the results for Scenario II. As expected, both response times decreased
with cache warmness. More interestingly, the curves for concurrent and sequential SAAMRBAC

authorizations almost overlapped each other. The reason is that in this scenario the extra time
incurred by cache misses and thread management were small compared to the 40ms delay at
the PDP. Therefore, their impact on the response time was trivial.

53

3.2. Experimental evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90 100

re
sp

on
se

 ti
m

e
(µ

s)

cache warmness (%)

no caching
precise recycling

SAAM: sequential authorization
SAAM: concurrent authorization

(a) Scenario I: the SDP and the PDP were collo-
cated on the same LAN and that the authorization
policy of the PDP was relatively simple.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

re
sp

on
se

 ti
m

e
(m

s)

cache warmness (%)

no caching
precise recycling

SAAM: sequential authorization
SAAM: concurrent authorization

(b) Scenario II: the SDP was separated from the
PDP by a WAN or/and the PDP had a complex
authorization policy.

Figure 3.10: Response time variation with cache warmness.

3.2.3 Evaluating hit rate with real-world data

The results described in Section 3.2.1 help us understand the dependancy of hit rate on various
factors. However, the results were based on synthetically generated policies and traces. In this
section, we describe the experimental results using a real policy and a real trace. Our goal was
to understand how the recycling algorithms would perform in selected systems.

Real-world policy

In the first experiment, we used a RBAC policy provided by Hewlett Packard (HP). The policy
was extracted from some network access control rules used in HP to authenticate external
users and provide them with limited HP network access based on their profiles. The policy
contained 1164 subjects, 2044 permissions and 454 roles in total. Note that UA and PA relations
of the policy were generated using the role minimization algorithm proposed in [EHM+08].
Therefore, we expected that this policy represented an optimized policy deployment in an
enterprise environment.

We previously used the Zipf distribution for role assignment in UA and PA, as we assumed
that some roles are more popular than others. To verify this assumption, we studied the role
assignment in the HP policy. Figure 3.11(a) shows the frequency of roles as a function of its rank
in UA and PA, both axes in logarithmic scales. The results confirm that the role assignments
exhibit a Zipf-like distribution, and the coefficients are 0.92 in UA and 0.74 in PA. We further
studied the mean number of roles assigned to each user and mean number of roles assigned to
each permission, which are 2.1 and 0.82 respectively.

Based on these findings, we used the Zipf role assignment to generate a synthetic policy
that simulated the HP policy, and then ran experiments to compare their hit rates. In both
experiments, the traces were generated following a uniform distribution. Figure 3.11(b) shows

54

3.2. Experimental evaluation

 1

 10

 100

 1000

 1 10 100 1000

fr
eq

u
en

cy

rank

user-role assignment
permission-role assignment

(a) Role frequency vs. its rank in logarithmic scale

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

cache warmness (%)

Zipf
HP

(b) Hit rate as a function of cache warmness for
both HP policy and synthetic policy following the
Zipf role assignment.

Figure 3.11: The experiments with the HP policy

the hit rate as a function of cache warmness for both policies. Both curves exhibit the similar
shapes as what we have shown in Section 3.2.1. Hence, our simulation results on the hit rate
are reasonable.

More interestingly, the results demonstrate that the two curves almost overlap each other.
This further confirms that Zipf role assignment is able to simulate the role assignment in the
real world at a certain level.

Real-world trace

In the previous experiments, the warming set was randomly generated from the request space
and all requests were unique. This enabled us to study the hit rate at a certain cache warmness
level. In reality, some requests may be more popular than others since users may send those
requests more frequently. To study how our recycling algorithm performs with such workload,
we used a real-world trace.

The trace was gathered from the log of an online course management application used by a
university. The trace recorded all the requests issued in about 3 months’ time. After searching
the whole trace, we identified 56 users, 6322 objects, 58 actions. Each user was assigned with one
or two of the following four roles: course designer, instructor, teaching assistant, and student.
For example, an instructor was usually also the course designer. Some teaching assistants
might also be course designers. Depending on the assigned role(s), one could perform a number
of actions within the application, such as posting new discussion topics, sending mails, and
uploading course materials.

The trace contained 211,953 requests in total. Among them 28,734 requests were unique, as
users tended to send repeated requests over time. We further studied the popularity distribution
of requests. Figure 3.12(a) plots the frequency of requests as a function of its rank in the trace,

55

3.2. Experimental evaluation

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

fre
qu

en
cy

rank

(a) Request frequency vs. its rank in logarithmic
scale

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

hi
t r

at
e

(%
)

pr
ec

en
ta

ge
 in

cr
ea

se
 (%

)

nmber of requests

precise recycling
approximate recycling

precentage increase

(b) Hit rate and its percentage improvement as a
function of the number of requests.

Figure 3.12: The experiments with the real trace

both axes in logarithmic scales. Interestingly, the results exhibited a Zipf-like distribution and
the coefficient was about 1.11. In our context, each request was a combination of subject, object
and action. Thereby, we found evidence that requests themselves may also follow a Zipf-like
distribution, while the literature [BCF+99] only suggests that objects usually follow Zipf-like
distribution.

We used this trace to study the SDP hit rate. The policy was constructed according to
the trace. The experiment was run as follows. We warmed the cache to a specific level using
a portion of the requests in the trace, measured the hit rate by calculating the percentage
of requests in the trace that could be resolved by the SDP using either precise recycling or
approximate recycling. We repeated this process until all the requests in the trace had been
used to warm the cache.

Figure 3.12(b) plots how the hit rate increases with the number of requests. It suggests that
the improvement by approximate recycling is small. The reason is that many requests repeated
themselves in the trace so that using precise recycling alone was already able to achieve a high
hit rate. Although the absolute improvement is small, the maximum percentage increase can
reach 76%.

It is important to note that this trace had several limitations which might restrict the
applicability of the above results. First, the trace only contained those requests that had been
allowed. Therefore, our recycling algorithm was only partially explored in the experiment.
Second, the majority of the users were students so that most users were assigned only one
student role. This unavoidably increased the similarity of role set of different users and thus the
algorithm performed more efficiently. Third, the percentage of repeated requests was unusually
high due to the small scale of the subject and object space, resulting in the high performance
of precise recycling. Therefore, the pattern of this trace may not be typical in enterprise
applications. We report the results here for the sake of completeness.

56

3.2. Experimental evaluation

3.2.4 Discussion

The results of our experiments indicate that approximate recycling leads to higher SDP hit rates
than precise recycling alone, thus improving the availability and scalability of the access control
system. Compared with the naive algorithms, the optimized algorithms achieve a higher hit
rate using a smaller cache. These results extend our understanding of the factors that influence
the hit rate as follows:

• For cache warmness between 5% and 50%, the hit rate for approximate recycling is notably
better than that of precise recycling.

• Larger numbers of users in the system having similar role memberships substantially
improve the hit rate.

• A higher proportion of deny responses in the cache leads to a higher hit rate.

• As the number of roles increases, the overlap between the sets of roles each user is as-
signed to decreases thus reducing the likelihood of a successful inference based on cached
responses.

• The hit rate is low when each user is assigned to few (1-3) roles because the SDP cache
has little relevant information. With the increase of overlap in users’ roles, the number
of relevant entries increases, resulting in the increase of the hit rate. While the overlap is
still relatively low (when each user has less than ten roles), the deny responses dominate
the content of the SDP cache, resulting in a higher hit rate. However, when the number
of roles per user increases further, Cache+ starts increasing at the expense of Cache−,
leading to the decrease in the hit rate. When each user is assigned to (almost) all the
roles in the system (almost) every user has the same set of roles, and the hit rate increases
sharply to 100%.

• A larger number of roles per permission leads to a lower hit rate.

• Zipf’s popularity distribution of roles leads to a higher hit rate when α is larger than 1,
due to the increased overlap of roles assigned to users and permissions.

The volume of information available for inference, the percentage of deny responses, and
the distribution of role assignment are the factors that are not controlled by the administrators
of RBAC systems. Other factors that impact performance, however, e.g., the total number
of roles, the number of roles per user, and roles per permission, might be engineered (e.g.,
by role engineering [VAG07]) by the designers of access control policies who might be able to
tune these factors to achieve higher hit rates using the trends our experiments and evaluation
revealed. Thus, we believe our evaluation results can be used to inform efficient SAAMRBAC

deployment in real enterprise application systems, even though our experimental testbed was
relatively small compared to large-scale systems deployed in organizations (e.g., [SMJ01]).

57

3.2. Experimental evaluation

Results of our evaluation indicate that the impact of the update to PA is trivial, as only a
single permission is affected. In contrast, frequent policy changes to R may have a large impact
on the hit rate. Since the correctness of the response is not affected if the cache is not updated
immediately, it is preferable to purge the cache periodically instead of immediately.

Our experiments with SAAMRBAC also demonstrate inference and update time well under
1ms, and we believe that response times can be further reduced by optimizing the implemen-
tation. We note that a low inference time is a key attribute for a real-world deployment as it
directly affects the perceived performance of the access control system: an application request
cannot be processed until the PEP obtains a response, either primary or secondary. Cache
changes triggered by adding primary responses or policy changes, on the other hand, can be
implemented in the background to hide their impact on perceived performance.

The evaluation results on response time further suggest the usefulness of SAAM techniques
for reducing the response time of the overall access control system, especially in network-
based deployments where network latencies are much larger or the PDP authorization logic is
complex. The results with two authorization schemes indicate that concurrent authorization is
only helpful when the PDP can make authorization decisions quickly. In other cases, sequential
authorization is preferable because it can achieve both reduced response time and reduced load
at the PDP.

An alternative to approximate recycling for RBAC systems is to replicate RBAC policy
at each SDP. Run-time benefits of the proposed approach—compared to just replicating PA
and RH relations at each SDP—depend on a number of factors. The first factor is the size
of the policy (mainly the PA, since this is likely to be the largest) relative to the size of a
PEP working-set (the set of all requests that come through the PEP). For a workload with
good locality and a large PA, the proposed approach will require less space and may well be
faster. Furthermore, if the PA is very large (say, larger than 109 elements) then it may be too
expensive to duplicate the hardware that supports the PDP to additionally support each SDP.
The second factor is the ability of a PDP to predict the working set of a PEP. If the PDP is able
to predict a PEP’s future working set then providing the SDP with corresponding subsets of
PA and RH will work better than authorization recycling (regardless of the relative sizes of the
policy and the PEP working set). The third factor is the frequency of policy changes and the
scope of these changes, i.e., how many elements in the PA they affect. The fourth factor is the
relative benefits brought by one-time replication of the PA (or some subset of it)—as proposed
by [TC09], for example—to the SDPs, as opposed to item-by-item caching of the responses.

Depending on the workload and policy characteristics, the most efficient solution may com-
bine the proposed approach with the replication of some policy elements. For example, RH
can be replicated to the SDPs, as suggested in Section 3.1.9. As a case in point, PEPs in the
IBM Tivoli Access Manager [Kar03], which encodes PA in the form of access control lists, can
operate in two modes. In “remote mode,” a PEP sends authorization requests to the PDP. In
“local mode,” the PEP maintains a local replica of the authorization policy and performs all

58

3.3. Summary

authorization decisions locally. Depending on the configuration, the policy local replica can be
“pulled from” and/or “pushed” by the master authorization service database. “Overhead of pol-
icy replication” is mentioned in the technical documentation of the Access Manager [BAR+03],
but no evaluation is reported.

3.3 Summary

In this chapter, we have presented SAAMRBAC—the SAAM authorization recycling algorithms
for RBAC systems. We define two inference rules, Rule+ and Rule− that are specific to
RBAC authorization semantics, and develop the recycling algorithms based on these rules. In
particular, we have developed several algorithms, including the following three: the first caches
authorization responses from the PDP and represents them as a compact data structure; the
second uses this data structure to generate secondary (precise or approximate) responses; the
third handles policy changes by updating the data structure. We show that the computational
complexity of the algorithms is bounded by the cache size and the number of roles in the system.

We implement SAAMRBAC algorithms and evaluate their properties using an experimental
testbed with 100 subjects, 3,000 permissions and 50 roles. Evaluation results demonstrate an
average 80% increase (over the full range of cache warmness), compared to precise recycling,
in the number of authorization requests that can be served without consulting access control
policies stored remotely at the PDP. These results suggest that deploying SAAMRBAC improves
the availability and scalability of RBAC systems, which in turn improves the performance of
the enterprise application systems.

59

Chapter 4

Cooperative Secondary

Authorization Recycling

The previous chapter presents SAAMRBAC—the authorization recycling algorithms for role-
based access control (RBAC) systems. A local secondary decision point (SDP) can use SAAMRBAC

algorithms to resolve authorization requests not only by reusing cached authorizations but also
by computing approximate authorizations from cached authorizations, even when the remote
policy decision point (PDP) fails. This chapter describes a cooperative secondary authorization
recycling (CSAR) mechanism which is, in essence, a distributed version of the secondary and
approximate authorization model (SAAM). A CSAR system explores the cooperation among
distributed SDPs which can further improve the availability and performance of access control
systems.

In Section 4.1, we present the system design. Our design aims to meet five requirements:
low overhead, ability to deal with malicious SDPs, consistency, configurability and backward
compatibility. A discovery service is developed to facilitate the cooperation between SDPs. In
particular, the discovery service helps one SDP find other SDPs that might be able to resolve
a request. To achieve consistency, we propose the alternatives to propagate update messages
and a solution to implement well-defined semantics for policy updates. To achieve higher hit
rate, we describe an eager approach by using the responses in the evidence of an approximate
response to warm the cache.

In Section 4.2, we present the evaluation on CSARBLP, which is based on SAAMBLP re-
cycling algorithms. We use simulations and a prototype to evaluate CSAR’s feasibility and
benefits. Evaluation results show that by adding cooperation to SAAM, our approach further
improves the availability and performance of authorization infrastructures. In Section 4.3, we
also briefly discuss the evaluation results for CSARRBAC.

Finally, Section 4.4 summarizes this chapter.

4.1 CSAR design

This section presents the design requirements for cooperative authorization recycling, the CSAR
system architecture, and finally the detailed CSAR design.

60

4.1. CSAR design

4.1.1 Design requirements

The CSAR system aims to improve the availability and performance of access control infrastruc-
tures by sharing authorization information among cooperative SDPs. Each SDP resolves the
requests from its own policy decision point (PEP) by locally making secondary authorization
decisions, by involving other cooperative SDPs in the authorization process, and/or by passing
the request to the PDP.

Since the system involves caching and cooperation, we consider the following design require-
ments:

• Low overhead. As each SDP participates in making authorizations for some non-local
requests, its load is increased. The design should therefore minimize this additional com-
putational and communication overhead.

• Ability to deal with malicious SDPs. As each PEP enforces responses that are
possibly offered by non-local SDPs, the PEP should be prepared to deal with those SDPs
that after being compromised become malicious. For example, it should verify the validity
of each secondary response by tracing it back to a trusted source.

• Consistency. Brewer [Bre00] conjectures and Lynch et al. [GL02] prove that distributed
systems cannot simultaneously provide the following three properties: availability, consis-
tency, and network partition tolerance. We believe that availability and partition tolerance
are essential properties that an access control system should offer. We thus relax con-
sistency requirements in the following sense: with respect to an update action, various
components of the system can be inconsistent for at most a user-configured finite time
interval.

• Configurability. The system should be configurable to adapt to different performance
objectives at various deployments. For example, a deployment with a set of latency-
sensitive applications may require that requests are resolved in minimal time. A de-
ployment with applications generating a high volume of authorization requests, on the
other hand, should attempt to eagerly exploit caching and the inference of approximate
authorizations to reduce load on the PDP, the bottleneck of the system.

• Backward compatibility. The system should be backward compatible so that minimal
changes are required to existing infrastructures—i.e., PEPs and PDPs—in order to switch
to CSAR.

4.1.2 System architecture

This section presents an overview of the system architecture and discusses our design decisions
in addressing the configurability and backward compatibility requirements.

61

4.1. CSAR design

applicaiton
server

PEP

application
server

PEP

SDP

discovery
service

authorization
server

PDP

SDP

CSAR
1

2
3request/

response
transfer

request/
response
transfer

get

put

get

put

other
cooperating

servers

Clients

Clients

Figure 4.1: CSAR introduces cooperation between SDPs.

As illustrated by Figure 4.1, a CSAR deployment contains multiple PEPs, SDPs, and one
PDP. Each SDP is host-collocated with its PEP at an application server. Both the PEP and
SDP are either part of the application or of the underlying middleware. The PDP is located
at the authorization server and provides authorization decisions to all applications. The PEPs
mediate the application requests from clients, generate authorization requests from application
requests, and enforce the authorization decisions made by either the PDP or SDPs.

For increased availability and lower load on the central PDP, our design exploits the co-
operation between SDPs. Each SDP computes responses to requests from its PEP, and can
participate in computing responses to requests from other SDPs. Thus, authorization requests
and responses are transferred not only between the application server and the authorization
server, but also between cooperating application servers.

CSAR is configurable to optimize the performance requirements of each individual deploy-
ment. Depending on the specific application, geographic distribution and network characteris-
tics of each individual deployment, performance objectives can vary from reducing the overall
load on the PDP, to minimizing client-perceived latency, and to minimizing the network traffic

62

4.1. CSAR design

generated.
Configurability is achieved by controlling the degree of concurrency in the set of operations

involved in resolving a request: (1) the local SDP can resolve the request using data cached
locally; (2) the local SDP can forward the request to other cooperative SDPs to resolve it using
their cached data; and (3) the local SDP can forward the request to the PDP. If the performance
objective is to reduce latency, then the above three steps can be performed concurrently, and
the SDP will use the first response received. If the objective is to reduce network traffic and/or
the load at the central PDP, then the above three steps are performed sequentially (in an
appropriate order).

CSAR is designed to be easily integrated with existing access control systems. Each SDP
provides the same policy evaluation interface to its PEP as the PDP, thus the CSAR system can
be deployed incrementally without requiring any change to existing PEP or PDP components.
Similarly, in systems that already employ authorization caching but do not use CSAR, the SDP
can offer the same interface and protocol as the legacy component.

4.1.3 Discovery service

One essential component enabling cooperative SDPs to share their authorizations is the dis-
covery service (DS), which helps an SDP find other SDPs that might be able to resolve a
request.

A naive approach to implementing the discovery functionality is request broadcasting: when-
ever an SDP receives a request from its PEP, it broadcasts the request to all other cooperating
SDPs. All SDPs attempt to resolve the request, and the PEP enforces the response it receives
first. This approach is straightforward and might be effective when the number of cooperating
SDPs is small and the cost of broadcasting is low. However, it has two important drawbacks.
First, it inevitably increases the load on all SDPs. Second, it causes high traffic overhead when
SDPs are geographically distributed.

To overcome these two drawbacks, we introduced the DS to achieve a selective request
distribution: an SDP in CSAR selectively sends requests only to those SDPs that are likely
to be able to resolve them. This process is however specific to the underlying authorization
recycling algorithms. Below we discuss it for SAAMBLP and SAAMRBAC separately.

• SAAMBLP. As we illustrate in Section 2.6, the SAAMBLP inference algorithms use
cached responses to infer information about the relative ordering on security labels asso-
ciated with subjects and objects. Therefore, for an SDP to resolve a request, the SDP’s
cache must contain at least both the subject and object of the request. If either one
is missing, there is no way for the SDP to infer the relationship between the subject
and object, and thus fails to compute a secondary response. The role of the DS is to
store and retrieve the mapping between subject/object and SDP addresses. In particu-
lar, the DS provides an interface with the following two functions: put and get. Given
a subject or an object and the address of an SDP, the put function stores the mapping

63

4.1. CSAR design

(subject/object, SDPaddress). A put operation can be interpreted as “this SDP knows
something about the subject/object.” Given a subject and object pair, the get function
returns a list of SDP addresses that are mapped to both the subject and object. The
results returned by the get operation can be interpreted as “these SDPs know something
about both the subject and object and thus might be able to resolve a request involving
them.”

• SAAMRBAC. In this case, the SDP’s cache must contain at least one response for the
requested permission, as the SAAMRBAC inference algorithms are performed between the
responses for the same permission. If cache contains no primary response for a permission,
then it is impossible for the SDP to infer an approximate response for that permission.
The role of the DS is then to store and retrieve the mapping between permissions and
SDP addresses. In particular, given a permission and the address of an SDP, the put
function stores the mapping (permission, SDPaddress). A put operation can be inter-
preted as “this SDP knows something about the permission.” Given a permission, the get
function returns a list of SDP addresses that are mapped to that permission. The results
returned by the get operation can be interpreted as “these SDPs know something about
the permission and thus might be able to resolve a request for it.”

Using DS avoids broadcasting requests to all cooperating SDPs. Whenever an SDP receives
a primary response to a request, it calls the put function to register itself in the DS as a suitable
SDP for the subject/object or the permission of the request. When cooperation is required, the
SDP calls the get function to retrieve from the DS a set of addresses of those SDPs that might
be able to resolve the request.

Note that the DS is only logically centralized, but can have a scalable and resilient imple-
mentation. In fact, an ideal DS should be distributed and collocated with each SDP to provide
high availability and low latency: each SDP can make a local get or put call to publish or
discover cooperative SDPs, and the failure of one DS node will not affect others. Compared
to the PDP, the DS is both simple—it only performs put and get operations—and general—it
does not depend on the specifics of any particular security policy. As a result, a scalable and
resilient implementation of DS is easier to achieve.

For instance, one can use a Bloom filter to achieve a distributed DS implementation, similar
to the summary cache [FCAB00] approach. The Bloom filter must use a family of hashing
functions. Each SDP builds a Bloom filter from the subjects or objects of cached requests, and
sends the bit array plus the specification of the hash functions to the other SDPs. The bit
array is the summary of the subjects/objects that this SDP has stored in its cache. Each SDP
periodically broadcasts its summary to all cooperating SDPs. Using all summaries received,
a specific SDP has a global image of the set of subjects/objects stored in each SDP’s cache,
although the information could be outdated or partially wrong.

For a small-scale cooperation, a centralized DS implementation might be feasible where
various approaches can be used to reduce its load and improve its scalability. The first approach

64

4.1. CSAR design

is to reduce the number of get calls. For instance, SDPs can cache the results from the DS for
a small period of time. This method can also contribute to reducing the latency. The second
approach is to reduce the number of put calls. For example, SDPs can update the DS in batch
mode instead of calling the DS for each primary response.

In Chapter 5, we show that we can also use a publish-subscribe channel to implement the
DS. The benefits of using a publish-subscribe channel are that it provides a unified cooperation
between SDPs and PDPs as well as speculative authorizations, where authorizations can be
pre-computed and cached for future requests.

4.1.4 Adversary model

In our adversary model, an attacker can eavesdrop, spoof or replay any network traffic or
compromise an application server host with its PEP(s) and SDP(s). The adversary can also
compromise the client computer(s) and the DS. Therefore, there could be malicious clients,
PEPs, SDPs and DS in the system.

As a CSAR system includes multiple distributed components, our design assumes different
degrees of trust in them. The PDP is the ultimate authority for access control decisions and
we assume that all PEPs trust10 the decisions made by the PDP. We also assume that the
policy change manger (introduced later in Section 4.1.6) is trusted because it is collocated and
tightly integrated with the PDP. We further assume that each PEP trusts those decisions that
it receives from its own SDP. However, an SDP does not necessarily trust other SDPs in the
system.

4.1.5 Mitigating threats

Based on the adversary model presented in the previous section, we now describe how our design
enables mitigation of the threats due to malicious DS and SDPs.

A malicious DS can return false or no SDP addresses, resulting in threats of three types: (1)
the SDP sends requests to those SDPs that actually cannot resolve them, (2) all the requests
are directed to a few targeted SDPs, (3) the SDP does not have addresses of any other SDP. In
all three cases, a malicious DS impacts system performance through increased network traffic,
or response delays, or computational load on SDPs, and thus can mount a denial-of-service
(DoS) attack.

A malicious DS may also compromise system correctness when we consider policy changes.
In Section 4.1.6, we describe three types of policy changes: critical, time-sensitive, and time-
insensitive changes. In delivering critical changes, the DS is used to find those SDPs that
should be contacted. In this case, if the DS returns an incorrect list of SDPs, some SDPs may
receive unexpected policy changes or may not receive desired policy changes, which may result
in those SDPs computing incorrect responses. However, we note that a malicious DS can have

10By “trust” we mean that if a trusted component turns to be malicious, it can compromise the security of
the system.

65

4.1. CSAR design

an impact on system correctness only in the case of critical changes. For time-sensitive and
time-insensitive changes, a malicious DS has no impact as it is not involved in propagating
them.

To detect a malicious DS, an SDP can track how successful the remote SDPs whose addresses
the DS provides are in resolving authorization requests. A benign DS, which always provides
correct information, will have a relatively good track record, with just few SDPs unable to
resolve requests. Even though colluding SDPs can worsen the track record of a DS, we don’t
believe such an attack to be of practical benefit to the adversary.

A malicious SDP could generate any response it wants, for example, denying all requests
and thus launching a DoS attack. Therefore, when an SDP receives a secondary response from
other SDPs, it verifies the authenticity and integrity of the primary responses used to infer that
response as well as the correctness of the inference.

To protect the authenticity and integrity of a primary response while it is in transit between
the PDP and the SDP, the PDP cryptographically signs the response. Then, an SDP can
independently verify the primary response’s authenticity and integrity by checking its signature,
assuming it has access to the PDP’s public key. Recall that each secondary response includes
an evidence list that contains the primary responses used for inferring this response. If any
primary response in the evidence cannot be verified, that secondary response is deemed to be
incorrect.

To verify the correctness of a response, the SDP needs to use the knowledge of both the
inference algorithm and evidence list. A secondary response is correct if the PDP would compute
the same response. The verification algorithm depends on the inference algorithm. We have
discussed the SAAMRBAC algorithms in Section 3.1.10. In the case of SAAMBLP, it is simply
the inverse of the inference algorithm.

Recall that the SAAMBLP inference algorithm searches the cached responses and identifies
the relative ordering on security labels associated with the request’s subjects and objects. In
contrast, the verification algorithm goes through the evidence list of primary responses by
reading every two consecutive responses and checking whether the correct ordering can be
derived. To illustrate, consider the following example. A remote SDP returns a response
(r4, i4, [r1, r2, r3], allow) for request (s1, o2, read, c4, i4), where r1 is the primary allow response
for (s1, o1, read, c1, i1), r2 is the primary allow response for (s2, o1, append, c2, i2) and r3 is the
primary allow response for (s2, o2, read, c3, i3). From these responses, the verification algorithm
can determine that λ(s1) > λ(o1) > λ(s2) > λ(o2). Therefore, s1 should be allowed to read o2,
and thus r4 is a correct response.

Verification of each approximate response unavoidably introduces additional computational
cost, which depends on the length of the evidence list. A malicious SDP might use this property
to attack the system. For example, a malicious SDP can always return responses with a long
evidence list that is computationally expensive to verify. One way to defend against this attack
is to set an upper bound to the time that the verification process can take. An SDP that always

66

4.1. CSAR design

returns long evidence lists will be blacklisted.
We defined four execution scenarios, listed below, to help manage the computational cost

caused by response verification. Based on the administration policy and deployment environ-
ment, the verification process can be configured differently to achieve various trade-offs between
security and performance.

• Total verification. All responses are verified.

• Allow verification. Only ‘allow’ responses are verified. This configuration protects
resources from unauthorized access but might be vulnerable to DoS attacks.

• Random verification. Responses are randomly selected for verification. This config-
uration can be used to detect malicious SDPs but cannot guarantee that the system is
perfectly correct, since some false responses may have been generated before the detection.

• Offline verification. There is no real-time verification, but offline audits are performed.

4.1.6 Consistency

Similar to other distributed systems employing caching, CSAR needs to deal with cache con-
sistency issues. In our system, SDP caches may become inconsistent when the access control
policy changes at the PDP. In the previous chapter (Section 3.1.9), we briefly describe the
consistency mechanisms. In this section, we elaborate on how consistency is achieved in CSAR.

We first state our assumptions relevant to the access control systems. We assume that the
PDP makes decisions using an access control policy stored persistently in a policy store of the
authorization server. In practice, the policy store can be a policy database or a collection of pol-
icy files. We further assume that security administrators deploy and update policies through the
policy administration point (PAP), which is consistent with the XACML architecture [Com05].
To avoid modifying existing authorization servers and maintain backward compatibility, we fur-
ther add a policy change manager (PCM), collocated with the policy store. The PCM monitors
the policy store, detects policy changes, and informs the SDPs about the changes. The refined
architecture of the authorization server is presented in Figure 4.2.

Based on the fact that not all policy changes are at the same level of criticality, we di-
vide policy changes into three types: critical, time-sensitive, and time-insensitive changes. By
discriminating policy changes according to these types, system administrators can choose to
achieve different consistency levels. In addition, system designers are able to provide different
consistency techniques to achieve efficiency for each type. Our design allows a CSAR deploy-
ment to support any combination of the three types. In the rest of this section, we define each
type of policy change and discuss the consistency properties.

Critical changes of authorization policies are those changes that need to be propagated
urgently throughout the enterprise applications, requiring immediate updates on all SDPs.
When an administrator makes a critical change, our approach requires that she also specifies a

67

4.1. CSAR design

SDP

SDP

DS

authorization server

policy
administration

point (PAP)

policy store

policy change
manager (PCM)

security
 administrator

Figure 4.2: The architecture enabling the support for policy changes.

time period t for the change. CSAR will attempt to make the policy change by contacting all
SDPs involved, and must send the administrator within time period t either a message that the
change has been successfully performed or a list of SDPs that have not confirmed the change.

We developed a selective-flush approach to propagating critical policy changes. In this
approach, only selected policy changes are propagated, only selected SDPs are updated, and
only selected cache entries are flushed. We believe that this approach has the benefits of reducing
server overhead and network traffic. In the following we sketch out the propagation process.

The PCM first determines which subjects and/or objects (a.k.a. entities) are affected by
the policy change. Since most modern enterprise access control systems make decisions by
comparing security attributes (e.g., roles, clearance, sensitivity, groups) of subjects and objects,
the PCM maps the policy change to the entities whose security attributes are affected. For
example, if permission p has been revoked from role r, then the PCM determines all objects of
p (denoted by Op) and all subjects assigned to r (denoted by Sr).

The PCM then finds out which SDPs need to be notified of the policy change. Given the
entities affected by the policy change, the PCM uses the discovery service (DS) to find those
SDPs that might have responses for the affected entities in their caches. The PCM sends the DS
a policy change message containing the affected entities, (Op, Sr). Upon receiving the message,
the DS first replies back with a list of the SDPs that have cached the responses for the entities.
Then it removes corresponding entries from its map to reflect the flushing. After the PCM gets
the list of SDPs from the DS, it multicasts the policy change message to these affected SDPs.

When an SDP receives a policy change message, it flushes those cached responses that

68

4.1. CSAR design

contain the entities and then acknowledges the results to the PCM. In the above example, with
revoking permission p from role r, the SDP would flush those responses from its cache that
contain both objects in Op and subjects in Sr.

In order for the selective-flush approach to be practical, the PCM should have the ability to
quickly identify the subjects or objects affected by the policy change. However, this procedure
may not be trivial due to the complexities of modern access control systems. We have developed
identification algorithms for the policies based on the BLP model, and will explore this issue
for other access control models in future research.

Time-sensitive changes in authorization policies are less urgent than critical ones but
still need to be propagated within a known period of time. When an administrator makes a
time-sensitive change, it is the PCM that computes the time period t in which caches of all
SDPs are guaranteed to become consistent with the change. As a result, even though the PDP
starts making authorization decisions using the modified policy, the change comes into effect
throughout the CSAR deployment only after time period t. Notice that this does not necessarily
mean that the change itself will be reflected in the SDPs’ caches by then, only that the caches
will not use responses invalidated by the change.

CSAR employs a time-to-live (TTL) approach to process time-sensitive changes. Every
primary response is assigned a TTL that determines how long the response should remain valid
in the cache, e.g., one day or one hour. The assignment can be performed by either the SDP,
the PDP itself, or a proxy, through which all responses from the PDP pass before arriving
at the SDPs. The choice depends on the deployment environment and backward compatibility
requirements. Every SDP periodically purges from its cache those responses whose TTL elapses.

The TTL value can also vary from response to response. Some responses (say, authorizing
access to more valuable resources) can be assigned a smaller TTL than others. For example, for
a BLP-based policy, the TTL for the responses concerning top-secret objects could be shorter
than for confidential objects.

When the administrator makes a time-insensitive change, the system guarantees that
all SDPs will eventually become consistent with the change. No promises are given, however,
about how long it will take. Support for time-insensitive changes is necessary because some
systems may not be able to afford the cost of, or are just not willing to support, critical or
time-sensitive changes. A simple approach to supporting time-insensitive change is for system
administrators to periodically restart the machines hosting the SDPs.

4.1.7 Eager recycling

In previous sections, we explained how cooperation among SDPs is achieved by resolving re-
quests by remote SDPs. In this section, we describe an eager approach to recycling past
responses. The goal is to further reduce the overhead traffic and response time.

The essence of cooperation is SDPs helping each other in order to reduce the cache miss rate
at each SDP. We considered two types of cache misses: compulsory misses, which are generated

69

4.2. Evaluation of CSARBLP

by a subject’s first attempt to access an object, and communication/consistency misses, which
occur when a cache holds a stale authorization. With cooperation, the SDP can avoid some of
these misses by possibly getting authorizations from its cooperating SDPs.

Eager recycling can help further reduce the cache miss rate. As stated before, if an SDP
succeeds in resolving a request from another SDP, it returns a secondary response, which in-
cludes an evidence component. The evidence contains a list of primary responses that have
been used to infer the secondary response. In eager recycling, the receiving SDP incorporates
those verified primary responses into its local cache as if it received them from the PDP. By
including these responses, the SDP’s cache increases faster and its chances of resolving future
requests locally by inference also increases. Our evaluation results show that this approach can
reduce the response time by a factor of two.

4.2 Evaluation of CSARBLP

We first evaluated CSARBLP, in which the underlying access control model is BLP and the
SDP uses SAAMBLP algorithms [CLB06] for recycling authorizations. In evaluating CSARBLP,
we wanted first to determine if our design works. Then we sought to estimate the achievable
gains in terms of availability and performance, and determine how they depend on factors such
as the number of cooperating SDPs and the frequency of policy changes.

We used both simulation and a prototype implementation to evaluate CSARBLP. The sim-
ulation enabled us to study availability by hiding the complexity of underlying communication,
while the prototype enabled us to study both performance and availability in a more dynamic
and realistic environment. Additionally, we have integrated our prototype with a real applica-
tion to study the integration complexity and the impact of application performance.

We used a similar setup for both the simulation and prototype experiments. The PDP
made access control decisions on either read or append requests using a BLP-based policy
stored in an XML file. The BLP security lattice contained 4 security levels and 3 categories,
100 subjects and 100 objects, and uniformly assigned security labels to them. The total number
of possible requests was 100x100x2=20,000. The policy was enforced by all the PEPs. Each
SDP implemented the same inference algorithm. While the subjects were the same for each
SDP, the objects could be different in order to simulate the request overlap.

4.2.1 Simulation-based evaluation

We used simulations to evaluate the benefits of cooperation to system availability and reducing
load at the PDP. We used the cache hit rate as an indirect metric for these two characteristics. A
request resolved without contacting the PDP was considered a cache hit. A high cache hit rate
results in masking transient PDP failures (thus improving the availability of the access control
system) and reducing the load on the PDP (thus improving the scalability of the system).

We studied the influence of the following factors on the hit rate of one cooperating SDP:

70

4.2. Evaluation of CSARBLP

(a) the cache warmness at each SDP; (b) the number of cooperating SDPs; (c) the overlap
rate between the resource spaces of two cooperating SDPs, defined as the ratio of the objects
owned by both SDPs to the objects owned only by the studied SDP (The overlap rate served
as a measure of similarity between the resources of two cooperating SDPs); (d) whether the
inference for approximate responses was enabled or not; and (e) the popularity distribution of
requests.

To conduct the experiments, we have modified the SAAM evaluation engine used in [CLB06]
to support cooperation. Each run of the evaluation engine involved four stages. In the first
stage, the engine generated subjects and objects for each SDP, created a BLP lattice and
assigned security labels to both subjects and objects. To control the overlap rate (e.g., 10%)
between SDPs, we first generated the object space for the SDP under study (e.g., obj0–99).
For each of the other SDPs, we then uniformly selected the corresponding number of objects
(e.g., 10) from the space of the SDP under study (e.g., obj5, obj23, etc.) and then generated
the remaining objects sequentially (e.g., obj100–189).

Second, the engine created the warming set of requests for each SDP: that is the set contain-
ing all possible unique requests for that SDP. We also created a testing set for all SDPs, which
comprised a sampling of requests uniformly selected from the request space of the SDP under
study. In our experiment, the testing set contained 5,000 requests. Next, the simulation engine
started operating by alternating between warming and testing modes. In the warming mode
(stage three), the engine used a subset of the requests from each warming set, evaluated them
using the simulated PDP, and sent the responses to the corresponding SDP to build up the
cache. Once the desired cache warmness was achieved, the engine switched into testing mode
(stage four) where the SDP cache was not updated anymore. We used this stage to evaluate
the hit rate of each SDP at controlled, fixed levels of cache warmness. The engine submitted
requests from the testing set to all SDPs. If any SDP could resolve a request, it was a cache
hit. The engine calculated the hit rate as the ratio of the test requests resolved by any SDP to
all test requests at the end of this phase. These last two stages were then repeated for different
levels of cache warmness, from 0% to 100% in increments of 5%.

Simulation results were gathered on a commodity PC with a 2.8 GHz Intel Pentium 4
processor and 1 GB of RAM. The simulation framework was written in Java and ran on Sun’s
1.5.0 JRE. Experiments used the same cache warmness for each SDP and the same overlap rate
between the inspected SDP and every other cooperating SDP. We simulated three overlap rates:
10%, 50%, or 100%. Each experiment was run ten times and the average results are reported.

Figure 4.3 shows the results for requests that followed a uniform popularity distribution.
Figure 4.3(a) shows the dependency of the hit rate on cache warmness and overlap rate. It
compares the hit rate for the case of one SDP, representing SAAM (bottom curve), with the hit
rate achieved by 5 cooperating SDPs. Figure 4.3(a) suggests that, when cache warmness was
low (around 10%), the hit rate was still larger than 50% for overlap rates of 50% and up. In
particular, when the overlap rate was 100%, CSAR achieved a hit rate of almost 70% at 10%

71

4.2. Evaluation of CSARBLP

cache warmness. In reality, low cache warmness can be caused by the characteristics of the
workload, by limited storage space, or by frequently changing access control policies. For a 10%
overlap rate, however, CSAR outperformed SAAM by a mere 10%, which might not warrant
the cost of CSAR’s complexity.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

cache warmness (%)

SAAM
10% overlap
50% overlap

100% overlap

(a) Hit rate as a function of cache warmness for 5
SDPs compared to 1 SDP (i.e., SAAM).

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

hi
t r

at
e

(%
)

number of SDPs

10% overlap
50% overlap

100% overlap

(b) Hit rate as a function of number of SDPs at
cache warmness of 10%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

hi
t r

at
e

im
pr

ov
em

en
t (

%
)

cache warmness (%)

10% overlap
50% overlap

100% overlap

(c) Hit rate improvement of approximate recycling
over precise recycling as a function of cache warm-
ness when cooperation is enabled (5 SDPs).

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

hi
t r

at
e

(%
)

alpha

precise recycling
SAAM
CSAR

(d) Hit rate as a function of Zipf coefficient. When
alpha is 0, it is a uniform distribution.

Figure 4.3: The impact of various parameters on hit rate. The requests for subfigures (a)—(c)
follow a uniform popularity distribution.

Figure 4.3(b) demonstrates the impact of the number of cooperating SDPs on the hit rate
under three overlap rates. In the experiment, we varied the number of SDPs from 1 to 10, while
maintaining 10% cache warmness at each SDP. As expected, increasing the number of SDPs
led to higher hit rates. At the same time, the results indicate that additional SDPs provided
diminishing returns. For instance, when the overlap rate was 100%, the first cooperating SDP
brought a 14% improvement in the hit rate, while the 10th SDP contributed only 2%. One can
thus limit the number of cooperating SDPs to control the overhead traffic without losing the
major benefits of cooperation. The results also suggest that in a large system with many SDPs,

72

4.2. Evaluation of CSARBLP

the impact of a single SDP’s failure on the overall hit rate is negligible. On the other side, when
the overlap rate is small, a large number of SDPs are still required to achieve a high hit rate.

Figure 4.3(c) shows the absolute hit rate improvement of approximate recycling over precise
recycling when cooperation was enabled in both cases. We can observe from Figure 4.3(c) that
the largest improvement occurred when the cache warmness was low. This was due to the strong
inference ability of each SDP even at low cache warmness. When the overlap rate decreased,
the tops of the curves shifted to the right, which implies that, for a smaller overlap rate, greater
cache warmness is needed to achieve more improvement.

In addition, the peak in each curve decreased with the overlap rate. This lowering of the peak
appears to be caused by the reduced room for improvement left to the approximate recycling.
When the overlap rate increased, the hit rate of precise recycling was already high due to the
benefit brought by cooperation.

To study how the request distribution affects hit rate, we also simulated the requests that
follow a Zipf object popularity distribution. In the experiment, we varied the coefficient for
α between 0 and 1.5. In the case of Zipf, the distribution of items becomes less and less
skewed with the decrease of α, reaching a completely uniform distribution at α = 0. We expect
real-world distributions of requests to be somewhere in the above range. We fixed all other
parameters—the cache warmness at 10%, the overlap rate at 50%, the number of SDPs at
5—and varied only α.

Figure 4.3(d) shows the hit rate as a function of the α for precise recycling, SAAM and
CSAR. It suggests that the hit rate increases along with the α in all three cases. This is
expected because requests repeat more often when alpha increases. When alpha was 1.5, all
recycling schemes achieved a nearly 100% hit rate. It is also clear that the hit rate improvement
due to cooperation only was reduced with the increase of α. The reason appears to be two-fold.
First, with requests following Zipf distribution, the hit rate in the local cache of each SDP
was already high, so that there was less room for improvement through cooperation. Second,
unpopular requests had a low probability to be cached by any SDP. Therefore, the requests
that could not be resolved locally were unlikely to be resolved by other SDPs either.

Summary: The simulation results suggest that combining approximate recycling and co-
operation can help SDPs to achieve high hit rates, even when the cache warmness is low. This
improvement in hit rate increases with SDPs’ resource overlap rate and the number of coop-
erating SDPs. We also demonstrate that when the distribution of requests is less skewed, the
improvement in hit rate is more significant.

4.2.2 Prototype-based evaluation

This section describes the design of our prototype and the results of our experiments. The
prototype system consisted of the implementations of PEP, SDP, DS, PDP, and a test driver,
all of which communicated with each other using Java Remote Method Invocation (RMI). Each
PEP received randomly generated requests from the test driver and called its local SDP for

73

4.2. Evaluation of CSARBLP

authorizations. Upon an authorization request from its PEP, each SDP attempted to resolve
this request either sequentially or concurrently. Each SDP maintained a dynamic pool of
worker threads that concurrently queried other SDPs. The DS used a customized hash map
that supported assigning multiple values (SDP addresses) to a single key (subject/object).

We implemented the PAP and the PCM according to the design described in Section 4.1.6.
To simplify the prototype, the two components were process-collocated with the PDP. Addition-
ally, we implemented the selective-flush approach for propagating policy changes. To support
response verification, we generated a 1024-bit RSA key pair for the PDP. Each SDP had a copy
of the PDP’s public key. After the PDP generated a primary response, it signed the response
by computing a SHA1 digest of the response and signing the digest with its private key. In the
following, we present and discuss the results of evaluating the performance of CSAR in terms
of response time, the impact of policy changes on hit rate, and the integration of CSAR with a
real application.

Evaluating response time

First we compared the client-perceived response time of CSAR with that of the other two
authorization schemes: without caching and SAAM (without cooperation). We studied three
variations of CSAR: sequential authorization, concurrent authorization and eager recycling.
We also evaluated the impact of response verification on response time in the case of sequential
authorization. We ran experiments in the following three scenarios, which varied in terms of
the network latency among SDPs, and between SDPs and the PDP:

(a) LAN-LAN. SDPs and the PDP were all deployed in the same local area network (LAN),
where the round-trip time (RTT) was less then 1ms.

(b) LAN-WAN. SDPs were deployed in the same LAN, which was separated from the PDP
by a wide area network (WAN). To simulate network delays between SDPs and the PDP,
we added a 40ms delay to each authorization request sent to the PDP.

(c) WAN-WAN. All SDPs and the PDP were separated from each other by a WAN. Again,
we introduced a 40ms delay to simulate delays that possibly occur in both the remote
PDP and remote SDPs.

In the experiments we did not intend to test every combination of scenarios and authorization
schemes, but to test those most plausibly encountered ones in the real world. For example,
concurrent authorization and response verification were only enabled in the WAN-WAN scenario
when SDPs were remotely located. Using concurrent authorization in this scenario can help to
reduce the high cost of cache misses on remote SDPs due to communication costs. In addition,
since the requests in such a scenario are obtained from remote SDPs that might be located in
a different administrative domain, response verification is highly desirable.

74

4.2. Evaluation of CSARBLP

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

no caching
SAAM
CSAR

CSAR with eager recycling

(a) LAN-LAN: SDPs and the PDP are located in
the same LAN.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

no caching
SAAM
CSAR

CSAR with eager recycling

(b) LAN-WAN: SDPs are located in the same LAN
while the PDP is located in a WAN.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

no caching
SAAM
CSAR

CSAR with response verification

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

CSAR
CSAR with eager recycling

CSAR with concurrent authorization
CSAR with both of the above

(c) WAN-WAN: SDPs and the PDP are separated by a WAN.

Figure 4.4: Response time as a function of the number of requests observed by SDPs. The
requests follow a uniform distribution.

The experimental system consisted of a PDP, a DS, and four PEP processes collocated with
their SDPs. Note that although the system contained only one DS instance, this DS simulated
an idealized implementation of a distributed DS where each DS had up-to-date global state.
This DS instance could be deemed to be local to each SDP because the latency between the DS
and the SDPs was less than 1ms and the DS was not overloaded. Each two collocated PEPs and
SDPs shared a commodity PC with a 2.8 GHz Intel Pentium 4 processor and 1 GB of RAM.
The DS and the PDP ran on one of the two machines, while the test driver ran on the other.
The two machines were connected by a 100 Mbps LAN. In all experiments, we made sure that
both machines were not overloaded so that they were not the bottlenecks of the system and did
not cause additional delays.

At the start of each experiment, the SDP caches were empty. The test driver maintained one
thread per PEP, simulating one client per PEP. Each thread sent randomly generated requests
to its PEP sequentially. The test driver recorded the response time for each request. After every
100 requests, the test driver calculated the mean response time and used it as an indicator of the

75

4.2. Evaluation of CSARBLP

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

LAN-LAN;100% overlap
LAN-LAN;10% overlap

LAN-WAN;100% overlap
LAN-WAN;10% overlap

(a) CSAR with eager recycling.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

LAN-LAN;100% overlap
LAN-LAN;10% overlap

LAN-WAN;100% overlap
LAN-WAN;10% overlap

(b) CSAR without eager recycling.

Figure 4.5: Response time comparison between overlap rate of 10% and 100%. The requests
follow a uniform distribution.

response time for that period. We ran the experiment when the cache size was 10,000 requests
for each SDP at the end of each run, which was one-half the total number of possible requests.
Figure 4.4 shows the plotted results for 100% overlap rate. For the sake of better readability,
we present the results for the WAN-WAN scenario in two graphs. The following conclusions
regarding each authorization scheme can be directly drawn from Figure 4.4:

(i) In the no-caching scheme, SDPs were not deployed and PEPs sent authorization requests
directly to the PDP. In the LAN-LAN scenario, this scheme achieved best performance
since it involved the least number of RMI calls in our implementation. In the other
two scenarios, however, all of the average response times were slightly higher than 40ms
because all requests had to be resolved by the remote PDP.

(ii) In the non-cooperative caching (SAAM) scheme, SDPs were deployed and available
only to their own PEPs. When a request was received, each SDP first tried to resolve
the request locally and then by the PDP. For the LAN-LAN scenario, this method did
not help reduce the latency because in our prototype SDP was implemented as a separate
process and each SDP authorization involved an RMI call. In the other two scenarios,
response times decreased consistently with the number of requests because more requests
were resolved locally. Note that the network distance between SDPs does not affect the
results in this and the previous scenario, since either no caching or no cooperation was
involved.

(iii) In the CSAR scheme, SDPs were deployed and cooperation was enabled. When a request
was received, each SDP resolved the request sequentially. For the LAN-LAN scenario, the
response time was the worst because this scenario involved most RMI calls in our im-
plementation. For the LAN-WAN scenario, using cooperation helped to slightly reduce
the response time compared with the SAAM method, because resolving requests by other

76

4.2. Evaluation of CSARBLP

SDPs is cheaper than by the remote PDP. However, this improvement continuously de-
creases, because more and more requests can be resolved locally. For the WAN-WAN
scenario, using CSAR was worse than using just SAAM due to the high cost of cache
misses on remote SDPs.

(iv) In CSAR with the response verification scheme, each response returned from remote
SDPs was verified. Figure 4.4(c) shows that the impact of response verification on response
time was small: response time increased by less than 5ms on average. When the local
cache increased, this overhead became smaller since more requests could be resolved by the
local SDP; thus, less verification was involved. Note that the time for response verification
was independent of the testing scenario, which means that the 5ms verification overhead
applied to the other two scenarios. This is why we did not show verification time in the
graphs for the other scenarios.

(v) In CSAR with the eager recycling scheme, the primary responses from the evidence
lists of secondary responses were incorporated into each SDP’s local cache. As expected,
eager recycling helped to reduce the response time in all three scenarios, and the effect
was especially significant when the PDP or SDPs were remote, since more requests can
quickly be resolved locally. The maximum observed improvement in response time over
SAAM was by a factor of two. The results also demonstrate that the response time was
reduced only after some time. This is because the evidence lists became useful for eager
recycling only after the remote SDPs have cached a number of requests.

(vi) In CSAR with the concurrent authorization scheme, each SDP resolved the requests
concurrently. Figure 4.4(c) demonstrates that the response time was significantly reduced
in the beginning and decreased consistently. The drawback of concurrent authorization,
however, is that it increases the overhead traffic and causes extra load on each SDP and
the PDP. It could be a subject of future research to study and try to reduce this overhead.

(vii) In CSAR with both eager recycling and concurrent authorization scheme, both
eager recycling and concurrent authorization were enabled. Figure 4.4(c) shows that this
method achieved the best performance among those tested.

The above conclusions were drawn for 100% overlap rate. For comparison, we also ran
the experiments using 10% overlap rate in LAN-LAN and LAN-WAN scenarios. Figure 4.5
compares the response times for the CSAR with and without eager recycling. In the LAN-
WAN scenario, the small overlap rate led to increased response time for both schemes because
more requests had to resort to the PDP, and the eager recycling scheme experienced more
increases. On the other hand, in the LAN-LAN scenario, the response time was reduced in the
beginning with the small overlap rate due to the reduced number of RMI calls, since the SDP
sent most requests to the PDP directly rather than first to other SDPs which could not help.

77

4.2. Evaluation of CSARBLP

Summary: The above results demonstrate that although using CSAR with sequential
authorization may generate higher response times, adding eager recycling and/or concurrent
authorization helps to reduce the response time. Eager recycling is responsible for the effective
increase of cache warmness, while concurrent authorization enables SDPs to use the fastest
authorization path in the system.

Evaluating the effects of policy changes

We also used the prototype to study CSAR’s behavior in the presence of policy changes. As we
show in the previous chapter (Section 3.2.1), continual policy changes at a constant rate result
in a reduced hit rate. We expected that using cooperation between SDPs would compensate
for the decrease in hit rate; we wanted to understand by how much.

In all our experiments for policy changes, the overlap rate between SDPs was 100% and the
requests were randomly generated. The test driver maintained a separate thread responsible for
firing a random policy change and sending the policy change message to the PCM at pre-defined
intervals, e.g., after every 100 requests. To measure the hit rate at run-time, we employed a
method similar to the one used during the simulation experiments. Each request sent by the
test driver was associated with one of two modes: warming and testing, used for warming the
SDP caches or testing the cumulative hit rate respectively. Each experiment switched from
the warming mode to the testing mode when a policy change message was received. After
measuring the hit rate right before and after each policy change, the experiment switched back
to the warming mode.

Section 3.2.1 presents SAAMRBAC policy change results using one SDP. Similarly, we first
studied SAAMBLP policy change results with one SDP. In particular, we studied how the hit
rate was affected by an individual policy change, i.e., the change of the security label for a single
subject or object. As with SAAMRBAC, we also expected that SAAMBLP inference algorithms
were sufficiently robust so that an individual change would result in only minor degradation of
the hit rate.

Figure 4.6 demonstrates that SAAMBLP resulted in similar policy change results as SAAMRBAC

(Figure 3.8). We summarize the results as follows:

• Figure 4.6(a) shows how the hit rate drops with every policy change for both approximate
recycling (the top two curves) and precise recycling. In the experiment, the test driver
sent 20,000 requests in total. A randomly generated policy change message was sent to
the PDP every 200 requests. Figure 4.6(a) indicates that the hit-rate drops are small for
both approximate recycling and precise recycling. For approximate recycling, the largest
single hit-rate drop was 5%, and most of the other drops were around 1%.

• Figure 4.6(a) also indicates that the curve for the approximate recycling with policy change
is more ragged than it is for precise recycling. This result suggests, not surprisingly, that
approximate recycling is more sensitive to policy changes. The reason is that approximate

78

4.2. Evaluation of CSARBLP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

hi
t r

at
e

(%
)

number of requests x 1,000

AR - no policy change
AR - 200 requests/change

PR - no policy change
PR - 200 requests/change

(a) Hit-rate drops with every policy change for
both approximate recycling (AR) and precise re-
cycling (PR).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

hi
t r

at
e

(%
)

number of requests x 1,000

no policy changes
500 requests/change
200 requests/change
100 requests/change

50 requests/change

(b) Hit rate as a function of number of requests at
various frequencies of policy change.

Figure 4.6: The impact of policy changes on hit rate with a single SDP. The requests follow a
uniform popularity distribution.

recycling employs an inference algorithm based on a directed acyclic graph. A policy
change could partition the graph or just increase its diameter, resulting in a greater
reduction in the hit rate.

• Figure 4.6(b) shows that the hit rate stabilized after a number of requests. In the experi-
ment, we used a larger number of requests (60,000), and measured the hit rate after every
1,000 requests. We varied the frequency of policy changes from 50 to 500 requests per
change. As expected, the more frequent the policy changes were, the lower the stabilized
hit rates were, since the responses were removed from the SDP caches more frequently.

We then studied how the hit rate under continuous policy changes could benefit from coop-
eration. In these experiments, we varied the number of SDPs from 1 to 10. Figure 4.7(a) and
Figure 4.7(b) show hit rates versus the number of requests observed when the policy changed
every 50 and 100 requests. Figure 4.7(c) compares the eventual stabilized hit rate for the two
frequencies of policy changes. As we expected, cooperation between SDPs improved the hit
rate.

Note that when the number of SDPs increased, the curves after the knee became smoother.
This trend was a direct result of the impact of cooperation on the hit rate: cooperation between
SDPs compensates for the hit-rate drops caused by the policy changes at each SDP.

Summary: Our results show that the impact of a single policy change on the hit rate is
small, while the cumulative impact can be large. Constant policy changes finally lead to a sta-
bilized hit rate, which depends on the frequency of the policy change. In any case, cooperation
helps to reduce this impact.

79

4.2. Evaluation of CSARBLP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

hi
t r

at
e

(%
)

number of requests x 1,000

10 SDPs
5 SDPs
2 SDPs
SAAM

(a) Hit rate as a function of num-
ber of requests observed when policy
changes every 100 requests.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

hi
t r

at
e

(%
)

number of requests x 1,000

10 SDPs
5 SDPs
2 SDPs
SAAM

(b) Hit rate as a function of num-
ber of requests observed when policy
changes every 50 requests.

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1 2 3 4 5 6 7 8 9 10

hi
t r

at
e

(%
)

number of SDPs

50 requests/change
100 requests/change

(c) Comparison of stabilized hit
rates.

Figure 4.7: The impact of SDP cooperation on hit rate when policy changes. The requests
follow a uniform popularity distribution. The overlap rate between SDPs is 100%.

Integration with TPC-W

In this section, we describe the work on integrating CSAR with TPC-W [TPC02], an industry-
standard e-commerce benchmark application that models an online bookstore such as Ama-
zon.com. Our primary goal was to understand the complexity of integrating CSAR with real
applications, and the secondary goal was to study the impact of policy enforcement on appli-
cation performance.

A TPC-W deployment consisted of a front-end application server and a database server. We
used Apache Jakarta Tomcat 5.5.4 as the application server and MySQL 5.0 as the database
server. The Java code run by the application server to generate the web pages and interface
with the database was derived from the code freely available from the University of Wisconsin
PHARM project [Pha03], whose code implements both the servlets for the business logic and
a Java remote browser emulator (RBE) for driving the experiment.

Figure 4.8 shows the system architecture that integrates the CSAR prototype with the
TPC-W on a single application server. To enforce the access control policy, we added the
PEP, the SDP, the PDP and a policy file to the original TPC-W architecture. The PEP was
implemented as a servlet filter that contained about 100 lines of code. The PEP dynamically
intercepted application requests and used them to generate authorization requests which only
included the information about the subject, object and access right. We assured that every
application request was intercepted by the PEP, then the authorization request was sent to its
SDP for decision. The PDP and the SDP were reused from our prototype implementation with
only minor changes to the system configuration file.

We modeled three user roles (or security labels) in the access control policy: visitor, customer
and administrator. Each role could access a number of application objects. For example, the
visitor could only browse books; the customer could not only browse books but also buy books;
the administrator could only access the administration pages for managing books.

The experiment used 10 emulated browsers (EBs) to simulate 10 concurrent users and each

80

4.2. Evaluation of CSARBLP

RBE application server

Tomcat

PEP TPCW

Image

EB

EB

EB

SDP PDP

database

policy
file

Figure 4.8: Adding CSAR-based policy enforcement to TPC-W.

EB followed a browsing mix behavior defined by the TPC-W specification. We used two PCs
in the experiments: one was used for running EBs while the other was used as both application
server and database server. Each experiment lasted 30 minutes. We simulated both remote
and local PDPs as defined in previous sections, and studied the increase in response times
introduced by policy enforcement.

First, we were interested to understand how much time was used for policy enforcement in
our setup. We measure the policy enforcement time as the time between the event that the
PEP receives a request from the client and the event that the PEP receives a response from
the SDP. Figure 4.9(a) shows the cumulative distribution of policy enforcement time. For the
local PDP, unsurprisingly, almost all policy enforcement times were small, i.e., less than 10ms.
For the remote PDP, 10% of the response times were between 40ms and 50ms, which means
that these requests were resolved by remote PDPs. The fact that the 90% of enforcement times
were less than 10ms even when the PDP was remote, implies a high hit rate on the SDP, which
we believe was due to the access pattern and object space of the TPC-W application. In this
experiment, each emulated session lasted 15 minutes and client thinking time was 7 seconds, as
specified by the TPC-W standard. This means that in each session each user accessed about
128 pages (a.k.a. objects). On the other hand, the TPC-W application consists of only 14
unique pages. Combining these two facts, each page would have been accessed around 9 times
in an average session. This behavior unavoidably led to a high cache hit rate.

Second, we were interested to understand how the policy enforcement affected the overall
TPC-W response time. Figure 4.9(b) plots the cumulative distribution of overall TPC-W

81

4.3. Evaluation of CSARRBAC

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

cu
m

ul
at

iv
e

%

policy enforcement time (ms)

policy enforcement with local PDP
policy enforcement with remote PDP

(a) Cumulative distribution of response time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

cu
m

ul
at

iv
e

%

response time (ms)

policy enforcement with local PDP
policy enforcement with remote PDP

without policy enforcement

(b) Cumulative distribution of policy enforcement
time

Figure 4.9: The impact of policy enforcement on response time.

response times in three scenarios: without policy enforcement, and with policy enforcement by
either a local PDP or remote PDP. Compared with the scenario without policy enforcement, the
following observations can be made: (1) when the PDP was remote, the average response time
increased by 20% since 10% policy enforcement time was between 0 and 10ms, and another 10%
was between 40ms and 50ms; (2) when the PDP was local, its curve before 20ms matched the
curve of remote PDPs, while its curve after 50ms matched the curve of no policy enforcement.
The reason was that most policy enforcement times were less than 10ms.

Summary: Our experience shows that the prototype can be easily integrated with the
Java-based TPC-W application. The PEP can be simply implemented as a Java servlet filter
and the other CSAR components require few changes. The results show that the overhead of
policy enforcement is highly dependent on the application’s requests pattern and object space.
In the case of TPC-W, a single SDP achieves a 90% hit rate, thus the impact on the overall
application performance is small. Based on this result, we decided not to run the experiment
with cooperation, as the improvement space for cooperation was only 10%.

4.3 Evaluation of CSARRBAC

In this section, we briefly describe the evaluation results for CSARRBAC, when the underlying
access control model is RBAC.

We used the same reference RBAC policy used in the previous chapter. The policy contained
100 users, 3,000 permissions, and 50 roles. Thus the overall size of the request space and
the warming set was 300,000. The testing set contained 20,000 unique requests which were
randomly selected from the request space. Each assigned role was randomly selected from R.
The probability of a given user being assigned to a given role was 0.1. Hence the number of roles
assigned to a user was binomially distributed with mean 5 and variance 4.5, and the number

82

4.4. Summary

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

hi
t r

at
e

(%
)

cache warmness (%)

SAAM
10% overlap
50% overlap

100% overlap

(a) Hit rate as a function of cache warmness for 5
SDPs compared to 1 SDP (i.e., SAAM).

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

hi
t r

at
e

(%
)

number of SDPs

10% overlap
50% overlap

100% overlap

(b) Hit rate as a function of number of SDPs at
cache warmness of 10%.

Figure 4.10: The impact of various parameters on hit rate

of users to which a role was assigned was binomially distributed with mean 10 and variance 9.
Similarly, the probability of a given permission being assigned to a given role was 0.04.

Figure 4.10 shows the simulation results on how the hit rate was affected by cache warm-
ness, number of SDPs, and the overlap rate. Comparing them with the results depicted in Fig-
ure 4.3(a) and 4.3(b), we observed similar patterns. This is because the hit rates of SAAMBLP

recycling algorithms and SAAMRBAC recycling algorithm exhibit similar patterns and the co-
operation technique is independent from the underlying recycling algorithm.

Furthermore, although we only show the CSARRBAC hit rate results, we expect similar
results on performance as CSARBLP. Response time is significantly determined by the SDP hit
rate: high hit rate results more responses resolved locally, thus reducing the response time. As
Figure 4.10 shows the similar pattern in the hit rate increase as CSARBLP, we also expect to
see similar pattern in the response time decrease.

4.4 Summary

This chapter defines CSAR system requirements, and presents a detailed design that meets
these requirements. Built on SAAM and the concept of SDP, the CSAR system explores
the potential cooperation between SDPs through a discovery service. We have introduced a
response verification mechanism that does not require cooperating SDPs to trust each other.
Cache consistency is managed by dividing all of the policy changes into three categories and
employing efficient consistency techniques for each category.

A decision on whether to deploy CSAR depends on a full cost-benefit analysis informed by
application- and business-specific factors, for example, the precise characteristics of the appli-
cation workload and deployment environment, an evaluation of the impact of system failures on
business continuity, and an evaluation of the complexity associated costs of the access control
system. To inform this analysis, we have evaluated CSAR’s application-independent benefits:

83

4.4. Summary

higher system availability by masking network and PDP failures through caching, lower re-
sponse time for the access control subsystem, and increased scalability by reducing the PDP
load; and costs: computational and generated traffic overhead.

The results of our CSAR evaluation suggest that even with small caches (or low cache
warmness), our cooperative authorization solution can offer significant benefits. Specifically,
by recycling secondary authorizations between SDPs, the hit rate can reach 70% even when
only 10% of all possible authorization decisions are cached at each SDP (assuming that there
is no bogus SDP). This high hit rate results in more requests being resolved by the local and
cooperating SDPs, thus increasing availability of the authorization infrastructure and reducing
the load on the authorization server. In addition, depending on the deployment scenario,
request processing time is reduced by up to a factor of two, compared with solutions that do
not cooperate.

84

Chapter 5

Authorization Using the

Publish-Subscribe Architecture

In the previous two chapters, we introduce authorization recycling approaches to addressing
the problems of fragility and poor performance caused by the tight coupling between policy en-
forcement points (PEPs) and policy decision points (PDPs). A secondary decision point (SDP),
which is collocated with the PEP, can resolve authorization requests not only by reusing cached
authorizations but also by computing approximate authorizations from cached authorizations.
In addition, each SDP may further share their capability of resolving authorization requests
with other SDPs by cooperation. The communication between SDPs and PDPs, however, is
still based on the point-to-point architecture. When the cache hit rate is low, e.g., due to the
small number of cached responses or the frequent policy changes, the authorization system is
still fragile.

In this chapter, we examine the use of a publish-subscribe architecture for delivering au-
thorization requests and responses between applications and authorization servers, which fur-
ther enables applications to reduce their dependence on authorization servers. Our analysis
shows that using the publish-subscribe architecture helps achieve partial replication and re-
duces system administration overhead. We also evaluate the system performance, and study
the dependence of performance on various factors.

Section 5.1 describes the background on the publish-subscribe architecture. Unlike in a
point-to-point architecture, where PEPs are configured to send their requests to specific PDPs,
a publish-subscribe architecture enables PEPs to send their requests without knowing which
PDP will receive them. Similarly, the PDPs show interest in requests without knowing which
PEPs generate them. Therefore, the coupling between PEPs and PDPs is further reduced.

Section 5.2 describes a general design based on the publish-subscribe architecture for the
system based on the request-response model and secondary and approximate authorization
model (SAAM). Our design is independent of the underlying access control policies. Our anal-
ysis shows that using publish-subscribe helps improve system availability and reduce system
administration overhead. Our study also shows that using pub-sub with SAAM helps achieve
cooperative authorization recycling as well as speculative authorizations.

Section 5.3 presents the evaluation results. We study the availability analytically and the
results confirm that the publish-subscribe architecture improves the availability of the autho-
rization infrastructure. We also develop a prototype and use it to study the performance under

85

5.1. The publish-subscribe architecture

different design schemes.
Finally, we summarize this chapter in Section 5.4.

5.1 The publish-subscribe architecture

Pub-sub is an asynchronous messaging paradigm that has been widely studied and applied to
distributed applications, enabling loosely coupled interaction between entities whose location
and behavior may vary throughout the lifetime of the system [EFGK03]. Generally, pub-
lishers that send messages “publish” them as events, while subscribers that wish to receive
certain events “subscribe” to those events. An event notification service (ENS) mediates the
communications between publishers and subscribers, thereby fully decoupling publishers from
subscribers. An entity may be a publisher as well as a subscriber, thereby being able to send
messages and receive events within the system.

Due to its flexibility in decoupling publishers and subscribers, pub-sub has been used to
support a wide range of applications, such as Internet games [BRS02], mobile agents [PLZ03],
user and software monitoring [HR98], mobile systems [CJ02], groupware [DB92], collaborative
software engineering [SNvdH03], and WWW updates [RPS06], among others.

5.1.1 The event notification service

An ENS is the core component of any pub-sub system. The ENS is responsible for: (1) receiving
events from publishers, (2) receiving subscriptions from event subscribers, and (3) matching
each event to subscriptions and routing the event, in the form of notifications, to the interested
subscribers.

The ENS is only logically centralized but can have a distributed implementation to achieve
scalability and fault-tolerance. It may consist of a set of dedicated brokers forming a network
(e.g., Siena [CRW01] and Scribe [RKCD01]). Its clients (i.e., publishers or subscribers) connect
to an arbitrary broker to subscribe or publish. This broker is called border broker and hides
the distributed nature of the ENS. Brokers are responsible for subscription routing and event
forwarding. In order to deliver an event to the interested clients, subscriptions need to be routed
and stored by all brokers (or by a subset of brokers, using various optimization techniques,
e.g., [CRW01]). Subscriptions are stored in routing tables, which are used for event forwarding.
A broker performs forwarding by evaluating the predicates of the stored subscriptions over the
name-value pairs of the incoming event. This process is referred to as matching. The result of
matching is a subset of the broker’s neighbors (local destinations) that should have the event
forwarded to them. Each local destination corresponds to an output path that associates a set
of subscriptions. By performing a matching operation at every broker, the event will eventually
be delivered to the subscriber that issued the relevant subscription.

The brokers in a distributed ENS implementation can be organized into topologies of two
types. One is the tree topology, where brokers are organized as a tree or an acyclic graph (e.g.,

86

5.2. System design

Siena [CRW01]). The resilience to node failure of broker overlays can be achieved by employing
self-replication techniques like those introduced by Jaeger et al. [JPMH07] and Baldoni et
al. [BBQV07]. Another is the peer-to-peer topology (P2P), where nodes are organized as
structured overlay networks (e.g., Hermes [PB02]). These systems, also known as distributed
hash tables (DHTs), usually partition content space and map each partition to a broker using
a hash function. Subscriptions and publications are routed to their corresponding brokers
using DHT-based routing techniques such as Chord [SMLN+03] and Tapestry [ZHS+04]. Fault
tolerance is achieved inherently by the P2P overlay.

5.1.2 Subscription schemes

Subscribers are usually interested in particular, but not in all, events. The different ways of
specifying the events of interest have led to two subscription schemes. The first is called topic-
based scheme, and has been implemented by many industrial strength solutions (e.g., TIBCO
Message Service [TIB99] and Java Message Service [Mic01]). In this scheme, each message
belongs to one of a fixed set of topics. A subscription targets a topic, and the subscriber
receives all events that are associated with that topic. Topic-based systems are similar to the
earlier group communication and event-notification systems.

The second is called content-based scheme and has attracted notable interest (Gryphon [BCM+99],
Siena [CRW00], Elvin [SAB+00], and Jedi [CDNF01].) This scheme is not constrained to the
notion that each message must belong to a particular topic. Instead, the message delivery
decisions are based on a predicate issued by the subscriber. The advantage of a content-based
scheme is flexibility: it provides the subscriber with the ability to specify just the information
it needs without having to learn a set of topic names and their content before subscribing. In
this chapter, we develop our authorization system based on the content-based scheme.

In content-based schemes, each subscription is usually modeled as a set of predicates. Each
predicate consists of attribute names and attribute constraints. An attribute constraint consists
of an operator and an attribute value. Each event is modeled as a set of attribute name-value
pairs. A sample subscription can be represented as: {income > 5000; age > 18} and a matching
event has the following form: {income = 6000; age = 20}.

5.2 System design

This section presents the design of an authorization system based on a pub-sub architecture for
the request-response authorization model. We first describe the system requirements. We then
present the system architecture and the expected benefits of our design. Finally, we discuss
other important design issues, such as subscription mechanisms, security consideration, and
system consistency.

87

5.2. System design

5.2.1 Design requirements

Our design aims to use a pub-sub channel to replace the point-to-point communication between
PEPs and PDPs in existing authorization systems. We consider the following requirements in
our design:

• Generic design. The system design should be generic so that it does not depend on any
specific ENS technology or the underlying access control policies.

• Low overhead. Using an ENS to mediate the communication between PEPs and PDPs
adds to the communication latency, which may, in turn, degrade application performance.
In particular, the ENS needs propagate subscriptions, locate the potential subscribers for
each event, and route the event to them. Therefore, it is important to reduce the overhead
introduced by ENS operations. In particular, we discuss various subscription schemes that
can be used to reduce the ENS overhead in Section 5.2.3.

• Ability to deal with adversaries. Using an ENS also adds additional threats to the
system. For instance, as each PEP enforces responses that are possibly offered by unknown
PDPs and the communications are mediated by a possibly untrusted ENS, the PEP should
expect to receive responses that have been modified by an adversary. Therefore, the PEP
may have to verify the validity of each response by tracing it back to a trusted PDP. We
discuss security considerations in Section 5.2.4.

• Consistency. Since multiple PDPs may participate in resolving a request, different PDPs
may return inconsistent responses, e.g., due to the delayed policy updates on some PDPs.
In this case, the PEP should have a strategy to deal with the inconsistency between
responses. We discuss consistency considerations in Section 5.2.5.

5.2.2 System architecture

Our architecture of the pub-sub authorization system is illustrated in Figure 5.1. The system
consists of multiple PEPs, PDPs and a logically-centralized event notification service (ENS).
Both PEPs and PDPs can be subscribers and publishers. In particular, a PEP publishes
authorization requests it generates from application requests, while subscribing to the responses
for these requests. In contrast, a PDP subscribes to the authorization requests that it can
resolve, while publishing the responses. The ENS is responsible for delivering the requests to
the corresponding PDPs (that can resolve these requests) and for delivering the responses to
the corresponding PEPs (that wait for these responses).

To meet our first requirement on general system design, we view the ENS as a black box
that provides three basic operations: subscribe, unsubscribe and publish. In this chapter, we
focus on answering the question of how the PEPs and PDPs can use an ENS with these limited
operations. We assume that the underlying ENS is scalable and robust so that it will not

88

5.2. System design

PEP

PEP

PEP

PDP

PDP

event
notification

service
(ENS)

notification
notification

notification

notification

notification

subscribe,
publish

subscribe,
publish

subscribe,
publish

subscribe,
publish

subscribe,
publish

Figure 5.1: Publish-subscribe architecture for delivering authorization requests and responses.

become the system performance bottleneck or single point of failure. Past work focussed on
implementing a scalable and robust ENS has been discussed in Section 5.1.1.

To prevent the PDP from missing any request sent by PEPs, when the system bootstraps,
each PDP subscribes to all the requests that it can resolve, e.g., by making a subscribe() call to
the ENS for each resolvable request. Therefore, PDP subscriptions can be viewed as a one-time
process. Section 5.2.3 further discusses different PDP subscription strategies that can be used
to reduce the number of posted subscriptions.

Now consider that a PEP intercepts an application request from the user and generates an
authorization request. Figure 5.2 shows the sequence diagram of how an authorization request
is resolved in our system. In particular, the following steps are included (also shown in the
figure):

(i) The PEP first subscribes to the response to that request by making a subscribe() call to
the ENS. The purpose is for this PEP to receive the corresponding response in the future.
Section 5.2.3 provides a discussion on the different subscription schemes that the PEP
can use in this step. Using some schemes, e.g., the session-based scheme, this step is not
necessary for every request, thus reducing the ENS overhead.

(ii) The PEP then sends out the request by making a publish() call to the ENS and expects
that the ENS will deliver a response back within a certain time frame.

(iii) After the ENS receives the request, it forwards it to those PDPs that can resolve it by
matching the request to the subscriptions posted by PDPs.

(iv) After receiving the request from the ENS, each PDP computes a response that either
allows or denies the request.

(v) Each PDP sends the response back by making a publish() call to the ENS.

89

5.2. System design

PEP ENS PDP

2. publish(request)

1. subscribe(response)

3. notify(request)

5. publish(response)

6. notify(response)

4. evaluate(request)

8. unsubscribe(response)7. enforce(response)

Figure 5.2: Basic sequence diagram in resolving an authorization request.

(vi) The ENS forwards the response to the PEP that is waiting for that response by matching
the response over the subscriptions posted by the PEP.

(vii) The PEP enforces the authorization decision in the returned response, either allowing
user’s request to proceed to the requested resource or denying the request. Since a request
may be delivered to multiple PDPs and each PDP may compute and return a response,
the PEP may have to select one response for enforcement. In Section 5.2.5, we discuss the
strategy that the PEP can use to maintain a monotonic-read consistency when different
PDPs return inconsistent responses.

(viii) The PEP unsubscribes from the response to that request by making a unsubscribe() call
to the ENS. This reduces the number of subscriptions maintained by the ENS. Similar to
step 1, this step may be not required for each request in some schemes that we propose
in Section 5.2.3.

Although the above eight-step process appears heavy and incurs additional overheads com-
pared to the request-response communication, we expect that it has the benefits of supporting
a number of desirable features. Below we present three expected benefits: increased availabil-
ity, reduced management overhead and improved software development process. Section 5.2.6
presents additional benefits when integrating the pub-sub with SDPs. Through integration,
the pub-sub provides a unified framework for cooperative recycling of authorization decisions
between SDPs and PDPs. In addition, the integration facilitates speculative computing of
authorizations. Both will help improve system performance and availability.

• Increased availability. In the point-to-point architecture, a PEP is generally configured
to send each request to only one PDP. In existing enterprise application systems, however,

90

5.2. System design

the same resources often reside at multiple locations, on multiple machines, and within
a variety of applications [MT00, HAB+05]. Consequently, multiple PDPs may have to
be set up to resolve access requests for the overlapping sets of resources. Our solution
exploits this situation: using the pub-sub architecture, multiple PDPs may show their
interest on the overlapping sets of requests. Therefore, a request from the PEP may reach
all the PDPs that are able to resolve it. Even though some of the PDPs may fail, the
chances that at least one will provide a response on time are higher. In other words, our
design achieves a certain level of PDP collaboration where a collection of PDPs appear
as a single large more reliable PDP “cloud” to PEPs.

• Reduced management overhead. We expect that decoupling PEPs and PDPs using
the ENS will reduce the human costs of operating and administering authorization infras-
tructures. Consider the previous example of a failed PDP and the PEPs that depend on
that PDP. After the PDP is brought back and possibly relocated, as long as it subscribes
again to the ENS, none of the PEPs need to be re-configured. The ENS ensures that the
request will be delivered to the relocated PDP.

• Improved software development process. Using an event-driven, standards-based
pub-sub channel to provide a comprehensive communication framework between PEPs
and PDPs also improves the software development cycle. In particular, the integration
of PEPs and PDPs is faster and less expensive using a pub-sub channel than using a
point-to-point architecture. Research by Gartner Group [Gar02] shows that the use of
a common integrated information infrastructure, such as a pub-sub channel, can reduce
the number of hours by between 25% and 43% (to build interfaces between applications),
depending on the complexity of the interface that is being built.

5.2.3 Subscription/unsubscription schemes

Our architecture uses a two-way pub-sub communication channel to emulate synchronous point-
to-point communication. For this purpose, the PEP needs to publish a request to the ENS once
it receives that request and the PDP needs to publish a response back once it computes that
response. In other words, the PEP/PDP needs to publish immediately whatever they receive
or compute.

On the other side, we have more flexibility in designing subscription/unsubscription (or
“(un)subscription” for short) schemes. An (un)subscription scheme determines how a client
issues (un)subscriptions to the ENS. Our preliminary experiments identified two factors that
have significant impact on the system performance. In this section, we discuss these two factors
and different (un)subscription schemes that affect them.

91

5.2. System design

Performance factors

One factor is the frequency of (un)subscription calls posted to the ENS. As we mentioned in
Section 5.1.1, in a typical ENS implementation [RRH06], subscription is the process that sets the
routing path for events and builds the routing table at each ENS node, while unsubscription is
the process that removes obsolete subscriptions from the routing tables. Furthermore, to prevent
inconsistency in the routing tables, (un)subscription calls are commonly serialized using mutual
exclusion, which makes frequent (un)subscription calls prohibitively expensive. Therefore, it is
important to reduce the frequency of subscriptions/unsubscriptions.

The other performance factor is the number of outstanding subscriptions stored at the ENS,
which affects the ENS performance in matching an event to a set of interested subscriptions.
Previous research (e.g., Aguilera et al. [ASS+99]) on matching algorithms suggests that a large
number of outstanding subscriptions posts a challenge to the ENS: usually the algorithm that the
ENS uses to find a matching subscription for an event has linear or sub-linear time complexity
with respect to the number of outstanding subscriptions [ASS+99]. Therefore, it is desirable to
reduce the number of outstanding subscriptions.

As a summary, we have two performance-related goals in designing (un)subscription schemes:
(1) reducing the frequency of (un)subscription calls, and/or (2) reducing the number of out-
standing subscriptions. As the ENS emulates a two-way communication channel in our design,
below we consider PEP and PDP subscriptions separately.

PEP schemes

A PEP subscribes to responses, indicating that it is waiting for the decisions to some of its
authorization requests. A PEP can subscribe to each individual response or to a general at-
tribute (e.g., the subject) that matches a number of responses (e.g., for the same subject). In
the following, we describe four PEP (un)subscription schemes which have different impact on
the performance factors, thus affecting the system performance.

Request-based scheme. In this scheme, the PEP submits a new subscription to the ENS
for each request it generates, by passing the request as the parameter of the subscribe() op-
eration. Once the PEP receives the response, it then unsubscribes from that response. The
benefit of this approach lies in a low number of outstanding subscriptions, which equals to the
number of concurrent requests launched by the PEP. However, this scheme can also lead to
an extremely high (un)subscription frequency as each request will result in an (un)subscription
call. Therefore, it is suitable for applications where the incoming request rate is low.

Subject-based scheme. In this scheme, the PEP subscribes to each subject, instead of
each request. Particularly, when the PEP detects a request that is issued by a subject never
seen before, the PEP makes a subscription() call to the ENS by specifying the subject as the
parameter. With this scheme, only one subscription call is required for the first request of each

92

5.2. System design

subject, as subscribing to a subject enables the PEP to receive the response for any request this
subject may make in the future. No unsubscription is required in this scheme. As more and
more subjects have interacted with the system, the frequency of subscription calls will gradually
become smaller. Eventually, no subscription call will be made because the PEP has subscribed
to all the subjects in the system. On the other side, this scheme has the drawback of increasing
the number of outstanding subscriptions, which will eventually be equal to the total number of
subjects for each PEP. Hence, this scheme is useful when the number of subjects in the system
is small.

Session-based scheme. In this scheme, the PEP only subscribes to those active subjects
that are currently having a session with the system. Similar to the previous scheme, the PEP
makes a subscription call when a subject starts a new session with the system. Differently,
when the subject logs out of the system or its session expires, the PEP unsubscribes from the
responses for that subject. Next time when the same subject logs into the system, the PEP
subscribes again. Compared with the subject-based subscription scheme, this scheme reduces
the number of outstanding subscriptions, which is equal to the number of active subjects or
sessions, while increasing the (un)subscription frequency. Compared with the request-based
subscription scheme, this scheme reduces the (un)subscription frequency while leading to a
larger number of outstanding subscriptions. Therefore, this scheme is especially useful in the
following two scenarios: (1) although the number of subjects in the system is large, the number
of active subjects at each moment is relatively small, or (2) although subjects issue requests
very frequently, only a small portion of these requests is issued as the first request by a new or
returned subject.

Callback scheme. In this scheme, instead of returning responses through the ENS, the PDP
returns them directly to the PEP. Therefore, the PEP does not need to issue subscriptions
to receive responses. To preserve the decoupling property of the pub-sub architecture, each
authorization request contains the call-back reference for the PEP that publishes it. Each PDP
then can make a remote call to return the response without locally storing the PEP address in
advance. Although this scheme removes the PEP (un)subscription overhead and the response
matching overhead, it posts additional requirements to the infrastructure. For example, special
rules have to be configured in the firewall to enable the call from the PDP to reach the PEP.
Therefore, this scheme is suitable for those systems, for which performance overhead is not
affordable and there is supporting infrastructure available.

Figure 5.3(a) summarizes the trade-offs between these schemes. It shows that the request-
based scheme incurs high (un)subscription frequency but has a low number of outstanding
subscriptions. Session-based and subject-based schemes help reduce (un)subscription frequency
but at the cost of an increased number of outstanding subscriptions. Ideally, the callback scheme

93

5.2. System design

(u
n)

su
bs

cr
ip

tio
n

fre
qu

en
cy

number of outstanding
subscriptions

+-

-
+ request-based

subject-based

session-based

callback

(a) PEP schemes.

(u
n)

su
bs

cr
ip

tio
n

fre
qu

en
cy

number of outstanding
subscriptions

+-

-
+

request-based

object-based

hierarchy-based

application-based

(b) PDP schemes.

Figure 5.3: Trade-offs bettween (un)subscription schemes.

can be deployed to fully remove the need for (un)subscription. We report the evaluation results
of these schemes in Section 5.3.2.

PDP schemes

By subscribing, a PDP communicates its ability to resolve certain requests. This ability is
determined by the authorization request space the PDP is responsible for. For simplicity, we
define a request as a tuple (s, o, a), where s is the subject, o is the object, and a is the access
right. Therefore, the request space is determined by the subject space, object space and access
right space.

As we mentioned before, PDP subscription is a one-time process: the PDP subscribes
when the system boots up. After that, any subsequent (un)subscriptions are due to the
change of request space, e.g., new users added to the system. Below we describe four PDP
(un)subscription schemes, which have different impacts on the number of outstanding subscrip-
tions and (un)subscription frequency.

Request-based scheme. In this scheme, the PDP subscribes to all the request tuples (s, o, a)
it can resolve. However, this approach may lead to a large number of outstanding subscriptions
registered in the ENS when the request space of each PDP or the number of PDPs is large. In
addition, every change to the request space will result in an (un)subscription call to the ENS,
which may lead to high (un)subscription frequency.

Object-based scheme. In this scheme, instead of subscribing to each possible authorization
request, the PDP only subscribes to each possible object for which it is “responsible”. This

94

5.2. System design

approach reduces the number of outstanding subscriptions by reducing the number of dimen-
sions of the subscription space from three (s, o and a) to one (o), but it may incur unnecessary
overhead. For example, a PDP that subscribes to (o = o1) may receive requests issued by
subjects s1 and s2, but the PDP can only make a decision for the request by s1 because s2 is
not in its subject space. With this scheme, only changes to the object space will result in an
(un)subscription call.

Hierarchy-based scheme. This scheme exploits the hierarchical structure of the namespace
in many distributed systems. For example, the protected object namespace in IBM Tivoli
Policy Director [Kar01] is organized in a hierarchical structure. Each object is represented as
a string with a syntax, and the structure is similar to absolute URIs but without the scheme,
machine, and query components. The slash character (‘/’) is used to delimit, from left to right,
hierarchical substrings of the object’s name. In this case, each PDP can subscribe to only the
directory string instead of subscribing to each individual object string, which, we expect, will
further reduce the number of outstanding subscriptions significantly. Furthermore, any change
within the directory will not result in an (un)subscription call.

Application-based scheme. This scheme is based on the assumption that each PDP is only
responsible for resolving the requests from certain applications. Assuming that each authoriza-
tion request contains an extra attribute to indicate the application this request belongs to, the
PDP only needs to subscribe to those application identities to receive that request. Addition-
aly, any request space change within the application will not result in an (un)subscription call.
However, this practicality of this approach depends on the structure of enterprise application
systems.

Figure 5.3(b) illustrates the trade-offs between these schemes. To summarize, by applying
specific knowledge about the request space to the subscription scheme, one can reduce the
number of outstanding PDP subscriptions as well as (un)subscription frequency at the same
time.

5.2.4 Security considerations

Decoupling PEPs and PDPs by the ENS introduces additional threats to the system. In this
section, we describe our adversary model and discuss options for mitigating threats.

Adversary model

In our approach, the PDPs that are set up by system administrators are the ultimate authority
for access control decisions. For the purpose of discussion, we refer to them as “legitimate”
PDPs. We assume that PEPs trust the decisions made by legitimate PDPs. An adversary can

95

5.2. System design

eavesdrop, spoof or replay any network traffic. Thus, any decision made by a legitimate PDP
may be modified.

In addition, adversaries can set up their own PDPs. Masquerading as legitimate PDPs,
these “malicious” PDPs can listen to the requests coming through the ENS and publish false,
spoofed, responses. Malicious PDPs can also attempt denial-of-service (DoS) attacks, e.g., by
flooding the ENS—and consequently the PEPs—with replayed responses, which increases the
ENS computation overhead or even overloads it or the subscribed PEPs. Therefore, actions of
malicious PDPs may worsen system performance or jeopardize its correctness.

We also assume that PEPs set up by system administrators only send legitimate requests
to the ENS. Attackers however may setup their own “malicious” PEPs and attempt to spam
or flood the pub-sub network with replayed or spurious requests, which may overload the ENS
and PDPs, consequently degrading system performance.

In addition to publishing bogus information, both malicious PDPs and PEPs can post
spurious subscriptions to the ENS. If the ENS accepts these subscriptions, the matching time
will increase and thus the system performance would be further reduced, as can be seen from
our experiments in Section 5.3.2.

An adversary can also set up malicious ENS nodes that could sabotage the operation of the
ENS in a number of ways. A malicious ENS node may selectively drop messages or inject a
large number of spurious events/subscriptions, thus launching a DoS attack. In addition, it can
modify the content of messages, allowing unauthorized access.

To summarize, an adversary can (1) compromise system correctness by publishing or inject-
ing in the network links spoofed responses and/or tampering with genuine ones, or (2) degrade
system performance by flooding the ENS with spurious or replayed requests and/or responses.

Mitigating threats

In traditional request-response authorization systems, each request is sent from a PEP to a pre-
specified PDP. The communication between the PEP and PDP is usually protected through
(mutually) authenticated and encrypted channels, as in the case of the IBM Tivoli Access Man-
ager [BAR+03], which protects with SSL the integrity and authenticity of requests/responses
transported between PEPs and PDPs.

In our approach, the communication between PEPs and PDPs is mediated by the ENS. We
first assume that the ENS is a trusted broker network located in a single administrative domain
or across multiple domains with mutual trust; each ENS broker node is trusted to perform
the routing as designed and will not attempt to modify the messages it routes. To achieve
the same level of security as the request-response authorization system, one can still employ
authenticated and encrypted channels (e.g., SSL) between the ENS nodes and PEPs/PDPs.
Using such channels ensures that only authenticated PEPs/PDPs can publish and subscribe
using the ENS, thus preventing it from being overloaded by messages sent from malicious PEPs
and PDPs. At the same time, legitimate PEPs and PDPs can assume that messages are not

96

5.2. System design

modified while in transit.
To maintain the trustworthiness of a distributed broker network, it is important to pre-

vent malicious nodes from joining it. One technique is to use mutual authentication between
interacting ENS nodes. To reduce the number of costly authentication handshakes, the ENS
node should support persistent or “keep-alive” connections, as for example in the case of IBM
WebSphere Message Broker [IBM08].

We next relax the assumption of a trusted ENS: the ENS may span multiple administrative
domains of unknown trustworthiness, and some ENS nodes can be malicious. In this case,
it is difficult to prevent the DoS attack. One technique to alleviate this negative impact on
performance is to allow each ENS node to actively monitor the behavior of its neighbors, and
hope that eventually the trusted node is able to detect the “abnormal” behavior of malicious
neighbors and blacklist them from future routing, as proposed by Srivatsa and Liu [SL05].

Even with malicious ENS nodes, it is still possible to ensure system correctness, i.e., the
authenticity and integrity of requests/responses. One approach is to apply end-to-end protection
mechanisms: each response/request is signed and verified at PDPs/PEPs. For example, after a
PDP computes a response, it signs the response using its private key and attaches the signature
to the message. The PEP that receives the response can then verify the digital signature. The
benefit of this approach is that it requires no changes to the ENS. A signature provides two
pieces of evidence. First, the response has not been modified by the untrusted ENS since it was
signed, thus protecting the response integrity. Second, the response is indeed originated from
a trusted PDP, thus protecting its authenticity. Furthermore, a nonce or sequence number can
be added in each message to prevent replay attacks.

Note that we disregard requirements for the confidentiality of requests, responses, or the
authorization policies, which can be inferred, at least partially, from the first two. Those
deployments—such as in military environments—for which confidentiality of any of the three
is important, can use conventional methods for end-to-end confidentiality protection, such as
message encryption.

5.2.5 Consistency considerations

The system contains multiple PDPs that may resolve the same request based on their own
access control policies. In some cases, e.g., when policy updates are made on PDPs that are
responsible for overlapping sets of resources, different PDPs may return inconsistent decisions.
This section discusses these cases and describes the mechanism to maintain a certain level of
consistency.

We assume that each PDP makes decisions using the policy stored persistently in its local
policy store. In practice, the policy store can be a policy database or a collection of policy files.
We also assume that security administrators deploy and update policies through a centralized
policy administration point (PAP), as in the XACML architecture [Com05], and the PAP is
able to push the changes to all relevant policy stores, as in Tivoli access manager[BAR+03].

97

5.2. System design

We assume that the policies at each PDP will be eventually consistent [Vog09]. That is, in
the absence of new updates, all the overlapped policies at each PDP converge toward identical
copies of each other. Eventual consistency allows for updates to be propagated to all PDPs
asynchronously so that a call for policy update may return before the update has been applied
at all the PDPs. The policies of different PDPs however may be temporally inconsistent with
each other. If there are no failures during an update, then there is a bound on the update
propagation times. However, under certain failure scenarios (e.g., server outages or network
partitions), updates may not arrive at all relevant PDPs for an extended period of time.

To PEPs, eventual consistency implies that a PEP may receive inconsistent decisions, be-
cause some PDPs may return a decision based on a policy that does not have the latest update
applied. For example, consider a system with one PEP and two PDPs. PDP1 receives a policy
update at time t1 and PDP2 receives the same update at time t2, where t2 > t1. If some requests
are allowed before the policy update but denied after the policy update, the PEP may receive
inconsistent responses for these requests between t1 and t2.

One approach to dealing with this situation is to require monotonic-read consistency [TS01]
at each PEP. That is, if a PEP has enforced a response based on a version of policy, any
successive responses enforced at this PEP should be based on the same or a more recent version
of the policy. In other words, monotonic-read consistency guarantees that if a PEP is aware of
a policy update at time t, it will never enforce the decision by an older version of policy at a
later time.

To achieve monotonic-read consistency, each response includes the PAP generated time-
stamp of the last policy update that the PDP received. The PEP records the policy update
time-stamp it has used for the returned responses. When the PEP receives a new response
for a request, it checks whether its time-stamp is at least as large as the latest time-stamp it
has recorded. If it is, the PEP will enforce that response. Otherwise, it discards the response
and waits for another response that comes with a same or larger time-stamp (or waits until a
time-out is reached, in which case it will enforce a default decision.)11

5.2.6 Integrating pub-sub with authorization recycling

So far we have presented the design of using a pub-sub channel to replace point-to-point com-
munication in the request-response authorization system. Now we present our design that inte-
grates pub-sub with a SAAM-based authorization recycling system. SAAM [CLB06] achieves
authorization recycling by adding a secondary decision point (SDP). Our design explores how
SDPs and the pub-sub channel can work together.

Figure 5.4 shows the system architecture after adding pub-sub to the authorization recycling
system. In this design, the SDP is responsible for the interaction (i.e., subscription and publish-
ing) with the ENS. By using the pub-sub channel, the dependency of an SDP on a particular

11Note that using time-stamp requires time synchronization across the PDPs, which may not be trivial for
WAN environments. Other techniques to achieve monotonic-read consistency have been presented in [TS01].

98

5.2. System design

PEP

PEP

PEP
PDP

PDP

ENS

SDP

SDP

SDP

Figure 5.4: Pub-sub for the authorization recycling system.

PDP is reduced.
For each request, the PEP first tries to get a response from its own SDP. If the SDP is unable

to resolve the request, the SDP then sends the request to the ENS. The returned response is
added to the cache maintained by the SDP. Allowing the SDP to communicate with the ENS
allows the SDP to be deployed incrementally without requiring any change to existing PEP or
PDP components. Note that the discussion of security analysis and consistency mechanisms in
the previous sections also applies here.

We expect that using pub-sub in conjunction with an authorization recycling system will
bring the same benefits as using the pub-sub channel in the request-response authorization
architecture. These benefits include improving system availability, reducing management cost
and achieving better software integration. In particular, the availability improvement is signif-
icant when the SDP cache “warmness” is low and a large number of requests still needs to be
resolved by the remote PDP.

Other than the aforementioned benefits, we also expect the following specific benefits:

• SDP cooperation. The use of pub-sub also enables cooperation between SDPs. We
previously demonstrated the benefits of SDP cooperation to serve the requests from all
PEPs. In the pub-sub system, the ENS can be viewed as a discovery service: The ENS
helps an SDP not only find PDPs, but also find other SDPs. For this purpose, after the
SDP caches a response, it subscribes to the corresponding request with the ENS. This way,
the SDP informs other SDPs that it can resolve a request using its cache, thus achieving
cooperation between SDPs.

• Consistency. Using pub-sub can also help SDPs maintain cache consistency. If an
SDP is unaware of a policy update at the PDP, it may return incorrect authorization
decisions. We previously proposed a policy change manager (PCM) that monitors the
policy used by the PDP [WRB09]. Once the PCM detects a critical policy update, it
informs the SDPs immediately about the updates through remote RPCs. The pub-sub

99

5.3. Evaluation

architecture provides an elegant way for propagating critical policy update messages: the
SDP can subscribe to the policy update messages published by the PDP; after removing
the affected cache entries, the SDP then publishes a result message to the ENS indicating
whether the update was successful or not.

• Speculative authorization. Integrating pub-sub with authorization recycling also en-
ables speculative authorization [Bez05], where PDPs can predict future requests, precom-
pute responses to them, and push these responses back to the SDPs through the ENS.
Even if not all SDPs need all speculative authorizations produced by the PDPs, those
authorizations that turn out to be needed will be readily available with virtually no la-
tency observed by PEPs, ultimately improving end-users’ experience. This is where the
borderline between SDPs and PDPs starts to blur as PDPs effectively “push” the policy,
encoded in the form of authorizations, to the SDPs.

5.3 Evaluation

The previous section presented our design of an authorization system based on a pub-sub
architecture. This section presents an evaluation of this design. Our evaluation sought to
understand the contribution of pub-sub towards improvement in availability. We also studied
the system performance using various subscription schemes and under different deployment
conditions.

5.3.1 Evaluating availability

Availability measures the probability of receiving a response after a request is launched by the
PEP. We expected that the use of the pub-sub architecture leads to increased availability in the
presence of PDP failures because one request can possibly reach multiple PDPs, thus achieving
a certain level of PDP replication. We aimed to quantify this effect through analytical analysis.

Evaluating the number of nines

Availability p is usually reported as a number of “nines”, which is the number of ‘9’ digits after
the decimal point. For example, .99999 availability is 5 nines. This translates to a down time
of approximately 5 minutes per year. The number of “nines” can be generalized to include
decimals that do not contain all ‘9’ digits, using the following formula: nines = blog10

1
(1−p)c.

Therefore, we also used the “number of nines” as a metric of availability in the analytical
analysis.

In the request-response authorization system based on point-to-point communications, a
PEP sends each request only to its own PDP, while each request can possibly reach multiple
PDPs in a pub-sub authorization system. Therefore, the pub-sub system can be viewed as using
“PDP replication” to improve system availability. We studied the influence of the following

100

5.3. Evaluation

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 5 10 15 20 25 30

nu
m

be
r o

f n
in

es

number of PDPs

10% overlap
20% overlap
30% overlap

(a) The number of nines as a function of the number
of PDPs.

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r o

f n
in

es

overlap rate (%)

2 PDPs
5 PDPs
8 PDPs

(b) The number of nines as a function of overlap
rate.

Figure 5.5: Analytical results on availability: number of nines.

two factors on availability: (a) the number of PDPs and (b) the overlap rate between the
resource spaces of two PDPs, defined as the ratio of the objects maintained by both PDPs
to the objects maintained only by the studied PDP. The overlap rate served as a measure of
similarity between the resources of two PDPs. When any of these two factors increases, we
expect increased availability, as one PDP will receive greater help from other PDPs in resolving
a request.

We derived an analytical model to study the effect of these two factors. Consider a system
that contains m PDPs, and the availability of each PDP is p. To simplify the analysis, we
assumed that the overlap rate between the resources of every pair of PDPs is the same, i.e.
equal to o. We also assumed that PDP’s availability is independent and identically distributed.
In the traditional request-response system, since each request is only sent to one PDP, the
overall availability remains p. In the pub-sub authorization system, the system fails only after
all the PDPs that can resolve that request fail. Therefore, the overall availability is 1 − (1 −
p) · (1 − p · o)(m−1). In the following analysis, we studied the overall achievable availability in
terms of number of nines when the availability of each PDP was .99.

Figure 5.5(a) shows the number of nines as a function of the number of PDPs with systems
containing three overlap rates: 0.1, 0.2, and 0.3. The results demonstrate that the number of
nines increases linearly with the number of PDPs, and the slope of the line depends on the
overlap rate. The larger the overlap rate, the steeper the slope.

Figure 5.5(b) illustrates the number of nines as a function of the overlap rate with systems
containing three different numbers of PDPs: 2, 5, and 8. The results demonstrate that the
number of nines increases with the overlap rate in an increasing rate. Additionally, the larger
the number of PDPs, the faster the increase.

101

5.3. Evaluation

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30pe
rc

en
ta

ge
 d

ec
re

as
e

of
 fa

ile
d

re
qu

es
ts

(%
)

number of PDPs

10% overlap
20% overlap
30% overlap

(a) Percentage decrease of failed requests as a func-
tion of the number of PDPs.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100pe
rc

en
ta

ge
 d

ec
re

as
e

of
 fa

ile
d

re
qu

es
ts

(%
)

overlap rate (%)

2 PDPs
5 PDPs
8 PDPs

(b) Percentage decrease of failed requests as a func-
tion of overlap rate.

Figure 5.6: Analytical results on availability: percentage decrease of failed requests.

Evaluating the percentage decrease of failed requests

We also used analytical analysis to study how our design can help reduce the number of failed
requests. We estimated the percentage decrease of failed requests noted as f in the following.
Consider a system that contains m PDPs and the availability of each PDP is p. A PEP
generates r requests in total. In the request-response authorization system, the number of
failed requests is fr = r · (1 − p). In the pub-sub authorization system, the number of failed
requests is fp = r · (1− p) · (1− p · o)(m−1). Therefore, the percentage decrease of failed requests
is f = (fr − fp)/fr, which is 1 − (1 − p · o)(m−1). f measures how other PDPs have helped
resolve those failed requests in the request-response authorization system. Any increase of f
indicates an improvement in the availability as more requests have been successfully resolved.
As in the previous analysis, we also studied the case when p was 99%.

First, we studied the impact of the number of PDPs on f . Figure 5.6(a) shows the results.
As expected, when the number of PDPs increases, f also increases, which means that the PEP
observes fewer failed requests. The reason is that the possibility to receive a response from other
PDPs increases. In addition, the increase of f is at a diminishing rate. One can thus limit the
number of involved PDPs to control the overhead traffic without losing the major benefits of
pub-sub.

Second, we studied the impact of the overlap rate between PDPs on f . Figure 5.6(b) shows
the results. As expected, f increases with the overlap rate. When the overlap rate is 100%, f is
close to 100%, which means that almost all requests have been resolved. More interestingly, the
increase rate is diminishing for large overlaps. When the number of PDPs is two, f increases
linearly with the overlap rate, as f is a linear function of the overlap rate, i.e., f = p · o.

102

5.3. Evaluation

Discussion

The above analytical analysis confirms that the use of the pub-sub model leads to higher
availability. In addition, the results demonstrate that the availability increases with the number
of PDPs and their resource overlap rates.

However, we note that the increase of availability does not come without cost. In particular,
a pub-sub system uses multiple PDPs to achieve partial (computational) replication. That is,
the same task (i.e., computing an authorization decision) might be executed multiple times
on different PDPs, depending on the subscriptions posted by each PDP. Since each PDP now
needs to resolve requests not only for its own PEPs but also for other PEPs, the load of each
PDP is increased.

We quantify this additional load to each PDP as follows. Consider a system that contains
m PDPs and each PDP receives n requests in a request-response system. Let us consider the
load of PDPi. In the pub-sub system, since each other PDP has an overlap rate o with PDPi,
the total number of extra requests that PDPi needs to process is n · (m− 1) · o. Therefore, the
extra load increases linearly with the overlap rate and the number of PDPs.

We identified two possible approaches to reducing the additional computational load on
each PDP in the deployment. We assume that each PEP has a default PDP as in the request-
response system. First, the PEP adds a “destination” constraint (or attribute) in each published
request which specifies the receiver of this request, usually its default PDP. Hence, every request
is only delivered to its default PDP by the ENS. When the PEP detects that the number of
outstanding requests begins increasing, the PEP infers that its default PDP has failed. Then
the PDP removes the destination constraint from future requests and thus these requests will
reach multiple PDPs. By sending requests to multiple PDPs only when the failure of the default
PDP is detected, the PDP load is reduced.

An alternative approach is to give each PDP the ability to decide at runtime whether it
wants to help other PDPs or not. This requires each request to indicate its sender. When a
PDP is busy, it only resolves the requests coming from its “own” PEPs. Only when the PDP
has idle computation cycles does it start to resolve the requests from other PEPs.

5.3.2 Evaluating performance

Along with studying the system availability using an analytical analysis, we developed a proto-
type to evaluate system performance and its dependency on various factors. In this section, we
first describe the implementation of our prototype system, followed by an explanation of the
experimental setup. We then present the performance evaluation results. Finally, we discuss
the results.

103

5.3. Evaluation

System prototype

Our prototype contained three main components: the ENS, the PEP, and the PDP. The PEP
published requests to the ENS and listened to the responses, the PDP resolved requests and
published responses back, and the ENS delivered requests/responses between PEPs/PDPs.

For the ENS, we used Siena [CRW01], a content-based ENS developed in Java. We chose
Siena for two reasons: (1) it provides the necessary functionality to study feasibility and per-
formance; (2) its code base is well maintained. In Siena, an event is published as a set of
attribute-value pairs. Attribute names are simply strings, and values are from a predefined set
of primitive types, for which a fixed set of operators is defined. Figure 5.7 shows how a PEP
publishes a request in Siena.

Notification e = new Notification();
e.putAttribute("subject", "Sean");
e.putAttribute("object", "/etc/passwd");
e.putAttribute("access", "read");
siena.publish(e);

Figure 5.7: PEP publishes a request in Siena

The subscriber subscribes to events by specifying filters using the subscription language.
The filters define constraints, usually in the form of name-value pairs of attributes and basic
comparison operators (=, <,≤, >,≥), which identify valid events. Figure 5.8 shows how a PDP
subscribes to the request for an object in Siena.

Filter f = new Filter();
f.addConstraint("object", "/etc/passwd");
siena.subscribe(f);

Figure 5.8: PDP subscribes to a request in Siena

The PEP was organized in three threads. The first thread was responsible for publish-
ing requests and posting the subscriptions for the corresponding responses to the ENS. The
second thread was responsible for receiving the response notifications from the ENS. Once a
response was received for a request, the response was put into a queue. The third thread was
responsible for getting the response from the queue and then unsubscribing from that response.
Separating subscription, notification, and unsubscription into different threads was to avoid
deadlocks [Car09] and improve code performance.

To study the effect of PEP subscriptions, we implemented the four subscription schemes
discussed in Section 5.2.3: request-based subscription, subject-based subscription, session-based
subscription and callback. For the callback scheme, the notification thread was replaced by a
UDP server thread which was responsible for receiving returned responses. Each request sent
by the PEP included the IP address and port number of the UDP server. After the PDP
computed a response, the PDP returned the response by sending it as a UDP message to the

104

5.3. Evaluation

PEP directly.
The PDP implementation contained a policy evaluation engine that resolved requests based

on a role-based access control (RBAC) policy. The policy contained two XML files: one defined
user-to-role assignment (UA) and the other defined permission-to-role assignment (PA).

Evaluation methodology

We used two metrics to evaluate performance: response time and maximum throughput. The
response time was measured as the time elapsed from the moment when the PEP sent a request
to the moment when it received the response for that request. The system maximum throughput
was measured as the maximum number of requests that could be processed by the system per
second.

Workload generator In order to simulate subjects’ behaviors, we developed a workload
generator to generate authorization requests with certain properties. A request is a tuple
consisting of a subject, an object, and an access right. For each request, the object and access
right were randomly selected from the object and access right sets. We focused on the subject
generation in each request. In particular, the generator generated subjects according to the
following parameters: (1) s, the total number of subjects, (2) q, the number of requests generated
per second, (3) n, the percentage of requests in q that were issued by active subjects, and (4)
a, the number of active subjects in the system.

The generator maintained two sets of subjects: active and inactive subject sets. The sub-
jects in the active set were currently in the system. The subjects in the inactive set either had
not entered the system yet or had left the system. The algorithm used to generate a subject
for a request was as follows. In the beginning, the active set was null while the inactive set
contained all the subjects in the system. When the generator started to generate requests,
each request was either issued by an active or inactive subject, which was randomly selected
from the corresponding set. The sequence however was determined by n. For example, if n
was 80%, then the generator generated four requests by active subjects and then generated one
request by an inactive subject. Once an inactive subject had been selected to issue a request,
this subject was removed from the inactive set and moved to the active set. When the size of
the active set reached a, this size would not increase anymore. To enforce this, whenever a new
active subject was added, the oldest subject (that had been in the active set longest time) was
removed and added to the inactive set. This can be interpreted as the oldest subject having
closed the session in the system. These steps were repeated until a desirable number of requests
were generated.

The request trace generated by this algorithm particularly enabled us to study the impact
of two factors on the session-based subscription scheme. First, by controlling the number of
active subjects, we fixed the maximum number of outstanding PEP subscriptions. Second,
by controlling the percentage of requests issued by active subjects, we fixed the subscription

105

5.3. Evaluation

frequency.

Experimental setup The experiments were run in a computer cluster. Each node in the
cluster was equipped with two Intel Xeon 2.33 GHz processors and 4 GB of memory, running
Fedora Linux 2.6.24.3. Each node connected to other nodes through a 1Gbps network. The
round-trip-time (RTT) was around 0.1ms. We used the Linux Netem package to emulate the
properties of a wide area network (WAN). In particular, we used 40ms RTT time to simulate
locations in two adjacent states.

At the start of each experiment, the ENS server first started. Then the PDP booted up
and subscribed to all the objects that appeared in the policy. The workload generator then
started to generate authorization requests and send them to the PEP. The time between two
consecutive requests was derived from an exponential distribution as used in TPC-W [TPC02].
The mean time interval µ was usually a few milliseconds. We used µ to calculate the incoming
request rate (requests per second) q as 1, 000/µ. After the PEP received a request, it subscribed
to the response to that request using one of the four subscription schemes, and then published
the request to the ENS. After the PDP received a request, it computed the decision and then
posted the response back to the ENS. Our experimental results show that the PDP computed
each response in less than 0.1ms.

In the basic setup, we used one PEP, one PDP, and one ENS server, and each of them was
located on its own cluster node. The workload generator generated 100 requests per second.
On average, 80 out of these requests were issued by active subjects. The policy contained 500
subjects, 500 objects, and 3 access rights. The number of active users was 100. The workload
generator generated 20,000 requests in total, and the response time was measured as the average
of the response times of the last 5,000 requests.

Each experiment was run ten times and the average response time results are reported. The
observed standard deviations for all experiments were very small, i.e., less than 0.05ms for all
of them.

Experimental results

We now describe the experimental results. Our previous analysis in Section 5.2.3 suggests that
the ENS performance should be mainly affected by the number of subscriptions and subscription
frequency. This is in turn affected by the subscription scheme used and other factors like the
request rate, number of subjects, etc. By exploring the dependency of performance on these
factors, the results shed light on the trade-offs one should consider in deploying a pub-sub
authorization system.

In the following, we first describe the results that compare the response time of four sub-
scription schemes in the basic setup. Then we present the results on how the performance
was affected by varying the number of outstanding subscriptions. We then describe the results
specific to the session-based scheme, which show the impact of the subscription frequency and

106

5.3. Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

callbacksessionsubjectrequest

re
sp

on
se

 ti
m

e
(m

s)

(a) LAN scenario.

 0

 10

 20

 30

 40

 50

 60

 70

 80

callbacksessionsubjectrequest

re
sp

on
se

 ti
m

e
(m

s)

(b) WAN scenario.

Figure 5.9: Response time comparison for the four PEP subscription schemes: request-based,
subject-based, session-base, and callback.

number for active subjects. We finally present the results for the system that contained multiple
PEPs or multiple PDPs.

Basic response time comparison In comparing the response times of different schemes in
the basic setup, we studied the response time in both LAN and WAN scenarios.

Figure 5.9 illustrates the response time for each PEP subscription scheme. The results show
that different schemes achieved different response times. In our system, there are three factors
that contribute to the response time: the network latency, the time used by the PDP to resolve
a request, and the time used by the ENS to handle requests and responses. Since the network
latency and the time used by the PDP were the same for all the four schemes, any difference
in the response time was caused by the time used by the ENS, which in turn was decided by
the number of subscriptions at the ENS and the subscription frequency posted by the PEP.

The following observations can be made from Figure 5.9:

• The callback scheme led to the shortest response time. The reason is likely that each
response was directly returned to the PEP, bypassing the ENS. In addition, since the
PEP did not post any subscription requests to the ENS, the ENS load was also reduced.
Figure 5.9(b) also demonstrates that using the callback scheme saved one-way network
delay (20ms). This saving would be more significant when the number of ENS nodes
needed to route the message increases.

• The request-based subscription scheme led to the longest response time. This was due to
the increased ENS overhead by frequent (un)subscription. However, we can not conclude
yet that the other two subscription schemes, i.e., subject-based or session-based schemes,
will always achieve lower response time, because their response times depend on other
factors, e.g., the number of outstanding subscriptions. We studied this impact in the next
two experiments.

107

5.3. Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e
(m

s)

number of outstanding subscriptions

PEP posted
PDP posted

Figure 5.10: Response time as a function of the number of subscriptions.

• The session-based scheme achieved similar response time to the subject-based subscription
scheme. The reason is that, although the number of subscriptions was reduced in the
session-based scheme, the subscription frequency was increased compared to the subject-
based scheme. In particular, in order to maintain a small number of subscriptions, the
session-based scheme required the PEP to post (un)subscriptions to the ENS at a constant
frequency.

• Figure 5.9(b) demonstrates that the overhead added by the ENS was trivial compared to
the network latency. When the network latency was high (or the time for the PDP to
resolve a request was high due to the complex authorization logic), the ENS overhead was
negligible.

The impact of the number of subscriptions Next, we studied the extent to which the
system performance depends on the number of outstanding subscriptions registered at the ENS.
In the first experiment, we studied PDP subscriptions. We varied the number of objects from
100 to 1,000, thus varying the number of subscriptions posted by the PDP. We only ran the
experiment using the session-based scheme as the results are also applicable to other subscription
schemes. In the second experiment, we studied PEP subscriptions. We ran experiment using
the subject-based scheme. We varied the number of subjects from 100 to 1,000, thus varying
the number of subscriptions posted by the PEP.

Figure 5.10 shows the response time as a function of the number of outstanding subscriptions
made by the PEP or the PDP. The result demonstrates that the response time increased almost
linearly with the number of subscriptions. Therefore, it is important to keep the number of
outstanding subscriptions small. For PDPs, this can be achieved by using the hierarchy-based
or application-based subscription schemes. For PEPs, this can be achieved by subscribing to
active subjects, as in the session-based scheme.

Note that this result depends on the matching algorithm used by a specific ENS im-
plementation. In our case, this result is specific to Siena. Some other ENS implementa-

108

5.3. Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

re
sp

on
se

 ti
m

e
(m

s)

percentage of requests made by active subjects (%)

(a) The impact of (un)subscription frequency.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350 400 450 500

re
sp

on
se

 ti
m

e
(m

s)

number of active subjects

(b) The impact of the number of outstanding sub-
scriptions.

Figure 5.11: Results for the session-based subscription scheme.

tions [ASS+99, CCC+01] use an optimized matching algorithm, where the response time may
increase sublinearly with the number of subscriptions. An interesting direction for future work
would be studying how our system would perform if these algorithms are used in Siena.

The result also advocates that it is important to regularly clean up obsolete subscriptions
registered in the ENS to reduce the number of outstanding subscriptions. A subscription
becomes obsolete when the corresponding party is no longer interested in the event matching
that subscription. For example, in the request-based subscription scheme, if the PEP fails to
receive the response for a request within a certain time frame, the PEP will enforce a default
decision and will no longer need the response for that request. In this case, if the PEP is
not triggered to issue an unsubscription call to the ENS, the number of subscriptions would
accumulate in the system and lead to increased response time.

Session-based subscriptions Next, we focused on the session-based subscription scheme.
Unlike other schemes, the performance of this scheme is affected by both the (un)subscription
frequency and the number of outstanding subscriptions (or active subjects).

In the first experiment, we varied the (un)subscription frequency by varying the percentage
of the requests that were made by active subjects. When this number increased, the subscription
frequency decreased. Specifically, we varied it from 0 to 100% while fixing the number of active
subjects at 100. When it was 0%, all requests were issued by the inactive subjects, thereby
every request incurred an (un)subscription call to the ENS. When it was 100%, all requests were
issued by the active subjects, thereby no subscription was posted. Figure 5.11(a) shows the
result. As expected, the response time decreased almost linearly with the percentage of requests
made by active subjects, due to the decrease in (un)subscription frequency. This result further
confirms that it is important to reduce the (un)subscription frequency.

In the second experiment, we fixed the percentage of the requests made by active subjects
at 80% while varing the number of active subjects from 10 to 500. Figure 5.11(b) shows

109

5.3. Evaluation

 0

 200

 400

 600

 800

 1000

 1200

sessionsubjectrequest

th
ro

ug
hp

ut
 (r

eq
s/s

ec
)

Figure 5.12: The impact of concurrent PEP subscriptions on the throughput.

that the response time increased with the number of active subjects. The result is consistent
with Figure 5.10, as the number of active subjects determined the number of outstanding
subscriptions posted by the PEP.

The impact of concurrent PEP subscriptions In the next experiment, we used four
PEPs to study the system throughput under multiple concurrent requests. We estimated the
maximum throughput in the following way. In each run of the experiment, the rate q at which
the PEP generated requests was fixed. We monitored the number of outstanding requests
that were waiting for a response. If this number monotonically increased for five consecutive
measurements, then we concluded that the ENS was saturated and the experiment was aborted.
We iteratively varied q across different experimental runs to identify the minimum value of q.
The system maximum throughput was then measure as the sum of q of four PEPs.

Figure 5.12 compares the throughput for the three subscription schemes that involved PEP
subscriptions. In particular, the request-based subscription scheme introduced maximum over-
head due to the frequent subscriptions and unsubscriptions. The subject-based scheme per-
formed slightly better than the session-based scheme even though the number of outstanding
subscriptions was lower in the session-based scheme. This result suggests that it is important
to keep the frequency of subscriptions low to improve system throughput, especially when the
system contains multiple concurrent requests. In this case, any subscription call to the ENS
has to wait until another subscription call finishes because updates to the ENS routing table
are mutually exclusive.

The impact of duplicate PDP subscriptions In the next experiment, we used four PDPs
to study the system behavior under duplicate subscriptions. In the experiment, each PDP
posted 1,000 subscriptions. Therefore, the total number of outstanding PDP subscriptions was
always 4,000. By varying the overlap rate between PDPs, we studied how the overlap rate
affected the response time. A larger overlap rate led to more duplicate subscriptions posted by

110

5.3. Evaluation

 0

 2

 4

 6

 8

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
sp

on
se

 ti
m

e
(m

s)

overlap rate

Figure 5.13: Response time as a function of overlap rate, when 4 PDPs exist.

different PDPs. We only tested the session-based subscription scheme since the results would
also apply to other PEP subscription schemes.

Figure 5.13 shows the response time as a function of the overlap rate. The results demon-
strate that the response time decreased with the overlap rate. The likely reason is that sub-
scriptions with identical predicates were coalesced into a single subscription in the ENS routing
table(s). Therefore, the size of the routing tables at the ENS node was reduced, thus saving
the matching time.

Evaluating pub-sub with authorization recycling To study the integration of pub-sub
with authorization recycling, we also added an SDP component to the prototyped system. The
SDP implemented the SAAMRBAC authorization recycling algorithms described in [WCBR09].
When the PEP received a request, it first sent the request to the SDP. Only when the SDP
failed to resolve this request was the request sent to the ENS.

We studied the performance of the SAAM-enabled pub-sub system. In the experiment,
the PEP sent 100,000 randomly generated requests in total. Figure 5.14 shows the results.
As expected, adding the SDP helps to reduce the response time significantly. In other words,
the impact of the pub-sub’s overhead on the performance is only significant when the cache
warmness is low. As the cache warmness increases, more requests can be resolved by the local
SDP, thus reducing the time to obtain responses and reducing the load on the ENS.

Discussion

From the experimental results, we can draw the following conclusions about the four PEP
subscription schemes:

• Request-based subscription. This scheme is not affected by the number of subjects in the
system, since each subscription is removed once the response is received. However, this
scheme generates the highest overhead at the ENS due to the frequent subscriptions and
unsubscriptions, which results in significantly-reduced system throughput. Therefore, this

111

5.3. Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

request-based
subject-based
session-based

callback

(a) LAN scenario.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

re
sp

on
se

 ti
m

e
(m

s)

number of requests x 1,000

request-based
subject-based
session-based

callback

(b) WAN scenario.

Figure 5.14: Response time comparison with approximate recycling

scheme is only suitable for those scenarios where the number of concurrent requests and
the request rate are low.

• Subject-based subscription. This scheme largely reduces the (un)subscription overhead
when compared to the request-based subscription scheme. However, this is at the cost
of a large number of subscriptions registered in the ENS, as the PEP may eventually
subscribe to all subjects. Therefore, the scheme is useful for those systems with a small
number of subjects or for those applications with good locality in terms of subjects.

• Session-based subscription. This scheme reduces the number of outstanding subscrip-
tions, compared to the subject-based subscription scheme, and reduces the subscription
frequency, compared to the request-based subscription scheme. However, when the system
contains multiple concurrent requests, it is desirable to keep the subscription frequency
low to achieve high throughput.

• Callback. In all the experiments, this scheme achieves best performance because it only
partially uses the ENS. However, this scheme may need additional infrastructure support
in a real deployment to deliver messages from the PDP to the PEP and does not support
cooperative authorization recycling or speculative authorizations.

Finally, our results also confirm that by deploying SDPs, the impact of the ENS on system
performance was reduced. Therefore, it is desirable to add SDPs to the pub-sub authorization
system to improve system performance.

In our experiments, we used one ENS node. A real deployment may contain multiple
distributed ENS nodes. We believe that our experimental results apply to those environments
as well, since the factors we studied, e.g., the number of subscriptions, affect the performance
of any individual node in a distributed ENS in a similar manner. We may evaluate the system
scalability with a large number of PEPs and PDPs, which basically leads to more outstanding

112

5.4. Summary

subscriptions and concurrent requests. However, this type of evaluation would be very specific
to the ENS implementation used. To avoid the performance bottleneck in a distributed ENS, a
load-balancing technique should be deployed to evenly distribute subscriptions to every node.
In other words, the responsibility of matching requests/responses to PDPs/PEPs is distributed
evenly among ENS nodes.

5.4 Summary

In this chapter, we present a design that uses the publish-subscribe architecture to improve
the robustness and manageability of access control systems. By deploying an ENS between
applications and authorization servers, our approach enables multiple PDPs to form a reliable
PDP cloud to serve all PEPs. We also expect that using a standard ENS can reduce the
overhead of authorization system development and management.

We define system requirements, and present a detailed design that meets these requirements.
Our design is generic so that it is independent of the implementation of a specific ENS as well as
the underlying access control policies. To reduce the impact of the ENS on system performance,
we propose various subscription schemes that can be used in different scenarios. In addition,
we discuss strategies to enforce security and consistency in our design. We evaluate our design
using an analytical analysis, which confirms the improvement in availability. We also build a
prototype system and evaluate the system performance under different scenarios.

Along with the traditional authorization infrastructure based on the request-response model,
we also explore how the publish-subscribe channel can be integrated with the authorization re-
cycling system and how it can support cooperative authorization recycling as well as speculative
authorizations. The integration is expected to further improve authorization system availability
and performance.

113

Chapter 6

Conclusion

As enterprise application systems become increasingly large and complex, their authorization
infrastructures face new challenges. Conventional request-response authorization architectures
that use centralized policy decision points (PDPs) become fragile and scale poorly. One state-of-
the-practice approach to improving overall system availability and reducing the authorization
processing delays observed by the client is to recycle previous authorizations at the policy
enforcement point (PEP). These solutions, however, only employ precise authorization recycling:
a cached authorization is reused only if the authorization request in question exactly matches
the original request for which the previous authorization was made. As a result, the number of
requests that can be resolved by the cache is low and the application still depends much on the
remote authorization service.

This dissertation introduces three approaches to achieve the goals of improving the avail-
ability and performance of enterprise access control systems. In Chapter 3, we first propose
SAAMRBAC, which extends the precise authorization recycling approach by enabling the infer-
ence of approximate authorizations for role-based access control (RBAC) systems. We define
inference rules specific to RBAC authorization semantics and develop recycling algorithms based
on these rules. These algorithms can be integrated with existing RBAC systems and be used
to cache authorization decisions and to infer approximate decisions from cached data. Our
evaluation results demonstrate significant increase in the number of authorization requests that
can be served without consulting the original decision point, as compared to precise recycling.
Meanwhile, the time used to infer approximate responses is low. These results suggest that
deploying SAAMRBAC improves the availability and scalability of RBAC systems, and in turn
the performance of entire enterprise application systems.

In Chapter 4, we propose a cooperative secondary and approximate recycling (CSAR) ap-
proach to further improving the availability and performance of authorization solutions. This
approach explores the cooperation between secondary decision points (SDPs), which is espe-
cially practical in distributed systems involving cooperating parties or replicated services, due
to the high overlap in their user/resource spaces and the need for consistent policy enforcement.
We analyze CSAR’s design requirements, and propose a concrete architecture that meets these
requirements. The evaluation results suggest that even with small caches (or low cache warm-
ness), our cooperative authorization solution can still offer significant benefits.

SAAM and CSAR can be viewed as client-side (or PEP-side) techniques to improve system
availability and performance. In Chapter 5, we further propose the use of a publish-subscribe

114

6.1. Future work

architecture, which can be viewed a combination of client-side and server-side (PDP-side) tech-
niques. We present and evaluate an authorization system that uses an event notification service
(ENS) to replace the existing point-to-point communication architecture. Unlike in a point-
to-point architecture, where PEPs are configured to send their requests to specific PDPs, a
pub-sub architecture enables PEPs to send their requests without knowing which PDP will
receive them. Similarly, the PDPs show interest in requests without knowing which PEPs gen-
erate them. By using the pub-sub architecture, the coupling between specific PEPs and PDPs
is removed; remote PDPs form a reliable PDP cloud that serves the PEP client populations.
As a result, system availability is improved and system administration is simplified.

Finally, we also show that these approaches can be integrated together in a synergistic way to
provide even higher availability and performance. Using authorization recycling, the overhead
of using an ENS between PEPs and PDPs is reduced. Furthermore, the pub-sub architecture
also helps authorization recycling. First, the ENS can work as a discovery service for an SDP
to find PDPs or other SDPs to resolve a request, thereby unifying the SDP cooperation with
PDP cooperation. Second, the PDP can push policy update messages to SDPs through the
ENS to maintain cache consistency. Third, the ENS also facilitates speculative authorizations,
by which the PDP pre-computes authorizations and pushes them to SDPs for recycling.

6.1 Future work

Although we demonstrate that our approaches improve the availability and performance of
enterprise authorization systems, there are several areas for future research.

Recall that SAAM defines an authorization request as a tuple (s, o, a, c, i), where s is the
subject, o is the object, a is the access right, c is the contextual information relevant to the
request, and i is the request identifier. Our SAAMRBAC recycling algorithms have ignored
the contextual information. This is an important issue to consider in our future research,
as contextual information has become increasingly important in making decisions in enterprise
environments. Contextual information may come from a variety of sources, such as user profiles,
the time of a day, IP addresses, and geographic locations. For example, a transaction that
accesses sensitive information may be allowed only if the user is connecting from inside the
corporate network. We plan to explore SAAM algorithms that are able to recycle those decisions
that are made with contextual information.

The SAAM framework of making secondary and approximate access control decisions is in-
dependent of the specifics of the application and access control policy. For each class of access
control policy, however, specific algorithms for inferring approximate responses—generated ac-
cording to the particular access control model—need to be designed. This dissertation describes
SAAMRBAC, and previously SAAMBLP was also proposed [CLB06]. One avenue for future work
would be to explore SAAM recycling algorithms for other types of access control policy. The
challenge lies in examining the semantics for each type of access control policy and using them

115

6.1. Future work

to develop efficient inference algorithms. Beznosov [Bez05] also points to a number of future
work areas in this direction. For example, it would be interesting to explore how the proposed
recycling approach is effective in environments where authorizations depend on access history,
as in Chinese-Wall [BN89] policies. In addition, it is challenging to design a “stateless” SDP to
support the polices based on consumable rights, or more generally mutable attributes [PS04], of
subjects.

Additionally, the current SAAM recycling framework only considers the SDP and the PDP
that make decisions, but neglects the PEP that finally enforces those decisions. Considering
the PEP would suggest further research directions. For example, the PEP may implement a
deny-by-default (DBD) enforcement scheme, where the PEP denies those requests for which a
deny or undecided decision is returned. In this case, deny and undecided responses do not make
a difference to the PEP. Therefore, the SDP only needs to compute allow responses, which may
improve the performance of authorization recycling algorithms and reduce the burden of SDPs.
A future research direction is to consider PEP, SDP and PDP as a unified access control system
and to study different optimization choices for recycling algorithms.

For the approach using the publish-subscribe architecture, we have proposed general PEP
subscription mechanisms, which are independent of the underlying authorization policy. The
design of policy-aware subscription mechanisms could be another direction for future work.
In particular, when the underlying policy model is known, we can study the policy semantics
to provide a better subscription scheme. For example, in RBAC, the PEP can subscribe to
the activated roles of a subject instead of the subject identities. By subscribing to roles, the
number of subscriptions can be significantly reduced as multiple users may have similar roles.
In addition, a returned response for one request may be reused for other outstanding requests
due to their similar subscriptions. Hence, we expect that using a policy-aware subscription
scheme will further reduce the ENS overhead in matching responses to requests and reduce
system response time.

Furthermore, our current design of the pub-sub system is based on a generic ENS. In some
circumstances, however, an access-control-specific ENS may be desirable. Consider that PEPs
subscribe to the activated roles of a subject. If an allow response is returned for the request
issued by subject {r1}, this response can also be used for the request for the same permission
but issued by subject {r1, r2}.12 Similarly, a deny response returned for subject {r1, r2} can
be used for subject {r1}. An access-control-specific ENS should be able to apply these rules in
routing responses to the corresponding PEPs so that one response can be reused for multiple
outstanding requests. Hence, we expect that an access-control-specific ENS is able to route
the authorization request/response between PEPs and PDPs more efficiently, thus improving
system performance.

12Note that this logic may not hold if mutual exclusion is used in an environment. For example, access is
granted if the subject has {r1}, or if the subject has {r2}, but is denied if the subject has both {r1} and {r2}
simultaneously.

116

Bibliography

[AFM05] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières. Shark: scal-
ing file servers via cooperative caching. In NSDI’05: Proceedings of the 2nd con-
ference on Symposium on Networked Systems Design & Implementation, pages
129–142, Berkeley, CA, USA, 2005. USENIX Association.

[AH02] L.A. Adamic and B.A. Huberman. Zipf’s law and the Internet. Glottometrics,
3(1):143–50, 2002.

[All05] J. Allen. Governing for Enterprise Security. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2005.

[And72] James Anderson. Computer security technology planning study. Technical Report
ESD-TR-73-51, Vols. I and II, Air Force Electronic Systems Division, 1972.

[ANS04] ANSI. ANSI INCITS 359-2004 for role based access control, 2004.

[ASA01] Mark Astley, Daniel C. Sturman, and Gul A. Agha. Customizable middleware for
modular distributed software. Communications of the ACM (CACM), 44(5):99–
107, 2001.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar D. Chandra. Matching events in a content-based subscription system. In
PODC ’99: Proceedings of the eighteenth annual ACM symposium on Principles
of distributed computing, pages 53–61, 1999.

[BAR+03] Axel Bücker, Jesper Antonius, Dieter Riexinger, Frank Sommer, and Atsushi Sum-
ida. Enterprise Business Portals II with IBM Tivoli Access Manager. IBM Red-
books, ibm.com/redbooks, March 23 2003.

[BBQV07] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, and Antonino Virgillito.
Efficient publish/subscribe through a self-organizing broker overlay and its appli-
cation to SIENA. The Computer Journal, pages 444–459, 2007.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In Proceedings of the Con-
ference on Computer Communications (INFOCOM’99), pages 126–134, New York,
NY, USA, 1999. IEEE Computer Society.

117

Chapter 6. Bibliography

[BCM+99] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C.
Sturman. Efficient multicast protocol for content-based publish-subscribe systems.
In Proceedings of the 19th International Conference on Distributed Computing Sys-
tems (ICDCS’99), pages 262–272, 1999.

[BCR+09] Lujo Bauer, Lorrie Faith Cranor, Robert W. Reeder, Michael K. Reiter, and Kami
Vaniea. Real life challenges in access-control management. In CHI ’09: Proceedings
of the 27th international conference on Human factors in computing systems, pages
899–908, New York, NY, USA, 2009. ACM.

[BDB+99] Konstantin Beznosov, Yi Deng, Bob Blakley, Carol Burt, and John Barkley. A
resource access decision service for CORBA-based distributed systems. In Annual
Computer Security Applications Conference (ACSAC’99), pages 310–319, Phoenix,
Arizona, USA, 1999.

[BDS00] D. Balfanz, D. Dean, and M. Spreitzer. A security infrastructure for distributed
Java applications. In IEEE SYMPOSIUM ON SECURITY AND PRIVACY, pages
15–26. IEEE Computer Society, 2000.

[Bez98] Konstantin Beznosov. Issues in the security architecture of the computerized pa-
tient record enterprise. In Second Workshop on Distributed Object Computing
Security, Baltimore, Maryland, USA, 1998.

[Bez00] Konstantin Beznosov. Engineering Access Control for Distributed Enterprise Ap-
plications. Ph.D. dissertation, Florida International University, 2000.

[Bez05] Konstantin Beznosov. Flooding and recycling authorizations. In Proceedings of the
New Security Paradigms Workshop (NSPW’05), pages 67–72, Lake Arrowhead,
CA, USA, 20-23 September 2005. ACM Press.

[BGR05] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-
control systems. In Proceedings of the 2005 IEEE Symposium on Security and
Privacy (S&P’05), pages 81–95, Oakland, CA, 2005. IEEE Computer Society.

[BH05] Dieter Buehler and Thomas Hurek. Performance tuning of portal access control.
http://www.ibm.com/developerworks/websphere/library/techarticles/
0508 buehler/0508 buehler.html, 2005.

[BL73a] D.E. Bell and L. LaPadula. Secure computer systems: Mathematical founda-
tions. Technical Report MTR-2547, Volume I, Mitre Corporation, Bedford, Mas-
sachusetts, 1973.

[BL73b] D.E. Bell and L. LaPadula. Secure computer systems: A mathematical model.
Technical Report MTR-2547, Volume II, Mitre Corporation, Bedford, Mas-
sachusetts, 1973.

118

Chapter 6. Bibliography

[BN89] D. Brewer and M. Nash. The Chinese Wall security policy. In Proceedings of
the 1989 IEEE Symposium on Security and Privacy, pages 206–214, Oakland,
California, 1989. IEEE Computer Society Press.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In ACM Symposium on
Principles of Distributed Computing (PODC’00), Portland, Oregon, 2000. Invited
talk.

[BRS02] Ashwin R. Bharambe, Sanjay Rao, and Srinivasan Seshan. Mercury: a scalable
publish-subscribe system for internet games. In NetGames ’02: Proceedings of the
1st workshop on Network and System Support for Games, pages 3–9, 2002.

[BSF02] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general and flexible
access-control system for the web. In Proceedings of the 11th USENIX Security
Symposium, pages 93–108, Berkeley, CA, USA, 2002. USENIX Association.

[BZP05] Kevin Borders, Xin Zhao, and Atul Prakash. CPOL: high-performance policy
evaluation. In Proceedings of the 12th ACM conference on Computer and Com-
munications Security (CCS’05), pages 147–157, New York, NY, USA, 2005. ACM
Press.

[Car09] Antonio Carzaniga. personal communication, 2009.

[CCC+01] Alexis Campailla, Sagar Chaki, Edmund Clarke, Somesh Jha, and Helmut Veith.
Efficient filtering in publish-subscribe systems using binary decision diagrams. In
ICSE ’01: Proceedings of the 23rd International Conference on Software Engineer-
ing, pages 443–452, Washington, DC, USA, 2001. IEEE Computer Society.

[CDNF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9):827–850, Sep 2001.

[CEE+01] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos,
and Ronald L. Rivest. Certificate chain discovery in spki/sdsi. Journal of Computer
Security, 9(4):285–322, 2001.

[Cha05] David Chadwick. Authorisation in grid computing. Information Security Technical
Report, 10(1):33 – 40, 2005.

[CJ02] Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe middleware
for mobile systems. ACM SIGMOBILE Mobile Computing and Communications
Review, 6(4):25–33, 2002.

119

Chapter 6. Bibliography

[CKK02] Yan Chen, Randy H. Katz, and John Kubiatowicz. Dynamic replica placement
for scalable content delivery. In IPTPS ’01: Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, pages 306–318, London, UK, 2002.
Springer-Verlag.

[CLB06] Jason Crampton, Wing Leung, and Konstantin Beznosov. Secondary and ap-
proximate authorizations model and its application to Bell-LaPadula policies. In
Proceedings of the 11th ACM Symposium on Access Control Models and Technolo-
gies (SACMAT’06), pages 111–120, Lake Tahoe, CA, USA, June 7–9 2006. ACM
Press.

[Com05] XACML Technical Committee. OASIS eXtensible Access Control Markup Lan-
guage (XACML) version 2.0. OASIS Standard, 1 February 2005.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving
scalability and expressiveness in an internet-scale event notification service. In
PODC’00: Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing, pages 219–227, 2000.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, 2001.

[CZO+08] David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Linying Su, and
Tuan Anh Nguyen. Permis: a modular authorization infrastructure. Concurrency
and Computation: Practice and Experience, 20(11):1341–1357, 2008.

[Dav00] T.H. Davenport. The future of enterprise system-enabled organizations. Informa-
tion Systems Frontiers, 2(2):163–180, 2000.

[Dav01] Brian D. Davison. A web caching primer. IEEE Internet Computing, 5(4):38–45,
2001.

[DB92] Paul Dourish and Sara Bly. Portholes: supporting awareness in a distributed work
group. In CHI ’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 541–547, 1992.

[DBC+00] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The COPS
(common open policy service) protocol. IETF RFC2748, 2000.

[DK06] Linda DeMichiel and Michael Keith. JSR-220: Enterprise JavaBeans specification,
version 3.0: EJB core contracts and requirements. Specification v.3.0 Final Release,
Java Community Program, May 2006.

120

Chapter 6. Bibliography

[Edd99] Guy Eddon. The COM+ security model gets you out of the security programming
business. Microsoft Systems Journal, 1999(11), 1999.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

[EHM+08] Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber,
and Robert E. Tarjan. Fast exact and heuristic methods for role minimization
problems. In SACMAT ’08: Proceedings of the 13th ACM symposium on Access
control models and technologies, pages 1–10, New York, NY, USA, 2008. ACM.

[Ent99] Entrust. GetAccess design and administration guide, September 20 1999.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on Net-
working, 8(3):281–293, 2000.

[FH02] S. Farrell and R. Housley. An internet attribute certificate profile for authorization,
2002.

[FK67] W.N. Francis and H. Kucera. Computational analysis of present-day American
English. Providence, RI: Brown University Press, 1967.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access controls. In Proceedings of the 15th
NIST-NCSC National Computer Security Conference, pages 554–563, Baltimore,
MD, USA, 1992. National Institute of Standards and Technology/National Com-
puter Security Center.

[Gar02] Gartner. Cutting implementation costs by application integration. press release,
2002.

[GB99] R. Grimm and B. Bershad. Providing policy-neutral and transparent access control
in extensible systems. Lecture Notes in Computer Science, pages 317–338, 1999.

[GC89] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism for dis-
tributed file cache consistency. In SOSP ’89: Proceedings of the twelfth ACM
symposium on Operating systems principles, pages 202–210, New York, NY, USA,
1989. ACM Press.

[GH95] Frederic Gittler and Anne C. Hopkins. The DCE security service. Hewlett-Packard
Journal, 46(6):41–48, 1995.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

121

Chapter 6. Bibliography

[HAB+05] Alon Y. Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise Draper, Jeff
Pollock, Arnon Rosenthal, and Vishal Sikka. Enterprise information integration:
successes, challenges and controversies. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages 778–787,
New York, NY, USA, 2005. ACM.

[HGPS99] John Hale, Pablo Galiasso, Mauricio Papa, and Sujeet Shenoi. Security policy
coordination for heterogeneous information systems. In Annual Computer Secu-
rity Applications Conference, pages 219–228, Phoenix, Arizona, USA, 1999. IEEE
Computer Society.

[HR98] David M. Hilbert and David F. Redmiles. An approach to large-scale collection
of application usage data over the internet. In ICSE ’98: Proceedings of the 20th
international conference on Software engineering, pages 136–145, 1998.

[IBM08] IBM. Websphere Message Broker 6.1 Information Center: Publish/subscribe secu-
rity. http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp, 2008.

[Int08] Internet2. Shibboleth System. http://shibboleth.internet2.edu/, 2008.

[JH97] Dean Povey John and John Harrison. A distributed internet cache. In In Proceed-
ings of the 20th Australian Computer Science Conference, pages 5–7, 1997.

[Jim01] Trevor Jim. Sd3: A trust management system with certified evaluation. In SP
’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, page 106,
Washington, DC, USA, 2001. IEEE Computer Society.

[Joh96] B.W. Johnson. Fault-tolerant computer system design, chapter An introduction to
the design and analysis of fault-tolerant systems, pages 1–87. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1996.

[JPMH07] Michael A. Jaeger, Helge Parzyjegla, Gero Mühl, and Klaus Herrmann. Self-
organizing broker topologies for publish/subscribe systems. In SAC ’07: Pro-
ceedings of the 2007 ACM symposium on Applied computing, pages 543–550, New
York, NY, USA, 2007. ACM.

[Kai98] P. Kaijser. A review of the sesame development. Lecture Notes in Computer
Science, 1438:1–8, 1998.

[Kar01] Gunter Karjoth. The authorization service of Tivoli policy director. In Annual
Computer Security Applications Conference (ACSAC), pages 319–328, New Or-
leans, Louisiana, 2001. IEEE.

[Kar03] G. Karjoth. Access control with IBM Tivoli Access Manager. ACM Transactions
on Information and Systems Security, 6(2):232–57, 2003.

122

Chapter 6. Bibliography

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Proceed-
ings of the 11th European Conference on Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, Jyvaskyla, Finl, 1997.

[KLVW04] Alexander Klemm, Christoph Lindemann, Mary K. Vernon, and Oliver P. Wald-
horst. Characterizing the query behavior in peer-to-peer file sharing systems. In
IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet mea-
surement, pages 55–67, New York, NY, USA, 2004. ACM.

[KLW05] Zbigniew Kalbarczyk, Ravishankar K. Lyer, and Long Wang. Application fault
tolerance with Armor middleware. IEEE Internet Computing, 9(2):28–38, 2005.

[KS07] Angelos D. Keromytis and Jonathan M. Smith. Requirements for scalable access
control and security management architectures. ACM Transactions on Internet
Technology (TOIT), 7(2), May 2007.

[KT86] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed
systems. In ACM ’86: Proceedings of 1986 ACM Fall joint computer conference,
pages 1150–1158, Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[Lam71] Butler W. Lampson. Protection. In 5th Princeton Conference on Information
Sciences and Systems, page 437, New York, NY, USA, 1971. ACM Press.

[LCL04] W. K. Lin, D. M. Chiu, and Y. B. Lee. Erasure code replication revisited. In P2P
’04: Proceedings of the Fourth International Conference on Peer-to-Peer Comput-
ing, pages 90–97, Washington, DC, USA, 2004. IEEE Computer Society.

[LGK+99] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers. User
authentication and authorization in the java platform. In Annual Computer Secu-
rity Applications Conference, pages 285–290, Phoenix, Arizona, USA, 1999. IEEE
Computer Society.

[LPL+03] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah.
First experiences using xacml for access control in distributed systems. In XMLSEC
’03: Proceedings of the 2003 ACM workshop on XML security, pages 25–37, New
York, NY, USA, 2003. ACM.

[Maz04] Paul J. Mazzuca. Access control in a distributed decentralized network: an XML
approach to network security using XACML and SAML. Technical report, Dart-
mouth College, Computer Science, Spring 2004.

[MD99] R. Mc Dougall. Availability-What It Means, Why It’s Important, and How to
Improve It. Sun Blueprints Online, 1999.

123

Chapter 6. Bibliography

[Mer05] Mercury. Diagnostics for SAP solutions: a performance lifecycle white paper. white
paper, September 2005.

[MH06] John Markoff and Saul Hansell. Google’s not-so-very-secret weapon. International
Hearald Tribune, June 13, 2006, 2006.

[Mic01] S. Microsystems. Java Message Service Specification, 2001.

[MMDV02] J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy. Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure Com-
munication, 2002.

[MT00] M. L. Markus and C. Tanis. The enterprise systems experience-from adoption to
success, pages 173–207. Pinnaflex Education Resources, Inc, Cincinnati, OH, 2000.

[Mul93] Sape Mullender, editor. Distributed systems (2nd Ed.). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1993.

[ND97] V. Nicomette and Y. Deswarte. An authorization scheme for distributed object
systems. In Proceedings of the 1997 IEEE Symposium on Security and Privacy
(S&P’97), pages 21–30, Oakland, CA, 1997. IEEE Computer Society.

[Net00] Netegrity. Siteminder concepts guide. Technical report, Netegrity, 2000.

[NWO88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the sprite
network file system. ACM Trans. Comput. Syst., 6(1):134–154, 1988.

[OMG02] OMG. Common object services specification, security service specification v1.8,
2002.

[Ora08a] Oracle. Modernizing access control with authorization service. white paper,
November 2008.

[Ora08b] Oracle. Oracle entitlements server: Programming security for web services. Tech-
nical report, Oracle, September 2008.

[Ora09] Oracle. Maximizing portal application performance. white paper, April 2009.

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based middleware
architecture. In ICDCSW ’02: Proceedings of the 22nd International Conference
on Distributed Computing Systems, pages 611–618, Washington, DC, USA, 2002.
IEEE Computer Society.

[Pha03] Pharm. Java TPC-W implementation distribution.
http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2003.

124

Chapter 6. Bibliography

[PLZ03] A. Padovitz, S.W. Loke, and A. Zaslavsky. Using the publish-subscribe communi-
cation genre for mobile agents. In Proceedings of the First German Conference on
Multiagent System Technologies, Sep 2003.

[Pow94] David Powell. Distributed fault tolerance—lessons learnt from delta-4. In Pa-
pers of the workshop on Hardware and software architectures for fault tolerance :
experiences and perspectives, pages 199–217, London, UK, 1994. Springer-Verlag.

[PS04] Jaehong Park and Ravi Sandhu. The UCONabc usage control model. ACM Trans-
actions on Information and System Security, 7(1):128–174, 2004.

[RKCD01] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. Scribe: The design of a large-scale event notification infrastructure. In
NGC ’01: Proceedings of 3rd International Workshop on Networked Group Com-
munication, pages 30–43, London, UK, 2001. Springer-Verlag.

[RN00] Tatyana Ryutov and Clifford Neuman. Generic authorization and access control
application program interface: C-bindings. Internet Draft draft-ietf-cat-gaa-bind-
03, Internet Engineering Task Force, March 9 2000.

[RPS06] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer. Corona: a
high performance publish-subscribe system for the world wide web. In NSDI’06:
Proceedings of Networked System Design and Implementation, pages 2–2, 2006.

[RRH06] Costin Raiciu, David S. Rosenblum, and Mark Handley. Revisiting content-based
publish/subscribe. In ICDCSW ’06: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems Workshops, page 19, Washington,
DC, USA, 2006. IEEE Computer Society.

[SAB+00] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based
Routing with Elvin4. In Proceedings of AUUG2K, June 2000.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–
19, 1993.

[Sar02] P. Sarbanes. Sarbanes-Oxley Act of 2002. In The Public Company Accounting
Reform and Investor Protection Act. Washington DC: US Congress, 2002.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, 1996.

[Sec99] Securant. Unified access management: A model for integrated web security. Tech-
nical report, Securant Technologies, June 25 1999.

125

Chapter 6. Bibliography

[SL05] Mudhakar Srivatsa and Ling Liu. Securing publish-subscribe overlay services with
eventguard. In CCS ’05: Proceedings of the 12th ACM conference on Computer
and communications security, pages 289–298, New York, NY, USA, 2005. ACM.

[Smi82] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.

[SMJ01] Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The role-based access con-
trol system of a european bank: a case study and discussion. In SACMAT ’01:
Proceedings of the sixth ACM symposium on Access control models and technolo-
gies, pages 3–9, New York, NY, USA, 2001. ACM.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions on Networking
(TON), 11(1):17–32, 2003.

[SNvdH03] Anita Sarma, Zahra Noroozi, and André van der Hoek. Palant́ır: raising awareness
among configuration management workspaces. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 444–454, 2003.

[SPLS+06] Wolfgang Schroder-Preikschat, Daniel Lohmann, Fabian Scheler, Wasif Gilani, and
Olaf Spinczyk. Static and dynamic weaving in system software with AspectC++.
In HICSS ’06: Proceedings of the 39th Annual Hawaii International Conference
on System Sciences, page 214.1, Washington, DC, USA, 2006. IEEE Computer
Society.

[SPMF03] J. Schonwalder, A. Pras, and J.-P. Martin-Flatin. On the future of internet man-
agement technologies. Communications Magazine, IEEE, 41(10):90–97, Oct 2003.

[SS75] J.H. Saltzer and M.D. Schroeder. The protection of information in computer sys-
tems. Proceedings of the IEEE, 63(6):1278–1308, 1975.

[SSL+99] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau.
The Flask security architecture: System support for diverse security policies. In
Proceedings of the 8th USENIX Security Symposium, pages 123–140, Washington,
D.C., 1999. USENIX Association.

[Sto04] Geoffrey H. Stowe. A secure network node approach to the policy decision point
in distributed access control. Technical report, Dartmouth College, Computer
Science, June 2004.

[Str07] Paul Strong. How Ebay scales with networks and the challenges. In the 16th
ACM/IEEE International Symposium on High-Performance Distributed Comput-
ing (HPDC’07), Monterey, CA, USA, 2007. ACM Press. Invited talk.

126

Chapter 6. Bibliography

[SV01] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access control: Poli-
cies, models, and mechanisms. In FOSAD ’00: Revised versions of lectures given
during the IFIP WG 1.7 International School on Foundations of Security Analy-
sis and Design on Foundations of Security Analysis and Design, pages 137–196,
London, UK, 2001. Springer-Verlag.

[SV04] Diane M. Strong and Olga Volkoff. A roadmap for enterprise system implementa-
tion. Computer, 37(6):22–29, 2004.

[TC09] Mahesh V. Tripunitara and Bogdan Carbunar. Efficient access enforcement in
distributed role-based access control (RBAC) deployments. In SACMAT ’09: Pro-
ceedings of the 14th ACM symposium on Access control models and technologies,
pages 155–164, Stresa, Italy, June 3-5 2009. ACM.

[TDV99] Renu Tewari, Michael Dahlin, and Harrick Vin. Design considerations for dis-
tributed caching on the Internet. In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, page 273, Washington, DC, USA,
1999.

[TEM03] Mary R. Thompson, Abdelilah Essiari, and Srilekha Mudumbai. Certificate-based
authorization policy in a pki environment. ACM Trans. Inf. Syst. Secur., 6(4):566–
588, 2003.

[TIB99] I. TIBCO. TIB/Rendezvous White Paper. Palo Alto, California, 1999.

[Til05] Henk C.A. van Tilborg. Encyclopedia of Cryptography and Security. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[TPC02] TPC. TPC-W: Transactional web benchmark version 1.8.
http://www.tpc.org/tpcw/, 2002.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[VAG07] Jaideep Vaidya, Vijay Atluri, and Qi Guo. The role mining problem: Finding
a minimal descriptive set of roles. In Proceedings of the 12th ACM Symposium
on Access Control Models and Technologies (SACMAT), pages 175–184, Sophia
Antipolis, France, June20-22 2007. ACM Press.

[Vog04] Werner Vogels. How wrong can you be? Getting lost on the road to massive
scalability. In the 5th International Middleware Conference, Toronto, Canada,
October 20 2004. ACM Press. Keynote address.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44,
2009.

127

Chapter 6. Bibliography

[VV00] John Viega and Jeffrey Voas. The Pros and Cons of Unix and Windows security
policies. IT Professional, 2(5):40–45, 2000.

[WBR06] Qiang Wei, Konstantin Beznosov, and Matei Ripeanu. Cooperative secondary
authorization recycling. poster at the USENIX Security Symposium, July-August
2006.

[WC98] D. Wessels and K. Claffy. Internet cache protocol (ICP), version 2, 1998.

[WCBR08] Qiang Wei, Jason Crampton, Konstantin Beznosov, and Matei Ripeanu. Autho-
rization recycling in RBAC systems. In Proceedings of the thirteenth ACM Sympo-
sium on Access Control Models and Technologies (SACMAT), pages 63–72, Estes
Park, Colorado, USA, June 11–13 2008. ACM.

[WCBR09] Qiang Wei, Jason Crampton, Konstantin Beznosov, and Matei Ripeanu. Autho-
rization recycling in hierarchical RBAC systems. Under review, 32 pages, 2009.

[WRB07] Qiang Wei, Matei Ripeanu, and Konstantin Beznosov. Cooperative secondary au-
thorization recycling. In Proceedings of the 16th ACM/IEEE International Sym-
posium on High-Performance Distributed Computing (HPDC), pages 65–74, Mon-
terey Bay, CA, June 27-29 2007. ACM Press.

[WRB08] Qiang Wei, Matei Ripeanu, and Konstantin Beznosov. Authorization using the
publish-subscribe model. In Proceedings of the 2008 IEEE International Sympo-
sium on Parallel and Distributed Processing with Applications (ISPA), pages 53–62,
Sydney, Australia, December 10–12 2008. IEEE Computer Society.

[WRB09] Qiang Wei, Matei Ripeanu, and Konstantin Beznosov. Cooperative secondary
authorization recycling. IEEE Transactions on Parallel and Distributed Systems,
20(2):275–288, 2009.

[XBH06] Zhiyong Xu, Laxmi Bhuyan, and Yiming Hu. Tulip: A new hash based cooperative
web caching architecture. The Journal of Supercomputing, 35(3):301–320, 2006.

[YB97] Joseph W. Yoder and Jeffrey Barcalow. Archictectural patterns for enabling appli-
cation security. In Pattern Languages of Programming, Monticello, Illinois, USA,
1997.

[YPG99] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for policy-based admis-
sion control. IETF RFC 2753, 1999.

[ZHS+04] BY Zhao, L. Huang, J. Stribling, SC Rhea, AD Joseph, and JD Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal
on selected areas in communications, 22(1):41–53, 2004.

128

